1
|
Rachman A, Iriani A, Irawan A, Juanputra S, Betsy R. Adequate serum 25-hydroxy-vitamin D levels are correlated with low anti-PF4 levels in mild COVID-19 Patients: An observational study. Medicine (Baltimore) 2024; 103:e39252. [PMID: 39287233 PMCID: PMC11404891 DOI: 10.1097/md.0000000000039252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 09/19/2024] Open
Abstract
The worldwide spread of coronavirus disease 2019 (COVID-19) has resulted in an unparalleled health emergency of global proportions. Around 31% of individuals with COVID-19 experience thrombosis associated with hypercoagulation. COVID-19 patients have shown an increase in platelet activation, but the mechanism has not been fully understood yet. One theory suggests that this could be related to the heparin-induced thrombocytopenia phenomenon, where platelet activation involves anti-PF4 antibodies that are associated with thrombosis. Vitamin D has been established to exert an influence on immunological responses and inflammation. The aim of this study is to analyze the correlation between serum 25-hydroxy-cholecalciferol [25(OH)D] levels and anti-PF4 antibodies among COVID-19 patients. A cross-sectional study was conducted among 160 COVID-19 patients at Cipto Mangunkusumo General Hospital and Wisma Atlit Hospital Jakarta from October 2021 to January 2022. The mean serum 25(OH)D level was 15.1 ng/mL. A significant negative correlation was found between serum 25(OH)D and anti-PF4 levels in mild COVID-19 patients (P = .035; R = -0.236). Remarkably, P-selectin levels were significantly higher in the moderate COVID-19 group compared to the severe group (P = .031). Serum 25(OH)D level had a significant negative correlation with anti-PF4 level in mild COVID-19 patients. Thus, it is highly recommended to ensure that serum 25(OH)D levels are maintained above 30 ng/mL. Remarkably, the P-selectin level was significantly higher in the moderate COVID-19 group compared to the severe group.
Collapse
Affiliation(s)
- Andhika Rachman
- Division of Hematology and Oncology, Department of Internal Medicine, Dr Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Anggraini Iriani
- Department of Clinical Pathology, YARSI University, Jakarta, Indonesia
| | - Attaufiq Irawan
- Department of Internal Medicine, Dr Cipto Mangunkusumo General Hospital – Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Samuel Juanputra
- Department of Internal Medicine, Dr Cipto Mangunkusumo General Hospital – Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Rachelle Betsy
- Department of Internal Medicine, Dr Cipto Mangunkusumo General Hospital – Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
2
|
Becker RC, Tantry US, Khan M, Gurbel PA. The COVID-19 thrombus: distinguishing pathological, mechanistic, and phenotypic features and management. J Thromb Thrombolysis 2024:10.1007/s11239-024-03028-4. [PMID: 39179952 DOI: 10.1007/s11239-024-03028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
A heightened risk for thrombosis is a hallmark of COVID-19. Expansive clinical experience and medical literature have characterized small (micro) and large (macro) vessel involvement of the venous and arterial circulatory systems. Most events occur in patients with serious or critical illness in the hyperacute (first 1-2 weeks) or acute phases (2-4 weeks) of SARS-CoV-2 infection. However, thrombosis involving the venous, arterial, and microcirculatory systems has been reported in the subacute (4-8 weeks), convalescent (> 8-12 weeks) and chronic phases (> 12 weeks) among patients with mild-to-moderate illness. The purpose of the current focused review is to highlight the distinguishing clinical features, pathological components, and potential mechanisms of venous, arterial, and microvascular thrombosis in patients with COVID-19. The overarching objective is to better understand the proclivity for thrombosis, laying a solid foundation for screening and surveillance modalities, preventive strategies, and optimal patient management.
