1
|
Li J, Zhang Y, Tang X, Liao W, Li Z, Zheng Q, Wang Y, Chen S, Zheng P, Cao S. Genome Identification and Expression Profiling of the PIN-Formed Gene Family in Phoebe bournei under Abiotic Stresses. Int J Mol Sci 2024; 25:1452. [PMID: 38338732 PMCID: PMC10855349 DOI: 10.3390/ijms25031452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
PIN-formed (PIN) proteins-specific transcription factors that are widely distributed in plants-play a pivotal role in regulating polar auxin transport, thus influencing plant growth, development, and abiotic stress responses. Although the identification and functional validation of PIN genes have been extensively explored in various plant species, their understanding in woody plants-particularly the endangered species Phoebe bournei (Hemsl.) Yang-remains limited. P. bournei is an economically significant tree species that is endemic to southern China. For this study, we employed bioinformatics approaches to screen and identify 13 members of the PIN gene family in P. bournei. Through a phylogenetic analysis, we classified these genes into five sub-families: A, B, C, D, and E. Furthermore, we conducted a comprehensive analysis of the physicochemical properties, three-dimensional structures, conserved motifs, and gene structures of the PbPIN proteins. Our results demonstrate that all PbPIN genes consist of exons and introns, albeit with variations in their number and length, highlighting the conservation and evolutionary changes in PbPIN genes. The results of our collinearity analysis indicate that the expansion of the PbPIN gene family primarily occurred through segmental duplication. Additionally, by predicting cis-acting elements in their promoters, we inferred the potential involvement of PbPIN genes in plant hormone and abiotic stress responses. To investigate their expression patterns, we conducted a comprehensive expression profiling of PbPIN genes in different tissues. Notably, we observed differential expression levels of PbPINs across the various tissues. Moreover, we examined the expression profiles of five representative PbPIN genes under abiotic stress conditions, including heat, cold, salt, and drought stress. These experiments preliminarily verified their responsiveness and functional roles in mediating responses to abiotic stress. In summary, this study systematically analyzes the expression patterns of PIN genes and their response to abiotic stresses in P. bournei using whole-genome data. Our findings provide novel insights and valuable information for stress tolerance regulation in P. bournei. Moreover, the study offers significant contributions towards unraveling the functional characteristics of the PIN gene family.
Collapse
Affiliation(s)
- Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzi Zhang
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuoqun Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiumian Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (X.T.); (W.L.); (Z.L.); (Q.Z.); (S.C.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Wakeman A, Bennett T. Auxins and grass shoot architecture: how the most important hormone makes the most important plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6975-6988. [PMID: 37474124 PMCID: PMC10690731 DOI: 10.1093/jxb/erad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Cereals are a group of grasses cultivated by humans for their grain. It is from these cereal grains that the majority of all calories consumed by humans are derived. The production of these grains is the result of the development of a series of hierarchical reproductive structures that form the distinct shoot architecture of the grasses. Being spatiotemporally complex, the coordination of grass shoot development is tightly controlled by a network of genes and signals, including the key phytohormone auxin. Hormonal manipulation has therefore been identified as a promising potential approach to increasing cereal crop yields and therefore ultimately global food security. Recent work translating the substantial body of auxin research from model plants into cereal crop species is revealing the contribution of auxin biosynthesis, transport, and signalling to the development of grass shoot architecture. This review discusses this still-maturing knowledge base and examines the possibility that changes in auxin biology could have been a causative agent in the evolution of differences in shoot architecture between key grass species, or could underpin the future selective breeding of cereal crops.
Collapse
Affiliation(s)
- Alex Wakeman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Khoso MA, Zhang H, Khoso MH, Poudel TR, Wagan S, Papiashvili T, Saha S, Ali A, Murtaza G, Manghwar H, Liu F. Synergism of vesicle trafficking and cytoskeleton during regulation of plant growth and development: A mechanistic outlook. Heliyon 2023; 9:e21976. [PMID: 38034654 PMCID: PMC10682163 DOI: 10.1016/j.heliyon.2023.e21976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The cytoskeleton is a fundamental component found in all eukaryotic organisms, serving as a critical factor in various essential cyto-biological mechanisms, particularly in the locomotion and morphological transformations of plant cells. The cytoskeleton is comprised of three main components: microtubules (MT), microfilaments (MF), and intermediate filaments (IF). The cytoskeleton plays a crucial role in the process of cell wall formation and remodeling throughout the growth and development of cells. It is a highly organized and regulated network composed of filamentous components. In the basic processes of intracellular transport, such as mitosis, cytokinesis, and cell polarity, the plant cytoskeleton plays a crucial role according to recent studies. The major flaws in the organization of the cytoskeletal framework are at the root of the aberrant organogenesis currently observed in plant mutants. The regulation of protein compartmentalization and abundance within cells is predominantly governed by the process of vesicle/membrane transport, which plays a crucial role in several signaling cascades.The regulation of membrane transport in eukaryotic cells is governed by a diverse array of proteins. Recent developments in genomics have provided new tools to study the evolutionary relationships between membrane proteins in different plant species. It is known that members of the GTPases, COP, SNAREs, Rabs, tethering factors, and PIN families play essential roles in vesicle transport between plant, animal, and microbial species. This Review presents the latest research on the plant cytoskeleton, focusing on recent developments related to the cytoskeleton and summarizing the role of various proteins in vesicle transport. In addition, the report predicts future research direction of plant cytoskeleton and vesicle trafficking, potential research priorities, and provides researchers with specific pointers to further investigate the significant link between cytoskeleton and vesicle trafficking.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mir Hassan Khoso
- Department of Biochemistry, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Pakistan
| | - Tika Ram Poudel
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sindho Wagan
- Laboratory of Pest Physiology Biochemistry and Molecular Toxicology Department of Forest Protection Northeast Forestry University Harbin 150040, China
| | - Tamar Papiashvili
- School of Economics and Management Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sudipta Saha
- School of Forestry, Department of Silviculture, Northeast Forestry University, Harbin 150040, China
| | - Abid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ghulam Murtaza
- Department of Biochemistry and Molecular Biology Harbin Medical University China, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
4
|
Bian J, Cui Y, Li J, Guan Y, Tian S, Liu X. Genome-wide analysis of PIN genes in cultivated peanuts (Arachis hypogaea L.): identification, subcellular localization, evolution, and expression patterns. BMC Genomics 2023; 24:629. [PMID: 37865765 PMCID: PMC10590530 DOI: 10.1186/s12864-023-09723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Auxin is an important hormone in plants and the PIN-FORMED (PIN) genes are essential to auxin distribution in growth and developmental processes of plants. Peanut is an influential cash crop, but research into PIN genes in peanuts remains limited. RESULTS In this study, 16 PIN genes were identified in the genome of cultivated peanut, resolving into four subfamilies. All PIN genes were predicted to be located in the plasma membrane and a subcellular location experiment confirmed this prediction for eight of them. The gene structure, cis-elements in the promoter, and evolutionary relationships were elucidated, facilitating our understanding of peanut PINs and their evolution. In addition, the expression patterns of these PINs in various tissues were analyzed according to a previously published transcriptome dataset and qRT-PCR, which gave us a clear understanding of the temporal and spatial expression of PIN genes in different growth stages and different tissues. The expression trend of homologous genes was similar. AhPIN2A and AhPIN2B exhibited predominant expression in roots. AhPIN1A-1 and AhPIN1B-1 displayed significant upregulation following peg penetration, suggesting a potential close association with peanut pod development. Furthermore, we presented the gene network and gene ontology enrichment of these PINs. Notably, AhABCB19 exhibited a co-expression relationship with AhPIN1A and AhPIN1B-1, with all three genes displaying higher expression levels in peanut pegs and pods. These findings reinforce their potential role in peanut pod development. CONCLUSIONS This study details a comprehensive analysis of PIN genes in cultivated peanuts and lays the foundation for subsequent studies of peanut gene function and phenotype.
