1
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Griep P, Gayeski L, Colet R, Zeni J, Valduga E. Recent updates of carotenoid encapsulation by spray-drying technique. J Microencapsul 2024:1-21. [PMID: 39579156 DOI: 10.1080/02652048.2024.2430643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Carotenoids are compounds sensitive to environmental factors such as light, heat, and oxygen, which can result in the loss of their properties due to isomerisation and oxidation. To overcome this problem, spray drying encapsulation has been widely used as a method to protect and stabilise carotenoids in different wall materials. This article summarises the findings and research on spray drying encapsulation of carotenoids over the past 15 years, with an emphasis on the importance of controlling the operational conditions of the drying process and the association of different wall materials (proteins and polysaccharides), promising to increase encapsulation efficiency and stabilise carotenoids, with perspectives and trends in applications. The use of spray drying for carotenoid microencapsulation can open up new opportunities for controlled delivery of beneficial compounds. Based on the study, it is expected to provide information for researchers, professionals, and companies interested in the development of functional food products.
Collapse
Affiliation(s)
- Patrícia Griep
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Luana Gayeski
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Rosicler Colet
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Jamile Zeni
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| |
Collapse
|
3
|
Sheokand P, Tiwari SK. Characterization of carotenoids extracted from Haloferax larsenii NCIM 5678 isolated from Pachpadra salt lake, Rajasthan. Extremophiles 2024; 28:33. [PMID: 39037576 DOI: 10.1007/s00792-024-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Carotenoids are a diverse group of pigments known for their broad range of biological functions and applications. This study delves into multifaceted potential of carotenoids extracted from Haloferax larsenii NCIM 5678 previously isolated from Pachpadra Salt Lake in Rajasthan, India. H. larsenii NCIM 5678 was able to grow up to OD600 1.77 ± 0.03 with carotenoid concentration, 3.3 ± 0.03 µg/ml. The spectrophotometric analysis of carotenoid extract indicated the presence of three-fingered peak (460, 490 and 520 nm) which is a characteristic feature of bacterioruberin and its derivatives. The bacterioruberin was purified using silica gel column chromatography and thin layer chromatography. The carotenoid extract showed 12.3 ± 0.09 mm zone of growth inhibition with a minimum inhibitory concentration 546 ng/ml against indicator strain, H. larsenii HA4. The percentage antioxidant activity of carotenoid was found to be 84% which was higher as compared to commercially available ascorbic acid (56.74%). Thus, carotenoid extract from H. larsenii NCIM 5678 possesses unique attributes with compelling evidence of antimicrobial and antioxidant potential for the development of novel pharmaceuticals and nutraceuticals.
Collapse
Affiliation(s)
- Pardeep Sheokand
- Department of Genetics, Maharshi Dayanand University, 124001, Rohtak, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, 124001, Rohtak, Haryana, India.
| |
Collapse
|
4
|
Sumathi Y, Dong CD, Singhania RR, Chen CW, Gurunathan B, Patel AK. Advancements in Nano-Enhanced microalgae bioprocessing. BIORESOURCE TECHNOLOGY 2024; 401:130749. [PMID: 38679239 DOI: 10.1016/j.biortech.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.
Collapse
Affiliation(s)
- Yamini Sumathi
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
5
|
Sereti F, Alexandri M, Papadaki A, Papapostolou H, Kopsahelis N. Carotenoids production by Rhodosporidium paludigenum yeasts: Characterization of chemical composition, antioxidant and antimicrobial properties. J Biotechnol 2024; 386:52-63. [PMID: 38548021 DOI: 10.1016/j.jbiotec.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
The high market potential imposed by natural carotenoids has turned the scientific interest in search for new strains, capable of synthesizing a wide spectrum of these pigments. In this study, Rhodosporidium paludigenum NCYC 2663 and 2664 were investigated for carotenoids production and lipid accumulation utilizing different carbon sources (glucose, fructose, sucrose, mixture of glucose: galactose). Strain R. paludigenum 2663 produced the highest total carotenoids titer (2.21 mg/L) when cultivated on sucrose, together with 4 g/L lipids (30% w/w content) and 7 g/L exopolysaccharides. In the case of R. paludigenum 2664, glucose favored the production of 2.93 mg/L total carotenoids and 1.57 g/L lipids (31.8% w/w content). Analysis of the chemical profile during fermentation revealed that β-carotene was the prominent carotenoid. Strain 2663 co-produced γ-carotene, torulene and torularhodin in lower amounts, whereas 2664 synthesized almost exclusively β-carotene. The produced lipids from strain 2663 were rich in oleic acid, while the presence of linoleic acid was also detected in the lipoic fraction from strain 2664. The obtained carotenoid extracts exhibited antioxidant (IC50 0.14 mg/mL) and high antimicrobial activity, against common bacterial and fungal pathogenic strains. The results of this study are promising for the utilization of biotechnologically produced carotenoids in food applications.