Collapse
Affiliation(s)
- Richard C Becker
- Cardiovascular Center, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| | - Muhammad Khan
- Division of General Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Baltimore, USA
| |
Collapse
|
3
|
Wang C, Wang S, Ma X, Yao X, Zhan K, Wang Z, He D, Zuo W, Han S, Zhao G, Cao B, Zhao J, Bian X, Wang J. P-selectin Facilitates SARS-CoV-2 Spike 1 Subunit Attachment to Vesicular Endothelium and Platelets. ACS Infect Dis 2024; 10:2656-2667. [PMID: 38912949 DOI: 10.1021/acsinfecdis.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
SARS-CoV-2 infection starts from the association of its spike 1 (S1) subunit with sensitive cells. Vesicular endothelial cells and platelets are among the cell types that bind SARS-CoV-2, but the effectors that mediate viral attachment on the cell membrane have not been fully elucidated. Herein, we show that P-selectin (SELP), a biomarker for endothelial dysfunction and platelet activation, can facilitate the attachment of SARS-CoV-2 S1. Since we observe colocalization of SELP with S1 in the lung tissues of COVID-19 patients, we perform molecular biology experiments on human umbilical vein endothelial cells (HUVECs) to confirm the intermolecular interaction between SELP and S1. SELP overexpression increases S1 recruitment to HUVECs and enhances SARS-CoV-2 spike pseudovirion infection. The opposite results are determined after SELP downregulation. As S1 causes endothelial inflammatory responses in a dose-dependent manner, by activating the interleukin (IL)-17 signaling pathway, SELP-induced S1 recruitment may contribute to the development of a "cytokine storm" after viral infection. Furthermore, SELP also promotes the attachment of S1 to the platelet membrane. Employment of PSI-697, a small inhibitor of SELP, markedly decreases S1 adhesion to both HUVECs and platelets. In addition to the role of membrane SELP in facilitating S1 attachment, we also discover that soluble SELP is a prognostic factor for severe COVID-19 through a meta-analysis. In this study, we identify SELP as an adhesive site for the SARS-CoV-2 S1, thus providing a potential drug target for COVID-19 treatment.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shaobo Wang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaohong Yao
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kegang Zhan
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Di He
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Wenting Zuo
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Songling Han
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
- New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiuwu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
4
|
Obeagu EI, Obeagu GU, Aja PM, Okoroiwu G, Ubosi N, Pius T, Ashiru M, Akaba K, Adias TC. Soluble platelet selectin and platelets in COVID-19: a multifaceted connection. Ann Med Surg (Lond) 2024; 86:4634-4642. [PMID: 39118706 PMCID: PMC11305715 DOI: 10.1097/ms9.0000000000002302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
The COVID-19 pandemic has brought to light the intricate relationship between platelets, soluble platelet selectin (sP-selectin), and disease pathogenesis. Platelets, traditionally recognized for their role in hemostasis, have emerged as key contributors to the immunothrombotic complications observed in COVID-19 patients. Concurrently, elevated levels of sP-selectin, indicative of platelet activation and endothelial injury, have been consistently identified in COVID-19 patients and have shown associations with disease severity and adverse outcomes. This multifaceted connection underscores the pivotal role of platelets and sP-selectin in orchestrating thromboinflammation, vascular dysfunction, and disease progression in COVID-19. Platelet activation triggers the release of inflammatory mediators and promotes platelet-leukocyte interactions, amplifying the systemic inflammatory response and exacerbating endothelial injury. Additionally, platelet-derived factors contribute to microvascular thrombosis, further exacerbating tissue damage and organ dysfunction in severe COVID-19. Elevated sP-selectin levels serve as biomarkers for disease severity and prognostication, aiding in risk stratification and early identification of patients at higher risk of adverse outcomes. Therapeutic strategies targeting platelet dysfunction and sP-selectin-mediated pathways hold promise in mitigating thromboinflammation and improving outcomes in COVID-19 patients. Antiplatelet agents, platelet inhibitors, and anti-inflammatory therapies represent potential interventions to attenuate platelet activation, inhibit platelet-leukocyte interactions, and alleviate endothelial dysfunction. A comprehensive understanding of the multifaceted connection between platelets, sP-selectin, and COVID-19 pathogenesis offers opportunities for tailored therapeutic approaches aimed at mitigating thromboinflammation and improving patient outcomes in this complex and challenging clinical setting.
Collapse
Affiliation(s)
| | | | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Sciences, Ebonyi State University, Ebonyi State
| | - G.I.A. Okoroiwu
- Department of Nursing Sciences, Faculty of Allied Health Sciences, Bayero University, Kano, Kano State
| | - N.I. Ubosi
- Department of Nursing Sciences, Faculty of Allied Health Sciences, Bayero University, Kano, Kano State
| | - Theophilus Pius
- Department of Medical Laboratory Science, Kampala International University
| | - Muhammad Ashiru
- Department of Nursing Sciences, Faculty of Allied Health Sciences, Bayero University, Kano, Kano State
| | - Kingsley Akaba
- Department of Haematology, University of Calabar, Calabar, Cross-River State
| | - Teddy Charles Adias
- Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Federal University Otuoke, Bayelsa State, Nigeria
| |
Collapse
|
5
|
Ferreira G, Taylor A, Mensah SA. Deciphering the triad of endothelial glycocalyx, von Willebrand Factor, and P-selectin in inflammation-induced coagulation. Front Cell Dev Biol 2024; 12:1372355. [PMID: 38745860 PMCID: PMC11091309 DOI: 10.3389/fcell.2024.1372355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
This review examines the endothelial glycocalyx's role in inflammation and explores its involvement in coagulation. The glycocalyx, composed of proteins and glycosaminoglycans, interacts with von Willebrand Factor and could play a crucial role in anchoring it to the endothelium. In inflammatory conditions, glycocalyx degradation may leave P-selectin as the only attachment point for von Willebrand Factor, potentially leading to uncontrolled release of ultralong von Willebrand Factor in the bulk flow in a shear stress-dependent manner. Identifying specific glycocalyx glycosaminoglycan interactions with von Willebrand Factor and P-selectin can offer insights into unexplored coagulation mechanisms.
