1
|
Golshany H, Helmy SA, Morsy NFS, Kamal A, Yu Q, Fan L. The gut microbiome across the lifespan: how diet modulates our microbial ecosystem from infancy to the elderly. Int J Food Sci Nutr 2024:1-27. [PMID: 39701663 DOI: 10.1080/09637486.2024.2437472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
This comprehensive review examines the impact of dietary patterns on gut microbiome composition and diversity from infancy to old age, linking these changes to age-related health outcomes. It investigates how the gut microbiome develops and changes across life stages, focusing on the influence of dietary factors. The review explores how early-life feeding practices, including breastfeeding and formula feeding, shape the infant gut microbiota and have lasting effects. In elderly individuals, alterations in the gut microbiome are associated with increased susceptibility to infections, chronic inflammation, metabolic disorders and cognitive decline. The critical role of diet in modulating the gut microbiome throughout life is emphasised, particularly the potential benefits of probiotics and fortified foods in promoting healthy ageing. By elucidating the mechanisms connecting food systems to gut health, this review provides insights into interventions that could enhance gut microbiome resilience and improve health outcomes across the lifespan.
Collapse
Affiliation(s)
- Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | - Aya Kamal
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety & Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Ohkusa T, Kato K, Sekizuka T, Sugiyama T, Sato N, Kuroda M. Comparison of the Gut Microbiota of Patients Who Improve with Antibiotic Combination Therapy for Ulcerative Colitis and Those Who Do Not: Investigation by Fecal Metagenomic Analyses. Nutrients 2024; 16:3500. [PMID: 39458495 PMCID: PMC11510665 DOI: 10.3390/nu16203500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The cause of ulcerative colitis (UC) may be related to commensal bacteria in genetically susceptible patients. We previously demonstrated that triple antibiotic combination therapy induces remission in patients with active UC in randomized controlled trials (RCTs). Now, we investigate changes in the gut microbiota of patients who responded to the antibiotic combination therapy. Methods: Thirty-one patients with UC given ATM/AFM (amoxicillin, metronidazole, and tetracycline or fosfomycin) therapy for two weeks were enrolled in this study. The clinical conditions of these UC patients were evaluated by the partial Mayo score. The gut microbiota was compared via the metagenomic shot gun analysis of fecal samples. Results: Of the 31 patients, 16 and 8 experienced complete and partial remission, respectively, over three months in response to ATM/AFM therapy, whereas ATM/AFM showed no efficacy in 7 patients. The dysbiosis before treatment in the active stage could be associated with increased populations of Bacteroides, Parabacteroides, Rickenella, Clostridium, Flavonifractor, Pelagibacter, Bordetella, Massilia, and Piscrickettsia species. Metagenomic analysis revealed dramatic changes in the gut microbiota at an early stage, that is, just two weeks after starting ATM/AFM therapy. After treatment in the responder group, the populations of bifidobacterium and lactobacilli species were significantly increased, while the population of bacteroides decreased. Conclusions: These results suggest that metagenomic analysis demonstrated a marked change in the gut microbiota after antibiotic combination treatment. In the triple antibiotic combination therapy, remission was associated with an increase in bifidobacterium and lactobacilli species.
Collapse
Affiliation(s)
- Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Kimitoshi Kato
- Division of Research Planning and Development, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.S.); (M.K.)
| | - Toshiro Sugiyama
- Advanced Gastrointestinal Cancer Molecular Targeted Therapy and Prevention Research Division, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.S.); (M.K.)
