1
|
Lee GB, Kim Y, Lee KE, Vinayagam R, Singh M, Kang SG. Anti-Inflammatory Effects of Quercetin, Rutin, and Troxerutin Result From the Inhibition of NO Production and the Reduction of COX-2 Levels in RAW 264.7 Cells Treated with LPS. Appl Biochem Biotechnol 2024; 196:8431-8452. [PMID: 39096472 DOI: 10.1007/s12010-024-05003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Flavonols effectively scavenge the reactive nitrogen species (RNS) and reactive oxygen species (ROS) and act as immune-enhancing, anti-inflammatory, anti-diabetic, and anti-carcinogenic agents. Here, we explored the comparative antioxidant and anti-inflammatory properties of plant-originating flavonols, like quercetin, rutin, and troxerutin against acetylsalicylic acid. Quercetin and rutin showed a high ability to remove active ROS, but troxerutin and acetylsalicylic acid exhibited little such function. In RAW 264.7 cells, quercetin, rutin, and troxerutin did not exhibit cellular toxicity at low concentrations. In addition, quercetin, rutin, and troxerutin considerably (p < 0.05) lowered the protein expression of cyclooxygenase 2 (COX-2) as compared to acetylsalicylic acid in cells inflamed with lipopolysaccharides (LPS). Additionally, in inflamed cells, quercetin and rutin significantly down-regulated the nitrogen oxide (NO) level (p < 0.05) at higher concentrations, whereas Troxerutin did not reduce the NO level. In addition, Troxerutin down-regulated the pro-inflammatory protein markers, such as TNF-α, COX-2, NF-κB, and IL-1β better than quercetin, rutin, and acetylsalicylic acid. We observed that troxerutin exhibited a significantly greater anti-inflammatory effect than acetylsalicylic acid did. Acetylsalicylic acid did not significantly down-regulated the expression of COX-2 and TNF-α (p < 0.05) compared to troxerutin. Hence, it can be concluded that the down-regulation of NO levels and the expression of COX-2 and TNF-α proteins could be mechanisms of action for the natural compounds quercetin, rutin, and troxerutin in preventing inflammation.
Collapse
Affiliation(s)
- Gi Baek Lee
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Yohan Kim
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Kyung Eun Lee
- Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
2
|
Luo B, Xu W, Ye D, Bai X, Wu M, Zhang C, Shi R. Association Between Glycated Hemoglobin and the Lipid Profile at the Central Yunnan Plateau: A Retrospective Study. Diabetes Metab Syndr Obes 2024; 17:2975-2981. [PMID: 39139740 PMCID: PMC11321356 DOI: 10.2147/dmso.s469368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Dyslipidemia commonly complicates type 2 diabetes mellitus, yet the relationship between glycosylated hemoglobin and blood lipid levels remains uncertain. Methods This retrospective cross-sectional study included 27,158 participants from the People's Hospital of Yuxi. Statistical comparisons for continuous variables utilized analysis of variance (ANOVA), while chi-square analysis was employed for categorical variables. Boxplots assessed the concentration, dispersion, and deviation of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C) distribution. A linear regression analysis examined the association between HbA1c and lipid profile, complemented by a fitting curve to visualize trends. Results Participants who developed diabetes exhibited higher age and elevated Body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), TC, TG, LDL-C, and FPG levels compared to those without diabetes (p < 0.001). Linear regression analysis demonstrated significant associations between HbA1c values and TC, TG, LDL-C, and HDL-C (p < 0.001). The plotted curve indicated that as TC, TG, and LDL levels increased, HbA1c levels rose, while HDL levels decreased. Conclusion HbA1c was positively correlated with TC, TG, LDL-C, and negatively correlated with HDL-C in the population in the central Yunnan Plateau.