Collapse
Affiliation(s)
- Guinevere Ferreira
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Alexandra Taylor
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Solomon A. Mensah
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
6
|
Rabi LT, Valente DZ, de Souza Teixeira E, Peres KC, de Oliveira Almeida M, Bufalo NE, Ward LS. Potential new cancer biomarkers revealed by quantum chemistry associated with bioinformatics in the study of selectin polymorphisms. Heliyon 2024; 10:e28830. [PMID: 38586333 PMCID: PMC10998122 DOI: 10.1016/j.heliyon.2024.e28830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Understanding the complex mechanisms involved in diseases caused by or related to important genetic variants has led to the development of clinically useful biomarkers. However, the increasing number of described variants makes it difficult to identify variants worthy of investigation, and poses challenges to their validation. We combined publicly available datasets and open source robust bioinformatics tools with molecular quantum chemistry methods to investigate the involvement of selectins, important molecules in the cell adhesion process that play a fundamental role in the cancer metastasis process. We applied this strategy to investigate single nucleotide variants (SNPs) in the intronic and UTR regions and missense SNPs with amino acid changes in the SELL, SELP, SELE, and SELPLG genes. We then focused on thyroid cancer, seeking these SNPs potential to identify biomarkers for susceptibility, diagnosis, prognosis, and therapeutic targets. We demonstrated that SELL gene polymorphisms rs2229569, rs1131498, rs4987360, rs4987301 and rs2205849; SELE gene polymorphisms rs1534904 and rs5368; rs3917777, rs2205894 and rs2205893 of SELP gene; and rs7138370, rs7300972 and rs2228315 variants of SELPLG gene may produce important alterations in the DNA structure and consequent changes in the morphology and function of the corresponding proteins. In conclusion, we developed a strategy that may save valuable time and resources in future investigations, as we were able to provide a solid foundation for the selection of selectin gene variants that may become important biomarkers and deserve further investigation in cancer patients. Large-scale clinical studies in different ethnic populations and laboratory experiments are needed to validate our results.
Collapse
Affiliation(s)
- Larissa Teodoro Rabi
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- .Department of Biomedicine, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu, SP, Brazil
- Institute of Health Sciences, Paulista University (UNIP), Campinas, SP, Brazil
| | - Davi Zanoni Valente
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Elisangela de Souza Teixeira
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
| | | | - Natassia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
- Department of Medicine, São Leopoldo Mandic and Research Center, Campinas, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| |
Collapse
|
7
|
Belouin A, Simard RD, Joyal M, Maharsy W, Lau A, Prévost M, Nemer M, Guindon Y. Sialyl Lewis X glycomimetics bearing an extended anionic chain targeting E- and P- selectin binding sites. Bioorg Med Chem 2024; 98:117553. [PMID: 38128297 DOI: 10.1016/j.bmc.2023.117553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Neutrophil binding to vascular P- and E-selectin is the rate-limiting step in the recruitment of immune cells to sites of inflammation. Many diseases, including sickle cell anemia, post-myocardial infarction reperfusion injury, and acute respiratory distress syndrome are characterized by dysregulated inflammation. We have recently reported sialyl Lewisx analogues as potent antagonists of P- and E-selectin and demonstrated their in vivo immunosuppressive activity. A key component of these molecules is a tartrate diester that serves as an acyclic tether to orient the fucoside and the galactoside moiety in the required gauche conformation for optimal binding. The next stage of our study involved attaching an extended carbon chain onto one of the esters. This chain could be utilized to tether other pharmacophores, lipids, and contrast agents in the context of enhancing pharmacological applications through the sialyl Lewisx / receptor-mediated mechanism. Herein, we report our preliminary studies to generate a small library of tartrate based sialyl Lewisx analogues bearing extended carbon chains. Anionic charged chemical entities are attached to take advantage of proximal charged amino acids in the carbohydrate recognition domain of the selectin receptors. Starting with a common azido intermediate, synthesized using copper-catalyzed Huisgen 1,3-dipolar cycloadditions, these molecules demonstrate E- and P-selectin binding properties.
Collapse
Affiliation(s)
- Audrey Belouin
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Ryan D Simard
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Mathieu Joyal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Wael Maharsy
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alice Lau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michel Prévost
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mona Nemer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Yvan Guindon
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
8
|
Cezar R, Kundura L, André S, Lozano C, Vincent T, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Loubet P, Sotto A, Tran TA, Estaquier J, Corbeau P. T4 apoptosis in the acute phase of SARS-CoV-2 infection predicts long COVID. Front Immunol 2024; 14:1335352. [PMID: 38235145 PMCID: PMC10791767 DOI: 10.3389/fimmu.2023.1335352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Background As about 10% of patients with COVID-19 present sequelae, it is important to better understand the physiopathology of so-called long COVID. Method To this aim, we recruited 29 patients hospitalized for SARS-CoV-2 infection and, by Luminex®, quantified 19 soluble factors in their plasma and in the supernatant of their peripheral blood mononuclear cells, including inflammatory and anti-inflammatory cytokines and chemokines, Th1/Th2/Th17 cytokines, and endothelium activation markers. We also measured their T4, T8 and NK differentiation, activation, exhaustion and senescence, T cell apoptosis, and monocyte subpopulations by flow cytometry. We compared these markers between participants who developed long COVID or not one year later. Results None of these markers was predictive for sequelae, except programmed T4 cell death. T4 lymphocytes from participants who later presented long COVID were more apoptotic in culture than those of sequelae-free participants at Month 12 (36.9 ± 14.7 vs. 24.2 ± 9.0%, p = 0.016). Conclusions Our observation raises the hypothesis that T4 cell death during the acute phase of SARS-CoV-2 infection might pave the way for long COVID. Mechanistically, T4 lymphopenia might favor phenomena that could cause sequelae, including SARS-CoV-2 persistence, reactivation of other viruses, autoimmunity and immune dysregulation. In this scenario, inhibiting T cell apoptosis, for instance, by caspase inhibitors, could prevent long COVID.