| |
Collapse
|
3
|
Estevinho MM, Yuan Y, Rodríguez‐Lago I, Sousa‐Pimenta M, Dias CC, Barreiro‐de Acosta M, Jairath V, Magro F. Efficacy and safety of probiotics in IBD: An overview of systematic reviews and updated meta-analysis of randomized controlled trials. United European Gastroenterol J 2024; 12:960-981. [PMID: 39106167 PMCID: PMC11497663 DOI: 10.1002/ueg2.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/27/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Probiotics show promise in inflammatory bowel disease (IBD), yet knowledge gaps persist. We performed an overview of systematic reviews and an updated metanalysis of randomized controlled trials (RCT) assessing the effect of probiotics on Crohn's disease (CD) and ulcerative colitis (UC). METHODS MEDLINE, Web of Science, and the Cochrane Central Register of Controlled Trials were searched up to September 2023. Primary outcomes were clinical remission and recurrence; secondary outcomes included endoscopic response and remission, and adverse events. We calculated odds ratios (OR) using a random-effects model in R. The quality of systematic reviews was assessed using the AMSTAR-2; the trials' risk of bias was evaluated using the Cochrane Collaboration tool. Evidence certainty was rated using the GRADE framework. RESULTS Out of 2613 results, 67 studies (22 systematic reviews and 45 RCTs) met the eligibility criteria. In the updated meta-analysis, the OR for clinical remission in UC and CD was 2.00 (95% CI 1.28-3.11) and 1.61 (95% CI 0.21-12.50), respectively. The subgroup analysis suggested that combining 5-ASA and probiotics may be beneficial for inducing remission in mild-to-moderate UC (OR 2.35, 95% CI 1.29-4.28). Probiotics decreased the odds of recurrence in relapsing pouchitis (OR 0.03, 95% CI 0.00-0.25) and trended toward reducing clinical recurrence in inactive UC (OR 0.65, 95% CI 0.42-1.01). No protective effect against recurrence was identified for CD. Multi-strain formulations appear superior in achieving remission and preventing recurrence in UC. The use of probiotics was not associated with better endoscopic outcomes. Adverse events were similar to control. However, the overall certainty of evidence was low. CONCLUSION Probiotics, particularly multi-strain formulations, appear efficacious for the induction of clinical remission and the prevention of relapse in UC patients as well as for relapsing pouchitis. Notwithstanding, no significant effect was identified for CD. The favorable safety profile of probiotics was also highlighted.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of GastroenterologyUnidade Local de Saúde Gaia Espinho (ULSGE)Vila Nova de GaiaPortugal
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
| | - Yuhong Yuan
- Department of MedicineLondon Health Science CenterLondonOntarioCanada
- Division of GastroenterologyDepartment of MedicineWestern UniversityLondonOntarioCanada
| | - Iago Rodríguez‐Lago
- Department of GastroenterologyHospital Universitario de GaldakaoBiocruces Bizkaia Health Research InstituteDeusto UniversityGaldakaoSpain
| | - Mário Sousa‐Pimenta
- Department of BiomedicineUnit of Pharmacology and TherapeuticsFaculty of MedicineUniversity of PortoPortoPortugal
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
| | - Cláudia Camila Dias
- Knowledge Management UnitFaculty of MedicineUniversity of PortoPortoPortugal
- CINTESIS@RISEDepartment of Community MedicineInformation and Health Decision Sciences (MEDCIDS)Faculty of Medicine of the University of Porto (FMUP)PortoPortugal
| | | | - Vipul Jairath
- Division of GastroenterologyDepartment of MedicineWestern UniversityLondonOntarioCanada
- Alimentiv, Inc.LondonOntarioCanada
- Department of Epidemiology and BiostatisticsWestern UniversityLondonOntarioCanada
| | - Fernando Magro
- CINTESIS@RISEDepartment of Community MedicineInformation and Health Decision Sciences (MEDCIDS)Faculty of Medicine of the University of Porto (FMUP)PortoPortugal
- Department of GastroenterologyUnidade Local de Saúde São João (ULSSJ)PortoPortugal
| |
Collapse
|
4
|
Berenblum Tobi C, Buchbinder M. Physicians' Explanatory Models of Pediatric Inflammatory Bowel Disease: A Qualitative Interview Study. QUALITATIVE HEALTH RESEARCH 2024; 34:552-561. [PMID: 38127803 PMCID: PMC11080382 DOI: 10.1177/10497323231218159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Explanatory models are culturally informed representations of illness that convey understandings of the etiology and expected course of disease. Substantial research has explored lay explanatory models, but examining physicians' clinical explanatory models can also provide insight into patients' understandings of illness because physicians are a foundational source of authoritative knowledge that shapes lay concepts of illness and disease. This study characterized the explanatory models used by pediatric gastroenterologists when explaining inflammatory bowel disease (IBD) to children. We conducted semi-structured qualitative interviews with 20 pediatric gastroenterologists across the United States about their clinical communication and explanatory models. We identified two primary explanatory models used to describe immune dysregulation in pediatric IBD: the defense and protection model, which characterizes the immune system as an army that erroneously sees the body as "non-self" and attacks it; and the switch model, which conceptualizes treatment as activating a switch that turns off a faulty immune response. We also identified two models used by some physicians to describe inflammation: the scratch and scrape model, which compares IBD inflammation to scratches or scrapes on the skin; and the bonfire model, which compares inflammation to a fire in need of extinguishing. While the use of militaristic metaphors is pervasive in medicine, describing autoimmunity as a battle against the self may lead children to perceive their body as the enemy. This may be compounded by describing the immune system as "confused" while noting its ongoing protective function. Use of these explanatory models may nevertheless improve patient disease-related knowledge.
