1
|
Jayasinghe AMK, Kirindage KGIS, Kim SH, Lee S, Jung K, Shim SY, Ahn G. Protective effect of Curcuma longa L. leaves and pseudostems extract against 1-chloro-2,4-dinitrobenzene-induced atopic dermatitis in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119138. [PMID: 39566860 DOI: 10.1016/j.jep.2024.119138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The perennial herbaceous plant, Curcuma longa L. (turmeric) is primarily grown and harvested for pharmacological purposes in China, Korea, and various tropical regions in South Asia. Turmeric has been used for centuries as an indigenous medicine. In particular, Ayurveda has been extensively used to treat, prevent, and manage multiple illnesses, including inflammation, allergies, arthritis, cancer, diabetes, diarrhea, psoriasis, and digestive issues. Importantly, various studies have confirmed the presence of numerous active compounds with health-enhancing biological properties in turmeric leaves and pseudostems. AIM OF THE STUDY Atopic dermatitis (AD) is a long-lasting inflammatory disorder that is associated with abnormalities in the immune system, such as T-helper (Th) cell dysregulation, elevated immunoglobulin (Ig) levels, inflammatory cell infiltration, and skin barrier damage. This study aimed to explore the therapeutic effects of turmeric leaves and pseudostems (CLHW) extract against AD in a BALB/c mouse disease model established using 1-chloro-2,4-dinitrobenzene (DNCB). MATERIALS AND METHODS AD-like symptoms were induced by topically applying DNCB to the dorsal skin of the mice, which were monitored over five weeks. Fourteen days after induction, the mice were randomly divided into different groups, and the treatment groups received daily oral gavage of CLHW for three weeks. Throughout the monitoring period, we assessed AD-like symptoms, including skin severity score, transepidermal water loss (TEWL), and scratching behavior of the mice. After measuring the body weight and ear thickness, the mice were euthanized. Furthermore, serum Ig and cytokine production levels were measured. Finally, the degrees of spleen and lymph node enlargement were evaluated, and the tissues were used for histopathological and molecular analyses. RESULTS CLHW improved AD-like symptoms, including skin severity score, TEWL, scratching frequency, and ear thickness in DNCB-induced AD mice. Additionally, serum levels of IgE, IgG1, and IgG2a, along with various inflammatory cytokines (interleukin [IL]-4, IL-5, and IL-13) and chemokines (Eotaxin and RANTES), were significantly reduced in CLHW-treated mice. CLHW decreased inflammatory cell infiltration and mast cell degranulation while downregulating mRNA expression levels of AD-related innate cytokines (thymic stromal lymphopoietin [TSLP], IL-25, IL-33), inflammatory cytokines (IL-4, IL-10, IL-13), and chemokines (thymus and activation-regulated chemokine [TARC], macrophage-derived chemokine [MDC]) in the dorsal skin. Furthermore, CLHW reduced spleen and lymph node enlargement and downregulated mRNA expression levels of inflammatory cytokines in these tissues in a dose-dependent manner. CONCLUSION The results demonstrated that CLHW can effectively suppress DNCB-induced AD-like symptoms by reducing the skin severity score, TEWL, scratching, ear thickness, serum Ig levels, inflammatory cell infiltration, and degranulation of mast cells, as well as the enlargement of the spleen and lymph nodes. Our findings highlight the ethnopharmacological potential of CLHW for treating abnormal immune responses associated with AD.
Collapse
Affiliation(s)
| | | | - Sun-Hyung Kim
- French Korea Aromatics Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Seok Lee
- French Korea Aromatics Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 56212, Republic of Korea.
| | - Sun-Yup Shim
- Agricultural Education Major, College of Education, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, Republic of Korea; Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
2
|
Nie W, Fu H, Zhang Y, Yang H, Liu B. Chinese Herbal Medicine and Their Active Ingredients Involved in the Treatment of Atopic Dermatitis Related Signaling Pathways. Phytother Res 2025; 39:1190-1237. [PMID: 39764710 DOI: 10.1002/ptr.8409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/19/2025]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management. Chinese herbal medicine (CHM) and its active ingredients exhibit both prophylactic and therapeutic promise against AD by modulating inflammatory response, orchestrating immune system functions, and enhancing antioxidant activities. A comprehensive exploration of the underlying mechanisms involved in CHM treatment can enhance the comprehension of AD pathogenesis and facilitate the development of innovative drugs for AD. This study aims to elucidate the signaling pathways and potential targets implicated in CHM-based treatment of AD, providing a systematic theoretical framework for its application in therapy while serving as a valuable reference for developing more effective and safer AD therapeutic agents.
Collapse
Affiliation(s)
- Wenkai Nie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao Fu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiwen Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Chen F, Liu J, Yu X, Jia H, Yang C, Zhao B. Aspergillus oryzae Fermented Plumula Nelumbinis Against Atopic Dermatitis Through AKT/mTOR and Jun Pathways. Pharmaceuticals (Basel) 2024; 18:20. [PMID: 39861084 PMCID: PMC11768159 DOI: 10.3390/ph18010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Atopic dermatitis (AD) is a chronic inflammatory skin disorder that has attracted global attention, and alkaloids from Plumula Nelumbinis have been shown to have anti-inflammatory activity. Fermentation has been used for the structural modification of natural compounds to improve bioavailability and activity, but the AD therapeutic efficacy and mechanism of the fermented Plumula Nelumbinis (FPN) are still unclear. Methods: The potential targets of FPN for AD were preliminarily screened using network pharmacology, and then PCR and WB were used to prove the therapeutic effect of FPN in AD. Results: Network pharmacology indicated that mTOR and Jun were key targets for AD. The experiments in vitro showed that FPN could effectively block AKT/mTOR and AKT/Jun-mediated inflammatory signaling pathways. Moreover, FPN can also alleviate SDS-induced inflammation in zebrafish. It is also found that the anti-inflammatory activity of Plumula Nelumbinis was enhanced by Aspergillus oryzae fermentation, and the oil phase of the fermentation product showed better activity, which may be due to microbial fermentation changing the structure of the original alkaloids. Conclusions: This study elucidated the potential mechanisms of alkaloids derived from fermented Plumula Nelumbinis against AD; it may also provide a scientific basis for the development of new drugs for AD.
Collapse
Affiliation(s)
- Fengfeng Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (F.C.); (J.L.); (X.Y.); (C.Y.)
| | - Jing Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (F.C.); (J.L.); (X.Y.); (C.Y.)
| | - Xinwei Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (F.C.); (J.L.); (X.Y.); (C.Y.)
| | - Honglei Jia
- Shanghai Fulai BioHighTech Co., Ltd., Shanghai 201400, China;
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (F.C.); (J.L.); (X.Y.); (C.Y.)
| | - Bingtian Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (F.C.); (J.L.); (X.Y.); (C.Y.)
| |
Collapse
|
4
|
Kim KC, Jeong GH, Bang CH, Lee JH. Cannabichromene as a Novel Inhibitor of Th2 Cytokine and JAK/STAT Pathway Activation in Atopic Dermatitis Models. Int J Mol Sci 2024; 25:13539. [PMID: 39769302 PMCID: PMC11677870 DOI: 10.3390/ijms252413539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cannabichromene (CBC) is one of the main cannabinoids found in the cannabis plant, and although less well known than tetrahydrocannabinol (THC) and cannabidiol (CBD), it is gaining attention for its potential therapeutic benefits. To date, CBC's known mechanisms of action include anti-inflammatory, analgesic, antidepressant, antimicrobial, neuroprotective, and anti-acne effects through TRP channel activation and the inhibition of inflammatory pathways, suggesting that it may have therapeutic potential in the treatment of inflammatory skin diseases, such as atopic dermatitis (AD), but its exact mechanism of action remains unclear. Therefore, in this study, we investigated the effects of CBC on Th2 cytokines along with the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways involved in AD pathogenesis. We used a 2,4-Dinitrochlorobenzene (DNCB)-induced BALB/c mouse model to topically administer CBC (0.1 mg/kg or 1 mg/kg). The results showed that skin lesion severity, ear thickness, epithelial thickness of dorsal and ear skin, and mast cell infiltration were significantly reduced in the 0.1 mg/kg CBC-treated group compared with the DNCB-treated group (p < 0.001). In addition, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis showed a significant decrease in the mRNA expression of Th2 cytokines (TSLP, IL-4, IL-13) and inflammatory mediators (IFN-γ, IL-1β, IL-6, IL-17, IL-18, and IL-33) (p < 0.05). Western blot analysis also revealed a significant decrease in JAK1, JAK2, STAT1, STAT2, STAT3, and STAT6 protein expression (p < 0.05). These results suggest that CBC is a promising candidate for the treatment of AD and demonstrates the potential to alleviate AD symptoms by suppressing the Th2 immune response.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (K.C.K.); (G.H.J.); (C.H.B.)
| | - Ga Hee Jeong
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (K.C.K.); (G.H.J.); (C.H.B.)
| | - Chul Hwan Bang
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (K.C.K.); (G.H.J.); (C.H.B.)