Collapse
Affiliation(s)
- Fani Sereti
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, Kefalonia 28100, Greece.
| |
Collapse
|
6
|
Jia J, Chen Z, Li Q, Li F, Liu S, Bao G. The enhancement of astaxanthin production in Phaffia rhodozyma through a synergistic melatonin treatment and zinc finger transcription factor gene overexpression. Front Microbiol 2024; 15:1367084. [PMID: 38666259 PMCID: PMC11043562 DOI: 10.3389/fmicb.2024.1367084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Astaxanthin has multiple physiological functions and is applied widely. The yeast Phaffia rhodozyma is an ideal source of microbial astaxanthin. However, the stress conditions beneficial for astaxanthin synthesis often inhibit cell growth, leading to low productivity of astaxanthin in this yeast. In this study, 1 mg/L melatonin (MT) could increase the biomass, astaxanthin content, and yield in P. rhodozyma by 21.9, 93.9, and 139.1%, reaching 6.9 g/L, 0.3 mg/g DCW, and 2.2 mg/L, respectively. An RNA-seq-based transcriptomic analysis showed that MT could disturb the transcriptomic profile of P. rhodozyma cell. Furthermore, differentially expressed gene (DEG) analysis show that the genes induced or inhibited significantly by MT were mainly involved in astaxanthin synthesis, metabolite metabolism, substrate transportation, anti-stress, signal transduction, and transcription factor. A mechanism of MT regulating astaxanthin synthesis was proposed in this study. The mechanism is that MT entering the cell interacts with components of various signaling pathways or directly regulates their transcription levels. The altered signals are then transmitted to the transcription factors, which can regulate the expressions of a series of downstream genes as the DEGs. A zinc finger transcription factor gene (ZFTF), one of the most upregulated DEGs, induced by MT was selected to be overexpressed in P. rhodozyma. It was found that the biomass and astaxanthin synthesis of the transformant were further increased compared with those in MT-treatment condition. Combining MT-treatment and ZFTF overexpression in P. rhodozyma, the biomass, astaxanthin content, and yield were 8.6 g/L, 0.6 mg/g DCW, and 4.8 mg/L and increased by 52.1, 233.3, and 399.7% than those in the WT strain under MT-free condition. In this study, the synthesis and regulation theory of astaxanthin is deepened, and an efficient dual strategy for industrial production of microbial astaxanthin is proposed.
Collapse
Affiliation(s)
- Jianping Jia
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Zhitao Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Qingqing Li
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
| | - Feifei Li
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Siru Liu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Guoliang Bao
- School of Phamacy, School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Robles-Iglesias R, Fernández-Blanco C, Nicaud JM, Veiga MC, Kennes C. Unlocking the potential of one-carbon gases (CO 2, CO) for concomitant bioproduction of β-carotene and lipids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115950. [PMID: 38211510 DOI: 10.1016/j.ecoenv.2024.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
This study investigates the use of a Yarrowia lipolytica strain for the bioconversion of syngas-derived acetic acid into β-carotene and lipids. A two-stage process was employed, starting with the acetogenic fermentation of syngas by Clostridium aceticum, metabolising CO, CO2, H2, to produce acetic acid, which is then utilized by Y. lipolytica for simultaneous lipid and β-carotene synthesis. The research demonstrates that acetic acid concentration plays a pivotal role in modulating lipid profiles and enhancing β-carotene production, with increased acetic acid consumption leading to higher yields of these compounds. This approach showcases the potential of using one-carbon gases as substrates in bioprocesses for generating valuable bioproducts, providing a sustainable and cost-effective alternative to more conventional feedstocks and substrates, such as sugars.
Collapse
Affiliation(s)
- Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña, Rúa da Fraga 10, La Coruña 15008, Spain.