Collapse
Affiliation(s)
| | - Mara Buchbinder
- Department of Social Medicine and Center for Bioethics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
5
|
Blesl A, Wurm P, Waschina S, Gröchenig HP, Novacek G, Primas C, Reinisch W, Kutschera M, Illiasch C, Hennlich B, Steiner P, Koch R, Tillinger W, Haas T, Reicht G, Mayer A, Ludwiczek O, Miehsler W, Steidl K, Binder L, Reider S, Watschinger C, Fürst S, Kump P, Moschen A, Aden K, Gorkiewicz G, Högenauer C. Prediction of Response to Systemic Corticosteroids in Active UC by Microbial Composition-A Prospective Multicenter Study. Inflamm Bowel Dis 2024; 30:9-19. [PMID: 37463118 PMCID: PMC10769779 DOI: 10.1093/ibd/izad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Corticosteroids are used for induction of remission in patients with moderately to severely active ulcerative colitis. However, up to one-third of patients fail to this therapy. We investigated if fecal microbial composition or its metabolic capacity are associated with response to systemic corticosteroids. METHODS In this prospective, multicenter study, patients with active ulcerative colitis (Lichtiger score ≥4) receiving systemic corticosteroids were eligible. Data were assessed and fecal samples collected before and after 4 weeks of treatment. Patients were divided into responders (decrease of Lichtiger Score ≥50%) and nonresponders. The fecal microbiome was assessed by the 16S rRNA gene marker and analyzed with QIIME 2. Microbial metabolic pathways were predicted using parsimonious flux balance analysis. RESULTS Among 93 included patients, 69 (74%) patients responded to corticosteroids after 4 weeks. At baseline, responders could not be distinguished from nonresponders by microbial diversity and composition, except for a subgroup of biologic-naïve patients. Within 4 weeks of treatment, responders experienced changes in beta diversity with enrichment of ascribed beneficial taxa, including Blautia, Anaerostipes, and Bifidobacterium, as well as an increase in predicted butyrate synthesis. Nonresponders had only minor longitudinal taxonomic changes with a significant increase of Streptococcus salivarius and a microbial composition shifting away from responders. CONCLUSION Baseline microbial diversity and composition seem to be of limited use to predict response to systemic corticosteroids in active ulcerative colitis. Response is longitudinally associated with restoration of microbial composition and its metabolic capacity.
Collapse
Affiliation(s)
- Andreas Blesl
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Philipp Wurm
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvio Waschina
- Christian-Albrechts-University Kiel, Institute for Human Nutrition and Food Science, Nutriinformatics, Kiel, Germany
| | | | - Gottfried Novacek
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Christian Primas
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Walter Reinisch
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Kutschera
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Robert Koch
- Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | - Karin Steidl
- Brothers of Saint John of God Hospital, St. Veit an der Glan, Austria
| | - Lukas Binder
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Simon Reider
- Department of Internal Medicine 2 (Gastroenterology and Hepatology), Faculty of Medicine, Kepler University Hospital, Johannes Kepler University, Linz, Austria
- Christian Doppler Laboratory for Mucosal Immunology, Johannes Kepler University Linz, Linz, Austria
| | - Christina Watschinger
- Department of Internal Medicine 2 (Gastroenterology and Hepatology), Faculty of Medicine, Kepler University Hospital, Johannes Kepler University, Linz, Austria
- Christian Doppler Laboratory for Mucosal Immunology, Johannes Kepler University Linz, Linz, Austria
| | - Stefan Fürst
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Patrizia Kump
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | - Alexander Moschen
- Department of Internal Medicine 2 (Gastroenterology and Hepatology), Faculty of Medicine, Kepler University Hospital, Johannes Kepler University, Linz, Austria
- Christian Doppler Laboratory for Mucosal Immunology, Johannes Kepler University Linz, Linz, Austria
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Internal Medicine I, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Christoph Högenauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Fetter K, Weigel M, Ott B, Fritzenwanker M, Stricker S, de Laffolie J, Hain T. The microbiome landscape in pediatric Crohn's disease and therapeutic implications. Gut Microbes 2023; 15:2247019. [PMID: 37614093 PMCID: PMC10453987 DOI: 10.1080/19490976.2023.2247019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023] Open
Abstract
Dysbiosis of the gut microbiome and a pathological immune response in intestinal tissues form the basis of Crohn's disease (CD), which is a debilitating disease with relevant morbidity and mortality. It is increasing in childhood and adolescents, due to western life-style and nutrition and a large set of predisposing genetic factors. Crohn's disease-associated genetic mutations play an essential role in killing pathogens, altering mucosal barrier function, and protecting the host microbiome, suggesting an important pathogenic link. The intestinal microbiome is highly variable and can be influenced by environmental factors. Changes in microbial composition and a reduction in species diversity have been shown to be central features of disease progression and are therefore the target of therapeutic approaches. In this review, we summarize the current literature on the role of the gut microbiome in childhood, adolescent, and adult CD, current therapeutic options, and their impact on the microbiome.