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Ji Hyun Lee
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (K.C.K.); (G.H.J.); (C.H.B.)
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul #222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
5
|
Li M, Xu Y, Yu Y, Li W, Chen L, Zhao B, Gao Y, Gao J, Lin H. Transdermal delivery of natural products against atopic dermatitis. Chin J Nat Med 2024; 22:1076-1088. [PMID: 39725509 DOI: 10.1016/s1875-5364(24)60681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 12/28/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition. Natural products have gained traction in AD treatment due to their accessibility, low toxicity, and favorable pharmacological properties. However, their application is primarily constrained by poor solubility, instability, and limited permeability. The transdermal drug delivery system (TDDS) offers potential solutions for transdermal delivery, enhanced penetration, improved efficacy, and reduced toxicity of natural drugs, aligning with the requirements of modern AD treatment. This review examines the application of hydrogels, microneedles (MNs), liposomes, nanoemulsions, and other TDDS-carrying natural products in AD treatment, with a primary focus on their effects on penetration and accumulation in the skin. The aim is to provide valuable insights into the treatment of AD and other dermatological conditions.
Collapse
Affiliation(s)
- Minghui Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Yu
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Wanshu Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Lixia Chen
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Bo Zhao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yuli Gao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China.
| |
Collapse
|
6
|
Gao J, Li D, Feng Z, Zhu X, Yang F, Zhang B, Hu M, Wang Y, Feng H, Yu Y, Xie Q, Chen Z, Li Y. Diterpenoid DGT alleviates atopic dermatitis-like responses in vitro and in vivo via targeting IL-4Rα. Biomed Pharmacother 2024; 179:117321. [PMID: 39191027 DOI: 10.1016/j.biopha.2024.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Atopic dermatitis is a common chronic inflammatory skin disease characterized by relapsing eczema and intense itch. DGT is a novel synthetic heterocyclic diterpenoid derived from plants. Its therapeutic potential and mechanism(s) of action are poorly understood. OBJECTIVES We investigated the potent therapeutic effect of DGT on atopic dermatitis, exploring the underlying mechanisms and determining whether DGT is a safe and well-tolerated topical treatment. METHODS We observed anti-inflammatory effects of DGT on tumor necrosis factor-α/interferon-γ-treated human keratinocytes, and anti-allergic effects on immunoglobulin E-sensitized bone marrow-derived mast cells. In vivo, DGT was topically applied to two experimental mouse models of atopic dermatitis: oxazolone-induced sensitization and topically applied calcipotriol. Then the therapeutic effects of DGT were evaluated physiologically and morphologically. Moreover, we performed nonclinical toxicology and safety pharmacology research, including general toxicity, pharmacokinetics, and safety pharmacology on the cardiovascular, respiratory, and central nervous systems. RESULTS In keratinocytes, DGT reduced the expression of inflammatory factors, promoting the expression of barrier functional proteins and tight junctions and maintaining the steady state of barrier function. DGT also inhibited the activation and degranulation of mast cells induced by immunoglobulin E. Moreover, we found that interleukin-4 receptor-α was the possible target of DGT. Meanwhile, DGT had therapeutic effects on oxazolone/calcipotriol-treated mice. Notably, our pharmacology results demonstrated that DGT was safe and nontoxic in our studies. CONCLUSION DGT's potent anti-inflammatory effects and good safety profile suggest that it is a potential candidate for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Jingjing Gao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China; Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Dong Li
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Zhangyang Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoqiang Zhu
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Fei Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China; Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Biyan Zhang
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Mingming Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yanping Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Haimei Feng
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Yunhui Yu
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Qing Xie
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Zijun Chen
- College of traditional Chinese medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Zhang Y, Zhao W, Liao J, Zhang Y, Wang L, Li P, Du B. Evaluation of the therapeutic effect of Sacha inchi oil in atopic dermatitis mice. Int Immunopharmacol 2024; 138:112552. [PMID: 38917521 DOI: 10.1016/j.intimp.2024.112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Atopic dermatitis (AD) is a prevalent inflammatory skin condition characterized by a multifaceted pathogenesis, which encompasses immune system signaling dysregulation, compromised skin barrier function, and genetic influencers. Sacha inchi (Plukenetia volubilis L.) oil (SIO) has demonstrated potent anti-inflammatory and antioxidant properties, however, the mechanism underlying the beneficial effects of SIO on AD remains unclear. This study aims to investigate the anti-AD effect of SIO and its possible molecular mechanism in mice with AD. The results demonstrated that SIO significantly reduced the degree of skin lesions and scratching, and improved the skin thickness and mast cell infiltration in AD mice. Furthermore, SIO significantly reduced the levels of immunoglobulin E, histamine and thymic stromal lymphopoietin in serum of AD mice. Additionally, it inhibited the expression of tumor necrosis factor-γ, interferon-γ, interleukin-2, interleukin-4, interleukin 1β and other inflammatory cytokines in the lesions skin of mice. The Western blotting analysis revealed that SIO exhibited an upregulatory effect on the protein expression of filaggrin and loricrin, while concurrently exerting inhibitory effects on the protein expression and phosphorylation levels of P38, ERK, NF-κB, and IκBα within their respective signaling pathways. Consequently, it can be inferred that SIO exerts a significant anti-atopic dermatitis effect by modulating the P38, ERK, NF-κB, and IκBα signaling pathways. This study contributes to expand the research and development potential of SIO, and provides novel insights and potential therapeutic strategies for AD treatment.
Collapse
Affiliation(s)
- Yuwei Zhang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jingru Liao
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yixiang Zhang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lieyu Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Liu Z, Jiang X, Zhao K, Ruan H, Ma Y, Ma Y, Zhou Q, Zhang J, Sun X, Ma W, Xu S. Role of LECT2 in exacerbating atopic dermatitis: insight from in vivo and in vitro models via NF-κB signaling pathway. Front Immunol 2024; 15:1439367. [PMID: 39206203 PMCID: PMC11349537 DOI: 10.3389/fimmu.2024.1439367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Leukocyte cell-derived chemotaxin 2 (LECT2) is linked to various immune diseases. Previously, we reported that serum LECT2 levels correlate with disease severity in atopic dermatitis (AD) patients. To investigate the role of LECT2 in AD and elucidate its potential mechanisms, we used LECT2 to treat an AD mouse model induced by 1-Chloro-2,4-dinitrobenzene (DNCB) in LECT2 knockout (KO) and wild-type (WT) mice, and an AD cell model using TNF-α/IFN-γ-induced HaCaT cells. Inflammatory factors and barrier proteins were analyzed by histology, immunohistochemistry, RT-qPCR, ELISA, and Western Blot. Activation of the NF-κB signaling pathway was evaluated by Western Blot and immunofluorescence. In the AD mouse model, LECT2 treatment increased epidermal and dermal thickness, mast cell infiltration, and downregulated barrier proteins. Inflammatory factors were increased in skin lesions and serum. In the AD cell model, LECT2 decreased barrier protein levels and increased inflammatory factor levels, enhancing NF-κB P65 nuclear translocation. These results indicate that LECT2 exacerbates AD-like responses by dysregulating the NF-κB signaling pathway, highlighting its potential as a therapeutic target for AD management.