Collapse
Affiliation(s)
- Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Yuanyuan Cui
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Jihua Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Yu Guan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Shuhua Tian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China.
| |
Collapse
|
5
|
Peng L, Li X, Gao Y, Xie W, Zhang L, Song J, Li S, Zhao Z. Genome-Wide Identification of the RR Gene Family and Its Expression Analysis in Response to TDZ Induction in Rhododendron delavayi. PLANTS (BASEL, SWITZERLAND) 2023; 12:3250. [PMID: 37765414 PMCID: PMC10535058 DOI: 10.3390/plants12183250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
The cytokinin response regulator (RR) gene is essential for cytokinin signal transduction, which plays a crucial role in plant growth and development. Here, we applied bioinformatics to Rhododendron delavayi's genome to identify its RR gene family and systematically analyzed their gene characteristics, phylogenetic evolution, chromosomal localization, collinearity analysis, promoter cis-elements, and expression patterns. Overall, 33 RdRR genes were distinguished and classified into three types. All these genes harbored motif 5 (YEVTTVNSGLEALELLRENKB), the most conserved one, along with the plant-conserved domain (REC domain), and could be mapped to 10 chromosomes with four gene pairs of segmental replication events but no tandem replication events; 13 RdRR genes showed collinearity with Arabidopsis thaliana genes. Promoter analysis revealed multiple hormone-related cis-elements in the RR genes. After a TDZ (thidiazuron) treatment, 13 genes had higher expression levels than the control, whose magnitude of change depended on the developmental stage of leaves' adventitious buds. The expression levels of RdRR14, RdRR17, RdRR20, and RdRR24 agreed with the average number of adventitious buds post-TDZ treatment. We speculate that these four genes could figure prominently in bud regeneration from R. delavayi leaves in vitro. This study provides detailed knowledge of RdRRs for research on cytokinin signaling and RdRR functioning in R. delavayi.
Collapse
Affiliation(s)
- Lvchun Peng
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China;
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Xuejiao Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Gao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;
| | - Weijia Xie
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Jie Song
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Shifeng Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Kunming 650205, China
| | - Zhengxiong Zhao
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650201, China;
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
6
|
Sahoo B, Nayak I, Parameswaran C, Kesawat MS, Sahoo KK, Subudhi HN, Balasubramaniasai C, Prabhukarthikeyan SR, Katara JL, Dash SK, Chung SM, Siddiqui MH, Alamri S, Samantaray S. A Comprehensive Genome-Wide Investigation of the Cytochrome 71 ( OsCYP71) Gene Family: Revealing the Impact of Promoter and Gene Variants (Ser33Leu) of OsCYP71P6 on Yield-Related Traits in Indica Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3035. [PMID: 37687282 PMCID: PMC10490456 DOI: 10.3390/plants12173035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The cytochrome P450 (CYP450) gene family plays a critical role in plant growth and developmental processes, nutrition, and detoxification of xenobiotics in plants. In the present research, a comprehensive set of 105 OsCYP71 family genes was pinpointed within the genome of indica rice. These genes were categorized into twelve distinct subfamilies, where members within the same subgroup exhibited comparable gene structures and conserved motifs. In addition, 105 OsCYP71 genes were distributed across 11 chromosomes, and 36 pairs of OsCYP71 involved in gene duplication events. Within the promoter region of OsCYP71, there exists an extensive array of cis-elements that are associated with light responsiveness, hormonal regulation, and stress-related signaling. Further, transcriptome profiling revealed that a majority of the genes exhibited responsiveness to hormones and were activated across diverse tissues and developmental stages in rice. The OsCYP71P6 gene is involved in insect resistance, senescence, and yield-related traits in rice. Hence, understanding the association between OsCYP71P6 genetic variants and yield-related traits in rice varieties could provide novel insights for rice improvement. Through the utilization of linear regression models, a total of eight promoters were identified, and a specific gene variant (Ser33Leu) within OsCYP71P6 was found to be linked to spikelet fertility. Additionally, different alleles of the OsCYP71P6 gene identified through in/dels polymorphism in 131 rice varieties were validated for their allelic effects on yield-related traits. Furthermore, the single-plant yield, spikelet number, panicle length, panicle weight, and unfilled grain per panicle for the OsCYP71P6-1 promoter insertion variant were found to contribute 20.19%, 13.65%, 5.637%, 8.79%, and 36.86% more than the deletion variant, respectively. These findings establish a robust groundwork for delving deeper into the functions of OsCYP71-family genes across a range of biological processes. Moreover, these findings provide evidence that allelic variation in the promoter and amino acid substitution of Ser33Leu in the OsCYP71P6 gene could potentially impact traits related to rice yield. Therefore, the identified promoter variants in the OsCYP71P6 gene could be harnessed to amplify rice yields.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Ravenshaw University, Cuttack 753006, India;
| | - Itishree Nayak
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
- Department of Botany, Utkal University, Bhubaneswar 751004, India
| | - C. Parameswaran
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri University, Cuttack 754006, India
| | | | - H. N. Subudhi
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Cayalvizhi Balasubramaniasai
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | | | - Jawahar Lal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sushanta Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| | - Sang-Min Chung
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea;
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.H.S.); (S.A.)
| | - Sanghamitra Samantaray
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (B.S.); (I.N.); (H.N.S.); (C.B.); (J.L.K.); (S.K.D.); (S.S.)
| |
Collapse
|
7
|
Monroy-González Z, Uc-Chuc MA, Quintana-Escobar AO, Duarte-Aké F, Loyola-Vargas VM. Characterization of the PIN Auxin Efflux Carrier Gene Family and Its Expression during Zygotic Embryogenesis in Persea americana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2280. [PMID: 37375905 DOI: 10.3390/plants12122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Auxins are responsible for a large part of the plant development process. To exert their action, they must move throughout the plant and from cell to cell, which is why plants have developed complex transport systems for indole-3-acetic acid (IAA). These transporters involve proteins that transport IAA into cells, transporters that move IAA to or from different organelles, mainly the endoplasmic reticulum, and transporters that move IAA out of the cell. This research determined that Persea americana has 12 PIN transporters in its genome. The twelve transporters are expressed during different stages of development in P. americana zygotic embryos. Using different bioinformatics tools, we determined the type of transporter of each of the P. americana PIN proteins and their structure and possible location in the cell. We also predict the potential phosphorylation sites for each of the twelve-PIN proteins. The data show the presence of highly conserved sites for phosphorylation and those sites involved in the interaction with the IAA.
Collapse
Affiliation(s)
- Zurisadai Monroy-González
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| | - Miguel A Uc-Chuc
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Avenida Itzáes, No. 490 x Calle 59, Col. Centro, Merida CP 97000, Yucatan, Mexico
| | - Ana O Quintana-Escobar
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| | - Fátima Duarte-Aké
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| | - Víctor M Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| |
Collapse
|
8
|
Kesawat MS, Kherawat BS, Katara JL, Parameswaran C, Misra N, Kumar M, Chung SM, Alamri S, Siddiqui MH. Genome-Wide Analysis of Proline-Rich Extensin-Like Receptor Kinases (PERKs) Gene Family Reveals Their Roles in Plant Development and Stress Conditions in Oryza sativa L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111749. [PMID: 37244501 DOI: 10.1016/j.plantsci.2023.111749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Proline-rich extensin-like receptor kinases (PERKs) play a crucial role in a wide range of biological processes in plants. In model plants like Arabidopsis, the PERK gene family has been well investigated. Conversely, no information available on the PERK gene family and their biological functions largely remained unknown in rice. This study analyzed the basic physicochemical properties, phylogeny, gene structure, cis-acting elements, Gene ontology (GO) annotation and protein-protein interaction of OsPERK gene family members using various bioinformatics tools based on the whole-genome data of O. sativa. Thus, in this work, 8 PERK genes in rice were identified, and their roles in plant development, growth, and response to various stresses were studied. A phylogenetic study revealed that OsPERKs are grouped into seven classes. Chromosomal mapping also displayed that 8 PERK genes were unevenly distributed on 12 chromosomes. Further, the prediction of subcellular localization indicated that OsPERKs were mainly located at the endomembrane system. Gene structure analysis of OsPERKs has shown a distinctive evolutionary path. In addition, synteny analysis exhibited the 40 orthologous gene pairs in Arabidopsis thaliana, Triticum aestivum, Hordeum vulgare and Medicago truncatula. Furthermore, Ka to Ks proportion shows that most OsPERK genes experienced resilient purifying selection during evolutionary processes. The OsPERK promoters contained several cis-acting regulatory, which are crucial for plant development processes, phytohormone signaling, stress, and defense response. Moreover, the expression pattern of OsPERK family members showed differential expression patterns in different tissues and various stress conditions. Taken together, these results provide clear messages for a better understanding the roles of OsPERK genes in various development stages, tissues, and multifactorial stress as well as enriched the related research of OsPERK family members in rice.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India.