Collapse
Affiliation(s)
- Karin Fetter
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Benjamin Ott
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Sebastian Stricker
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
| | - Jan de Laffolie
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Shin Y, Han S, Kwon J, Ju S, Choi TG, Kang I, Kim SS. Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients 2023; 15:4466. [PMID: 37892541 PMCID: PMC10609902 DOI: 10.3390/nu15204466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiome is a diverse bacterial community in the human gastrointestinal tract that plays important roles in a variety of biological processes. Short-chain fatty acids (SCFA) are produced through fermentation of dietary fiber. Certain microbes in the gut are responsible for producing SCFAs such as acetate, propionate and butyrate. An imbalance in gut microbiome diversity can lead to metabolic disorders and inflammation-related diseases. Changes in SCFA levels and associated microbiota were observed in IBD, suggesting an association between SCFAs and disease. The gut microbiota and SCFAs affect reactive oxygen species (ROS) associated with IBD. Gut microbes and SCFAs are closely related to IBD, and it is important to study them further.
Collapse
Affiliation(s)
- Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.H.); (J.K.); (S.J.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Jawad AB, Jansson S, Wewer V, Malham M. Early Life Oral Antibiotics Are Associated With Pediatric-Onset Inflammatory Bowel Disease-A Nationwide Study. J Pediatr Gastroenterol Nutr 2023; 77:366-372. [PMID: 37346028 DOI: 10.1097/mpg.0000000000003861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
OBJECTIVES Early-life environmental triggers are thought to play a larger role in pediatric-onset inflammatory bowel disease (pIBD) compared to adult-onset IBD. We aimed to assess the risk of developing pIBD after exposure to oral antibiotics during the first 5 years of life. METHODS In a nation-wide cohort study, we identified all patients diagnosed with pIBD (<18 years at diagnosis) in Denmark between 1995 and 2018 from the National Patient Registry and matched them with up to 10 reference individuals. Antibiotic exposure was defined as being prescribed antibiotics during first 5 years of life. Data were retrieved from the National Prescription Register. Outcome was developing pIBD. Risk estimates are presented by hazard ratios (HR) with 95% confidence intervals (CI). RESULTS We identified 1927 pIBD patients and 18,318 reference individuals. Oral antibiotic exposure during the first 5 years of life was associated with a higher risk of developing pIBD (HR = 1.33 [95% CI: 1.2-1.5], P <0.0001). The risk was also increased if patients had ≥4 antibiotic prescriptions compared to no antibiotics (HR = 1.33 [95% CI: 1.2-1.5], P <0.0001). Broad-spectrum antibiotics increased the risk of pIBD compared to narrow-spectrum antibiotics (HR = 1.29 [95% CI: 1.2-1.4], P < 0.0001). When stratified by IBD subtypes, only Crohn disease was significantly associated with exposure to antibiotics (HR = 1.37 [95% CI: 1.1-1.7], P = 0.002). CONCLUSIONS In this nationwide registry-based study, we found that oral antibiotic exposure during first 5 years of life was associated with an increased risk of pIBD. Repeated antibiotic exposures increased risk estimates.