Collapse
Affiliation(s)
- Zhifang Liu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyu Jiang
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Keyu Zhao
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hongyu Ruan
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yizhao Ma
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yuhan Ma
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qiongyan Zhou
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jing Zhang
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoyan Sun
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Suling Xu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
9
|
Han JY, Lee YJ, Lim DW, Jung HJ, Kwon E, Hong J, Lee YM. Cheungsam Seed Husk Extract Reduces Skin Inflammation through Regulation of Inflammatory Mediator in TNF-α/IFN-γ-Induced HaCaT Cells. PLANTS (BASEL, SWITZERLAND) 2024; 13:1704. [PMID: 38931136 PMCID: PMC11207521 DOI: 10.3390/plants13121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Cannabis contains numerous natural components and has several effects such as anticancer, anti-inflammatory and antioxidant. Cheungsam is a variety of non-drug-type hemp, developed in Korea and is used for fiber (stem) and oil (seed). The efficacy of Cheungsam on skin is not yet known, and although there are previous studies on Cheungsam seed oil, there are no studies on Cheungsam seed husk. In this study, we investigated the potential of Cheungsam seed husk ethanol extract (CSSH) to alleviate skin inflammation through evaluating the gene and protein expression levels of inflammatory mediators. The results showed that CSSH reduced pro-inflammatory cytokines (IL-1β, IL-6, IL-8, MCP-1 and CXCL10) and atopic dermatitis-related cytokines (IL-4, CCL17, MDC and RANTES) in TNF-α/IFN-γ-induced HaCaT cells. Furthermore, ERK, JNK and p38 phosphorylation were decreased and p-p65, p-IκBα, NLRP3, caspase-1, p-JAK1 and p-STAT6 were suppressed after CSSH treatment. CSSH significantly increased the level of the skin barrier factors filaggrin and involucrin. These results suggest that Cheungsam seed husk ethanol extract regulates the mechanism of skin inflammation and can be used as a new treatment for skin inflammatory diseases.
Collapse
Affiliation(s)
- Ji-Ye Han
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (Y.J.L.); (D.-W.L.); (H.-J.J.)
| | - Yun Jung Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (Y.J.L.); (D.-W.L.); (H.-J.J.)
| | - Do-Won Lim
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (Y.J.L.); (D.-W.L.); (H.-J.J.)
| | - Hyun-Ju Jung
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (Y.J.L.); (D.-W.L.); (H.-J.J.)
| | - EunJeong Kwon
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (J.H.)
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (J.H.)
| | - Young-Mi Lee
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (Y.J.L.); (D.-W.L.); (H.-J.J.)
| |
Collapse
|
10
|
Kim YK, Cho M, Kang DJ. Anti-Inflammatory Response of New Postbiotics in TNF-α/IFN-γ-Induced Atopic Dermatitis-like HaCaT Keratinocytes. Curr Issues Mol Biol 2024; 46:6100-6111. [PMID: 38921035 PMCID: PMC11203040 DOI: 10.3390/cimb46060364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
This study examines the synergistic interaction between the immunomodulatory functions of lactic acid bacteria postbiotics and the anti-inflammatory properties of Smilax china L. extract through a combined fermentation process. Using atopic dermatitis (AD) as a model, characterized by an immune imbalance that leads to skin inflammation, we developed a fermented product, MB-2006, and compared its effects to those of the heat-killed probiotics Lactobacillus acidophilus (LAC) and Lactobacillus rhamnosus (LRH). Our experiments focused on elucidating the mechanism of action of MB-2006 in AD-like HaCaT keratinocyte cells, particularly its impact on the NF-κB pathway, a pivotal regulator of inflammation. MB-2006 proved more effective in reducing inflammation markers, such as IL-4 and thymic stromal lymphopoietin (TSLP), and in inhibiting NF-κB activation compared to LAC and LRH. Significantly, MB-2006 also reduced the expression of thymus- and activation-regulated chemokine (TARC), highlighting a synergistic effect that enhances its therapeutic potential. These results suggest that the combined fermentation of Smilax china L. extract with lactic acid bacteria enhanced both the anti-inflammatory and immunomodulatory effects, presenting a promising integrative approach to treating conditions like AD. Further studies are needed to validate these results in clinical settings and fully explore the potential of this synergistic fermentation process.
Collapse
Affiliation(s)
| | | | - Dae-Jung Kang
- MNH Bio Co., Ltd., Dongtan-Biz-Tower 609, Dongtancheomdansaneop 1-ro, Hwaseong-si 18469, Gyeonggi-do, Republic of Korea; (Y.-K.K.); (M.C.)
| |
Collapse
|
11
|
Zheng R, Ren Y, Liu X, He C, Liu H, Wang Y, Li J, Xia S, Liu Z, Ma Y, Wang D, Xu S, Wang G, Li N. Exogenous drug-induced mouse models of atopic dermatitis. Cytokine Growth Factor Rev 2024; 77:104-116. [PMID: 38272716 DOI: 10.1016/j.cytogfr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease characterized by intense pruritus. AD is harmful to both children and adults, but its pathogenic mechanism has yet to be fully elucidated. The development of mouse models for AD has greatly contributed to its study and treatment. Among these models, the exogenous drug-induced mouse model has shown promising results and significant advantages. Until now, a large amount of AD-related research has utilized exogenous drug-induced mouse models, leading to notable advancements in research. This indicates the crucial significance of applying such models in AD research. These models exhibit diverse characteristics and are highly complex. They involve the use of various strains of mice, diverse types of inducers, and different modeling effects. However, there is currently a lack of comprehensive comparative studies on exogenous drug-induced AD mouse models, which hinders researchers' ability to choose among these models. This paper provides a comprehensive review of the features and mechanisms associated with various exogenous drug-induced mouse models, including the important role of each cytokine in AD development. It aims to assist researchers in quickly understanding models and selecting the most suitable one for further investigation.
Collapse
Affiliation(s)
- Rou Zheng
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China.
| | - Xinyue Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Canxia He
- Health Science Center, Ningbo University, Ningbo, China.
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Shuya Xia
- Health Science Center, Ningbo University, Ningbo, China.
| | - Zhifang Liu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Yizhao Ma
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Dianchen Wang
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Suling Xu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Geng Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China; Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
12
|
Chu TW, Ho CC, Hsu YJ, Lo YH, Wu NL, Cheng YB, Hong MX, Chang DC, Hung CF. Protective Effects of Pear Extract on Skin from In Vitro and In Vivo UVA-Induced Damage. Pharmaceuticals (Basel) 2024; 17:583. [PMID: 38794153 PMCID: PMC11124007 DOI: 10.3390/ph17050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The ancient Chinese medical book "Compendium of Materia Medica" records that pears can relieve symptoms of respiratory-related diseases. Previous research has shown that pear Pyrus Pyrifolia (Burm.f.) Nakai has antioxidant and anti-inflammatory properties. However, the anti-inflammatory, antioxidant, and anti-photoaging protective effects of Pyrus pyrifolia (Burm.f.) Nakai seed components have not been studied. Ultraviolet light (UV) causes skin inflammation, damages the skin barrier, and is an important cause of skin photoaging. Therefore, UV light with a wavelength of 365 nm was used to irradiate HaCaT and mice. Western blot, real-time quantitative polymerase chain reaction, and fluorescence imaging system were used to explore its anti-UVA mechanism. Dialysis membrane and nuclear magnetic resonance were used for the chemical constituent analysis of pear seed water extract (PSWE). We found that PSWE can significantly reduce UVA-induced skin cell death and mitogen-activated protein kinase phosphorylation and can inhibit the mRNA expression of UVA-induced cytokines (including IL-1β, IL-6, and TNF-α). In addition, PSWE can also reduce the generation of oxidative stress within skin cells. In vivo experimental studies found that PSWE pretreatment effectively reduced transepidermal water loss, inflammation, redness, and dryness in hairless mice. The molecular weight of the active part of pear water extract is approximately 384. Based on the above results, we first found that pear seeds can effectively inhibit oxidative stress and damage caused by UVA. It is a natural extract with antioxidant properties and anti-aging activity that protects skin cells and strengthens the skin barrier.