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, Rajasthan, India.
| | - Jawahar Lal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack 753 006 Odisha, India.
| | | | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology 13 (KIIT), Deemed to be University, Bhubaneswar-751024, Odisha, India.
| | - Manu Kumar
- Department of Life Science, Dongguk University Dong-gu-10326, Ilsan, Republic of South Korea.
| | - Sang-Min Chung
- Department of Life Science, Dongguk University Dong-gu-10326, Ilsan, Republic of South Korea.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
9
|
Filip E, Woronko K, Stępień E, Czarniecka N. An Overview of Factors Affecting the Functional Quality of Common Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:7524. [PMID: 37108683 PMCID: PMC10142556 DOI: 10.3390/ijms24087524] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide, and, as a resilient cereal, it grows in various climatic zones. Due to changing climatic conditions and naturally occurring environmental fluctuations, the priority problem in the cultivation of wheat is to improve the quality of the crop. Biotic and abiotic stressors are known factors leading to the deterioration of wheat grain quality and to crop yield reduction. The current state of knowledge on wheat genetics shows significant progress in the analysis of gluten, starch, and lipid genes responsible for the synthesis of the main nutrients in the endosperm of common wheat grain. By identifying these genes through transcriptomics, proteomics, and metabolomics studies, we influence the creation of high-quality wheat. In this review, previous works were assessed to investigate the significance of genes, puroindolines, starches, lipids, and the impact of environmental factors, as well as their effects on the wheat grain quality.
Collapse
Affiliation(s)
- Ewa Filip
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Karolina Woronko
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| | - Edyta Stępień
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16, 70-383 Szczecin, Poland
| | - Natalia Czarniecka
- Institute of Biology, University of Szczecin, 13 Wąska, 71-415 Szczecin, Poland
| |
Collapse
|
10
|
Andersen CG, Bavnhøj L, Pedersen BP. May the proton motive force be with you: A plant transporter review. Curr Opin Struct Biol 2023; 79:102535. [PMID: 36796226 DOI: 10.1016/j.sbi.2023.102535] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023]
Abstract
As our ecosystems experience challenges associated with climate change, an improved understanding of the fundamental biochemical processes governing plant physiology is needed. Strikingly, current structural information on plant membrane transporters is severely limited compared to other kingdoms of life, with only 18 unique structures in total. To advance future breakthroughs and insight in plant cell molecular biology, structural knowledge of membrane transporters is indispensable. This review summarizes the current status of structural knowledge in the plant membrane transporter field. Plants utilize the proton motive force (PMF) to drive secondary active transport. We discuss the PMF, how it relates to secondary active transport and provide a classification of PMF driven secondary active transport, discussing recently published structures of symporters, antiporters, and uniporters from plants.
Collapse
Affiliation(s)
| | - Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark. https://twitter.com/laustbavnhoej
| | | |
Collapse
|
11
|
Wang R, Yu M, Xia J, Ren Z, Xing J, Li C, Xu Q, Cang J, Zhang D. Cold stress triggers freezing tolerance in wheat (Triticum aestivum L.) via hormone regulation and transcription of related genes. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:308-321. [PMID: 36385725 DOI: 10.1111/plb.13489] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Low temperatures limit the geographic distribution and yield of plants. Hormones play an important role in coordinating the growth and development of plants and their tolerance to low temperatures. However, the mechanisms by which hormones affect plant resistance to extreme cold stress in the natural environment are still unclear. In this study, two winter wheat varieties with different cold resistances, Dn1 and J22, were used to conduct targeted plant hormone metabolome analysis on the tillering nodes of winter wheat at 5 °C, -10 °C and -25 °C using an LC-ESI-MS/MS system. We screened 39 hormones from 88 plant hormone metabolites and constructed a partial regulatory network of auxin, jasmonic acid and cytokinin. GO analysis and enrichment of KEGG pathways in different metabolites showed that the 'plant hormone signal transduction' pathway was the most common. Our study showed that extreme low temperature increased the most levels of auxin, cytokinin and salicylic acid, and decreased levels of jasmonic acid and abscisic acid, and that levels of auxin, jasmonic acid and cytokinin in Dn1 were higher than those in J22. These changes in hormone levels were associated with changes in gene expression in synthesis, catabolism, transport and signal transduction pathways. These results differ from the previous hormone regulation mechanisms, which were mostly obtained at 4 °C. Our results provide a basis for further understanding the molecular mechanisms by which plant endogenous hormones regulate plant freezing stress tolerance.
Collapse
Affiliation(s)
- R Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - M Yu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xia
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Z Ren
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xing
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - C Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Q Xu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Cang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - D Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Kesawat MS, Satheesh N, Kherawat BS, Kumar A, Kim HU, Chung SM, Kumar M. Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040864. [PMID: 36840211 PMCID: PMC9964777 DOI: 10.3390/plants12040864] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Salt stress is a severe type of environmental stress. It adversely affects agricultural production worldwide. The overproduction of reactive oxygen species (ROS) is the most frequent phenomenon during salt stress. ROS are extremely reactive and, in high amounts, noxious, leading to destructive processes and causing cellular damage. However, at lower concentrations, ROS function as secondary messengers, playing a critical role as signaling molecules, ensuring regulation of growth and adjustment to multifactorial stresses. Plants contain several enzymatic and non-enzymatic antioxidants that can detoxify ROS. The production of ROS and their scavenging are important aspects of the plant's normal response to adverse conditions. Recently, this field has attracted immense attention from plant scientists; however, ROS-induced signaling pathways during salt stress remain largely unknown. In this review, we will discuss the critical role of different antioxidants in salt stress tolerance. We also summarize the recent advances on the detrimental effects of ROS, on the antioxidant machinery scavenging ROS under salt stress, and on the crosstalk between ROS and other various signaling molecules, including nitric oxide, hydrogen sulfide, calcium, and phytohormones. Moreover, the utilization of "-omic" approaches to improve the ROS-regulating antioxidant system during the adaptation process to salt stress is also described.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Neela Satheesh
- Department of Food Nutrition and Dietetics, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Hyun-Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
- Correspondence:
| |
Collapse
|
13
|
Genetic Research and Plant Breeding. Genes (Basel) 2022; 14:genes14010051. [PMID: 36672792 PMCID: PMC9858476 DOI: 10.3390/genes14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
In the past 20 years, plant genetics and breeding research using molecular biology has been greatly improved via the functional analysis of genes, species identification and transformation techniques [...].