Collapse
Affiliation(s)
- Renaud Cezar
- Immunology Department, Nîmes University Hospital, Nîmes, France
| | - Lucy Kundura
- Institute of Human Genetics, UMR9002, Centre National de la Recherche Scientifique (CNRS) and Montpellier University, Montpellier, France
| | - Sonia André
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1124, Université de Paris, Paris, France
| | - Claire Lozano
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Thierry Vincent
- Immunology Department, Montpellier University Hospital, Montpellier, France
| | - Laurent Muller
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Jean-Yves Lefrant
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Claire Roger
- Surgical Intensive Care Department, Nîmes University Hospital, Nîmes, France
| | - Pierre-Géraud Claret
- Medical and Surgical Emergency Department, Nîmes University Hospital, Nîmes, France
| | - Sandra Duvnjak
- Gerontology Department, Nîmes University Hospital, Nîmes, France
| | - Paul Loubet
- Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Albert Sotto
- Infectious Diseases Department, Nîmes University Hospital, Nîmes, France
| | - Tu-Ahn Tran
- Pediatrics Department, Nîmes University Hospital, Nîmes, France
| | - Jérôme Estaquier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1124, Université de Paris, Paris, France
- Laval University Research Center, Quebec City, QC, Canada
| | - Pierre Corbeau
- Immunology Department, Nîmes University Hospital, Nîmes, France
- Institute of Human Genetics, UMR9002, Centre National de la Recherche Scientifique (CNRS) and Montpellier University, Montpellier, France
| |
Collapse
|
9
|
Sommer P, Schreinlechner M, Noflatscher M, Lener D, Mair F, Theurl M, Kirchmair R, Marschang P. Increasing Soluble P-Selectin Levels Predict Higher Peripheral Atherosclerotic Plaque Progression. J Clin Med 2023; 12:6430. [PMID: 37892568 PMCID: PMC10607706 DOI: 10.3390/jcm12206430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND AND AIMS The adhesion molecule P-selectin is expressed by endothelial cells and platelets. It is involved in platelet activation and leukocyte adhesion, both important processes in the pathogenesis of atherosclerosis. Our study was designed to assess the predictive value of soluble P-selectin (sP-selectin) on the progression of peripheral atherosclerosis. METHODS This is an observational, single-center, cohort study that included 443 patients with established cardiovascular disease (CVD) or at least one cardiovascular risk factor. Over a period of 4 years, each patient underwent three-dimensional (3D) ultrasound to assess the plaque volume of the carotid and femoral arteries once per year. In addition, plasma sP-selectin levels were measured at each visit. The association between changes in sP-selectin and peripheral atherosclerotic plaque progression was assessed using growth curve models. RESULTS 338 patients were available for statistical analysis. Each standard deviation increase in sP-selectin was significantly (p < 0.001) associated with a 46.09 mm3 higher plaque volume. In ROC-analysis, changes in sP-selectin over time showed an optimal cut-off value around Δ 0.0 µg/mL sP-selectin and significantly improved the predictive value of the ESC-SCORE (AUC for the combination of both parameters was 0.75 (95% CI 0.68-0.81, p < 0.001). Patients with increasing sP-selectin showed a significantly higher plaque progression compared to patients with decreasing or stable sP-selectin levels (202 mm3 vs. 110 mm3, p < 0.001). CONCLUSIONS Increasing sP-selectin levels can predict higher atherosclerotic plaque progression as measured by 3D ultrasound. We suggest serial measurements of sP-selectin as an easily measurable biomarker for peripheral atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Philip Sommer
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria; (P.S.)
| | - Michael Schreinlechner
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria; (P.S.)
| | - Maria Noflatscher
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria; (P.S.)
| | - Daniela Lener
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria; (P.S.)
| | - Fabian Mair
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria; (P.S.)
| | - Markus Theurl
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria; (P.S.)
| | - Rudolf Kirchmair
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria; (P.S.)
| | - Peter Marschang
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria; (P.S.)
- Department of Internal Medicine, Central Hospital of Bolzano (SABES-ASDAA), Via Lorenz Boehler 5, I-39100 Bolzano, Italy
| |
Collapse
|
10
|
Puccini M, Jakobs K, Reinshagen L, Friebel J, Schencke PA, Ghanbari E, Landmesser U, Haghikia A, Kränkel N, Rauch U. Galectin-3 as a Marker for Increased Thrombogenicity in COVID-19. Int J Mol Sci 2023; 24:ijms24097683. [PMID: 37175392 PMCID: PMC10178107 DOI: 10.3390/ijms24097683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Galectin-3 is a beta-galactoside-binding lectin involved in inflammation and lung fibrosis and postulated to enhance thrombosis. In COVID-19, it is considered to be a prognostic marker of severity. The aim of this study was to evaluate whether galectin-3 is associated with thrombogenicity in COVID-19. Patients with moderate-to-severe COVID-19 (COVpos; n = 55) and patients with acute respiratory diseases, but without COVID-19 (COVneg; n = 35), were included in the study. We measured the amount of galectin-3, as well as other platelet and coagulation markers, and correlated galectin-3 levels with these markers of thrombogenicity and with the SOFA Score values. We found that galectin-3 levels, as well as von Willebrand Factor (vWF), antithrombin and tissue plasminogen activator levels, were higher in the COVpos than they were in the COVneg cohort. Galectin-3 correlated positively with vWF, antithrombin and D-dimer in the COVpos cohort, but not in the COVneg cohort. Moreover, galactin-3 correlated also with clinical disease severity, as measured by the SOFA Score. In patients with acute respiratory diseases, galectin-3 can be considered as a marker not only for disease severity, but also for increased hypercoagulability. Whether galectin-3 might be a useful therapeutic target in COVID-19 needs to be assessed in future studies.