| |
Collapse
|
8
|
Sriphuttha C, Boontawan P, Boonyanan P, Ketudat-Cairns M, Boontawan A. Simultaneous Lipid and Carotenoid Production via Rhodotorula paludigena CM33 Using Crude Glycerol as the Main Substrate: Pilot-Scale Experiments. Int J Mol Sci 2023; 24:17192. [PMID: 38139021 PMCID: PMC10743220 DOI: 10.3390/ijms242417192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Rhodotorula paludigena CM33 is an oleaginous yeast that has been demonstrated to accumulate substantial quantities of intracellular lipids and carotenoids. In this study, crude glycerol, a by-product of biodiesel production, was used as a carbon source to enhance the accumulation of lipids and carotenoids in the cells. The culture conditions were first optimized using response surface methodology, which revealed that the carotenoid concentration and lipid content improved when the concentration of crude glycerol was 40 g/L. Different fermentation conditions were also investigated: batch, repeated-batch, and fed-batch conditions in a 500 L fermenter. For fed-batch fermentation, the maximum concentrations of biomass, lipids, and carotenoids obtained were 46.32 g/L, 37.65%, and 713.80 mg/L, respectively. A chemical-free carotenoid extraction method was also optimized using high-pressure homogenization and a microfluidizer device. The carotenoids were found to be mostly beta-carotene, which was confirmed by HPLC (high pressure liquid chromatography), LC-MS (liquid chromatography-mass spectrometry), and NMR (nuclear magnetic resonance). The results of this study indicate that crude glycerol can be used as a substrate to produce carotenoids, resulting in enhanced value of this biodiesel by-product.
Collapse
Affiliation(s)
- Cheeranan Sriphuttha
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
| | - Pailin Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
| | - Pasama Boonyanan
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand;
| | - Mariena Ketudat-Cairns
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
| | - Apichat Boontawan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand; (C.S.); (P.B.); (M.K.-C.)
- Center of Excellent in Agricultural Product Innovation, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
9
|
Su B, Deng MR, Zhu H. Advances in the Discovery and Engineering of Gene Targets for Carotenoid Biosynthesis in Recombinant Strains. Biomolecules 2023; 13:1747. [PMID: 38136618 PMCID: PMC10742120 DOI: 10.3390/biom13121747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Carotenoids are naturally occurring pigments that are abundant in the natural world. Due to their excellent antioxidant attributes, carotenoids are widely utilized in various industries, including the food, pharmaceutical, cosmetic industries, and others. Plants, algae, and microorganisms are presently the main sources for acquiring natural carotenoids. However, due to the swift progress in metabolic engineering and synthetic biology, along with the continuous and thorough investigation of carotenoid biosynthetic pathways, recombinant strains have emerged as promising candidates to produce carotenoids. The identification and manipulation of gene targets that influence the accumulation of the desired products is a crucial challenge in the construction and metabolic regulation of recombinant strains. In this review, we provide an overview of the carotenoid biosynthetic pathway, followed by a summary of the methodologies employed in the discovery of gene targets associated with carotenoid production. Furthermore, we focus on discussing the gene targets that have shown potential to enhance carotenoid production. To facilitate future research, we categorize these gene targets based on their capacity to attain elevated levels of carotenoid production.
Collapse
Affiliation(s)
| | - Ming-Rong Deng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
| |
Collapse
|
10
|
Roy S, Deshmukh RK, Tripathi S, Gaikwad KK, Das SS, Sharma D. Recent Advances in the Carotenoids Added to Food Packaging Films: A Review. Foods 2023; 12:4011. [PMID: 37959130 PMCID: PMC10647467 DOI: 10.3390/foods12214011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Food spoilage is one of the key concerns in the food industry. One approach is the improvement of the shelf life of the food by introducing active packaging, and another is intelligent packaging. Detecting packed food spoilage in real-time is key to stopping outbreaks caused by food-borne diseases. Using active materials in packaging can improve shelf life, while the nonharmful color indicator can be useful to trace the quality of the food through simple color detection. Recently, bio-derived active and intelligent packaging has gained a lot of interest from researchers and consumers. For this, the biopolymers and the bioactive natural ingredient are used as indicators to fabricate active packaging material and color-changing sensors that can improve the shelf life and detect the freshness of food in real-time, respectively. Among natural bioactive components, carotenoids are known for their good antimicrobial, antioxidant, and pH-responsive color-indicating properties. Carotenoids are rich in fruits and vegetables and fat-soluble pigments. Including carotenoids in the packaging system improves the film's physical and functional performance. The recent progress on carotenoid pigment-based packaging (active and intelligent) is discussed in this review. The sources and biological activity of the carotenoids are briefly discussed, and then the fabrication and application of carotenoid-activated packaging film are reviewed. The carotenoids-based packaging film can enhance packaged food's shelf life and indicate the freshness of meat and vegetables in real-time. Therefore, incorporating carotenoid-based pigment into the polymer matrix could be promising for developing novel packaging materials.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ram Kumar Deshmukh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (R.K.D.); (S.T.); (K.K.G.)
| | - Shefali Tripathi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (R.K.D.); (S.T.); (K.K.G.)
| | - Kirtiraj K. Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (R.K.D.); (S.T.); (K.K.G.)