Collapse
Affiliation(s)
- Ali Bashir Jawad
- From the Medical Faculty, University of Copenhagen, Copenhagen, Denmark
- the Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
| | - Sabine Jansson
- the Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
- the Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
| | - Vibeke Wewer
- the Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
- the Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
| | - Mikkel Malham
- the Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
- the Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Hvidovre, Hvidovre, Denmark
- the Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Cheng T, Xu C, Shao J. Updated immunomodulatory roles of gut flora and microRNAs in inflammatory bowel diseases. Clin Exp Med 2023; 23:1015-1031. [PMID: 36385416 PMCID: PMC9668223 DOI: 10.1007/s10238-022-00935-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Inflammatory bowel disease is a heterogeneous intestinal inflammatory disorder, including ulcerative colitis (UC) and Crohn's disease (CD). Existing studies have shown that the pathogenesis of IBD is closely related to the host's genetic susceptibility, intestinal flora disturbance and mucosal immune abnormalities, etc. It is generally believed that there are complicated interactions between host immunity and intestinal microflora/microRNAs during the occurrence and progression of IBD. Intestinal flora is mainly composed of bacteria, fungi, viruses and helminths. These commensals are highly implicated in the maintenance of intestinal microenvironment homeostasis alone or in combination. MiRNA is an endogenous non-coding small RNA with a length of 20 to 22 nucleotides, which can perform a variety of biological functions by silencing or activating target genes through complementary pairing bonds. A large quantity of miRNAs are involved in intestinal inflammation, mucosal barrier integrity, autophagy, vesicle transportation and other small RNA alterations in IBD circumstance. In this review, the immunomodulatory roles of gut flora and microRNAs are updated in the occurrence and progression of IBD. Meanwhile, the gut flora and microRNA targeted therapeutic strategies as well as other immunomodulatory approaches including TNF-α monoclonal antibodies are also emphasized in the treatment of IBD.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Chen Xu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
10
|
Dar SH, Maniya MT, Merza N, Musheer A, Zahid M, Ahmed F, Shurjeel Q, Qazi S, Ahmed A, Shah H, Zafar A, Iqbal AZ, Khan SF, Rizwan T, Ligresti R. The Association of Antibiotic Exposure with New-Onset Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Clin Res Hepatol Gastroenterol 2023; 47:102129. [PMID: 37116651 DOI: 10.1016/j.clinre.2023.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION The role of antibiotics in the development of inflammatory bowel disease (IBD) remains controversial, primarily due to conflicting data from individual studies. We conduct a systematic review and meta-analysis to study the effect of antibiotic exposure on IBD development. METHODOLOGY The MEDLINE and Cochrane CENTRAL databases were queried from their inception to April 2021 for published articles studying the association between antibiotic exposure and new-onset IBD. Our analysis was stratified by timing of antibiotic exposure - exposure in childhood and any lifetime exposure. Adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CIs) from each study were pooled using a random-effects model. RESULTS 10 case-control studies and 2 cohort studies (N=29,880 IBD patients and N=715,548 controls) were included. Patients with Crohn's Disease (CD), compared with controls, were associated significantly with antibiotic exposure in childhood and any lifetime exposure to antibiotics (OR 1.52 [1.23-1.87]; p<0.00001). Patients with Ulcerative Colitis (UC), compared with controls, reported non-significant association with antibiotic exposure in childhood and any lifetime exposure. (OR 1.11 [0.93-1.33]; p=0.25) CONCLUSION: This meta-analysis suggests that exposure to antibiotics significantly increases the odds of developing CD and IBD in general. These findings re-emphasize the importance of cautious and judicious use of antibiotics.
Collapse
Affiliation(s)
- Sophia Haroon Dar
- Department of Medicine, Long Island Jewish Medical Center, Queens, New York, USA.