Collapse
Affiliation(s)
- Marianna Puccini
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Kai Jakobs
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Leander Reinshagen
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Julian Friebel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Philipp-Alexander Schencke
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Emily Ghanbari
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Arash Haghikia
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Nicolle Kränkel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Ursula Rauch
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| |
Collapse
|
11
|
Keller GA, Colaianni I, Coria J, Di Girolamo G, Miranda S. Clinical and biochemical short-term effects of hyperbaric oxygen therapy on SARS-Cov-2+ hospitalized patients with hypoxemic respiratory failure. Respir Med 2023; 209:107155. [PMID: 36796547 PMCID: PMC9927797 DOI: 10.1016/j.rmed.2023.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) has been proposed to address COVID-19- associated respiratory failure. However, its biochemical effects are poorly known. METHOD 50 patients with hypoxemic COVID-19 pneumonia were divided into C group (standard care) and H group (standard care plus HBOT). Blood was obtained at t = 0 and t = 5 days. Oxygen saturation (O2 Sat) was followed up. White blood cell (WC) count, lymphocytes (L) and platelets (P) and serum analysis (glucose, urea, creatinine, sodium, potassium, ferritin, D dimer, LDH and CRP) were carried out. Plasma levels of sVCAM, sICAM, sPselectin, SAA and MPO, and of cytokines (IL-1β, IL-1RA, IL-6, TNFα, IFNα, IFNγ, IL-15, VEGF, MIP1α, IL-12p70, IL-2 and IP-10) were measured by multiplex assays. Angiotensin Converting Enzyme 2 (ACE-2) levels were determined by ELISA. RESULTS The average basal O2 Sat was 85 ± 3%. The days needed to reach O2 Sat >90% were: H: 3 ± 1 and C: 5 ± 1 (P < 0,01). At term, H increased WC, L and P counts (all, H vs C: P < 0,01). Also, H diminished D dimer levels (H vs C, P < 0,001) and LDH concentration (H vs C, P < 0.01]. At term, H showed lower levels of sVCAM, sPselectin and SAA than C with respect to basal values (H vs C: ΔsVCAM: P < 0,01; ΔsPselectin: P < 0,05; ΔSAA: P < 0,01). Similarly, H showed diminished levels of TNFα (ΔTNFα: P < 0,05) and increased levels of IL-1RA and VEGF than C respect to basal values (H vs C: ΔIL-1RA and ΔVEGF: P < 0,05). CONCLUSION Patients underwent HBOT improved O2 Sat with lower levels of severity markers (WC and platelets count, D dimer, LDH, SAA). Moreover, HBOT reduced proinflammatory agents (sVCAM, sPselectin, TNFα) and increased anti-inflammatory and pro-angiogenic ones (IL-1RA and VEGF).
Collapse
Affiliation(s)
- Guillermo A Keller
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Vigilancia y Seguridad de Medicamentos, Argentina; Hospital General de Agudos Donación Francisco J. Santojanni, Departamento de Urgencias, Argentina
| | - Ivana Colaianni
- Hospital General de Agudos Donación Francisco J. Santojanni, Departamento de Urgencias, Argentina
| | - Javier Coria
- Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Argentina
| | - Guillermo Di Girolamo
- Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Argentina
| | - Silvia Miranda
- Universidad de Buenos Aires- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Argentina.
| |
Collapse
|
12
|
Niculae CM, Hristea A, Moroti R. Mechanisms of COVID-19 Associated Pulmonary Thrombosis: A Narrative Review. Biomedicines 2023; 11:929. [PMID: 36979908 PMCID: PMC10045826 DOI: 10.3390/biomedicines11030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
COVID-19, the infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is frequently associated with pulmonary thrombotic events, especially in hospitalized patients. Severe SARS-CoV-2 infection is characterized by a proinflammatory state and an associated disbalance in hemostasis. Immune pathology analysis supports the inflammatory nature of pulmonary arterial thrombi composed of white blood cells, especially neutrophils, CD3+ and CD20+ lymphocytes, fibrin, red blood cells, and platelets. Immune cells, cytokines, chemokines, and the complement system are key drivers of immunothrombosis, as they induce the damage of endothelial cells and initiate proinflammatory and procoagulant positive feedback loops. Neutrophil extracellular traps induced by COVID-19-associated "cytokine storm", platelets, red blood cells, and coagulation pathways close the inflammation-endotheliopathy-thrombosis axis, contributing to SARS-CoV-2-associated pulmonary thrombotic events. The hypothesis of immunothrombosis is also supported by the minor role of venous thromboembolism with chest CT imaging data showing peripheral blood clots associated with inflammatory lesions and the high incidence of thrombotic events despite routine thromboprophylaxis. Understanding the complex mechanisms behind COVID-19-induced pulmonary thrombosis will lead to future combination therapies for hospitalized patients with severe disease that would target the crossroads of inflammatory and coagulation pathways.