| | - Sabya Sachi Das
- School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Devanshi Sharma
- Institute of Science, Nirma University, SG Highway, Ahmedabad 382481, Gujrat, India;
| |
Collapse
|
11
|
Jia J, Li F, Luan Y, Liu S, Chen Z, Bao G. Salicylic acid treatment and overexpression of a novel polyamine transporter gene for astaxanthin production in Phaffia rhodozyma. Front Bioeng Biotechnol 2023; 11:1282315. [PMID: 37929196 PMCID: PMC10621793 DOI: 10.3389/fbioe.2023.1282315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Phaffia rhodozyma represents an excellent microbial resource for astaxanthin production. However, the yeast's low astaxanthin productivity poses challenges in scaling up industrial production. Although P. rhodozyma originates from plant material, and phytohormones have demonstrated their effectiveness in stimulating microbial production, there has been limited research on the effects and mechanisms of phytohormones on astaxanthin biosynthesis in P. rhodozyma. In this study, the addition of exogenous salicylic acid (SA) at a concentration as low as 0.5 mg/L significantly enhanced biomass, astaxanthin content, and yield by 20.8%, 95.8% and 135.3% in P. rhodozyma, respectively. Moreover, transcriptomic analysis showed that SA had discernible impact on the gene expression profile of P. rhodozyma cells. Differentially expressed genes (DEGs) in P. rhodozyma cells between the SA-treated and SA-free groups were identified. These genes played crucial roles in various aspects of astaxanthin and its competitive metabolites synthesis, material supply, biomolecule metabolite and transportation, anti-stress response, and global signal transductions. This study proposes a regulatory mechanism for astaxanthin synthesis induced by SA, encompassing the perception and transduction of SA signal, transcription factor-mediated gene expression regulation, and cellular stress responses to SA. Notably, the polyamine transporter gene (PT), identified as an upregulated DEG, was overexpressed in P. rhodozyma to obtain the transformant Prh-PT-006. The biomass, astaxanthin content and yield in this engineered strain could reach 6.6 g/L, 0.35 mg/g DCW and 2.3 mg/L, 24.5%, 143.1% and 199.0% higher than the wild strain at the SA-free condition, respectively. These findings provide valuable insights into potential targets for genetic engineering aimed at achieving high astaxanthin yields, and such advancements hold promise for expediting the industrialization of microbial astaxanthin production.
Collapse
Affiliation(s)
- Jianping Jia
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Feifei Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifei Luan
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Siru Liu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhitao Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guoliang Bao
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Villegas-Méndez MÁ, Montañez J, Contreras-Esquivel JC, Salmerón I, Koutinas AA, Morales-Oyervides L. Scale-up and fed-batch cultivation strategy for the enhanced co-production of microbial lipids and carotenoids using renewable waste feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117866. [PMID: 37030236 DOI: 10.1016/j.jenvman.2023.117866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Agro-industrial by-product valorization as a feedstock for the bioproduction of high-value products has demonstrated a feasible alternative to handle the environmental impact of waste. Oleaginous yeasts are promising cell factories for the industrial production of lipids and carotenoids. Since oleaginous yeasts are aerobic microorganisms, studying the volumetric mass transfer (kLa) could facilitate the scale-up and operation of bioreactors to grant the industrial availability of biocompounds. Scale-up experiments were performed to assess the simultaneous production of lipids and carotenoids using the yeast Sporobolomyces roseus CFGU-S005 and comparing the yields in batch and fed-batch mode cultivation using agro-waste hydrolysate in a 7 L bench-top bioreactor. The results indicate that oxygen availability in the fermentation affected the simultaneous production of metabolites. The highest production of lipids (3.4 g/L) was attained using the kLa value of 22.44 h-1, while higher carotenoid accumulation of 2.58 mg/L resulted when agitation speed was increased to 350 rpm (kLa 32.16 h-1). The adapted fed-batch mode in the fermentation increased the production yields two times. The fatty acid profile was affected according to supplied aeration and after the fed-batch cultivation mode. This study showed the scale-up potential of the bioprocess using the strain S. roseus in the obtention of microbial oil and carotenoids by the valorization of agro-industrial byproducts as a carbon source.
Collapse
Affiliation(s)
- Miguel Ángel Villegas-Méndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | - Julio Montañez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | | | - Iván Salmerón
- School of Chemical Science, Autonomous University of Chihuahua, Circuit 1, New University Campus, Chihuahua, Chihuahua, 31125, Mexico
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Lourdes Morales-Oyervides
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico.