Collapse
|
14
|
Kesawat MS, Kherawat BS, Ram C, Singh A, Dey P, Gora JS, Misra N, Chung SM, Kumar M. Genome-Wide Identification and Expression Profiling of Aconitase Gene Family Members Reveals Their Roles in Plant Development and Adaptation to Diverse Stress in Triticum aestivum L. PLANTS 2022; 11:3475. [PMID: 36559588 PMCID: PMC9782157 DOI: 10.3390/plants11243475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 06/01/2023]
Abstract
Global warming is a serious threat to food security and severely affects plant growth, developmental processes, and, eventually, crop productivity. Respiratory metabolism plays a critical role in the adaptation of diverse stress in plants. Aconitase (ACO) is the main enzyme, which catalyzes the revocable isomerization of citrate to isocitrate in the Krebs cycle. The function of ACO gene family members has been extensively studied in model plants, for instance Arabidopsis. However, their role in plant developmental processes and various stress conditions largely remained unknown in other plant species. Thus, we identified 15 ACO genes in wheat to elucidate their function in plant developmental processes and different stress environments. The phylogenetic tree revealed that TaACO genes were classified into six groups. Further, gene structure analysis of TaACOs has shown a distinctive evolutionary path. Synteny analysis showed the 84 orthologous gene pairs in Brachypodium distachyon, Aegilops tauschii, Triticum dicoccoides, Oryza sativa, and Arabidopsis thaliana. Furthermore, Ka/Ks ratio revealed that most TaACO genes experienced strong purifying selection during evolution. Numerous cis-acting regulatory elements were detected in the TaACO promoters, which play a crucial role in plant development processes, phytohormone signaling, and are related to defense and stress. To understand the function of TaACO genes, the expression profiling of TaACO genes were investigated in different tissues, developmental stages, and stress conditions. The transcript per million values of TaACOs genes were retrieved from the Wheat Expression Browser Database. We noticed the differential expression of the TaACO genes in different tissues and various stress conditions. Moreover, gene ontology analysis has shown enrichment in the tricarboxylic acid metabolic process (GO:0072350), citrate metabolic process (GO:0006101), isocitrate metabolic process GO:0006102, carbohydrate metabolic (GO:0005975), and glyoxylate metabolic process (GO:0046487). Therefore, this study provided valuable insight into the ACO gene family in wheat and contributed to the further functional characterization of TaACO during different plant development processes and various stress conditions.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Chet Ram
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Anupama Singh
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Prajjal Dey
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Jagan Singh Gora
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology 13 (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Sang-Min Chung
- Department of Life Science, Dongguk University, Dong-gu 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, Dongguk University, Dong-gu 10326, Republic of Korea
| |
Collapse
|
15
|
Manna M, Rengasamy B, Ambasht NK, Sinha AK. Characterization and expression profiling of PIN auxin efflux transporters reveal their role in developmental and abiotic stress conditions in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1059559. [PMID: 36531415 PMCID: PMC9751476 DOI: 10.3389/fpls.2022.1059559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux transporter proteins called PINs ferry auxin from its source to sinks in particular directions depending on their polar localizations in the plasma membrane, thus facilitating the development of the entire plant architecture. The rice genome has 12 PIN genes distributed over eight chromosomes. To study their roles in plant development, abiotic stress responsiveness, and shaping an auxin-dependent root architecture, a genome-wide analysis was carried out. Based on phylogeny, cellular localization, and hydrophilic loop domain size, the PINs were categorized into canonical and noncanonical PINs. PINs were found expressed in all of the organs of plants that emphasized their indispensable role throughout the plant's life cycle. We discovered that PIN5C and PIN9 were upregulated during salt and drought stress. We also found that regardless of its cellular level, auxin functioned as a molecular switch to turn on auxin biosynthesis genes. On the contrary, although PIN expression was upregulated upon initial treatment with auxin, prolonged auxin treatment not only led to their downregulation but also led to the development of auxin-dependent altered root formation in rice. Our study paves the way for developing stress-tolerant rice and plants with a desirable root architecture by genetic engineering.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
16
|
Genome-Wide Identification and Analysis of FKBP Gene Family in Wheat ( Triticum asetivum). Int J Mol Sci 2022; 23:ijms232314501. [PMID: 36498828 PMCID: PMC9739119 DOI: 10.3390/ijms232314501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
FK506-binding protein (FKBP) genes have been found to play vital roles in plant development and abiotic stress responses. However, limited information is available about this gene family in wheat (Triticum aestivum L.). In this study, a total of 64 FKBP genes were identified in wheat via a genome-wide analysis involving a homologous search of the latest wheat genome data, which was unevenly distributed in 21 chromosomes, encoded 152 to 649 amino acids with molecular weights ranging from 16 kDa to 72 kDa, and was localized in the chloroplast, cytoplasm, nucleus, mitochondria, peroxisome and endoplasmic reticulum. Based on sequence alignment and phylogenetic analysis, 64 TaFKBPs were divided into four different groups or subfamilies, providing evidence of an evolutionary relationship with Aegilops tauschii, Brachypodium distachyon, Triticum dicoccoides, Arabidopsis thaliana and Oryza sativa. Hormone-related, abiotic stress-related and development-related cis-elements were preferentially presented in promoters of TaFKBPs. The expression levels of TaFKBP genes were investigated using transcriptome data from the WheatExp database, which exhibited tissue-specific expression patterns. Moreover, TaFKBPs responded to drought and heat stress, and nine of them were randomly selected for validation by qRT-PCR. Yeast cells expressing TaFKBP19-2B-2 or TaFKBP18-6B showed increased influence on drought stress, indicating their negative roles in drought tolerance. Collectively, our results provide valuable information about the FKBP gene family in wheat and contribute to further characterization of FKBPs during plant development and abiotic stress responses, especially in drought stress.
Collapse
|
17
|
Hua YP, Wu PJ, Zhang TY, Song HL, Zhang YF, Chen JF, Yue CP, Huang JY, Sun T, Zhou T. Genome-Scale Investigation of GARP Family Genes Reveals Their Pivotal Roles in Nutrient Stress Resistance in Allotetraploid Rapeseed. Int J Mol Sci 2022; 23:ijms232214484. [PMID: 36430962 PMCID: PMC9698747 DOI: 10.3390/ijms232214484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The GARP genes are plant-specific transcription factors (TFs) and play key roles in regulating plant development and abiotic stress resistance. However, few systematic analyses of GARPs have been reported in allotetraploid rapeseed (Brassica napus L.) yet. In the present study, a total of 146 BnaGARP members were identified from the rapeseed genome based on the sequence signature. The BnaGARP TFs were divided into five subfamilies: ARR, GLK, NIGT1/HRS1/HHO, KAN, and PHL subfamilies, and the members within the same subfamilies shared similar exon-intron structures and conserved motif configuration. Analyses of the Ka/Ks ratios indicated that the GARP family principally underwent purifying selection. Several cis-acting regulatory elements, essential for plant growth and diverse biotic and abiotic stresses, were identified in the promoter regions of BnaGARPs. Further, 29 putative miRNAs were identified to be targeting BnaGARPs. Differential expression of BnaGARPs under low nitrate, ammonium toxicity, limited phosphate, deficient boron, salt stress, and cadmium toxicity conditions indicated their potential involvement in diverse nutrient stress responses. Notably, BnaA9.HHO1 and BnaA1.HHO5 were simultaneously transcriptionally responsive to these nutrient stresses in both hoots and roots, which indicated that BnaA9.HHO1 and BnaA1.HHO5 might play a core role in regulating rapeseed resistance to nutrient stresses. Therefore, this study would enrich our understanding of molecular characteristics of the rapeseed GARPs and will provide valuable candidate genes for further in-depth study of the GARP-mediated nutrient stress resistance in rapeseed.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Yong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.S.); (T.Z.); Tel.: +86-187-0271-0749 (T.Z.)