Collapse
Affiliation(s)
- Cristian-Mihail Niculae
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Adriana Hristea
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Ruxandra Moroti
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| |
Collapse
|
13
|
Quah Y, Lee YY, Lee SJ, Kim SD, Rhee MH, Park SC. In silico investigation of Panax ginseng lead compounds against COVID-19 associated platelet activation and thromboembolism. J Ginseng Res 2023; 47:283-290. [PMID: 36160270 PMCID: PMC9482091 DOI: 10.1016/j.jgr.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Hypercoagulability is frequently observed in patients with severe coronavirus disease-2019 (COVID-19). Platelets are a favorable target for effectively treating hypercoagulability in COVID-19 patients as platelet hyperactivity has also been observed. It is difficult to develop a treatment for COVID-19 that will be effective against all variants and the use of antivirals may not be fully effective against COVID-19 as activated platelets have been detected in patients with COVID-19. Therefore, patients with less severe side effects often turn toward natural remedies. Numerous phytochemicals are being investigated for their potential to treat a variety of illnesses, including cancer and bacterial and viral infections. Natural products have been used to alleviate COVID-19 symptoms. Panax ginseng has potential for managing cardiovascular diseases and could be a treatment for COVID-19 by targeting the coagulation cascade and platelet activation. Using molecular docking, we analyzed the interactions of bioactive chemicals in P. ginseng with important proteins and receptors involved in platelet activation. Furthermore, the SwissADME online tool was used to calculate the pharmacokinetics and drug-likeness properties of the lead compounds of P. ginseng. Dianthramine, deoxyharrtingtonine, and suchilactone were determined to have favorable pharmacokinetic profiles.
Collapse
Affiliation(s)
- Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Yuan Yee Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sung Dae Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author. Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seung-Chun Park
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
14
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
15
|
Whyte CS, Simpson M, Morrow GB, Wallace CA, Mentzer AJ, Knight JC, Shapiro S, Curry N, Bagot CN, Watson H, Cooper JG, Mutch NJ. The suboptimal fibrinolytic response in COVID-19 is dictated by high PAI-1. J Thromb Haemost 2022; 20:2394-2406. [PMID: 35780481 PMCID: PMC9349442 DOI: 10.1111/jth.15806] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Severe COVID-19 disease is associated with thrombotic complications and extensive fibrin deposition. This study investigates whether the hemostatic complications in COVID-19 disease arise due to dysregulation of the fibrinolytic system. METHODS This prospective study analyzed fibrinolytic profiles of 113 patients hospitalized with COVID-19 disease with 24 patients with non-COVID-19 respiratory infection and healthy controls. Antigens were quantified by Ella system or ELISA, clot lysis by turbidimetric assay, and plasminogen activator inhibitor-1 (PAI-1)/plasmin activity using chromogenic substrates. Clot structure was visualized by confocal microscopy. RESULTS PAI-1 and its cofactor, vitronectin, are significantly elevated in patients with COVID-19 disease compared with those with non-COVID-19 respiratory infection and healthy control groups. Thrombin activatable fibrinolysis inhibitor and tissue plasminogen activator were elevated in patients with COVID-19 disease relative to healthy controls. PAI-1 and tissue plasminogen activator (tPA) were associated with more severe COVID-19 disease severity. Clots formed from COVID-19 plasma demonstrate an altered fibrin network, with attenuated fiber length and increased branching. Functional studies reveal that plasmin generation and clot lysis were markedly attenuated in COVID-19 disease, while PAI-1 activity was elevated. Clot lysis time significantly correlated with PAI-1 levels. Stratification of COVID-19 samples according to PAI-1 levels reveals significantly faster lysis when using the PAI-1 resistant (tPA) variant, tenecteplase, over alteplase lysis. CONCLUSION This study shows that the suboptimal fibrinolytic response in COVID-19 disease is directly attributable to elevated levels of PAI-1, which attenuate plasmin generation. These data highlight the important prognostic potential of PAI-1 and the possibility of using pre-existing drugs, such as tenecteplase, to treat COVID-19 disease and potentially other respiratory diseases.