Collapse
Affiliation(s)
- Thomas W. Chu
- Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
- Department of Dermatology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ching-Chih Ho
- Department of Anesthesiology, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan;
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Yuan-Hsin Lo
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Dermatology, MacKay Memorial Hospital, Taipei 10491, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804351, Taiwan; (Y.-B.C.); (M.-X.H.)
| | - Mao-Xuan Hong
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804351, Taiwan; (Y.-B.C.); (M.-X.H.)
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Chi-Feng Hung
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
13
|
Qiao W, Xie T, Lu J, Jia T, Kaku K. Identification of potential hub genes associated with atopic dermatitis-like recombinant human epidermal model using integrated transcriptomic and proteomic analysis. BIOMOLECULES & BIOMEDICINE 2024; 24:89-100. [PMID: 37540585 PMCID: PMC10787623 DOI: 10.17305/bb.2023.9439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Atopic dermatitis (AD) is a severe inflammatory skin disorder, characterized by elevated levels of proinflammatory cytokines that fuel a vicious cycle of inflammation. While inflammatory recombinant human epidermal (RHE) models relevant to AD have been established, comprehensive understanding remains limited. To illuminate changes and identify potential hub genes involved in AD-related inflammation, RHE models, stimulated by an inflammatory cocktail including polyinosinic-polycytidylic acid, tumor necrosis factor alpha (TNF-α), interleukin 4 (IL-4) and interleukin 13 (IL-13), were constructed and examined using tandem mass tags-proteomic coupled with RNA-seq transcriptomic analyses. Principal component analysis (PCA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment were employed for the analysis of related genes and proteins. Protein-protein interaction networks helped identify hub genes, which were further confirmed by qPCR and western blot. We observed high expression of thymic stromal lymphopoietin in the inflammatory RHE. Our study identified 2369 differentially expressed genes and 880 differentially expressed proteins in the cocktail-induced group versus the normal control group. A total of 248 overlapping symbols were enriched in various biological processes and signaling pathways, including cornification envelope, cell-cell junction, calcium ion binding, extracellular matrix receptor, terpenoid backbone biosynthesis, and peroxisome proliferator-activated receptors signaling pathway, among others. Among the 248 overlapping symbols, CytoHubba identified 10 hub molecules, namely signal transducer and activator of transcription 3 (STAT3), integrin subunit beta 1 (ITGB1), filaggrin (FLG), involucrin (IVL), DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58), small proline rich protein 1B (SPRR1B), interferon induced with helicase C domain 1 (IFIH1), desmoglein 1 (DSG1), collagen type XVII alpha 1 chain (COL17A1), and integrin subunit alpha 6 (ITGA6), based on the degree. These integrated results offer valuable insights into the molecular mechanisms of AD and present potential tools for screening cosmetic formulations intended for the treatment of AD.
Collapse
Affiliation(s)
- Wu Qiao
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| | - Tong Xie
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| | - Jing Lu
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| | - Tinghan Jia
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| | - Ken Kaku
- Pigeon Manufacturing Shanghai CO., LTD., Shanghai, China
| |
Collapse
|
14
|
He Q, Liu W, Chen Z, Wei G, Jiang J, Zhang L, Zhou L. Resveratrol modulates the Nrf2/NF-κB pathway and inhibits TSLP-mediated atopic march. Allergol Immunopathol (Madr) 2024; 52:1-8. [PMID: 38186188 DOI: 10.15586/aei.v52i1.963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Resveratrol has been found to have anti-inflammatory and anti-allergic properties. The effects of resveratrol on thymic stromal lymphopoietin (TSLP)-mediated atopic march remain unclear. PURPOSE To explore the potential role of resveratrol in TSLP-mediated atopic march. METHODS The atopic march mouse model was established by topical application of MC903 (a vitamin D3 analog). Following the treatment with resveratrol, airway resistance in mice was discovered by pulmonary function apparatus, and the number of total cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid was counted. The histopathological features of pulmonary and ear skin tissues, inflammation, and cell infiltration were determined by hematoxylin and eosin staining. The messenger RNA (mRNA) levels of TSLP, immunoglobulin E, interleukin (IL)-4, IL-5, and IL-13 were measured by real-time quantitative polymerase chain reaction. The protein expression of nuclear factor kappa B (NF-κB)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling-associated molecules (p-p65, p65, p-I kappa B kinase alpha (IκBα), IκBα, Nrf2, and TSLP) in lung and ear skin tissues were assessed by Western blot analysis. RESULTS Resveratrol attenuated airway resistance and infiltration of total cells, eosinophils, and neutrophils in both lung and ear skin tissues. Resveratrol ameliorates serum inflammatory markers in allergic mice. Moreover, the phosphorylation levels of NF-κB pathway-related proteins were significantly reduced by administration of resveratrol in allergic lung and ear skin tissues. Similarly, the protein expression of TSLP in both lung and ear skin tissues was reduced by resveratrol, and Nrf2, a protector molecule, was increased with resveratrol treatment. CONCLUSION Resveratrol attenuates TSLP-reduced atopic march through ameliorating inflammation and cell infiltration in pulmonary and ear skin tissues by inhibiting the abnormal activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Quan He
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu, China
| | - Weihua Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfei Wei
- Clinical Research Center (CRC), Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, Jiangsu, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liuchao Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China;
| |
Collapse
|
15
|
Wang EHC, Barresi-Thornton R, Chen LC, Senna MM, Liao IC, Chen Y, Zheng Q, Bouez C. The Development of Human Ex Vivo Models of Inflammatory Skin Conditions. Int J Mol Sci 2023; 24:17255. [PMID: 38139083 PMCID: PMC10743306 DOI: 10.3390/ijms242417255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Traditional research in inflammatory dermatoses has relied on animal models and reconstructed human epidermis to study these conditions. However, these models are limited in replicating the complexity of real human skin and reproducing the intricate pathological changes in skin barrier components and lipid profiles. To address this gap, we developed experimental models that mimic various human inflammatory skin phenotypes. Human ex vivo skins were stimulated with various triggers, creating models for inflammation-induced angiogenesis, irritation response, and chronic T-cell activation. We assessed the alterations in skin morphology, cellular infiltrates, cytokine production, and epidermal lipidomic profiles. In the pro-angiogenesis model, we observed increased mast cell degranulation and elevated levels of angiogenic growth factors. Both the irritant and chronic inflammation models exhibited severe epidermal disruption, along with macrophage infiltration, leukocyte exocytosis, and heightened cytokine levels. Lipidomic analysis revealed minor changes in the pro-angiogenesis model, whereas the chronic inflammation and irritant models exhibited significant decreases in barrier essential ceramide subclasses and a shift toward shorter acyl chain lengths (
Collapse
Affiliation(s)
| | | | - Li-Chi Chen
- Harvard Medical School, Boston & Beth Israel Lahey Health, Burlington, MA 01805, USA
| | | | - I-Chien Liao
- L’Oreal Research and Innovation, Clark, NJ 07066, USA
| | - Ying Chen
- L’Oreal Research and Innovation, Clark, NJ 07066, USA
| | - Qian Zheng
- L’Oreal Research and Innovation, Clark, NJ 07066, USA
| | - Charbel Bouez
- L’Oreal Research and Innovation, Clark, NJ 07066, USA
| |
Collapse
|
16
|
Shi L, Wang S, Zhang S, Wang J, Chen Y, Li Y, Liu Z, Zhao S, Wei B, Zhang L. Research progress on pharmacological effects and mechanisms of cepharanthine and its derivatives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2843-2860. [PMID: 37338575 DOI: 10.1007/s00210-023-02537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid compound found in plants of the Stephania genus, which has biological functions such as regulating autophagy, inhibiting inflammation, oxidative stress, and apoptosis. It is often used for the treatment of inflammatory diseases, viral infections, cancer, and immune disorders and has great clinical translational value. However, there is no detailed research on its specific mechanism and dosage and administration methods, especially clinical research is limited. In recent years, CEP has shown significant effects in the prevention and treatment of COVID-19, suggesting its potential medicinal value waiting to be discovered. In this article, we comprehensively introduce the molecular structure of CEP and its derivatives, describe in detail the pharmacological mechanisms of CEP in various diseases, and discuss how to chemically modify and design CEP to improve its bioavailability. In summary, this work will provide a reference for further research and clinical application of CEP.