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.S.); (T.Z.); Tel.: +86-187-0271-0749 (T.Z.)
| |
Collapse
|
18
|
Gou H, Nai G, Lu S, Ma W, Chen B, Mao J. Genome-wide identification and expression analysis of PIN gene family under phytohormone and abiotic stresses in Vitis Vinifera L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1905-1919. [PMID: 36484025 PMCID: PMC9723067 DOI: 10.1007/s12298-022-01239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux transport proteins PIN-formed (PIN) has wide adaptability to hormone and abiotic stress, but the response mechanism of PINs in grape remains unclear. In this study, 12 members of VvPINs were identified and distributed on 8 chromosomes. The PIN genes of five species were divided into two subgroups, and the similarity of exons/introns and motifs of VvPIN genes were found in the same subgroup. Meanwhile, according to the examination of conserved motifs, the motif 3 included the conserved structure NPNTY. The promoter region of VvPIN gene family contained various cis-acting elements, which were related to light, abiotic stress, and hormones which are essential for growth and development. Additionally, VvPIN1, VvPIN9, and VvPIN11 proteins simultaneously interacted with the ARF, ABC, PINOID, GBF1, and VIT_08s0007g09010. The results of qRT-PCR revealed that the majority of the VvPINs were highly induced by NAA, GA3, ABA, MeJA, SA, NaCl, low-temperature (4 ℃), and PEG treatments, and the results were consistent with the prediction of the cis-acting elements. Moreover, the expression profile and quantitative real-time PCR (qRT-PCR) demonstrated that VvPIN genes were expressed in roots, stems, and leaves. The subcellular localization of VvPIN1 in Nicotiana benthamiana revealed that VvPIN1 was localized at the plasma membrane. Collectively, this study revealed that PIN genes could respond to various abiotic stresses, and provided a framework for regulating the expression of PIN genes to enhance the resistance of the grape. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01239-8.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| |
Collapse
|
19
|
Genome-Wide Characterization of PIN Auxin Efflux Carrier Gene Family in Mikania micrantha. Int J Mol Sci 2022; 23:ijms231710183. [PMID: 36077586 PMCID: PMC9456128 DOI: 10.3390/ijms231710183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mikania micrantha, recognized as one of the world's top 10 pernicious weeds, is a rapidly spreading tropical vine that has invaded the coastal areas of South China, causing serious economic losses and environmental damage. Rapid stem growth is an important feature of M. micrantha which may be related to its greater number of genes involved in auxin signaling and transport pathways and its ability to synthesize more auxin under adverse conditions to promote or maintain stem growth. Plant growth and development is closely connected to the regulation of endogenous hormones, especially the polar transport and asymmetric distribution of auxin. The PIN-FORMED (PIN) auxin efflux carrier gene family plays a key role in the polar transport of auxin and then regulates the growth of different plant tissues, which could indicate that the rapid growth of M. micrantha is closely related to this PIN-dependent auxin regulation. In this study, 11 PIN genes were identified and the phylogenetic relationship and structural compositions of the gene family in M. micrantha were analyzed by employing multiple bioinformatic methods. The phylogenetic analysis indicated that the PIN proteins could be divided into five distinct clades. The structural analysis revealed that three putative types of PIN (canonical, noncanonical and semi-canonical) exist among the proteins according to the length and the composition of the hydrophilic domain. The majority of the PINs were involved in the process of axillary bud differentiation and stem response under abiotic stress, indicating that M. micrantha may regulate its growth, development and stress response by regulating PIN expression in the axillary bud and stem, which may help explain its strong growth ability and environmental adaptability. Our study emphasized the structural features and stress response patterns of the PIN gene family and provided useful insights for further study into the molecular mechanism of auxin-regulated growth and control in M. micrantha.
Collapse
|
20
|
Genome-wide comprehensive characterization and expression analysis of TLP gene family revealed its responses to hormonal and abiotic stresses in watermelon (Citrullus lanatus). Gene X 2022; 844:146818. [PMID: 35985412 DOI: 10.1016/j.gene.2022.146818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Thaumatin-like protein (TLP) is the well-known sweetest protein which plays a crucial role in diverse developmental processes and different stress conditions in plants, fungi and animals. The TLP gene family is extensively studied in different plant species including crop plants. Watermelon (Citrullus lanatus) is an important cucurbit crop cultivated worldwide; however, the comprehensive information about the TLP gene family is not available in watermelon. In the present study, we identified the 29 TLP genes as gene family members in watermelon using various computational methods to understand its role in different developmental processes and stress conditions. ClaTLP gene family members were not uniformly distributed on 22 chromosomes. Phylogenetic analysis revealed that the ClaTLP gene family members were grouped into 10 sub-groups. Further, gene duplication analysis showed thirteen gene duplication events which included one tandem and twelve segmental duplications. Amino acid sequence alignment has shown that ClaTLP proteins shared 16 conserved cysteine residues in their THN domain. Furthermore, cis-acting regulatory elements analysis also displayed that ClaTLP gene family members contain diverse phytohormone, various defense, and stress-responsive elements in their promoter region. The expression profile of the ClaTLP gene family revealed the differential expression of gene family members in different tissues and abiotic stresses conditions. Moreover, the expression profile of ClaTLP genes was further validated by semi-quantitative reverse transcriptase PCR. Taken together, these results indicate that ClaTLP genes might play an important role in developmental processes and diverse stress conditions. Therefore, the outcome of this study brings forth the valuable information for further interpret the precise role of ClaTLP gene family members in watermelon.
Collapse
|
21
|
Zhai L, Yang L, Xiao X, Jiang J, Guan Z, Fang W, Chen F, Chen S. PIN and PILS family genes analyses in Chrysanthemum seticuspe reveal their potential functions in flower bud development and drought stress. Int J Biol Macromol 2022; 220:67-78. [PMID: 35970365 DOI: 10.1016/j.ijbiomac.2022.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Abstract
Auxin affects almost all plant growth and developmental processes. The PIN-FORMED (PIN) and PIN-LIKES (PILS) family genes determine the direction and distribution gradient of auxin flow by polar localization on the cell membrane. However, there are no systematic studies on PIN and PILS family genes in chrysanthemum. Here, 18 PIN and 13 PILS genes were identified in Chrysanthemum seticuspe. The evolutionary relationships, physicochemical properties, conserved motifs, cis-acting elements, chromosome localization, collinearity, and expression characteristics of these genes were analyzed. CsPIN10a, CsPIN10b, and CsPIN10c are unique PIN genes in C. seticuspe. Expression pattern analysis showed that these genes had different tissue specificities, and the expression levels of CsPIN8, CsPINS1, CsPILS6, and CsPILS10 were linearly related to the developmental period of the flower buds. In situ hybridization assay showed that CsPIN1a, CsPIN1b, and CsPILS8 were expressed in floret primordia and petal tips, and CsPIN1a was specifically expressed in the middle of the bract primordia, which might regulate lateral expansion of the bracts. CsPIN and CsPILS family genes are also involved in drought stress responses. This study provides theoretical support for the cultivation of new varieties with attractive flower forms and high drought tolerance.
Collapse
Affiliation(s)
- Lisheng Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuhui Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyu Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
22
|
Wei H, Movahedi A, Yang J, Zhang Y, Liu G, Zhu S, Yu C, Chen Y, Zhong F, Zhang J. Characteristics and molecular identification of glyceraldehyde-3-phosphate dehydrogenases in poplar. Int J Biol Macromol 2022; 219:185-198. [PMID: 35932802 DOI: 10.1016/j.ijbiomac.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an essential enzyme of the glycolysis metabolic pathway, plays a vital role in carbon metabolism, plant development, and stress resistance. As a kind of woody plant, poplars are widely cultivated for afforestation. Although the whole genome data of poplars have been published, little information is known about the GAPDH family of genes in poplar. This study performed a genome-wide identification of the poplar GAPDH family, and 13 determined PtGAPDH genes were identified from poplar genome. Phylogenetic tree showed that the PtGAPDH members were divided into PtGAPA/B, PtGAPC, PtGAPCp, and PtGAPN groups. A total of 13 PtGAPDH genes were distributed on eight chromosomes, 13 gene pairs belonging to segmented replication events were detected in poplar, and 23 collinearity gene pairs were determined between poplar and willow. The PtGAPDHcis-acting elements associated with growth and development as well as stress resistance revealed that PtGAPDHs might be involved in these processes. The phosphoglycerate kinase (PGK) and triose-phosphate isomerase (TPI) were predicted as the putative interaction proteins of PtGAPDHs. Gene ontology (GO) analysis showed that PtGAPDHs play a crucial role in the oxidation and reduction processes. PtGAPDH expression levels were induced by NaCl and PEG treatments, which implied that PtGAPDHs might be involved in stress response. Overexpression of PtGAPC1 significantly changed the contents of lipid and carbohydrate metabolites, which indicated that PtGAPC1 plays an essential role in metabolic regulation. This study highlights the characterizations and profiles of PtGAPDHs and reveals that PtGAPC1 is involved in the loop of lipid and carbohydrate metabolisms.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA.
| | - Jie Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Yanyan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Sheng Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
23
|
Cheng S, Wang Y. Subcellular trafficking and post-translational modification regulate PIN polarity in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:923293. [PMID: 35968084 PMCID: PMC9363823 DOI: 10.3389/fpls.2022.923293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Auxin regulates plant growth and tropism responses. As a phytohormone, auxin is transported between its synthesis sites and action sites. Most natural auxin moves between cells via a polar transport system that is mediated by PIN-FORMED (PIN) auxin exporters. The asymmetrically localized PINs usually determine the directionality of intercellular auxin flow. Different internal cues and external stimuli modulate PIN polar distribution and activity at multiple levels, including transcription, protein stability, subcellular trafficking, and post-translational modification, and thereby regulate auxin-distribution-dependent development. Thus, the different regulation levels of PIN polarity constitute a complex network. For example, the post-translational modification of PINs can affect the subcellular trafficking of PINs. In this review, we focus on subcellular trafficking and post-translational modification of PINs to summarize recent progress in understanding PIN polarity.