Collapse
Affiliation(s)
- Beibei Luo
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Wenbo Xu
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Dan Ye
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Xuejing Bai
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Mengna Wu
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Chunting Zhang
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| | - Rui Shi
- Clinical Laboratory, People’s Hospital of Yuxi City, the Sixth Affiliated Hospital of Kunming Medical University, Yuxi City, Yunnan Province, 653100, People’s Republic of China
| |
Collapse
|
3
|
Masaki M, Shimada Y, Takeda T, Aso H, Nakamura T. Inhibitory effect of organogermanium compound 3-(trihydroxygermyl)propanoic acid on fructose-induced glycation of amino compounds. Carbohydr Res 2024; 542:109191. [PMID: 38936267 DOI: 10.1016/j.carres.2024.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
3-(Trihydroxygermyl)propanoic acid (THGP), a hydrolysate of poly-trans-[(2-carboxyethyl)germasesquioxane] (Ge-132, also known as repagermanium), can inhibit glycation between glucose/ribose and amino compounds. In addition, THGP may inhibit glycation by inhibiting reactions that occur after Amadori rearrangement and inducing the reversible solubilization of AGEs. In this study, we first investigated the effects and mechanisms on the glycation of fructose and amino compounds by THGP, as a greater reactivity was obtained with fructose than with glucose. Unlike other anti-glycation materials, THGP can form a complex with fructose, the initial compound of glycation. THGP also inhibited the production of AGEs and suppressed the reduction of fructose in a reaction between fructose and arginine. These results indicate that THGP forms a complex with cyclic fructose possessing a cis-diol structure at a reducing end, and that it suppresses the ring-opening of fructose and the progress of the initial glycation reaction. We next tried to evaluate the suppressive effect of glucosyl hesperidin (GHes) and THGP on the reaction of glycation between fructose and collagen. Both compounds effectively reduced the production of AGEs individually, and the combination of them led to a synergistic suppression. Therefore, through combination with other antiglycation materials, THGP may cooperatively exhibit glycation-inhibitory effects and be able to suppress the AGE production.
Collapse
Affiliation(s)
- Mika Masaki
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan.
| | - Yasuhiro Shimada
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan.
| | - Tomoya Takeda
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan.
| | - Hisashi Aso
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki aza, Aoba, Sendai, Miyagi, 980-8572, Japan.
| | - Takashi Nakamura
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan.
| |
Collapse
|
4
|
He J, Li X, Yan M, Chen X, Sun C, Tan J, Song Y, Xu H, Wu L, Yang Z. Inulin Reduces Kidney Damage in Type 2 Diabetic Mice by Decreasing Inflammation and Serum Metabolomics. J Diabetes Res 2024; 2024:1222395. [PMID: 38725443 PMCID: PMC11081752 DOI: 10.1155/2024/1222395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 05/12/2024] Open
Abstract
This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.
Collapse
Affiliation(s)
- Jiayuan He
- Health Testing Center, Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212002, China
| | - Xiang Li
- Medical Laboratory Department, Huai'an Second People's Hospital, Huai'an 223022, China
| | - Man Yan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xinsheng Chen
- Hospital Infection-Disease Control Department, Zhenjiang First People's Hospital, Zhenjiang 212002, China
| | - Chang Sun
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiajun Tan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yinsheng Song
- Health Testing Center, Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212002, China
| | - Hong Xu
- Health Testing Center, Zhenjiang Center for Disease Control and Prevention, Zhenjiang 212002, China
| | - Liang Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhengnan Yang
- Department of Clinical Laboratory, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng 210008, China
| |
Collapse
|
5
|
Liang Y, Zhao X, Xu Y, Lu Y, Lv L. Scavenging Glyoxal and Methylglyoxal by Synephrine and Neohesperidin from Flowers of Citrus aurantium L. var. amara Engl. in Mice and Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8027-8038. [PMID: 38529939 DOI: 10.1021/acs.jafc.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
There is considerable research evidence that α-dicarbonyl compounds, including glyoxal (GO) and methylglyoxal (MGO), are closely related to many chronic diseases. In this work, after comparison of the capture capacity, reaction pathway, and reaction rate of synephrine (SYN) and neohesperidin (NEO) on GO/MGO in vitro, experimental mice were administrated with SYN and NEO alone and in combination. Quantitative data from UHPLC-QQQ-MS/MS revealed that SYN/NEO/HES (hesperetin, the metabolite of NEO) could form the GO/MGO-adducts in mice (except SYN-MGO), and the levels of GO/MGO-adducts in mouse urine and fecal samples were dose-dependent. Moreover, SYN and NEO had a synergistic scavenging effect on GO in vivo by promoting each other to form more GO adducts, while SYN could promote NEO to form more MGO-adducts, although it could not form MGO-adducts. Additionally, human experiments showed that the GO/MGO-adducts of SYN/NEO/HES found in mice were also detected in human urine and fecal samples after drinking flowers of Citrus aurantium L. var. amara Engl. (FCAVA) tea using UHPLC-QTOF-MS/MS. These findings provide a novel strategy to reduce endogenous GO/MGO via the consumption of dietary FCAVA rich in SYN and NEO.