| |
Collapse
|
13
|
Xu S, Zhang X, Zhang Y, Li Q, Ji L, Cheng H. Concomitant Production of Erythritol and β-Carotene by Engineered Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466300 DOI: 10.1021/acs.jafc.3c03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
While the expansion of the erythritol production industry has resulted in unprecedented production of yeast cells, it also suffers from a lack of effective utilization. β-Carotene is a value-added compound that can be synthesized by engineered Yarrowia lipolytica. Here, we first evaluated the production performance of erythritol-producing yeast strains under two different morphologies and then successfully constructed a chassis with yeast-like morphology by deleting Mhy1 and Cla4 genes. Subsequently, β-carotene synthesis pathway genes, CarRA and CarB from Blakeslea trispora, were introduced to construct the β-carotene and erythritol coproducing Y. lipolytica strain ylmcc. The rate-limiting genes GGS1 and tHMG1 were overexpressed to increase the β-carotene yield by 45.32-fold compared with the strain ylmcc. However, increased β-carotene accumulation led to prolonged fermentation time; therefore, transporter engineering through overexpression of YTH1 and YTH3 genes was used to alleviate fermentation delays. Using batch fermentation in a 3 L bioreactor, this engineered Y. lipolytica strain produced erythritol with production, yield, and productivity values of 171 g/L, 0.56 g/g glucose, and 2.38 g/(L·h), respectively, with a concomitant β-carotene yield of 47.36 ± 0.06 mg/g DCW. The approach presented here improves the value of erythritol-producing cells and offers a low-cost technique to obtain hydrophobic terpenoids.
Collapse
Affiliation(s)
- Shuo Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
15
|
Naz T, Ullah S, Nazir Y, Li S, Iqbal B, Liu Q, Mohamed H, Song Y. Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction. J Fungi (Basel) 2023; 9:jof9050578. [PMID: 37233289 DOI: 10.3390/jof9050578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Carotenoids are lipid-soluble compounds that are present in nature, including plants and microorganisms such as fungi, certain bacteria, and algae. In fungi, they are widely present in almost all taxonomic classifications. Fungal carotenoids have gained special attention due to their biochemistry and the genetics of their synthetic pathway. The antioxidant potential of carotenoids may help fungi survive longer in their natural environment. Carotenoids may be produced in greater quantities using biotechnological methods than by chemical synthesis or plant extraction. The initial focus of this review is on industrially important carotenoids in the most advanced fungal and yeast strains, with a brief description of their taxonomic classification. Biotechnology has long been regarded as the most suitable alternative way of producing natural pigment from microbes due to their immense capacity to accumulate these pigments. So, this review mainly presents the recent progress in the genetic modification of native and non-native producers to modify the carotenoid biosynthetic pathway for enhanced carotenoid production, as well as factors affecting carotenoid biosynthesis in fungal strains and yeast, and proposes various extraction methods to obtain high yields of carotenoids in an attempt to find suitable greener extraction methods. Finally, a brief description of the challenges regarding the commercialization of these fungal carotenoids and the solution is also given.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Faculty of Allied Health Sciences, University Institute of Food Science and Technology, The University of Lahore, Lahore 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
16
|
Lautier T, Smith DJ, Yang LK, Chen X, Zhang C, Truan G, Lindley ND. β-Cryptoxanthin Production in Escherichia coli by Optimization of the Cytochrome P450 CYP97H1 Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4683-4695. [PMID: 36888893 DOI: 10.1021/acs.jafc.2c08970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cytochromes P450, forming a superfamily of monooxygenases containing heme as a cofactor, show great versatility in substrate specificity. Metabolic engineering can take advantage of this feature to unlock novel metabolic pathways. However, the cytochromes P450 often show difficulty being expressed in a heterologous chassis. As a case study in the prokaryotic host Escherichia coli, the heterologous synthesis of β-cryptoxanthin was addressed. This carotenoid intermediate is difficult to produce, as its synthesis requires a monoterminal hydroxylation of β-carotene whereas most of the classic carotene hydroxylases are dihydroxylases. This study was focused on the optimization of the in vivo activity of CYP97H1, an original P450 β-carotene monohydroxylase. Engineering the N-terminal part of CYP97H1, identifying the matching redox partners, defining the optimal cellular background and adjusting the culture and induction conditions improved the production by 400 times compared to that of the initial strain, representing 2.7 mg/L β-cryptoxanthin and 20% of the total carotenoids produced.
Collapse
Affiliation(s)
- Thomas Lautier
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, 138602 Singapore
| | - Derek J Smith
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Nic D Lindley
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| |
Collapse
|
17
|
Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carotenoid production from oleaginous red yeast has been considered as a safe alternative to chemically synthesized carotenoids commonly used in the food industry, since plant-based carotenoids are expensive and an irregular source for obtaining pigments. This is a summative review on the factors affecting carotenoid production, cost-effective production strategies using various inexpensive feedstock, metabolic engineering, and strain improvisation. The review specially highlights the various potential applications of carotenoids as anti-microbial, anti-viral, antioxidant, anti-cancerous, anti-malarial agents, etc. The importance of such natural and easily available resources for prevention, evasion, or cure of emerging diseases and their plausible nutraceutical effect demands exhaustive research in this area.