| | | | - Nooraldin Merza
- Department of Internal Medicine, University of Toledo, Ohio, USA
| | - Adeena Musheer
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Mariyam Zahid
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Furqan Ahmed
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Qazi Shurjeel
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Sana Qazi
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Aymen Ahmed
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Hamza Shah
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Adnan Zafar
- Department of Medicine, CMH Lahore Medical College, Lahore, Pakistan
| | - Arsalan Zafar Iqbal
- Department of Medicine, FMH of College of Medicine and Dentistry, Lahore, Pakistan
| | - Shah Fahad Khan
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Tehlil Rizwan
- Department of Medicine, AMITA Health Saint Joseph Hospital, Chicago, Illinois, USA
| | - Rosario Ligresti
- Hackensack University School of Medicine, Medical Director, National Pancreas Foundation, Hackensack University Medical Center, Hackensack, NJ
| |
Collapse
|
11
|
Kriger-Sharabi OA, Kopylov U. Harnessing the Power of Precision Medicine and Novel Biomarkers to Treat Crohn’s Disease. J Clin Med 2023; 12:jcm12072696. [PMID: 37048779 PMCID: PMC10094767 DOI: 10.3390/jcm12072696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory condition that affects the gastrointestinal tract. It is part of a spectrum of inflammatory Bowel Diseases (IBD). The disease is complex, characterized by significant inter and intra-individual heterogeneity, which contributes to a diverse and multifaceted portrayal of the disease. Consequently, applying specific and accurate treatment is challenging, and therapeutic success rates remain disappointing and insufficient. In recent years, significant advances in the therapeutic potential of CD have been made. Hope has been provided by these developments in the form of an expanding treatment toolkit. However, even with these beneficial adjustments, patients are frequently treated using an ineffective “one size fits all” treatment protocol, ultimately leading to a plateau in drug effectiveness and a decline in overall treatment success rates. Furthermore, with the advancement in the genome-wide association study, in combination with significant bioinformatic developments, the world of medicine has moved in the direction of personalized, tailored-treatment medicine, and this trend has not escaped the world of IBDs. Prediction models, novel biomarkers, and complex algorithms are emerging and inspiring optimism that CD patients will be treated with “precision medicine” in the near future, meaning that their treatments will be selected based on the patient’s various unique features. In this review, we will outline the current diagnostic and therapeutic limitations that lead to a glass ceiling effect and thus send us in pursuit of discovering novel biomarkers. We will illustrate the challenges and difficulties in discovering relevant and innovative biomarkers and implementing them into everyday clinical practice. We will also heighten the progress made in practicing personalized medicine for CD patients and shed light on future directions and horizons.
Collapse
Affiliation(s)
- Ofra Aviva Kriger-Sharabi
- Department of Gatsroenterology, Assuta Ashdod Medical Center, Affiliated to The Ben-Gurion University (BGU) Medical School, Ashdod 7747629, Israel
| | - Uri Kopylov
- Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Affliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Wei Y, Song D, Wang R, Li T, Wang H, Li X. Dietary fungi in cancer immunotherapy: From the perspective of gut microbiota. Front Oncol 2023; 13:1038710. [PMID: 36969071 PMCID: PMC10032459 DOI: 10.3389/fonc.2023.1038710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Immunotherapies are recently emerged as a new strategy in treating various kinds of cancers which are insensitive to standard therapies, while the clinical application of immunotherapy is largely compromised by the low efficiency and serious side effects. Gut microbiota has been shown critical for the development of different cancer types, and the potential of gut microbiota manipulation through direct implantation or antibiotic-based depletion in regulating the overall efficacy of cancer immunotherapies has also been evaluated. However, the role of dietary supplementations, especially fungal products, in gut microbiota regulation and the enhancement of cancer immunotherapy remains elusive. In the present review, we comprehensively illustrated the limitations of current cancer immunotherapies, the biological functions as well as underlying mechanisms of gut microbiota manipulation in regulating cancer immunotherapies, and the benefits of dietary fungal supplementation in promoting cancer immunotherapies through gut microbiota modulation.
Collapse
Affiliation(s)
- Yibing Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingka Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| | - Xiaoguang Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoguang Li, ; Hui Wang,
| |
Collapse
|
13
|
Becker HEF, Demers K, Derijks LJJ, Jonkers DMAE, Penders J. Current evidence and clinical relevance of drug-microbiota interactions in inflammatory bowel disease. Front Microbiol 2023; 14:1107976. [PMID: 36910207 PMCID: PMC9996055 DOI: 10.3389/fmicb.2023.1107976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic relapsing-remitting disease. An adverse immune reaction toward the intestinal microbiota is involved in the pathophysiology and microbial perturbations are associated with IBD in general and with flares specifically. Although medical drugs are the cornerstone of current treatment, responses vary widely between patients and drugs. The intestinal microbiota can metabolize medical drugs, which may influence IBD drug (non-)response and side effects. Conversely, several drugs can impact the intestinal microbiota and thereby host effects. This review provides a comprehensive overview of current evidence on bidirectional interactions between the microbiota and relevant IBD drugs (pharmacomicrobiomics). Methods Electronic literature searches were conducted in PubMed, Web of Science and Cochrane databases to identify relevant publications. Studies reporting on microbiota composition and/or drug metabolism were included. Results The intestinal microbiota can both enzymatically activate IBD pro-drugs (e.g., in case of thiopurines), but also inactivate certain drugs (e.g., mesalazine by acetylation via N-acetyltransferase 1 and infliximab via IgG-degrading enzymes). Aminosalicylates, corticosteroids, thiopurines, calcineurin inhibitors, anti-tumor necrosis factor biologicals and tofacitinib were all reported to alter the intestinal microbiota composition, including changes in microbial diversity and/or relative abundances of various microbial taxa. Conclusion Various lines of evidence have shown the ability of the intestinal microbiota to interfere with IBD drugs and vice versa. These interactions can influence treatment response, but well-designed clinical studies and combined in vivo and ex vivo models are needed to achieve consistent findings and evaluate clinical relevance.