Collapse
Affiliation(s)
- Yu Liang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Xinyu Zhao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Yujia Xu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Yonglin Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Luo H, Ou J, Huang J. Reactive Carbonyl Species Scavenger: Epigallocatechin-3-Gallate. Foods 2024; 13:992. [PMID: 38611299 PMCID: PMC11012208 DOI: 10.3390/foods13070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a prominent polyphenol found abundantly in tea, has garnered significant attention for its potential in preventing and ameliorating a wide range of diseases. Its remarkable antioxidant properties and ability to capture reactive carbonyl species make it a key player among tea's polyphenolic components. This paper delves into the synthesis and origins of both EGCG and reactive carbonyl species (RCS), emphasizing the toxicity of RCS in various food sources and their formation during food processing. Understanding EGCG's capability to capture and metabolize RCS is crucial for harnessing its health benefits. Thus, this paper explores the underlying mechanisms of EGCG for RCS inhibition and its role in capturing these compounds to generate EGCG-RCS adducts. And the absorption and metabolism of EGCG-RCS adducts is also discussed.
Collapse
Affiliation(s)
- Haiying Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (H.L.); (J.O.)
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (H.L.); (J.O.)
| | - Junqing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Liang Y, Du R, Zhao X, Xu Y, Xiang Q, Wu H, Lu Y, Lv L. Scavenging Glyoxal and Methylglyoxal by Synephrine Alone or in Combination with Neohesperidin at High Temperatures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5828-5841. [PMID: 38442256 DOI: 10.1021/acs.jafc.3c08652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
α-Dicarbonyl compounds, such as glyoxal (GO) and methylglyoxal (MGO), are a series of chemical hazards that exist in vivo and in vitro, posing a threat to human health. We aimed to explore the scavenging effects on GO/MGO by synephrine (SYN) alone or in combination with neohesperidin (NEO). First, through LC-MS/MS, we confirmed that both SYN and NEO could effectively remove GO and form GO adducts, while NEO could also clear MGO by forming MGO adducts, and its ability to clear MGO was stronger than that of GO. Second, a synergistic inhibitory effect on GO was found when SYN and NEO were used in combination by using the Chou-Talalay method; on the other hand, SYN could promote NEO to clear more MGO, although SYN could not capture MGO. Third, after synthesizing four GO/MGO-adducts (SYN-GO-1, SYN-GO-3, NEO-GO-7, and NEO-MGO-2) and identifying their structure through NMR, strict correlations between the GO/MGO-adducts and the GO/MGO-clearance rate were found when using SYN and NEO alone or in combination. Furthermore, it was inferred that the synergistic effect between SYN and NEO stems from their mutual promotion in capturing more GO by the quantitative analysis of the adducts in the combined model. Finally, a study was conducted on flowers of Citrus aurantium L. var. amara Engl. (FCAVA, an edible tea) rich in SYN and NEO, which could serve as an effective GO and MGO scavenger in the presence of both GO and MGO. Therefore, our study provided well-defined evidence that SYN and NEO, alone or in combination, could efficiently scavenge GO/MGO at high temperatures, whether in the pure form or located in FCAVA.
Collapse
Affiliation(s)
- Yu Liang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Ruoying Du
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Xinyu Zhao
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Yujia Xu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Qi Xiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Hanying Wu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Yonglin Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Varshney KK, Gupta JK, Srivastava R. Unveiling the Molecular Mechanism of Diosmetin and its Impact on Multifaceted Cellular Signaling Pathways. Protein Pept Lett 2024; 31:275-289. [PMID: 38629379 DOI: 10.2174/0109298665294109240323033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic, and anti-inflammatory activities. OBJECTIVE This comprehensive review was aimed to critically explore diverse pharmacological activities exhibited by diosmetin. Along with that, this review can also identify potential research areas with an elucidation of the multifactorial underlying signaling mechanism of action of diosmetin in different diseases. METHODS A comprehensive collection of evidence and insights was obtained from scientific journals and books from physical libraries and electronic platforms like Google Scholar and PubMed. The time frame selected was from year 1992 to July 2023. RESULTS The review delves into diosmetin's impact on cellular signaling pathways and its potential in various diseases. Due to its ability to modulate signaling pathways and reduce oxidative stress, it can be suggested as a potential versatile therapeutic agent for mitigating oxidative stressassociated pathogenesis. CONCLUSION The amalgamation of the review underscores diosmetin's promising role as a multifaceted therapeutic agent, highlighting its potential for drug development and clinical applications.