Collapse
|
18
|
Bouzroud S, El Maaiden E, Sobeh M, Merghoub N, Boukcim H, Kouisni L, El Kharrassi Y. Biotechnological Approaches to Producing Natural Antioxidants: Anti-Ageing and Skin Longevity Prospects. Int J Mol Sci 2023; 24:ijms24021397. [PMID: 36674916 PMCID: PMC9867058 DOI: 10.3390/ijms24021397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Plants are the main source of bioactive compounds that can be used for the formulation of cosmetic products. Plant extracts have numerous proven health benefits, among which are anti-ageing and skin-care properties. However, with the increased demand for plant-derived cosmetic products, there is a crucial prerequisite for establishing alternative approaches to conventional methods to ensure sufficient biomass for sustainable production. Plant tissue culture techniques, such as in vitro root cultures, micropropagation, or callogenesis, offer the possibility to produce considerable amounts of bioactive compounds independent of external factors that may influence their production. This production can also be significantly increased with the implementation of other biotechnological approaches such as elicitation, metabolic engineering, precursor and/or nutrient feeding, immobilization, and permeabilization. This work aimed to evaluate the potential of biotechnological tools for producing bioactive compounds, with a focus on bioactive compounds with anti-ageing properties, which can be used for the development of green-label cosmeceutical products. In addition, some examples demonstrating the use of plant tissue culture techniques to produce high-value bioactive ingredients for cosmeceutical applications are also addressed, showing the importance of these tools and approaches for the sustainable production of plant-derived cosmetic products.
Collapse
Affiliation(s)
- Sarah Bouzroud
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Ezzouhra El Maaiden
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Mansour Sobeh
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
| | - Nawal Merghoub
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco
| | - Hassan Boukcim
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Youssef El Kharrassi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
- Correspondence:
| |
Collapse
|
19
|
Watcharawipas A, Runguphan W. Red yeasts and their carotenogenic enzymes for microbial carotenoid production. FEMS Yeast Res 2023; 23:6895548. [PMID: 36513367 DOI: 10.1093/femsyr/foac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Carotenoids are C40 isoprene-based compounds with significant commercial interests that harbor diverse bioactivities. Prominent examples of carotenoids are beta-carotene, a precursor to vitamin A essential for proper eye health, and lycopene and astaxanthin, powerful antioxidants implicated in preventing cancers and atherosclerosis. Due to their benefits to human health, the market value for carotenoids is rapidly increasing and is projected to reach USD 1.7 billion by 2025. However, their production now relies on chemical synthesis and extraction from plants that pose risks to food management and numerous biological safety issues. Thus, carotenoid production from microbes is considered a promising strategy for achieving a healthy society with more sustainability. Red yeast is a heterogeneous group of basidiomycetous fungi capable of producing carotenoids. It is a critical source of microbial carotenoids from low-cost substrates. Carotenogenic enzymes from red yeasts have also been highly efficient, invaluable biological resources for biotechnological applications. In this minireview, we focus on red yeast as a promising source for microbial carotenoids, strain engineering strategies for improving carotenoid production in red yeasts, and potential applications of carotenogenic enzymes from red yeasts in conventional and nonconventional yeasts.
Collapse
Affiliation(s)
- Akaraphol Watcharawipas
- Department of Microbiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
20
|
Vendruscolo RG, Deprá MC, Pinheiro PN, Furlan VJM, Barin JS, Cichoski AJ, de Menezes CR, Zepka LQ, Jacob-Lopes E, Wagner R. Food potential of Scenedesmus obliquus biomasses obtained from photosynthetic cultivations associated with carbon dioxide mitigation. Food Res Int 2022; 160:111590. [DOI: 10.1016/j.foodres.2022.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022]
|
21
|
Siziya IN, Hwang CY, Seo MJ. Antioxidant Potential and Capacity of Microorganism-Sourced C 30 Carotenoids-A Review. Antioxidants (Basel) 2022; 11:antiox11101963. [PMID: 36290686 PMCID: PMC9598406 DOI: 10.3390/antiox11101963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Carotenoids are lipophilic tetraterpenoid pigments produced by plants, algae, arthropods, and certain bacteria and fungi. These biologically active compounds are used in the food, feed, and nutraceutical industries for their coloring and the physiological benefits imparted by their antioxidant properties. The current global carotenoid market is dominated by synthetic carotenoids; however, the rising consumer demand for natural products has led to increasing research and development in the mass production of carotenoids from alternative natural sources, including microbial synthesis and plant extraction, which holds a significant market share. To date, microbial research has focused on C40 carotenoids, but studies have shown that C30 carotenoids contain similar—and in some microbial strains, greater—antioxidant activity in both the physical and chemical quenching of reactive oxygen species. The discovery of carotenoid biosynthetic pathways in different microorganisms and advances in metabolic engineering are driving the discovery of novel C30 carotenoid compounds. This review highlights the C30 carotenoids from microbial sources, showcasing their antioxidant properties and the technologies emerging for their enhanced production. Industrial applications and tactics, as well as biotechnological strategies for their optimized synthesis, are also discussed.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon 22012, Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon 22012, Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Korea