Collapse
Affiliation(s)
- Shuyang Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Environmental Stress and Plants. Int J Mol Sci 2022; 23:ijms23105416. [PMID: 35628224 PMCID: PMC9141089 DOI: 10.3390/ijms23105416] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
Land plants are constantly subjected to multiple unfavorable or even adverse environmental conditions. Among them, abiotic stresses (such as salt, drought, heat, cold, heavy metals, ozone, UV radiation, and nutrient deficiencies) have detrimental effects on plant growth and productivity and are increasingly important considering the direct or indirect effects of climate change. Plants respond in many ways to abiotic stresses, from gene expression to physiology, from plant architecture to primary, and secondary metabolism. These complex changes allow plants to tolerate and/or adapt to adverse conditions. The complexity of plant response can be further influenced by the duration and intensity of stress, the plant genotype, the combination of different stresses, the exposed tissue and cell type, and the developmental stage at which plants perceive the stress. It is therefore important to understand more about how plants perceive stress conditions and how they respond and adapt (both in natural and anthropogenic environments). These concepts were the basis of the Special Issue that International Journal of Molecular Sciences expressly addressed to the relationship between environmental stresses and plants and that resulted in the publication of 5 reviews and 38 original research articles. The large participation of several authors and the good number of contributions testifies to the considerable interest that the topic currently receives in the plant science community, especially in the light of the foreseeable climate changes. Here, we briefly summarize the contributions included in the Special Issue, both original articles categorized by stress type and reviews that discuss more comprehensive responses to various stresses.
Collapse
|
25
|
The PAP Gene Family in Tomato: Comprehensive Comparative Analysis, Phylogenetic Relationships and Expression Profiles. PLANTS 2022; 11:plants11040563. [PMID: 35214896 PMCID: PMC8879926 DOI: 10.3390/plants11040563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Purple acid phosphatase (PAP) plays a vital role in plant phosphate acquisition and utilization, as well as cell wall synthesis and redox reactions. In this study, comprehensive comparative analyses of PAP genes were carried out using the integration of phylogeny, chromosomal localization, intron/exon structural characteristics, and expression profiling. It was shown that the number of introns of the PAP genes, which were distributed unevenly on 12 chromosomes, ranged from 1 to 12. These findings pointed to the existence of complex structures. Phylogenetic analyses revealed that PAPs from tomato, rice, and Arabidopsis could be divided into three groups (Groups I, II, and III). It was assumed that the diversity of these PAP genes occurred before the monocot–dicot split. RNA-seq analysis revealed that most of the genes were expressed in all of the tissues analyzed, with the exception of SlPAP02, SlPAP11, and SlPAP14, which were not detected. It was also found that expression levels of most of the SlPAP gene family of members were changed under phosphorus stress conditions, suggesting potential functional diversification. The findings of this work will help us to achieve a better insight into the function of SlPAP genes in the future, as well as enhance our understanding of their evolutionary relationships in plants.
Collapse
|
26
|
Kesawat MS, Kherawat BS, Singh A, Dey P, Routray S, Mohapatra C, Saha D, Ram C, Siddique KHM, Kumar A, Gupta R, Chung SM, Kumar M. Genome-Wide Analysis and Characterization of the Proline-Rich Extensin-like Receptor Kinases (PERKs) Gene Family Reveals Their Role in Different Developmental Stages and Stress Conditions in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:496. [PMID: 35214830 PMCID: PMC8880425 DOI: 10.3390/plants11040496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/19/2023]
Abstract
Proline-rich extensin-like receptor kinases (PERKs) are a class of receptor kinases implicated in multiple cellular processes in plants. However, there is a lack of information on the PERK gene family in wheat. Therefore, we identified 37 PERK genes in wheat to understand their role in various developmental processes and stress conditions. Phylogenetic analysis of PERK genes from Arabidopsis thaliana, Oryza sativa, Glycine max, and T. aestivum grouped them into eight well-defined classes. Furthermore, synteny analysis revealed 275 orthologous gene pairs in B. distachyon, Ae. tauschii, T. dicoccoides, O. sativa and A. thaliana. Ka/Ks values showed that most TaPERK genes, except TaPERK1, TaPERK2, TaPERK17, and TaPERK26, underwent strong purifying selection during evolutionary processes. Several cis-acting regulatory elements, essential for plant growth and development and the response to light, phytohormones, and diverse biotic and abiotic stresses, were predicted in the promoter regions of TaPERK genes. In addition, the expression profile of the TaPERK gene family revealed differential expression of TaPERK genes in various tissues and developmental stages. Furthermore, TaPERK gene expression was induced by various biotic and abiotic stresses. The RT-qPCR analysis also revealed similar results with slight variation. Therefore, this study's outcome provides valuable information for elucidating the precise functions of TaPERK in developmental processes and diverse stress conditions in wheat.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (M.S.K.); (A.S.); (P.D.)
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, Rajasthan, India;
| | - Anupama Singh
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (M.S.K.); (A.S.); (P.D.)
| | - Prajjal Dey
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (M.S.K.); (A.S.); (P.D.)
| | - Snehasish Routray
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (S.R.); (C.M.)
| | - Chinmayee Mohapatra
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (S.R.); (C.M.)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneshwar 752050, Odisha, India;
| | - Chet Ram
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, Rajasthan, India;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ajay Kumar
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea;
| | - Sang-Min Chung
- Department of Life Science, Dongguk University, Dong-gu, Ilsan, Seoul 10326, Korea;
| | - Manu Kumar
- Department of Life Science, Dongguk University, Dong-gu, Ilsan, Seoul 10326, Korea;
| |
Collapse
|
27
|
Comprehensive Analysis of Carotenoid Cleavage Dioxygenases Gene Family and Its Expression in Response to Abiotic Stress in Poplar. Int J Mol Sci 2022; 23:ijms23031418. [PMID: 35163346 PMCID: PMC8836127 DOI: 10.3390/ijms23031418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) catalyzes the cleavage of various carotenoids into smaller apocarotenoids which are essential for plant growth and development and response to abiotic stresses. CCD family is divided into two subfamilies: 9-cis epoxycarotenoid dioxygenases (NCED) family and CCD family. A better knowledge of carotenoid biosynthesis and degradation could be useful for regulating carotenoid contents. Here, 23 CCD genes were identified from the Populus trichocarpa genome, and their characterizations and expression profiling were validated. The PtCCD members were divided into PtCCD and PtNCED subfamilies. The PtCCD family contained the PtCCD1, 4, 7, and 8 classes. The PtCCDs clustered in the same clade shared similar intron/exon structures and motif compositions and distributions. In addition, the tandem and segmental duplications resulted in the PtCCD gene expansion based on the collinearity analysis. An additional integrated collinearity analysis among poplar, Arabidopsis, rice, and willow revealed the gene pairs between poplar and willow more than that between poplar and rice. Identifying tissue-special expression patterns indicated that PtCCD genes display different expression patterns in leaves, stems, and roots. Abscisic acid (ABA) treatment and abiotic stress suggested that many PtCCD genes are responsive to osmotic stress regarding the comprehensive regulation networks. The genome-wide identification of PtCCD genes may provide the foundation for further exploring the putative regulation mechanism on osmotic stress and benefit poplar molecular breeding.