Collapse
Affiliation(s)
| | | | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
9
|
Varshney KK, Gupta JK, Srivastava R. Investigating In silico and In vitro Therapeutic Potential of Diosmetin as the Anti-Parkinson Agent. Protein Pept Lett 2024; 31:714-735. [PMID: 39323333 DOI: 10.2174/0109298665333333240909104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
AIM This study aimed to investigate how diosmetin interacts with seven target receptors associated with oxidative stress (OS) and validate its antioxidant properties for the potential management of Parkinson's disease (PD). BACKGROUND In PD, the degeneration of dopaminergic cells is strongly influenced by OS. This stressor is intricately connected to various mechanisms involved in neurodegeneration, such as mitochondrial dysfunction, neuroinflammation, and excitotoxicity induced by nitric oxide. OBJECTIVE The aim of this research was to establish a molecular connection between diosmetin and OS-associated target receptors was the goal, and it investigated how this interaction can lessen PD. METHODS Seven molecular targets - Adenosine A2A (AA2A), Peroxisome Proliferator-Activated Receptor Gamma (PPARγ), Protein Kinase AKT1, Nucleolar Receptor NURR1, Liver - X Receptor Beta (LXRβ), Monoamine Oxidase - B (MAO-B) and Tropomyosin receptor kinase B (TrkB) were obtained from RCSB. Molecular docking software was employed to determine molecular interactions, while antioxidant activity was assessed through in vitro assays against various free radicals. RESULTS Diosmetin exhibited interactions with all seven target receptors at their binding sites. Notably, it showed superior interaction with AA2A and NURR1 compared to native ligands, with binding energies of -7.55, and -6.34 kcal/mol, respectively. Additionally, significant interactions were observed with PPARγ, AKT1, LXRβ, MAO-B, and TrkB with binding energies of -8.34, -5.42, -7.66, -8.82, -8.45 kcal/mol, respectively. Diosmetin also demonstrated antioxidant activity against various free radicals, particularly against hypochlorous acid (HOCl) and nitric oxide (NO) free radicals. CONCLUSION Diosmetin possibly acts on several target receptors linked to the pathophysiology of PD, demonstrating promise as an OS inhibitor and scavenger.
Collapse
Affiliation(s)
| | | | - Rajnish Srivastava
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
10
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
11
|
Bednarska K, Fecka I, Scheijen JLJM, Ahles S, Vangrieken P, Schalkwijk CG. A Citrus and Pomegranate Complex Reduces Methylglyoxal in Healthy Elderly Subjects: Secondary Analysis of a Double-Blind Randomized Cross-Over Clinical Trial. Int J Mol Sci 2023; 24:13168. [PMID: 37685975 PMCID: PMC10488144 DOI: 10.3390/ijms241713168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs. Therefore, the aim of this study was to evaluate the effect of a citrus and pomegranate complex (CPC) on the α-DCs plasma levels in a double-blind, placebo-controlled cross-over trial, where thirty-six elderly subjects were enrolled. They received either 500 mg of Citrus sinensis peel extract and 200 mg of Punica granatum concentrate in CPC capsules or placebo capsules for 4 weeks, with a 4-week washout period in between. For the determination of α-DCs concentrations, liquid chromatography tandem mass spectrometry was used. Following four weeks of CPC supplementation, plasma levels of MGO decreased by 9.8% (-18.7 nmol/L; 95% CI: -36.7, -0.7 nmol/L; p = 0.042). Our findings suggest that CPC supplementation may represent a promising strategy for mitigating the conditions associated with MGO involvement. This study was registered on clinicaltrials.gov as NCT03781999.
Collapse
Affiliation(s)
- Katarzyna Bednarska
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Izabela Fecka
- Department of Pharmacognosy, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- The Committee on Therapeutics and Pharmaceutical Sciences, The Polish Academy of Sciences, Pl. Defilad 1, 00-901 Warsaw, Poland
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Sanne Ahles
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
- BioActor BV, 6229 GS Maastricht, The Netherlands
| | - Philippe Vangrieken
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands; (J.L.J.M.S.); (P.V.); (C.G.S.)