- Correspondence: ; Tel.: +82-32-835-8267
| |
Collapse
|
22
|
Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pigments from bacteria, fungi, yeast, cyanobacteria, and microalgae have been gaining more demand in the food, leather, and textile industries due to their natural origin and effective bioactive functions. Mass production of microbial pigments using inexpensive and ecofriendly agro-industrial residues is gaining more demand in the current research due to their low cost, natural origin, waste utilization, and high pigment stimulating characteristics. A wide range of natural substrates has been employed in submerged fermentation as carbon and nitrogen sources to enhance the pigment production from these microorganisms to obtain the required quantity of pigments. Submerged fermentation is proven to yield more pigment when added with agro-waste residues. Hence, in this review, aspects of potential pigmented microbes such as diversity, natural substrates that stimulate more pigment production from bacteria, fungi, yeast, and a few microalgae under submerged culture conditions, pigment identification, and ecological functions are detailed for the benefit of industrial personnel, researchers, and other entrepreneurs to explore pigmented microbes for multifaceted applications. In addition, some important aspects of microbial pigments are covered herein to disseminate the knowledge.
Collapse
|
23
|
Carotenoid-Producing Yeasts: Selection of the Best-Performing Strain and the Total Carotenoid Extraction Procedure. Processes (Basel) 2022. [DOI: 10.3390/pr10091699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Yeasts are considered an extraordinary alternative source of natural carotenoids and pigmented terpenoids with multiple applications. Production of carotenoids by yeast fermentation technology has many benefits; it is cost-effective, easily scalable, and safe. The aim of this research is the isolation of yeasts from natural resources and selection of the most potent bioagent for carotenoid production. Additionally, an upgraded carotenoid extraction protocol we established, which implies the testing of four methods for cell lysis (hydrochloric acid treatment, ultrasound treatment, milling treatment, and osmotic pressure treatment), three extraction methods (conventional extraction, ultrasound extraction, and conventional + ultrasound extraction), and three extraction solvents (acetone, isopropanol/methanol (50:50), and ethanol). For the first time, the obtained results were further modeled by an artificial neural network (ANN). Based on the obtained maximal carotenoid yield (253.74 ± 9.74 mg/100 g d.w) for the best-performing Rhodotorula mucilaginosa, the optimized extraction procedure involving milling treatment (for cell lysis) and conventional extraction with acetone (for carotenoid extraction) convincingly stood out compared to the other 35 tested protocols. Therefore, the selected carotenoid extraction protocol was verified with respect to its universality for all other yeast isolates, demonstrating its simplicity and effectiveness.
Collapse
|
24
|
Siziya IN, Yoon DJ, Kim M, Seo MJ. Enhanced Production of C 30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226 T. J Microbiol Biotechnol 2022; 32:892-901. [PMID: 35637169 PMCID: PMC9628921 DOI: 10.4014/jmb.2204.04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25°C incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Deok Jun Yoon
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Mibang Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea,Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea,Corresponding author Phone: +82-32-835-8267 Fax: +82-32-835-0804 E-mail:
| |
Collapse
|
25
|
Sustainable Microalgae and Cyanobacteria Biotechnology. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marine organisms are a valuable source of new compounds, many of which have remarkable biotechnological properties, such as microalgae and cyanobacteria, which have attracted special attention to develop new industrial production routes. These organisms are a source of many biologically active molecules in nature, including antioxidants, immunostimulants, antivirals, antibiotics, hemagglutinates, polyunsaturated fatty acids, peptides, proteins, biofuels, and pigments. The use of several technologies to improve biomass production, in the first step, industrial processes schemes have been addressed with different accomplishments. It is critical to consider all steps involved in producing a bioactive valuable compound, such as species and strain selection, nutrient supply required to support productivity, type of photobioreactor, downstream processes, namely extraction, recovery, and purification. In general, two product production schemes can be mentioned; one for large amounts of product, such as biodiesel or any other biofuel and the biomass for feeding purposes; the other for when the product will be used in the human health domain, such as antivirals, antibiotics, antioxidants, etc. Several applications for microalgae have been documented. In general, the usefulness of an application for each species of microalgae is determined by growth and product production. Furthermore, the use of OMICS technologies enabled the development of a new design for human therapeutic recombinant proteins, including strain selection based on previous proteomic profiles, gene cloning, and the development of expression networks. Microalgal expression systems have an advantage over traditional microbial, plant, and mammalian expression systems for new and sustainable microalga applications, for responsible production and consumption.