Collapse
Affiliation(s)
- Claire S. Whyte
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Megan Simpson
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gael B. Morrow
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Oxford Haemophilia & Thrombosis Centre, NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Carol A. Wallace
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | | | | | - Susan Shapiro
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Oxford Haemophilia & Thrombosis Centre, NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Nicola Curry
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Oxford Haemophilia & Thrombosis Centre, NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Henry Watson
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Jamie G. Cooper
- Emergency DepartmentAberdeen Royal Infirmary, NHS GrampianAberdeenUK
- School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
16
|
Müller R, Rink G, Uzun G, Bakchoul T, Wuchter P, Klüter H, Bugert P. Increased plasma level of soluble P-selectin in non-hospitalized COVID-19 convalescent donors. Thromb Res 2022; 216:120-124. [PMID: 35810548 PMCID: PMC9252887 DOI: 10.1016/j.thromres.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 12/22/2022]
Abstract
Background The coronavirus disease-2019 (COVID-19) is a systemic disease with severe implications on the vascular and coagulation system. A procoagulant platelet phenotype has been reported at least in the acute disease phase. Soluble P-selectin (sP-sel) in the plasma is a surrogate biomarker of platelet activation. Increased plasma levels of sP-sel have been reported in hospitalized COVID-19 patients associated with disease severity. Here, we evaluated in a longitudinal study the sP-sel plasma concentration in blood donors who previously suffered from moderate COVID-19. Methods 154 COVID-19 convalescent and 111 non-infected control donors were recruited for plasma donation and for participation in the CORE research trial. First donation (T1) was performed 43–378 days after COVID-19 diagnosis. From most of the donors the second (T2) plasma donation including blood sampling was obtained after a time period of 21–74 days and the third (T3) donation after additional 22–78 days. Baseline characteristics including COVID-19 symptoms of the donors were recorded based on a questionnaire. Platelet function was measured at T1 by flow cytometry and light transmission aggregometry in a representative subgroup of 25 COVID-19 convalescent and 28 control donors. The sP-sel plasma concentration was determined in a total of 704 samples by using a commercial ELISA. Results In vitro platelet function was comparable in COVID-19 convalescent and control donors at T1. Plasma samples from COVID-19 convalescent donors revealed a significantly higher sP-sel level compared to controls at T1 (1.05 ± 0.42 ng/mL vs. 0.81 ± 0.30 ng/mL; p < 0.0001) and T2 (0.96 ± 0.39 ng/mL vs. 0.83 ± 0.38 ng/mL; p = 0.0098). At T3 the sP-sel plasma level was comparable in both study groups. Most of the COVID-19 convalescent donors showed a continuous decrease of sP-sel from T1 to T3. Conclusion Increased sP-sel plasma concentration as a marker for platelet or endothelial activation could be demonstrated even weeks after moderate COVID-19, whereas, in vitro platelet function was comparable with non-infected controls. We conclude that COVID-19 and additional individual factors could lead to an increase of the sP-sel plasma level.
Collapse
Affiliation(s)
- Rebecca Müller
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Gabi Rink
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Günalp Uzun
- Zentrum für Klinische Transfusionsmedizin gemeinnützige GmbH, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Zentrum für Klinische Transfusionsmedizin gemeinnützige GmbH, Universitätsklinikum Tübingen, Tübingen, Germany; Transfusion Medicine, Medical Faculty Tübingen, Tübingen, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany.
| |
Collapse
|
17
|
Golubeva MG. Role of P-Selectin in the Development of Hemostasis Disorders in COVID-19. BIOLOGY BULLETIN REVIEWS 2022. [PMCID: PMC9297276 DOI: 10.1134/s207908642204003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This is a review of data on the impact of COVID-19 on blood clotting. An important feature of the pathogenesis of severe acute respiratory syndrome caused by the SARS-Co-2 coronavirus is the risk of thrombotic complications including microvascular thrombosis, venous thromboembolism, and stroke. These thrombotic complications, like thrombocytopenia, are markers of the severe form of COVID-19 and are associated with multiple organ failure and increased mortality. One of the central mechanisms of this pathology is dysregulation of the adhesive protein P-selectin. The study of the mechanisms of changes in hemostasis and vascular pathology, and the role in these processes of biomarkers of thrombogenesis, and primarily of P-selectin of various origins (platelets, endothelial cells, and plasma), can bring some clarity to the understanding of the pathogenesis and therapy of COVID-19.
Collapse
Affiliation(s)
- M. G. Golubeva
- Department of Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Purdy M, Obi A, Myers D, Wakefield T. P- and E- selectin in venous thrombosis and non-venous pathologies. J Thromb Haemost 2022; 20:1056-1066. [PMID: 35243742 PMCID: PMC9314977 DOI: 10.1111/jth.15689] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Venous thromboembolism is a very common and costly health problem worldwide. Anticoagulant treatment for VTE is imperfect: all have the potential for significant bleeding, and none prevent the development of post thrombotic syndrome after deep vein thrombosis or chronic thromboembolic pulmonary hypertension after pulmonary embolism. For these reasons, alternate forms of therapy with improved efficacy and decreased bleeding are needed. Selectins are a family (P-selectin, E-selectin, L-selectin) of glycoproteins that facilitate and augment thrombosis, modulating neutrophil, monocyte, and platelet activity. P- and E-selectin have been investigated as potential biomarkers for thrombosis. Inhibition of P-selectin and E-selectin decrease thrombosis and vein wall fibrosis, with no increase in bleeding. Selectin inhibition is a promising avenue of future study as either a stand-alone treatment for VTE or as an adjunct to standard anticoagulation therapies.