Collapse
Affiliation(s)
- Liangliang Shi
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shuaizhe Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jiawei Wang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yaping Chen
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhiwei Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Sichen Zhao
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Benjun Wei
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| | - Liying Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Key Laboratory of Traditional Chinese Medicine Exploration and Innovation Transformation in Gansu Province, Lanzhou, China.
| |
Collapse
|
17
|
Wang D, Liu Y, Zong X, Li X, Yang S, Zeng Y, Lu J. Sodium thiosulfate ameliorates atopic dermatitis via inhibiting the activation of NLRP3 inflammasome. Biochem Biophys Res Commun 2023; 673:160-168. [PMID: 37392479 DOI: 10.1016/j.bbrc.2023.06.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Atopic dermatitis (AD) is a common disease with a considerable impact on the patient's quality of life and limited treatment options. Sodium thiosulfate (STS) is a traditional medicine used in the rescue of cyanide poisoning, and some pruritus dermatosis. However, the exact efficacy and mechanism of its application on AD are not clear. In this work, comparing to other traditional therapy, STS was found to effectively improve the severity of skin lesions and the quality of life in AD patients with a dose-dependent manner. Mechanically, STS downregulated the expression of IL-4, IL-13, IgE in the serum of AD patients, as well as reduce the concentration of eosinophils. Furthermore, in the AD-like mice model triggered by ovalbumin (OVA) and calcitriol, STS was found to reduce the epidermal thickness, scratching times, and the infiltration of dermal inflammatory cells in AD mice, as well as the reactive oxygen species (ROS) production and the expression levels of inflammatory cytokines in the skin tissue. In HacaT cells, STS inhibited the accumulation of ROS and activation of NLRP3 inflammasome and its downstream IL-1β expression. Therefore, this study revealed that STS plays an important therapeutic role in AD, and the mechanism may be that STS inhibits the activation of NLRP3 inflammasome and the subsequent release of inflammatory cytokines. Thus, the role of STS in treating AD was clarified and the possible molecular mechanism was revealed.
Collapse
Affiliation(s)
- Dan Wang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, PR China
| | - Yuanhong Liu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, PR China
| | - Xiule Zong
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, PR China
| | - Xuemei Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, PR China
| | - Shengbo Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, PR China
| | - Yilan Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, PR China.
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, 410013, PR China.
| |
Collapse
|
18
|
Lee JY, Jeong, Park Y, Jeong Y, Chang, Kang H. Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474. J Microbiol Biotechnol 2023; 33:1039-1049. [PMID: 37280776 PMCID: PMC10468673 DOI: 10.4014/jmb.2301.01028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yong Park
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Yulah Jeong
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Chang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| | - Ho Kang
- Mediogen Co., Ltd., Jecheon 27159, Republic of Korea
| |
Collapse
|
19
|
Huang CC, Lo YH, Hsu YJ, Cheng YB, Kung CC, Liang CW, Chang DC, Wang KL, Hung CF. Anti-Atopic Dermatitis Activity of Epi-Oxyzoanthamine Isolated from Zoanthid. Mar Drugs 2023; 21:447. [PMID: 37623728 PMCID: PMC10456062 DOI: 10.3390/md21080447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Atopic dermatitis (AD, eczema) is a condition that causes dry, itchy, and inflamed skin and occurs most frequently in children but also affects adults. However, common clinical treatments provide limited relief and have some side effects. Therefore, there is a need to develop new effective therapies to treat AD. Epi-oxyzoanthamine is a small molecule alkaloid isolated from Formosan zoanthid. Relevant studies have shown that zoanthamine alkaloids have many pharmacological and biological activities, including anti-lymphangiogenic functions. However, there are no studies on the use of epi-oxyzoanthamine on the skin. In this paper, epi-oxyzoanthamine has been shown to have potential in the treatment of atopic dermatitis. Through in vitro studies, it was found that epi-oxyzoanthamine inhibited the expression of cytokines in TNF-α/IFN-γ-stimulated human keratinocyte (HaCaT) cells, and it reduced the phosphorylation of MAPK and the NF-κB signaling pathway. Atopic dermatitis-like skin inflammation was induced in a mouse model using 2,4-dinitrochlorobenzene (DNCB) in vivo. The results showed that epi-oxyzoanthamine significantly decreased skin barrier damage, scratching responses, and epidermal hyperplasia induced by DNCB. It significantly reduced transepidermal water loss (TEWL), erythema, ear thickness, and spleen weight, while also increasing surface skin hydration. These results indicate that epi-oxyzoanthamine from zoanthid has good potential as an alternative medicine for treating atopic dermatitis or other skin-related inflammatory diseases.
Collapse
Affiliation(s)
- Chieh-Chen Huang
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- Department of Dermatology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Yuan-Hsin Lo
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Chia-Chi Kung
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Cher-Wei Liang
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Der-Chen Chang
- Department of Mathematics and Statistics, Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Kang-Ling Wang
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (C.-C.H.); (Y.-H.L.); (C.-C.K.); (C.-W.L.)
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
20
|
Zhao G, Tong Y, Xu J, Zhu W, Zeng J, Liu R, Luan F, Zeng N. Jing-Fang powder ethyl acetate extracts attenuate atopic dermatitis by modulating T-cell activity. Mol Immunol 2023; 160:133-149. [PMID: 37429064 DOI: 10.1016/j.molimm.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Jing-Fang powder ethyl acetate extract (JFEE) and its isolated C (JFEE-C) possess favorable anti-inflammatory and anti-allergic properties; however, their inhibitory effects on T cell activity remain unknown. In vitro, Jurkat T cells and primary mouse CD4+ T cells were used to explore the regulatory effects of JFEE and JFEE-C as well as their potential mechanisms on activated T cells. Furthermore, T cell-mediated atopic dermatitis (AD) mouse model was established to confirm these inhibitory effects in vivo. The results showed that JFEE and JFEE-C inhibited T cell activation by suppressing the production of interleukin-2 (IL-2) and interferon-gamma (IFN-γ) without showing cytotoxicity. Flow cytometry showed the inhibitory effects of JFEE and JFEE-C on the activation-induced proliferation and apoptosis of T cells. Pretreatment with JFEE and JFEE-C also decreased the expression levels of several surface molecules, including CD69, CD25, and CD40L. Moreover, it was confirmed that JFEE and JFEE-C inhibited T cell activation by downregulating the TGF-β-activated kinase 1 (TAK1)/nuclear kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathways. The combination of these extracts with C25-140 intensified the inhibitory effects on IL-2 production and p65 phosphorylation. The oral administration of JFEE and JFEE-C notably weakened AD manifestations, including the infiltration of mast cells and CD4+ cells, epidermis and dermis thicknesses, serum levels of immunoglobulin E (IgE) and thymic stromal lymphopoietin (TSLP), and gene expression levels of T helper (Th) cells-related cytokines in vivo. The underlying mechanisms of the inhibitory effects of JFEE and JFEE-C on AD were related to attenuating T cell activity through NF-κB/MAPK pathways. In conclusion, this study suggested that JFEE and JFEE-C exhibited anti-atopic efficacy by attenuating T cell activity and might possess a curative potential for T cell-mediated diseases.
