1
|
Wang J, Zhang HM, Zhu GH, Zhao LL, Shi J, Dai ZT, Li JP, Li XR, Sun F, Wu Y, Chen SY, Li HN, Liao XH, Xiang Y. STT3-mediated aberrant N-glycosylation of CD24 inhibits paclitaxel sensitivity in triple-negative breast cancer. Acta Pharmacol Sin 2024:10.1038/s41401-024-01419-0. [PMID: 39668180 DOI: 10.1038/s41401-024-01419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/27/2024] [Indexed: 12/14/2024] Open
Abstract
Paclitaxel is one of the main chemotherapic medicines against triple-negative breast cancer (TNBC) in clinic. However, it has been perplexed by paclitaxel resistance in TNBC patients, resulting in a poor prognosis. Abnormal protein glycosylation is closely related to the occurrence and progression of tumors and malignant phenotypes such as chemotherapy resistance. CD24 is a highly glycosylated membrane protein that is highly expressed in TNBC, leading to tumorigenesis and poor prognosis. In this study we investigated the relationship between abnormal glycosylation of CD24 and paclitaxel susceptibility in TNBC and the molecular mechanisms. We showed that CD24 protein levels were significantly up-regulated in both TNBC tissues and cells, and CD24 protein was highly glycosylated. Genetic and pharmacological inhibition of N-glycosylation of CD24 enhances the anticancer activity of paclitaxel in vitro and tumor xenograft models. We revealed that the molecular mechanism of N-glycosylation of CD24 in paclitaxel resistance involved inhibition of ferroptosis, a new form that regulates cell death. Inhibition of N-glycosylation of CD24 increased glutathione consumption, iron content, and lipid peroxidation, resulting in paclitaxel-induced ferroptosis. We demonstrated that endoplasmic reticulum (ER)-associated glycosyltransferase STT3 isoforms (including both STT3A and STT3B isoforms) enable N-glycosylation of the L-asparagine (N) site. Knockout of the endogenous STT3 isoform in TNBC cells partially reduced the glycosylation status of CD24. Our results demonstrate the critical role of N-glycosylation of CD24 in weakening drug sensitivity by inhibiting ferroptosis, highlighting new insights that targeting N-glycosylation of CD24 has great potential to promote chemotherapy sensitivity and efficacy.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Materials Science, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hui-Min Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Human Anatomy&Histoembryology, School of Basic Medical sciences, Xinxiang Medical University, Xinxiang, 453000, China
| | - Guan-Hua Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Li-Li Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Ji Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Sun
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yuan Wu
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Shao-Yong Chen
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Yuan Xiang
- Department of Medical Laboratory, Tongji Medical College, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
2
|
Wang ZJ, Zhan XY, Ma LY, Yao K, Dai HY, Kumar Santhanam R, Zhou MS, Jia H. Activation of the γ-secretase/NICD-PXR/Notch pathway induces Taxol resistance in triple-negative breast cancer. Biochem Pharmacol 2024; 230:116577. [PMID: 39427919 DOI: 10.1016/j.bcp.2024.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Triple-negative breast cancer (TNBC) is currently the only subtype lacking efficient targeted therapies. Taxol is the primary chemotherapeutic agent for TNBC. However, Taxol resistance often develops in the treatment of TNBC patients, which importantly contributes to high mortality and poor prognosis in TNBC patients. Recent preclinical studies have shown that the inhibition of Notch pathway by γ-secretase inhibitors can slow down the progression of TNBC. Our studies in bioinformatic analysis of breast cancer patients and TNBC/Taxol cells in vitro showed that there was high correlation between the activation of Notch pathway and Taxol resistance in TNBC. Increased γ-secretase activity (by the overexpression of catalytic core PSEN-1) significantly reduced Taxol sensitivity of TNBC cells, and enhanced biological characteristics of malignancy in vitro, and tumour growth in vivo. Mechanistically, increased γ-secretase activity led to the accumulation of NICD in the nucleus, promoting the interaction between NICD and PXR to activate PXR, which triggered the transcription of PXR downstream associated drug resistance genes. Furthermore, we showed that pharmacological inhibition of γ-secretase with γ-secretase inhibitors (Nirogacestat and DAPT) can reverse Taxol resistance in vivo and in vitro. Our results for the first time demonstrate that the activation of γ -secretase/NCD-PXR/Notch pathway is one of important mechanisms to cause Taxol resistance in TNBC, and the blockades of this pathway may represent a new therapeutic strategy for overcoming Taxol resistance in TNBC.
Collapse
Affiliation(s)
- Zuo-Jun Wang
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City 110840, Liaoning Province, PR China.
| | - Xiang-Yi Zhan
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang 110034, PR China.
| | - Liang-Yu Ma
- Department of Pharmacy, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang City 110840, Liaoning Province, PR China.
| | - Kuo Yao
- Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, PR China.
| | - Han-Yu Dai
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang 110034, PR China.
| | - Ramesh Kumar Santhanam
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ming-Sheng Zhou
- Science and Experiment Research Center of Shenyang Medical College, Shenyang 110034, PR China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, PR China.