Collapse
Affiliation(s)
- Heike E. F. Becker
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Karlijn Demers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Luc J. J. Derijks
- Department of Clinical Pharmacy and Pharmacology, Máxima Medical Center, Veldhoven, Netherlands
- Department of Clinical Pharmacy and Toxicology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School of Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, CAPHRI School of Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
14
|
Huang Z, Liu K, Ma W, Li D, Mo T, Liu Q. The gut microbiome in human health and disease-Where are we and where are we going? A bibliometric analysis. Front Microbiol 2022; 13:1018594. [PMID: 36590421 PMCID: PMC9797740 DOI: 10.3389/fmicb.2022.1018594] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Background There are trillions of microbiota in our intestinal tract, and they play a significant role in health and disease via interacting with the host in metabolic, immune, neural, and endocrine pathways. Over the past decades, numerous studies have been published in the field of gut microbiome and disease. Although there are narrative reviews of gut microbiome and certain diseases, the whole field is lack of systematic and quantitative analysis. Therefore, we outline research status of the gut microbiome and disease, and present insights into developments and characteristics of this field to provide a holistic grasp and future research directions. Methods An advanced search was carried out in the Web of Science Core Collection (WoSCC), basing on the term "gut microbiome" and its synonyms. The current status and developing trends of this scientific domain were evaluated by bibliometric methodology. CiteSpace was used to perform collaboration network analysis, co-citation analysis and citation burst detection. Results A total of 29,870 articles and 13,311 reviews were retrieved from the database, which involve 42,900 keywords, 176 countries/regions, 19,065 institutions, 147,225 authors and 4,251 journals. The gut microbiome and disease research is active and has received increasing attention. Co-cited reference analysis revealed the landmark articles in the field. The United States had the largest number of publications and close cooperation with other countries. The current research mainly focuses on gastrointestinal diseases, such as inflammatory bowel disease (IBD), ulcerative colitis (UC) and Crohn's disease (CD), while extra-intestinal diseases are also rising, such as obesity, diabetes, cardiovascular disease, Alzheimer's disease, Parkinson's disease. Omics technologies, fecal microbiota transplantation (FMT) and metabolites linked to mechanism would be more concerned in the future. Conclusion The gut microbiome and disease has been a booming field of research, and the trend is expected to continue. Overall, this research field shows a multitude of challenges and great opportunities.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Rutter JW, Dekker L, Owen KA, Barnes CP. Microbiome engineering: engineered live biotherapeutic products for treating human disease. Front Bioeng Biotechnol 2022; 10:1000873. [PMID: 36185459 PMCID: PMC9523163 DOI: 10.3389/fbioe.2022.1000873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
The human microbiota is implicated in many disease states, including neurological disorders, cancer, and inflammatory diseases. This potentially huge impact on human health has prompted the development of microbiome engineering methods, which attempt to adapt the composition and function of the human host-microbiota system for a therapeutic purpose. One promising method is the use of engineered microorganisms that have been modified to perform a therapeutic function. The majority of these products have only been demonstrated in laboratory models; however, in recent years more concepts have reached the translational stage. This has led to an increase in the number of clinical trials, which are designed to assess the safety and efficacy of these treatments in humans. Within this review, we highlight the progress of some of these microbiome engineering clinical studies, with a focus on engineered live biotherapeutic products.