Collapse
Affiliation(s)
- Ge Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yue Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Jie Xu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, PR China
| | - Wenjing Zhu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Fei Luan
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
21
|
Tran HG, Shuayprom A, Kueanjinda P, Leelahavanichkul A, Wongsinkongman P, Chaisomboonpan S, Tawatsin A, Ruchusatsawat K, Wongpiyabovorn J. Oxyresveratrol Attenuates Inflammation in Human Keratinocyte via Regulating NF-kB Signaling and Ameliorates Eczematous Lesion in DNCB-Induced Dermatitis Mice. Pharmaceutics 2023; 15:1709. [PMID: 37376157 DOI: 10.3390/pharmaceutics15061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Oxyresveratrol (ORV) is one of the novel antioxidants having been extensively studied in recent years. One of the main sources of ORV is Artocarpus lakoocha, which has been used in traditional medicine in Thailand for decades. However, the role of ORV in skin inflammation has not been clearly demonstrated. Therefore, we investigated the anti-inflammatory effects of ORV on dermatitis model. The effect of ORV was examined on human immortalized and primary skin cells exposed to bacterial components including peptidoglycan (PGN) and lipopolysaccharide (LPS) and 2,4-Dinitrochlorobenzene (DNCB)-induced dermatitis mouse model. PGN and LPS were used to induce inflammation on immortalized keratinocytes (HaCaT) and human epidermal keratinocytes (HEKa). We then performed MTT assay, Annexin V and PI assay, cell cycle analysis, real-time PCR, ELISA and Western blot in these in vitro models. H&E staining, immunohistochemistry (IHC) staining with CD3, CD4 and CD8 markers were used to evaluate the effects of ORV in in vivo model of skin inflammation using BALB/c mice. Pretreatment of HaCaT and HEKa cells with ORV inhibited pro-inflammatory cytokine production through inhibition of NF-κB pathway. In DNCB-induced dermatitis mouse model, ORV treatment reduced lesion severity, and skin thickness and numbers of CD3, CD4 and CD8 T cells in the sensitized skin of mice. In conclusion, it has been demonstrated that ORV treatment can ameliorate inflammation in the in vitro models of skin inflammation and in vivo models of dermatitis, suggesting a therapeutic potential of ORV for treatment of skin diseases particularly eczema.
Collapse
Affiliation(s)
- Hung Gia Tran
- Graduate Program in Clinical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aussavashai Shuayprom
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prapai Wongsinkongman
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | | | - Apiwat Tawatsin
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | | | - Jongkonnee Wongpiyabovorn
- Center of Excellence in Immune-Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Bangash Y, Saleem A, Akhtar MF, Anwar F, Akhtar B, Sharif A, Khan MI, Khan A. Pterostilbene reduces the progression of atopic dermatitis via modulating inflammatory and oxidative stress biomarkers in mice. Inflammopharmacology 2023; 31:1289-1303. [PMID: 37069463 DOI: 10.1007/s10787-023-01214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Atopic dermatitis (AD) is one of the most prevalent chronic skin inflammatory disorders requiring continuous treatment and care. Pterostilbene (PTN) belongs to stilbene and is a polyphenolic compound of natural origin. It is similar to resveratrol and has analogous anti-inflammatory, anti-oxidant, and anti-carcinogenic characteristics. This study was intended to evaluate the effect of PTN against atopic dermatitis. The disease was induced by sensitization with 2,4-dinitrochlorobenzene (DNCB) in mice. The standard control group (SCG) received topical 0.1% tacrolimus (TC), whereas three other treatment groups received daily topical PTN at 0.2, 0.6, and 1% w/w for 28 days. Dermatitis scoring, ear thickness, and body weight of animals were weekly determined while other parameters were assessed at the termination of the experiment. PTN reduced the ear weight, skin thickness, and the weight and size of thymus glands and spleen in comparison with diseased animals. PTN also reduced the elevated immunoglobulin E (IgE) level and blood inflammatory cells in diseased mice. The histopathological findings showed a decreased epidermal thickness in PTN-treated groups. Moreover, treatment with PTN improved the amount of oxidative stress markers in the skin of the diseased mice. The expressions of IL-4, IL-6, TNF-α, and NF-κB in the skin of diseased mice were also reduced by PTN. This study concludes that PTN ameliorated the symptoms of atopic dermatitis through the reduction of inflammation, oxidative damage, and inflammatory cytokines in the skin of diseased animals. Therefore, PTN must be further investigated for the treatment of AD complications and other inflammatory skin disorders.
Collapse
Affiliation(s)
- Yasmin Bangash
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Faculty of Pharmaceutical and Allied Health Sciences, Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| |
Collapse
|
23
|
Fan M, Choi YJ, Wedamulla NE, Zhang Q, Kim SW, Bae SM, Seok YS, Kim EK. Use of a Silkworm (Bombyx mori) Larvae By-Product for the Treatment of Atopic Dermatitis: Inhibition of NF-κB Nuclear Translocation and MAPK Signaling. Nutrients 2023; 15:nu15071775. [PMID: 37049614 PMCID: PMC10097122 DOI: 10.3390/nu15071775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Atopic dermatitis (AD) is a long-lasting inflammatory skin disease that contributes to the global health burden and impacts 10–20% of the world’s population. In this study, we determined the anti-AD effect of a by-product of silkworm (Bombyx mori) larval powder, strain Yeonnokjam (SLPY), as a sustainable, natural source for the development of therapeutic agents for AD. HaCaT cells were used to assess the in vitro anti-inflammatory activity of SLPY, and a 1-chloro-2,4-dinitrobenzene (DNCB)-induced mouse model was used to study the in vivo anti-AD effects. SLPY treatment downregulated the expression of the inflammatory cytokines TNF-α, IL1β, IL-8, and Cox-2 in stimulated HaCaT cells. Similarly, the topical application of SLPY in DNCB-treated mice downregulated the expression of inflammatory cytokines and proteins while ameliorating the clinical features of AD. Further, SLPY treatment inhibited the nuclear translocation of NF-κb p65, thereby supporting the efficacy of SLPY in the treatment of AD.
Collapse
Affiliation(s)
- Meiqi Fan
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Republic of Korea
| | - Young-Jin Choi
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Republic of Korea
- Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Nishala Erandi Wedamulla
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Republic of Korea
- Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Department of Food Science and Technology, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Qun Zhang
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seong Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju Gun 24226, Republic of Korea
| | - Sung Moon Bae
- Gyeongnam Agricultural Research and Extension Services, Jinju 52733, Republic of Korea
| | - Young-Seek Seok
- The Province of Gangwon Agricultural Product Registered Seed Station, Chuncheon 24226, Republic of Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, College of Health Science, Dong-A University, Busan 49315, Republic of Korea
- Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong-A University, Busan 49315, Republic of Korea
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
24
|
Salman S, Guermonprez C, Peno-Mazzarino L, Lati E, Rousseaud A, Declercq L, Kerdine-Römer S. Photobiomodulation Controls Keratinocytes Inflammatory Response through Nrf2 and Reduces Langerhans Cells Activation. Antioxidants (Basel) 2023; 12:antiox12030766. [PMID: 36979014 PMCID: PMC10045240 DOI: 10.3390/antiox12030766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Photobiomodulation (PBM) is rapidly gaining traction as a valuable tool in dermatology for treating many inflammatory skin conditions using low levels of visible light or near-infrared radiation. However, the physiological regulatory pathways responsible for the anti-inflammatory effect of PBM have not been well defined. Since previous studies showed that nuclear factor-erythroid 2 like 2 (Nrf2) is a master regulator of the skin inflammatory response, we have addressed its role in controlling inflammation by PBM. Primary human keratinocytes (KCs) stimulated with 2,4-dinitrochlorobenzene (DNCB) to mimic pro-inflammatory stress were illuminated with two wavelengths: 660 nm or 520 nm. Both lights significantly reduced the mRNA expression of the DNCB-triggered TNF-α, IL-6, and IL-8 cytokines in KCs, while they enhanced Nrf2 pathway activation. PBM-induced Nrf2 is a key regulator of the inflammatory response in KCs since its absence abolished the regulatory effect of light on cytokines production. Further investigations of the mechanisms contributing to the immunoregulatory effect of PBM in inflamed human skin explants showed that 660 nm light prevented Langerhans cells migration into the dermis, preserving their dendricity, and decreased pro-inflammatory cytokine production compared to the DNCB-treated group. This study is the first to report that the PBM-mediated anti-inflammatory response in KCs is Nrf2-dependent and further support the role of PBM in skin immunomodulation. Therefore, PBM should be considered a promising alternative or complementary therapeutic approach for treating skin-related inflammatory diseases.