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang 110034, PR China; Shenyang Key Laboratory of Vascular Biology, Shenyang 110034, PR China.
| |
Collapse
|
3
|
Cui A, Liu H, Liu X, Zhang M, Xiao B, Wang B, Yang J. Steroidal saponins: Natural compounds with the potential to reverse tumor drug resistance (Review). Oncol Lett 2024; 28:585. [PMID: 39421314 PMCID: PMC11484340 DOI: 10.3892/ol.2024.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Steroidal saponins are a type of natural product that have been widely used in Chinese herbal medicine, with a variety of pharmacological activities, such as antitumor, anti-inflammatory and anti-bacterial effects. Cancer has become a growing global health problem, and drug therapy is currently the most important clinical antitumor treatment. However, drug resistance is a major obstacle to the effectiveness of chemotherapy, resulting in >90% of deaths of patients with cancer receiving conventional chemotherapy. It has been found that steroidal saponins may exert an effect on the reversal of drug resistance in tumor cells by regulating apoptosis, autophagy, epithelial-mesenchymal transition and drug efflux through multiple related signaling pathways. The present study reviews the role and mechanism of steroidal saponins in the treatment of tumor drug resistance, aiming to provide a scientific basis and research ideas for the future development and clinical application of natural steroidal saponins.
Collapse
Affiliation(s)
- Aiping Cui
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Hai Liu
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaoxuan Liu
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Minhong Zhang
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Bang Xiao
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Biao Wang
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jianqiong Yang
- The Clinical Medicine Research Center of The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
- Ganzhou Key Laboratory of Osteoporosis Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
4
|
Ashitha KT, Lakshmi S, Anjali S, Krishna A, Prakash V, Anbumani S, Priya S, Somappa SB. Design and discovery of carboxamide-based pyrazole conjugates with multifaceted potential against Triple-Negative Breast cancer MDA-MB-231 cells. Bioorg Med Chem Lett 2024; 113:129960. [PMID: 39265894 DOI: 10.1016/j.bmcl.2024.129960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
We report the design, synthesis, and validation of carboxamide-based pyrazole and isoxazole conjugates with a multifaceted activity against Breast Cancer Cell Line MDA-MB-231. The study established that amongst the series, N-(3,5-bis(trifluoromethyl)benzyl)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazole-5-carboxamide (5g) exhibits the highest potency in inhibiting Breast Cancer Cell Line MDA-MB-231 with an IC50 value of 15.08 ± 0.04 µM. The MDA-MB-231 cells, upon treatment with compound 5g, exhibited characteristic apoptotic specific activities such as nuclear fragmentation, phosphatidylserine translocation to the outer plasma membrane, release of lactate dehydrogenase (LDH), and upregulation of caspase 3 and caspase 9 activities. Also, the modulation of pro and antiapoptotic proteins in 5g treated MDA-MB-231 cells was revealed by membrane array analysis. More importantly, the combination of paclitaxel and compound 5g has exhibited improved activity by several folds via their synergistic effects.
Collapse
Affiliation(s)
- K T Ashitha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Lakshmi
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Anjali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Krishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ved Prakash
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Priya
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Al-Hawary SIS, Altalbawy FMA, Jasim SA, Jyothi S R, Jamal A, Naiyer MM, Mahajan S, Kalra H, Jawad MA, Zwamel AH. Inhibitors of the mTOR signaling pathway can play an important role in breast cancer immunopathogenesis. Cell Biol Int 2024; 48:1601-1611. [PMID: 39164963 DOI: 10.1002/cbin.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
This study explores the critical role of inhibitors targeting the mammalian target of rapamycin (mTOR) signaling pathway in breast cancer research and treatment. The mTOR pathway, a central regulator of cellular processes, has been identified as a crucial factor in the development and progression of breast cancer. The essay explains the complex molecular mechanisms through which mTOR inhibitors, such as rapamycin and its analogs, exert their anticancer effects. These inhibitors can stop cell growth, proliferation, and survival in breast cancer cells by blocking critical signaling pathways within the mTOR pathway. Furthermore, the essay discusses the implications of using mTOR inhibitors as a comprehensive therapeutic strategy. It emphasizes the potential benefits of combining mTOR inhibitors with other treatment approaches to enhance the effectiveness of breast cancer treatment. The evolving landscape of breast cancer research underscores the significance of mTOR as a therapeutic target and highlights ongoing efforts to improve and optimize mTOR inhibitors for clinical use. In conclusion, the essay asserts that inhibitors of the mTOR signaling pathway offer a promising approach in the fight against breast cancer. These inhibitors provide a focused and effective intervention targeting specific dysregulations within the mTOR pathway. As research advances, the integration of mTOR inhibitors into customized combination therapies holds excellent potential for shaping a more effective and personalized approach to breast cancer treatment, ultimately leading to improved outcomes for individuals affected by this complex and diverse disease.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Azfar Jamal