Collapse
|
28
|
Zhang Q, Guo N, Zhang Y, Yu Y, Liu S. Genome-Wide Characterization and Expression Analysis of Pathogenesis-Related 1 ( PR-1) Gene Family in Tea Plant ( Camellia sinensis (L.) O. Kuntze) in Response to Blister-Blight Disease Stress. Int J Mol Sci 2022; 23:ijms23031292. [PMID: 35163217 PMCID: PMC8836084 DOI: 10.3390/ijms23031292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/13/2023] Open
Abstract
Pathogenesis-related 1 (PR-1) proteins, which are defense proteins in plant–pathogen interactions, play an important role in the resistance and defense of plants against diseases. Blister blight disease is caused by Exobasidium vexans Massee and a major leaf disease of tea plants (Camellia sinensis (L.) O. Kuntze). However, the systematic characterization and analysis of the PR-1 gene family in tea plants is still lacking, and the defense mechanism of this family remains unknown. In this study, 17 CsPR-1 genes were identified from the tea plant genome and classified into five groups based on their signal peptide, isoelectric point, and C-terminus extension. Most of the CsPR-1 proteins contained an N-terminal signal peptide and a conserved PR-1 like domain. CsPR-1 genes comprised multiple cis-acting elements and were closely related to the signal-transduction pathways involving TCA, NPR1, EDS16, BGL2, PR4, and HCHIB. These characteristics imply an important role of the genes in the defense of the tea plant. In addition, the RNA-seq data and real-time PCR analysis demonstrated that the CsPR-1-2, -4, -6, -7, -8, -9, -10, -14, -15, and -17 genes were significantly upregulated under tea blister-blight stress. This study could help to increase understanding of CsPR-1 genes and their defense mechanism in response to tea blister blight.
Collapse
|
29
|
Global Analysis of the WOX Transcription Factor Gene Family in Populus × xiaohei T. S. Hwang et Liang Reveals Their Stress−Responsive Patterns. FORESTS 2022. [DOI: 10.3390/f13010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The WUSCHEL−related homeobox (WOX) family is a group of plant−specific transcription factors that play important regulatory roles in embryo formation, stem cell stability, and organogenesis. To date, there are few studies on the molecular mechanisms involved in this family of genes in response to stress. Thus, in this study, eight WOX genes were obtained from an endemic Chinese resilient tree species, Populus × xiaohei T. S. Hwang et Liang. Bioinformatic analysis showed that the WOX genes all contained a conserved structural domain consisting of 60 amino acids, with some differences in physicochemical properties. Phylogenetic analysis revealed that WOX members were divided into three evolutionary clades, with four, one, and three members in the ancient, intermediate, and modern evolutionary clades, respectively. The conserved structural domain species as well as the organization and gene structure of WOX genes within the same subfamily were highly uniform. Chromosomal distribution and genome synteny analyses revealed seven segmental−duplicated gene pairs among the PsnWOX gene family that were mainly under purifying selection conditions. Semi−quantitative interpretation (SQ−PCR) analysis showed that the WOX gene was differentially expressed in different tissues, and it was hypothesized that the functions performed by different members were diverse. The family members were strongly and differentially expressed under CdCl2, NaCl, NaHCO3, and PEG treatments, suggesting that WOX genes function in various aspects of abiotic stress defense responses. These results provide a theoretical basis for investigating the morphogenetic effects and abiotic stress responses of this gene family in woody plants.
Collapse
|
30
|
Transcriptome Analysis Reveals Candidate Genes Involved in Light-Induced Primordium Differentiation in Pleurotus eryngii. Int J Mol Sci 2021; 23:ijms23010435. [PMID: 35008859 PMCID: PMC8745762 DOI: 10.3390/ijms23010435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
Pleurotus eryngii, a highly valued edible fungus, is one of the major commercially cultivated mushrooms in China. The development of P. eryngii, especially during the stage of primordium differentiation, is easily affected by light. However, the molecular mechanism underlying the response of primordium differentiation to light remains unknown. In the present study, primordium expression profiles under blue-light stimulation, red-light stimulation, and exposure to darkness were compared using high-throughput sequencing. A total of 16,321 differentially expressed genes (DEGs) were identified from three comparisons. GO enrichment analysis showed that a large number of DEGs were related to light stimulation and amino acid biosynthesis. KEGG analyses demonstrated that the MAPK signaling pathway, oxidative phosphorylation pathway, and RNA transport were most active during primordium differentiation. Furthermore, it was predicted that the blue-light photoreceptor WC-1 and Deoxyribodipyrimidine photolyase PHR play important roles in the primordium differentiation of P. eryngii. Taken together, the results of this study provide a speculative mechanism that light induces primordium differentiation and a foundation for further research on fruiting body development in P. eryngii.
Collapse
|
31
|
Li M, Wu Z, Gu H, Cheng D, Guo X, Li L, Shi C, Xu G, Gu S, Abid M, Zhong Y, Qi X, Chen J. AvNAC030, a NAC Domain Transcription Factor, Enhances Salt Stress Tolerance in Kiwifruit. Int J Mol Sci 2021; 22:ijms222111897. [PMID: 34769325 PMCID: PMC8585034 DOI: 10.3390/ijms222111897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/21/2023] Open
Abstract
Kiwifruit (Actinidia chinensis Planch) is suitable for neutral acid soil. However, soil salinization is increasing in kiwifruit production areas, which has adverse effects on the growth and development of plants, leading to declining yields and quality. Therefore, analyzing the salt tolerance regulation mechanism can provide a theoretical basis for the industrial application and germplasm improvement of kiwifruit. We identified 120 NAC members and divided them into 13 subfamilies according to phylogenetic analysis. Subsequently, we conducted a comprehensive and systematic analysis based on the conserved motifs, key amino acid residues in the NAC domain, expression patterns, and protein interaction network predictions and screened the candidate gene AvNAC030. In order to study its function, we adopted the method of heterologous expression in Arabidopsis. Compared with the control, the overexpression plants had higher osmotic adjustment ability and improved antioxidant defense mechanism. These results suggest that AvNAC030 plays a positive role in the salt tolerance regulation mechanism in kiwifruit.
Collapse
Affiliation(s)
- Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
- Correspondence: (M.L.); (M.A.)
| | - Zhiyong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Hong Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Dawei Cheng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Xizhi Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Lan Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Caiyun Shi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Guoyi Xu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Shichao Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Muhammad Abid
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- Correspondence: (M.L.); (M.A.)
| | - Yunpeng Zhong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (Z.W.); (H.G.); (D.C.); (X.G.); (L.L.); (C.S.); (G.X.); (S.G.); (Y.Z.); (X.Q.); (J.C.)
| |
Collapse
|
32
|
Genome-Wide Identification and Functional Analysis of the Basic Helix-Loop-Helix (bHLH) Transcription Family Reveals Candidate PtFBH Genes Involved in the Flowering Process of Populus trichocarpa. FORESTS 2021. [DOI: 10.3390/f12111439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As one of the largest TF families+ in plants, the basic helix-loop-helix (bHLH) family plays an important part in the growth and development of many plants. FLOWERING BHLH (FBH) encodes a bHLH-type transcriptional factor related to the flowering process. Poplar is a model woody plant as well as an important economic tree species with a small genome. However, the characteristics of the bHLHs and FBHs gene family in the newest version of Populustrichocarpa genome have not been analyzed yet. We identified 233 PtbHLHs and 10 PtFBHs in the newest version genome, and PtbHLHs were classified into 21 groups with FBH subfamily occupying one, supported by phylogenetic analysis, exon–intron patterns, and conserved protein motifs. These PtHLHs were distributed on 19 chromosomes unevenly and expressed in nucleus mainly. Gene duplication and synteny analysis have indicated that the PtbHLHs gene family has undergone strong purification selection during the evolution process. The cis-elements analysis has suggested that PtbHLHs may be related to the growth and development. Conserved residues of FBHs among Arabidopsis and poplar were also identified. Expression of 227 PtHLH genes (6 unmatched, 13 no expressed) showed diverse patterns in different tissues, implying their multiple functions. Protein–protein interaction network prediction and expression patterns in three states of the flowering process (Flowers-Dormant, Flowers-Expanding and Flowers-Expanded) suggested that some members of PtbHLH and PtFBH family may be involved in the flowering process. Our comprehensive and systematic analysis can provide some valuable clues and basic reference toward further investigations on physiological and molecular functions of PtbHLHs.