Collapse
Affiliation(s)
- Megan Purdy
- University of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Andrea Obi
- Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel Myers
- Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
- Unit for Laboratory Animal Medicine and Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Thomas Wakefield
- Section of Vascular SurgeryDepartment of SurgeryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
19
|
Pluta K, Porębska K, Urbanowicz T, Gąsecka A, Olasińska-Wiśniewska A, Targoński R, Krasińska A, Filipiak KJ, Jemielity M, Krasiński Z. Platelet-Leucocyte Aggregates as Novel Biomarkers in Cardiovascular Diseases. BIOLOGY 2022; 11:biology11020224. [PMID: 35205091 PMCID: PMC8869671 DOI: 10.3390/biology11020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Simple Summary Cardiovascular diseases are the most common cause of death worldwide. Hence, novel biomarkers are urgently needed to improve diagnosis and treatment. Platelet–leucocyte aggregates are conglomerates of platelets and leucocytes and are widely investigated as biomarkers in cardiovascular diseases. Platelet–leucocytes aggregates are present in health, but increase in patients with cardiovascular risk factors and acute or stable coronary syndromes, making them a potential diagnostic marker. Moreover, platelet–leucocyte aggregates predict outcomes after surgery or percutaneous treatment and could be used to monitor antiplatelet therapy. Emerging data about the participation of platelet–leucocyte aggregates in cardiovascular diseases pathogenesis make them an attractive target for novel therapies. Furthermore, simple detection with conventional flow cytometry provides accurate and reproducible results, although requires specific sample handling. The main task for the future is to determine the standardized protocol to measure blood concentrations of platelet–leucocyte aggregates and subsequently establish their normal range in health and disease. Abstract Platelet–leucocyte aggregates (PLA) are a formation of leucocytes and platelets bound by specific receptors. They arise in the condition of sheer stress, thrombosis, immune reaction, vessel injury, and the activation of leukocytes or platelets. PLA participate in cardiovascular diseases (CVD). Increased levels of PLA were revealed in acute and chronic coronary syndromes, carotid stenosis cardiovascular risk factors. Due to accessible, available, replicable, quick, and low-cost quantifying using flow cytometry, PLA constitute an ideal biomarker for clinical practice. PLA are promising in early diagnosing and estimating prognosis in patients with acute or chronic coronary syndromes treated by percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). PLA were also a reliable marker of platelet activity for monitoring antiplatelet therapy. PLA consist also targets potential therapies in CVD. All of the above potential clinical applications require further studies to validate methods of assay and proof clinical benefits.
Collapse
Affiliation(s)
- Kinga Pluta
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
| | - Kinga Porębska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
| | - Tomasz Urbanowicz
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
- Correspondence: ; Tel.: +48-22-599-1951
| | - Anna Olasińska-Wiśniewska
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Radosław Targoński
- 1st Department of Cardiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Aleksandra Krasińska
- Department of Ophtalmology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy in Warsaw, 00-136 Warsaw, Poland;
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| |
Collapse
|
20
|
Leucker TM, Osburn WO, Reventun P, Smith K, Claggett B, Kirwan BA, de Brouwer S, Williams MS, Gerstenblith G, Hager DN, Streiff MB, Solomon SD, Lowenstein CJ. Effect of Crizanlizumab, a P-Selectin Inhibitor, in COVID-19: A Placebo-Controlled, Randomized Trial. JACC Basic Transl Sci 2021; 6:935-945. [PMID: 34904132 PMCID: PMC8653991 DOI: 10.1016/j.jacbts.2021.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022]
Abstract
Severe COVID-19 is characterized by vascular inflammation and thrombosis, including elevations of P-selectin, a marker released by activated endothelial cells that mediates vascular inflammation. We tested the effect of crizanlizumab, an antibody to P-selectin, on biomarkers of inflammation and thrombosis in patients with COVID-19 in a randomized, placebo-controlled, double-blind clinical trial. Crizanlizumab decreased soluble P-selectin levels in patients with COVID-19. Crizanlizumab increased D-dimer and decreased prothrombin fragment 1.2 in patients with COVID-19. Crizanlizumab may induce endogenous thrombolysis in the setting of COVID-19.
COVID-19 is characterized by vascular inflammation and thrombosis, including elevations in P-selectin, a mediator of inflammation released by endothelial cells. We tested the effect of P-selectin inhibition on biomarkers of thrombosis and inflammation in patients with COVID-19. Hospitalized patients with moderate COVID-19 were randomly assigned to receive either placebo or crizanlizumab, a P-selectin inhibitor, in a double-blind fashion. Crizanlizumab reduced P-selectin levels by 89%. Crizanlizumab increased D-dimer levels by 77% and decreased prothrombin fragment. There were no significant differences between crizanlizumab and placebo for clinical endpoints. Crizanlizumab was well tolerated. Crizanlizumab may induce thrombolysis in the setting of COVID-19. (Crizanlizumab for Treating COVID-19 Vasculopathy [CRITICAL]; NCT04435184)
Collapse
Affiliation(s)
- Thorsten M Leucker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William O Osburn
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paula Reventun
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberley Smith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian Claggett
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bridget-Anne Kirwan
- SOCAR Research SA, Nyon, Switzerland.,Faculty of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, Bloomsbury, London, United Kingdom
| | | | - Marlene S Williams
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gary Gerstenblith
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David N Hager
- Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael B Streiff
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Scott D Solomon
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles J Lowenstein
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|