Collapse
|
26
|
Coproduction of Microbial Oil and Carotenoids within the Circular Bioeconomy Concept: A Sequential Solid-State and Submerged Fermentation Approach. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The main objective of integrative biorefinery platforms is to propose efficient green methodologies addressed to obtain high-value compounds with low emissions through biochemical conversions. This work first screened the capacity of various oleaginous yeast to cosynthesize high-value biomolecules such as lipids and carotenoids. Selected strains were evaluated for their ability to coproduce such biocompounds in the waste-based media of agro-food (brewer’s spent grain, pasta processing waste and bakery waste). Carbon and nitrogen source feedstock was obtained through enzymatic hydrolysis of the agro-food waste, where up to 80% of total sugar/starch conversion was obtained. Then, the profitability of the bioprocess for microbial oil (MO) and carotenoids production by Sporobolomyces roseus CFGU-S005 was estimated via simulation using SuperPro Designer®. Results showed the benefits of establishing optimum equipment scheduling by identifying bottlenecks to increase profitability. Sensitivity analysis demonstrated the impact of MO price and batch throughput on process economics. A profitable process was achieved with a MO batch throughput of 3.7 kg/batch (ROI 31%, payback time 3.13 years). The results revealed areas that require further improvement to achieve a sustainable and competitive process for the microbial production of carotenoids and lipids.
Collapse
|
27
|
Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022; 27:molecules27103291. [PMID: 35630767 PMCID: PMC9144664 DOI: 10.3390/molecules27103291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.
Collapse
|
28
|
Optimization of Extraction Conditions of Carotenoids from Dunaliella parva by Response Surface Methodology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041444. [PMID: 35209233 PMCID: PMC8924885 DOI: 10.3390/molecules27041444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Extraction conditions can exert a remarkable influence on extraction efficiency. The aim of this study was to improve the extraction efficiency of carotenoids from Dunaliella parva (D. parva). Dimethyl sulfoxide (DMSO) and 95% ethanol were used as the extraction solvents. The extraction time, extraction temperature and the proportions of mixed solvent were taken as influencing factors, and the experimental scheme was determined by Central Composite Design (CCD) of Design Expert 10.0.4.0 to optimize the extraction process of carotenoids from D. parva. The absorbance values of the extract at 665 nm, 649 nm and 480 nm were determined by a microplate spectrophotometer, and the extraction efficiency of carotenoids was calculated. Analyses of the model fitting degree, variance and interaction term 3D surface were performed by response surface analysis. The optimal extraction conditions were as follows: extraction time of 20 min, extraction temperature of 40 °C, and a mixed solvent ratio (DMSO: 95% ethanol) of 3.64:1. Under the optimal conditions, the actual extraction efficiency of carotenoids was 0.0464%, which was increased by 18.19% (the initial extraction efficiency of 0.03926%) with a lower extraction temperature (i.e., lower energy consumption) compared to the standard protocol.
Collapse
|
29
|
Optimization of Carotenoids Production from Camelina sativa Meal Hydrolysate by Rhodosporidium toruloides. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several compounds on the market derive from petrochemical synthesis, and carotenoids are no exception. Nonetheless, since their applications in the food, feed and cosmetic sectors, and because of sustainability issues, carotenoids of natural origin are desirable. Carotenoids can be extracted from several plants but also from carotenogenic microorganisms, among which are yeasts. Nonetheless, to meet sustainability criteria, the substrate used for yeast cultivation has to be formulated from residual biomasses. For these reasons, we deploy the yeast, Rhodosporidium toruloides, to obtain carotenoids from Camelina sativa meal, an underrated lignocellulosic biomass. Its enzymatic hydrolysis ensures the release of the sugars, as well as of the other nutrients necessary to sustain the process. We therefore separately optimized enzymatic and biomass loadings, and calculated the yields and productivities of the obtained carotenoids. The best conditions (9% w/v biomass, 0.56% w/wbiomass enzymes) were tested in different settings, in which the fermentation was performed separately or simultaneously with hydrolysis, resulting in a similar production of carotenoids. In order to collect quantitative data under controlled chemo-physical parameters, the process was implemented in stirred-tank bioreactors, obtaining 3.6 ± 0.69 mg/L of carotenoids; despite the volumetric and geometric change, the outcomes were consistent with results from the fermentation of shake flasks. Therefore, these data pave the way to evaluate a potential future industrialization of this bioprocess, considering the opportunity to optimize the use of different amounts of biomass and enzyme loading, as well as the robustness of the process in the bioreactor.
Collapse
|