Collapse
|
33
|
Siddique MH, Babar NI, Zameer R, Muzammil S, Nahid N, Ijaz U, Masroor A, Nadeem M, Rashid MAR, Hashem A, Azeem F, Fathi Abd_Allah E. Genome-Wide Identification, Genomic Organization, and Characterization of Potassium Transport-Related Genes in Cajanus cajan and Their Role in Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:2238. [PMID: 34834601 PMCID: PMC8619154 DOI: 10.3390/plants10112238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 05/10/2023]
Abstract
Potassium is the most important and abundant inorganic cation in plants and it can comprise up to 10% of a plant's dry weight. Plants possess complex systems of transporters and channels for the transport of K+ from soil to numerous parts of plants. Cajanus cajan is cultivated in different regions of the world as an economical source of carbohydrates, fiber, proteins, and fodder for animals. In the current study, 39 K+ transport genes were identified in C. cajan, including 25 K+ transporters (17 carrier-like K+ transporters (KUP/HAK/KTs), 2 high-affinity potassium transporters (HKTs), and 6 K+ efflux transporters (KEAs) and 14 K+ channels (9 shakers and 5 tandem-pore K+ channels (TPKs). Chromosomal mapping indicated that these genes were randomly distributed among 10 chromosomes. A comparative phylogenetic analysis including protein sequences from Glycine max, Arabidopsis thaliana, Oryza sativa, Medicago truncatula Cicer arietinum, and C. cajan suggested vital conservation of K+ transport genes. Gene structure analysis showed that the intron/exon organization of K+ transporter and channel genes is highly conserved in a family-specific manner. In the promoter region, many cis-regulatory elements were identified related to abiotic stress, suggesting their role in abiotic stress response. Abiotic stresses (salt, heat, and drought) adversely affect chlorophyll, carotenoids contents, and total soluble proteins. Furthermore, the activities of catalase, superoxide, and peroxidase were altered in C. cajan leaves under applied stresses. Expression analysis (RNA-seq data and quantitative real-time PCR) revealed that several K+ transport genes were expressed in abiotic stress-responsive manners. The present study provides an in-depth understanding of K+ transport system genes in C. cajan and serves as a basis for further characterization of these genes.
Collapse
Affiliation(s)
- Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Naeem Iqbal Babar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Usman Ijaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Ashir Masroor
- Sub-Campus Burewala-Vehari, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Majid Nadeem
- Wheat Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan;
| | - Muhammad Abdul Rehman Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.S.); (N.I.B.); (R.Z.); (N.N.); (U.I.)
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
34
|
Genome-Wide Analysis and the Expression Pattern of the MADS-Box Gene Family in Bletilla striata. PLANTS 2021; 10:plants10102184. [PMID: 34685993 PMCID: PMC8539064 DOI: 10.3390/plants10102184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 02/04/2023]
Abstract
Bletilla striata (Thunb. ex A. Murray) Rchb. f., a species of the perennial herb Orchidaceae, has potent anti-inflammatory and antiviral biological activities. MADS-box transcription factors play critical roles in the various developmental processes of plants. Although this gene family has been extensively investigated in many species, it has not been analyzed for B. striata. In total, 45 MADS-box genes were identified from B. striata in this study, which were classified into five subfamilies (Mδ, MIKC, Mα, Mβ, and Mγ). Meanwhile, the highly correlated protein domains, motif compositions, and exon-intron structures of BsMADSs were investigated according to local B. striata databases. Chromosome distribution and synteny analyses revealed that segmental duplication and homologous exchange were the main BsMADSs expansion mechanisms. Further, RT-qPCR analysis revealed that BsMADSs had different expression patterns in response to various stress treatments. Our results provide a potential theoretical basis for further investigation of the functions of MADS genes during the growth of B. striata.
Collapse
|
35
|
Genomic-Wide Identification and Characterization of the Uridine Diphosphate Glycosyltransferase Family in Eucommia ulmoides Oliver. PLANTS 2021; 10:plants10091934. [PMID: 34579466 PMCID: PMC8471388 DOI: 10.3390/plants10091934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Eucommia ulmoides Oliver is a woody plant with great economic and medicinal value. Its dried bark has a long history of use as a traditional medicinal material in East Asia, which led to many glycosides, such as aucubin, geniposide, hyperoside, astragalin, and pinoresinol diglucoside, being recognized as pharmacologically active ingredients. Uridine diphosphate glycosyltransferases (UGTs) catalyze a glycosyl-transferring reaction from the donor molecule uridine-5'-diphosphate-glucose (UDPG) to the substrate, which plays an important role in many biological processes, such as plant growth and development, secondary metabolism, and environmental adaptation. In order to explore the biosynthetic pathways of glycosides in E. ulmoides, 91 putative EuUGT genes were identified throughout the complete genome of E. ulmoides through function annotation and an UDPGT domain search. Phylogenetic analysis categorized them into 14 groups. We also performed GO annotations on all the EuUGTs to gain insights into their functions in E. ulmoides. In addition, transcriptomic analysis indicated that most EuUGTs showed different expression patterns across diverse organs and various growing seasons. By protein-protein interaction predication, a biosynthetic routine of flavonoids and their glycosides was also proposed. Undoubtedly, these results will help in future research into the biosynthetic pathways of glycoside compounds in E. ulmoides.
Collapse
|
36
|
Kesawat MS, Kherawat BS, Singh A, Dey P, Kabi M, Debnath D, Saha D, Khandual A, Rout S, Manorama, Ali A, Palem RR, Gupta R, Kadam AA, Kim HU, Chung SM, Kumar M. Genome-Wide Identification and Characterization of the Brassinazole-resistant ( BZR) Gene Family and Its Expression in the Various Developmental Stage and Stress Conditions in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:8743. [PMID: 34445448 PMCID: PMC8395832 DOI: 10.3390/ijms22168743] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Brassinosteroids (BRs) play crucial roles in various biological processes, including plant developmental processes and response to diverse biotic and abiotic stresses. However, no information is currently available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the BZR gene family in wheat to understand the evolution and their role in diverse developmental processes and under different stress conditions. In this study, we performed the genome-wide analysis of the BZR gene family in the bread wheat and identified 20 TaBZR genes through a homology search and further characterized them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses lead to the classification of TaBZR genes into five different groups or subfamilies, providing evidence of evolutionary relationship with Arabidopsis thaliana, Zea mays, Glycine max, and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, and cis-acting regulatory elements were also examined using various computational approaches. In addition, an analysis of public RNA-seq data also shows that TaBZR genes may be involved in diverse developmental processes and stress tolerance mechanisms. Moreover, qRT-PCR results also showed similar expression with slight variation. Collectively, these results suggest that TaBZR genes might play an important role in plant developmental processes and various stress conditions. Therefore, this work provides valuable information for further elucidate the precise role of BZR family members in wheat.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Institute for Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Korea;
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India;
| | - Anupama Singh
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Mandakini Kabi
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Debanjana Debnath
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneshwar 752050, India;
| | - Ansuman Khandual
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Sandeep Rout
- Faculty of Agriculture, Sri Sri University, Cuttack 754-006, India; (A.S.); (P.D.); (M.K.); (D.D.); (A.K.); (S.R.)
| | - Manorama
- Department of Dairy Microbiology, College of Dairy Science and Food Technology, Raipur 49200, India;
| | - Asjad Ali
- Department of Agriculture and Fisheries, Mareeba, QLD 4880, Australia;
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Biomedical Campus, Dongguk University, Seoul 10326, Korea;
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Korea;
| | - Hyun-Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea;
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Korea;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Korea;
| |
Collapse
|