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
12
|
Fecka I, Bednarska K, Kowalczyk A. In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf ( Mentha × piperita L.) and Its Polyphenols. Molecules 2023; 28:molecules28062865. [PMID: 36985839 PMCID: PMC10056224 DOI: 10.3390/molecules28062865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to be important therapeutic targets in prediabetes, diabetes, and in the early prevention of hyperglycemic complications. Peppermint leaf is commonly used as herbal tea, rich in polyphenols. Eriocitrin, its predominant component, in a double-blind, randomized controlled study reversed the prediabetic condition in patients. However, the antiglycation activity of this plant material and its polyphenols has not been characterized to date. Therefore, the aim of this study was to evaluate the ability of a peppermint leaf dry extract and its polyphenols to inhibit non-enzymatic protein glycation in a model with bovine serum albumin (BSA) and MGO as a glycation agent. Peppermint polyphenols were also evaluated for their potential to trap MGO in vitro, and the resulting adducts were analyzed by UHPLC-ESI-MS. To relate chemical composition to glycation inhibitory activity, the obtained peppermint extract was subjected to qualitative and quantitative analysis. The capability of peppermint leaf polyphenols to inhibit glycation (27.3-77.2%) and form adducts with MGO was confirmed. In the case of flavone aglycones, mono- and di-adducts with MGO were observed, while eriodictyol and eriocitrin effectively produced only mono-adducts. Rosmarinic acid and luteolin-7-O-glycosides did not reveal this action. IC50 of the peppermint leaf dry extract was calculated at 2 mg/mL, equivalent to a concentration of 1.8 μM/mL of polyphenols, including ~1.4 μM/mL of flavonoids and ~0.4 μM/mL of phenolic acids. The contribution of the four major components to the anti-AGE activity of the extract was estimated at 86%, including eriocitrin 35.4%, rosmarinic acid 25.6%, luteolin-7-O-rutinoside 16.9%, luteolin-7-O-β-glucuronoside 8.1%, and others 14%. The effect of peppermint dry extract and polyphenols in inhibiting MGO-induced glycation in vitro was comparable to that of metformin used as a positive control.
Collapse
Affiliation(s)
- Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland
- Committee for Therapeutics and Drug Sciences, Polish Academy of Sciences, pl. Defilad 1, 00-901 Warszawa, Poland
| | - Katarzyna Bednarska
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland
| | - Adam Kowalczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
13
|
Aspalathin and Other Rooibos Flavonoids Trapped α-Dicarbonyls and Inhibited Formation of Advanced Glycation End Products In Vitro. Int J Mol Sci 2022; 23:ijms232314738. [PMID: 36499065 PMCID: PMC9738946 DOI: 10.3390/ijms232314738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The excessive dietary intake of simple sugars and abnormal metabolism in certain diseases contribute to the increased production of α-dicarbonyls (α-DCs), such as methylglyoxal (MGO) and glyoxal (GO), the main precursors of the formation of advanced glycation end products (AGEs). AGEs play a vital role, for example, in the development of cardiovascular diseases and diabetes. Aspalathus linearis (Burman f.) R. Dahlgren (known as rooibos tea) exhibits a wide range of activities beneficial for cardio-metabolic health. Thus, the present study aims to investigate unfermented and fermented rooibos extracts and their constituents for the ability to trap MGO and GO. The individual compounds identified in extracts were tested for the capability to inhibit AGEs (with MGO or GO as a glycation agent). Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) was used to investigate α-DCs' trapping capacities. To evaluate the antiglycation activity, fluorescence measurement was used. The extract from the unfermented rooibos showed a higher ability to capture MGO/GO and inhibit AGE formation than did the extract from fermented rooibos, and this effect was attributed to a higher content of dihydrochalcones. The compounds detected in the extracts, such as aspalathin, nothofagin, vitexin, isovitexin, and eriodictyol, as well as structurally related phloretin and phloroglucinol (formed by the biotransformation of certain flavonoids), trapped MGO, and some also trapped GO. AGE formation was inhibited the most by isovitexin. However, it was the high content of aspalathin and its higher efficiency than that of metformin that determined the antiglycation and trapping properties of green rooibos. Therefore, A. linearis, in addition to other health benefits, could potentially be used as an α-DC trapping agent and AGE inhibitor.