Collapse
Affiliation(s)
- Jack W. Rutter
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
- *Correspondence: Jack W. Rutter,
| | - Linda Dekker
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Kimberley A. Owen
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | - Chris P. Barnes
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
- Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| |
Collapse
|
16
|
Zhang S, Jin W, Zhang W, Ren F, Wang P, Liu N. Pea Albumin Attenuates Dextran Sulfate Sodium-Induced Colitis by Regulating NF-κB Signaling and the Intestinal Microbiota in Mice. Nutrients 2022; 14:3611. [PMID: 36079868 PMCID: PMC9460122 DOI: 10.3390/nu14173611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease remains a global burden with rapidly increasing incidence and prevalence in both industrialized countries and developing countries. In this study, we prepared pea albumin from pea seeds and determined its beneficial effects being anti-inflammatory and on gut microbiota modulation in dextran sulfate sodium (DSS)-challenged mice. METHOD Six-week-old C57BL/6N male mice received an equivalent volume (200 μL) of sterile phosphate balanced solution, 0.375, 0.75, or 1.50 g/kg body weight (BW) of pea albumin that was subjected to 2.0% DSS for 7 days to induce colitis. On day 17 of the experiment, all mice were sacrificed after blood sample collection, and colon tissue and colon contents were collected. BW change curve, colon length, myeloperoxidase (MPO) activity, mucus staining, immunofluorescence staining of T cells and macrophages, cytokines, pro-inflammatory genes expression, nuclear factor-κB (NF-κB) and signal transducer, and activator of transcription 3 (STAT3) signaling pathways as well as 16S DNA sequence were measured. RESULTS Our results show that pea albumin alleviates DSS-induced BW loss, colon length shortening, enhanced MPO activity, cytokines secretion, mucus deficiency, and inflammatory cell infiltration, as well as enhanced pro-inflammatory genes expression. In addition, the overactivation of NF-κB and STAT3 following DSS exposure is attenuated by pea albumin administration. Of particular interest, pea albumin oral administration restored gut microbiota dysbiosis as evidenced by enhanced α-diversity, restored β-diversity, and promoted relative abundance of Lactobacillus and Lachnospiraceae_NK4A136_group. CONCLUSION Taken together, the data provided herein demonstrated that pea albumin plays a protective role in DSS-induced colitis by reducing inflammatory cell infiltration, pro-inflammatory genes expression and pro-inflammatory cytokines release, inactivation of NF-κB signal, and gut microbiota modulation.
Collapse
Affiliation(s)
- Shucheng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenhua Jin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Weibo Zhang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Xu P, Lv T, Dong S, Cui Z, Luo X, Jia B, Jeon CO, Zhang J. Association between intestinal microbiome and inflammatory bowel disease: insights from bibliometric analysis. Comput Struct Biotechnol J 2022; 20:1716-1725. [PMID: 35495114 PMCID: PMC9019919 DOI: 10.1016/j.csbj.2022.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal microbiota has been increasingly studied in the field of IBD over the last 20 years. The gut microbiome, metabolites, and their corresponding host signaling pathways are highly associated with IBD. Probiotics may relieve IBD as a complementary therapy. The pathogenesis and treatment strategies of IBD need to be further studied.
The gut microbiome is highly linked to inflammatory bowel disease (IBD). A total of 3890 publications related to the two terms from 2000 to 2020 were extracted from the Web of Science Core Collection to study the association from a bibliometric perspective. Publications on this topic have grown rapidly since 2008. The United States and Harvard University are the country and institution with the largest number of publications, respectively. Inflammatory Bowel Diseases is the most productive journal with 211 published articles. The most influential journal in this field is Gut with 13,359 citations. The co-citation analysis of references showed that the IBD-related topics with the highest focus are “gut microbiota,” “metagenomics,” “bacterial community,” “fecal microbiota transplantation,” “probiotics,” and “colitis-associated colorectal cancer.” Keyword cluster and keyword burst analyses showed that “gut microbiota,” “metagenomics,” and “fecal microbiota transplantation” are currently the most researched topics in the field of IBD. The literature in this field is mainly distributed between alterations of the intestinal microbiota, microbial metabolites, and related host signaling pathways. Probiotic treatment also frequently appears in literature. This bibliometric analysis can guide future research and promote the development of the field of gut microbiome and IBD.
Collapse
|
18
|
El-Sahhar S, Varga-Weisz P. The gut microbiome in health and disease: Inflammatory bowel diseases. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|