Collapse
Affiliation(s)
- Sara Salman
- Inserm, Inflammation Microbiome Immunosurveillance, Université Paris-Saclay, 91400 Orsay, France
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | - Cyprien Guermonprez
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | | | - Elian Lati
- Laboratoire BIO-EC, 91160 Longjumeau, France
| | - Audrey Rousseaud
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | - Lieve Declercq
- Lightinderm, Pépinière Paris Santé Cochin, Hôpital Cochin, 75014 Paris, France
| | - Saadia Kerdine-Römer
- Inserm, Inflammation Microbiome Immunosurveillance, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
25
|
Pressi G, Rigillo G, Governa P, Borgonetti V, Baini G, Rizzi R, Guarnerio C, Bertaiola O, Frigo M, Merlin M, Paltrinieri S, Zambonin R, Pandolfo S, Biagi M. A Novel Perilla frutescens (L.) Britton Cell-Derived Phytocomplex Regulates Keratinocytes Inflammatory Cascade and Barrier Function and Preserves Vaginal Mucosal Integrity In Vivo. Pharmaceutics 2023; 15:240. [PMID: 36678869 PMCID: PMC9861994 DOI: 10.3390/pharmaceutics15010240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
In the last years, the medicinal plant Perilla frutescens (L.) Britton has gained scientific interest because leaf extracts, due to the presence of rosmarinic acid and other polyphenols, have shown anti-allergic and skin protective potential in pre-clinical studies. Nevertheless, the lack of standardized extracts has limited clinical applications to date. In this work, for the first time, a standardized phytocomplex of P. frutescens, enriched in rosmarinic acid and total polyphenols, was produced through innovative in vitro cell culture biotechnology and tested. The activity of perilla was evaluated in an in vitro inflammatory model of human keratinocytes (HaCaT) by monitoring tight junctions, filaggrin, and loricrin protein levels, the release of pro-inflammatory cytokines and JNK MAPK signaling. In a practical health care application, the perilla biotechnological phytocomplex was tested in a multilayer model of vaginal mucosa, and then, in a preliminary clinical observation to explore its capacity to preserve vaginal mucosal integrity in women in peri-menopause. In keratinocytes cells, perilla phytocomplex demonstrated to exert a marked activity in epidermis barrier maintenance and anti-inflammatory effects, preserving tight junction expression and downregulating cytokines release through targeting JNK activation. Furthermore, perilla showed positive effects in retaining vaginal mucosal integrity in the reconstructed vaginal mucosa model and in vivo tests. Overall, our data suggest that the biotechnological P. frutescens phytocomplex could represent an innovative ingredient for dermatological applications.
Collapse
Affiliation(s)
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018–2022), University of Siena, 53100 Siena, Italy
| | - Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | | | | | | | - Marco Frigo
- Aethera Biotech s.r.l., 36043 Camisano Vicentino, Italy
| | | | | | | | | | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| |
Collapse
|
26
|
Inhibitory Effect of Bisdemethoxycurcumin on DNCB-Induced Atopic Dermatitis in Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010293. [PMID: 36615486 PMCID: PMC9822078 DOI: 10.3390/molecules28010293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Bisdemethoxycurcumin (BDMC) is an ingredient from the rhizome of the traditional Chinese herbal medicine turmeric. BDMC has been reported to have important pharmacological properties, such as anti-inflammatory, antioxidant, antitumor and antiproliferative activities. However, its effect on atopic dermatitis has not been reported. The purpose of our study was to demonstrate the effectiveness of BDMC on TNF-α/IFNγ-stimulated HaCaT cells and on 2,4-dinitrochlorobenzene (DNCB)-induced AD mice. Our studies showed in vitro that BDMC was able to significantly inhibit the mRNA expression of chemokines and cytokines in TNF-α/IFN-γ-stimulated HaCaT cells and alleviate their inflammatory response. Our studies found in vivo that BDMC was able to significantly improve the symptoms of DNCB-induced AD skin lesions, decrease the number of scratches, ear thickness, and spleen index, improve inflammatory cells and mast cell infiltration and decrease skin thickness. Moreover, it was also able to inhibit the mRNA expression levels of chemokines and inflammatory cytokines and the activation of the MAPK and NF-κB signaling pathways. Thus, the results indicated that BDMC can improve atopic dermatitis in mice and that further clinical studies are warranted on its treatment of AD.
Collapse
|
27
|
Evaluation of the Anti-Atopic Dermatitis Effects of α-Boswellic Acid on Tnf-α/Ifn-γ-Stimulated HaCat Cells and DNCB-Induced BALB/c Mice. Int J Mol Sci 2022; 23:ijms23179863. [PMID: 36077254 PMCID: PMC9456567 DOI: 10.3390/ijms23179863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Boswellic acids, triterpenoids derived from the genus Boswellia (Burseraceae), are known for their anti-inflammatory and anti-tumor efficacy. Atopic dermatitis is a chronic, non-infectious inflammatory skin disease. However, the effects of α-boswellic acid on atopic dermatitis have not been studied. Therefore, in this study we examined the expression level of pro-inflammatory cytokines, histopathological analysis, and physiological data from BALB/c mice with atopic-like dermatitis induced by 2,4-dinitrochlorobenzene and TNF-α/IFN-γ-stimulated HaCaT cells to better understand the agent’s anti-atopic dermatitis efficacy. First, we found that α-boswellic reduced the epidermal thickening, mast cell numbers, and dermal infiltration of 2,4-dinitrochlorobenzene-induced atopic-like dermatitis in BALB/c mice. Furthermore, we also found that α-boswellic acid can restore transepidermal water loss and skin reddening in mice. In human keratinocytes inflamed by TNF-α/IFN-γ, α-boswellic acid inhibited MAP kinase activation and showed a reduction in NF-κB nuclear translocation. Finally, α-boswellic acid can reduce the expression level of cytokines (IL-1β, IL-6, and IL-8) following the stimulation of TNF-α/IFN-γ in HaCaT cells. Taken together, our study suggests that α-boswellic acids are a potential component for the development of anti-atopic dermatitis drugs.
Collapse
|
28
|
Scotece M, Conde-Aranda J. Inflammation in Health and Disease: New Insights and Therapeutic Avenues. Int J Mol Sci 2022; 23:ijms23158392. [PMID: 35955527 PMCID: PMC9369237 DOI: 10.3390/ijms23158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Morena Scotece
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-USAL, 37007 Salamanca, Spain;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-522
| |
Collapse
|
29
|
Sanjel B, Shim WS. The contribution of mouse models to understanding atopic dermatitis. Biochem Pharmacol 2022; 203:115177. [PMID: 35843300 DOI: 10.1016/j.bcp.2022.115177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022]
Abstract
Atopic dermatitis (AD) is a dermatological disease accompanied by dry and cracked skin with severe pruritus. Although various therapeutic strategies have been introduced to alleviate AD, it remains challenging to cure the disorder. To achieve such a goal, understanding the pathophysiological mechanisms of AD is a prerequisite, requiring mouse models that properly reflect the AD phenotypes. Currently, numerous AD mouse models have been established, but each model has its own advantages and weaknesses. In this review, we categorized and summarized mouse models of AD and described their characteristics from a researcher's perspective.