Collapse
|
14
|
Fragaria × ananassa cv. Senga Sengana Leaf: An Agricultural Waste with Antiglycation Potential and High Content of Ellagitannins, Flavonols, and 2-Pyrone-4,6-dicarboxylic Acid. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165293. [PMID: 36014531 PMCID: PMC9415522 DOI: 10.3390/molecules27165293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Strawberry leaves are considered a valuable waste material; so far, mainly due to their antioxidant properties. Since the annual production of this crop is high, our study aimed to thoroughly examine the chemical composition and antidiabetes-related bioactivity of Fragaria × ananassa leaf of its popular and productive cultivar Senga Sengana. Leaves from three different seasons, collected after fruiting, were extensively analyzed (UHPLC-qTOF-MS/MS, HPLC-DAD). Some individual components were isolated and quantified, including specific flavonol diglycosides (e.g., 3-O-[β-xylosyl(1‴→2″)]-β-glucuronosides). The separated quercetin glycosides were tested in an antiglycation assay, and their methylglyoxal uptake capacity was measured. In addition, the biodegradable polyester precursor 2-pyrone-4,6-dicarboxylic acid (PDC) was confirmed at relatively high levels, providing further opportunity for strawberry leaf utilization. We want to bring to the attention of the food, pharmaceutical, and cosmetic industries the Senga Sengana strawberry leaf as a new botanical raw material. It is rich in PDC, ellagitannins, and flavonols—potent glycation inhibitors.
Collapse
|
15
|
Antioxidant and Antiglycation Effects of Cistus × incanus Water Infusion, Its Phenolic Components, and Respective Metabolites. Molecules 2022; 27:molecules27082432. [PMID: 35458630 PMCID: PMC9032239 DOI: 10.3390/molecules27082432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen and carbonyl species promote oxidative and carbonyl stress, and the development of diabetes, metabolic syndrome, cardiovascular diseases, and others. The traditional herb Cistus × incanus is known for its antioxidant properties; therefore, the current study aimed to assess how the chemical composition of a C. incanus water infusion corresponds with its antioxidative and antiglycative effects in vitro. The composition of infusions prepared from commercial products was analyzed with UHPLC-ESI-qTOF-MS. Total phenolics, flavonoids, and non-flavonoid polyphenols were determined. Antioxidant activity of infusions and selected polyphenols was investigated using DPPH, ABTS, and FRAP. Fluorometric measurements and methylglyoxal capture were performed to investigate the antiglycation activity. PCA and PLS-DA models were applied to explore the correlation between chemical and antioxidant results. The principal flavonoids in C. incanus were flavonols. In vitro tests revealed that a stronger antioxidant effect was demonstrated by plant material from Turkey rich in flavonoids, followed by Albania and Greece. Flavonols and ellagic acid displayed stronger antiradical and reducing power than EA-derived urolithins. Hyperoside was the most potent inhibitor of glycation. The results indicate that flavonoids are primarily responsible for rock rose antioxidant and antiglycation properties. PLS-DA modeling can be used to identify the origin of plant material with sensitivity and specificity exceeding 86%.
Collapse
|
16
|
Sun WX, Zhang CT, Yu XN, Guo JB, Ma H, Liu K, Luo P, Ren J. Preparation and pharmacokinetic study of diosmetin long-circulating liposomes modified with lactoferrin. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
17
|
AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology. Inflammation 2021; 45:477-496. [PMID: 34787800 DOI: 10.1007/s10753-021-01589-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory, autoimmune disease that gradually affects the synovial membrane and joints. Many intrinsic and/or extrinsic factors are crucial in making RA pathology challenging throughout the disease. Substantial enzymatic or non-enzymatic modification of proteins driving inflammation has gained a lot of interest in recent years. Endogenously modified glycated protein influences disease development linked with AGEs/non-AGEs and is reported as a disease marker. In this review, we summarized current knowledge of the differential abundance of glycated proteins by compiling and analyzing a variety of AGE and non-AGE ligands that bind with RAGE to activate multi-faceted inflammatory and oxidative stress pathways that are pathobiologically associated with RA-fibroblast-like synoviocytes (RA-FLS). It is critical to comprehend the connection between oxidative stress and inflammation generation, mediated by glycated protein, which may bind to the receptor RAGE, activate downstream pathways, and impart immunogenicity in RA. It is worth noting that AGEs and non-AGEs ligands play a variety of functions, and their functionality is likely to be more reliant on pathogenic states and severity that may serve as biomarkers for RA. Screening and monitoring of these differentially glycated proteins, as well as their stability in circulation, in combination with established pre-clinical characteristics, may aid or predict the onset of RA.
Collapse
|