Collapse
Affiliation(s)
- Babina Sanjel
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
30
|
Wang CC, Hsiao CY, Hsu YJ, Ko HH, Chang DC, Hung CF. Anti-Inflammatory Effects of Cycloheterophyllin on Dinitrochlorobenzene-Induced Atopic Dermatitis in HaCaT Cells and BALB/c Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092610. [PMID: 35565961 PMCID: PMC9099738 DOI: 10.3390/molecules27092610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Atopic dermatitis (eczema) is a condition that makes skin red and itchy. Though common in children, the condition can occur at any age. Atopic dermatitis is persistent (chronic) and tends to recur periodically. It may be accompanied by asthma or hay fever. No cure has been found for eczema. Therefore, it is very important to develop ingredients that aid the prevention and treatment of atopic dermatitis. Cycloheterophyllin is derived from Artocarpus heterophyllus and has antioxidant and anti-inflammatory activities. However, it still is not understood whether cycloheterophyllin is an anti-atopic dermatitis agent. Keratinocytes (HaCaT cells) and BALB/c mice for inducing AD-like cutaneous lesions were used to evaluate the potential of cycloheterophyllin as an anti-atopic dermatitis agent. The release of pro-inflammatory cytokines induced by treatment of TNF-α/IFN-γ was reduced after pretreatment with cycloheterophyllin. The inhibitory effects could be a contribution from the effect of the MAP kinases pathway. Moreover, the symptoms of atopic dermatitis (such as red skin and itching) were attenuated by pretreatment with cycloheterophyllin. Epidermal hyperplasia and mast cell infiltration were decreased in the histological section. Finally, damage to the skin barrier was also found to recover through assessment of transepidermal water loss. Taken together, prenylflavone-cycloheterophyllin from Artocarpus heterophyllus is a potential anti-atopic dermatitis ingredient that can be used in preventing or treating the condition.
Collapse
Affiliation(s)
- Chia-Chen Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Department of Dermatology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Science, Chang Guang University of Science and Technology, Taoyuan 33303, Taiwan;
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Horng-Huey Ko
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Correspondence: ; Tel.: +886-2-29053911
| |
Collapse
|
31
|
Nigro E, Pecoraro MT, Formato M, Piccolella S, Ragucci S, Mallardo M, Russo R, Di Maro A, Daniele A, Pacifico S. Cannabidiolic acid in Hemp Seed Oil Table Spoon and Beyond. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082566. [PMID: 35458762 PMCID: PMC9029873 DOI: 10.3390/molecules27082566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Cannabidiolic acid (CBDA) is the main precannabinoid in industrial hemp. It represents a common constituent of hemp seed oil, but mainly abundant in the aerial parts of the plant (including their processing waste). Thus, the optimization of fast and low-cost purification strategies is mandatory, as well as a deep investigation on its nutraceutical and cosmeceutical properties. To this purpose, CBDA content in hemp seed oil is evaluated, and its recovery from wasted leaves is favorably achieved. The cytotoxicity screening towards HaCaT cells, by means of MTT, SRB and LDH release assays, suggested it was not able to decrease cell viability or perturb cell integrity up to 10 μM concentration. Thus, the ability of CBDA to differentially modulate the release of proinflammatory cytokines and chemokines mediators has been evaluated, finding that CBDA decreased IFN-γ, CXCL8, CXCL10, CCL2, CCL4 and CCL5, mostly in a dose-dependent manner, with 10 μM tested concentration exerting the highest activity. These data, together with those from assessing antimicrobial activity against Gram(+) and Gram(−) bacteria and the antibiofilm formation, suggest that CBDA is able to counteract the inflammatory response, also preventing bacteria colonization.
Collapse
Affiliation(s)
- Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
- CEINGE, Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Maria Tommasina Pecoraro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marialuisa Formato
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Sara Ragucci
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marta Mallardo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
- CEINGE, Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Rosita Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Antimo Di Maro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Aurora Daniele
- CEINGE, Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, 80145 Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" Università degli Studi di Napoli, 80131 Naples, Italy
| | - Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
32
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F, Chen J, Christian M, He Z. Alkaloids from lotus ( Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34845950 DOI: 10.1080/10408398.2021.2009436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Dandan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
33
|
Bharathi Priya L, Huang CY, Hu RM, Balasubramanian B, Baskaran R. An updated review on pharmacological properties of neferine-A bisbenzylisoquinoline alkaloid from Nelumbo nucifera. J Food Biochem 2021; 45:e13986. [PMID: 34779018 DOI: 10.1111/jfbc.13986] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/19/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Phytochemicals have recently received a lot of recognition for their pharmacological activities such as anticancer, chemopreventive, and cardioprotective properties. In traditional Indian and Chinese medicine, parts of lotus (Nelumbo nucifera) such as lotus seeds, fruits, stamens, and leaves are used for treating various diseases. Neferine is a bisbenzylisoquinoline alkaloid, a major component from the seed embryos of N. nucifera. Neferine is effective in the treatment of high fevers and hyposomnia, as well as arrhythmia, platelet aggregation, occlusion, and obesity. Neferine has been found to have a variety of therapeutic effects such as anti-inflammatory, anti-oxidant, anti-hypertensive, anti-arrhythmic, anti-platelet, anti-thrombotic, anti-amnesic, and negative inotropic. Neferine also exhibited anti-anxiety effects, anti-cancerous, and chemosensitize to other anticancer drugs like doxorubicin, cisplatin, and taxol. Induction of apoptosis, autophagy, and cell cycle arrest are the key pathways that underlying the anticancer activity of neferine. Therefore, the present review summarizes the neferine biosynthesis, pharmacokinetics, and its effects in myocardium, cancer, chemosensitizing to cancer drug, central nervous system, diabetes, inflammation, and kidney diseases. PRACTICAL APPLICATIONS: Natural phytochemical is gaining medicinal importance for a variety of diseases like including cancer, neurodegenerative disorder, diabetes, and inflammation. Alkaloids and flavonoids, which are abundantly present in Nelumbo nucifera have many therapeutic applications. Neferine, a bisbenzylisoquinoline alkaloid from N. nucifera has many pharmacological properties. This present review was an attempt to compile an updated pharmacological action of neferine in different disease models in vitro and in vivo, as well as to summarize all the collective evidence on the therapeutic potential of neferine.
Collapse
Affiliation(s)
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Rouh-Mei Hu
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | | | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
34
|
Chiu KM, Hung YL, Wang SJ, Tsai YJ, Wu NL, Liang CW, Chang DC, Hung CF. Anti-Allergic and Anti-Inflammatory Effects of Neferine on RBL-2H3 Cells. Int J Mol Sci 2021; 22:ijms222010994. [PMID: 34681651 PMCID: PMC8536162 DOI: 10.3390/ijms222010994] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 02/01/2023] Open
Abstract
Mast cells play a very important role in skin allergy and inflammation, including atopic dermatitis and psoriasis. In the past, it was found that neferine has anti-inflammatory and anti-aging effects on the skin, but its effect on mast cells has not yet been studied in detail. In this study, we used mast cells (RBL-2H3 cells) and mouse models to study the anti-allergic and inflammatory effects of neferine. First, we found that neferine inhibits the degranulation of mast cells and the expression of cytokines. In addition, we observed that when mast cells were stimulated by A23187/phorbol 12-myristate-13-acetate (PMA), the elevation of intracellular calcium was inhibited by neferine. The phosphorylation of the MAPK/NF-κB pathway is also reduced by pretreatment of neferine. The results of in vivo studies show that neferine can improve the appearance of dermatitis and mast cell infiltration caused by dinitrochlorobenzene (DNCB). Moreover, the expressions of barrier proteins in the skin are also restored. Finally, it was found that neferine can reduce the scratching behavior caused by compound 48/80. Taken together, our results indicate that neferine is a very good anti-allergic and anti-inflammatory natural product. Its effect on mast cells contributes to its pharmacological mechanism.
Collapse
Affiliation(s)
- Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
- Department of Nursing, Oriental Institute of Technology, New Taipei City 22060, Taiwan
- Department of Photonics Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Yen-Ling Hung
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (Y.-L.H.); (S.-J.W.)
- Graduate Institute, Department of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Su-Jane Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (Y.-L.H.); (S.-J.W.)
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (Y.-J.T.); (C.-W.L.)
| | - Yi-Ju Tsai
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (Y.-J.T.); (C.-W.L.)
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei 104217, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City 25245, Taiwan
| | - Cher-Wei Liang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (Y.-J.T.); (C.-W.L.)
| | - Der-Chen Chang
- Department of Mathematics and Statistics, Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Chi-Feng Hung
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (Y.-L.H.); (S.-J.W.)
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (Y.-J.T.); (C.-W.L.)
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-2-29053911
| |
Collapse
|