- Health and Basic Science Research Centre, Majmaah University, Al-Majmaah, Saudi Arabia
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Mohammed M Naiyer
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
| | - Shriya Mahajan
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Hitesh Kalra
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab, India
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
6
|
Liu Y, Zou Y, Ye Y, Chen Y. Advances in the Understanding of the Pathogenesis of Triple-Negative Breast Cancer. Cancer Med 2024; 13:e70410. [PMID: 39558881 PMCID: PMC11574469 DOI: 10.1002/cam4.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by high aggressiveness, high malignancy, and poor prognosis compared to other breast cancer subtypes. OBJECTIVE This review aims to explore recent advances in understanding TNBC and to provide new insights and potential references for clinical treatment. METHODS We examined current literature on TNBC to analyze molecular subtypes, genetic mutations, signaling pathways, mechanisms of drug resistance, and emerging therapies. RESULTS Findings highlight key aspects of TNBC's molecular subtypes, relevant mutations, and pathways, alongside emerging treatments that target drug resistance mechanisms. CONCLUSION These insights into TNBC pathogenesis may help guide future therapeutic strategies and improve clinical outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Yuhan Liu
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yuhan Zou
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yangli Ye
- College of Life Sciences and TechnologyShandong Second Medical UniversityWeifangChina
| | - Yong Chen
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical SciencesShandong Second Medical UniversityWeifangChina
| |
Collapse
|
7
|
Taghipour YD, Zarebkohan A, Salehi R, Talebi M, Rahbarghazi R, Khordadmehr M, Khavandkari S, Badparvar F, Torchilin VP. Enhanced docetaxel therapeutic effect using dual targeted SRL-2 and TA1 aptamer conjugated micelles in inhibition Balb/c mice breast cancer model. Sci Rep 2024; 14:24603. [PMID: 39427007 PMCID: PMC11490543 DOI: 10.1038/s41598-024-75042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
Effective targeting and delivery of large amounts of medications into the cancer cells enhance their therapeutic efficacy through saturation of cellular defensive mechanisms, which is the most privilege of nano drug delivery systems (NDDS) compared to traditional approaches. Herein, we designed dual-pH/redox responsive DTX-loaded poly (β-amino ester) (PBAS) micelles decorated with a chimeric peptide and TA1 aptamer. In vitro and in vivo results demonstrated that the designed nanoplatform possessed an undetectable nature in the blood circulation, but after exposure to the tumor microenvironment (TME) of 4T1 breast cancer, it suddenly changed into dual targeting nanoparticles (NPs) (containing two ligands, SRL-2 and TA1 aptamer). The dual targeting NPs destruction in the high GSH and low pH conditions of the cancer cells led to amplified DTX release (around 70% at 24 h). The IC50 value of DTX-loaded MMP-9 sensitive heptapeptide/TA1 aptamer-modified poly (β-amino ester) (MST@PBAS) micelles and free DTX after 48 h of exposure was determined to be 1.5 µg/ml and 7.5 µg/ml, respectively. The nano-formulated DTX exhibited cytotoxicity that was 5-fold stronger than free DTX (Pvalue˂0.001). Cell cycle assay test results showed that following exposure to MST@PBAS micelles, a considerable rise in the sub G1 population (48%) suggested that apoptosis by cell cycle arrest had occurred. DTX-loaded MST@PBAS micelles revealed significantly higher (Pvalue ˂ 0.001) levels of early apoptosis (59.8%) than free DTX (44.7%). Interestingly, in vitro uptake studies showed a significantly higher TME accumulation of dual targeted NPs (6-fold) compared to single targeted NPs (Pvalue < 0.001) which further confirmed by in vivo biodistribution and fluorescent TUNEL assay experiments. NPs treated groups demonstrated notable tumor growth inhibition in 4T1 tumor bearing Balb/c mice by only 1/10th of the DTX therapeutic dose (TD) as a drug model. In conclusion, cleverly designed nanostructures here demonstrated improved anticancer effects by enhancing tumor targeting, delivering chemotherapeutic agents more accurately, promoting drug release, reducing the therapeutic dosage, and lowering side effects of anticancer drugs.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 516661-4733, Iran
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Amir Zarebkohan
- Drug Applied Research Center, Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 516661-4733, Iran.
| | - Roya Salehi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 516661-4733, Iran.
- Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, 51666-18559, Iran.
| | - Mehdi Talebi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sharareh Khavandkari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Fahimeh Badparvar
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Chemical Engineering, Northeastern University, Boston, USA
| |
Collapse
|
8
|
Lai J, Deng S, Cao J, Ren Y, Xu Z, Qi X, Xu M, Liao N. Identification of biomarker associated with Trop2 in breast cancer: implication for targeted therapy. Discov Oncol 2024; 15:413. [PMID: 39240479 PMCID: PMC11379678 DOI: 10.1007/s12672-024-01261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
PURPOSE Trop2, a cell membrane glycoprotein, is overexpressed in almost all epithelial cancers. This study aimed to explore the mutational characteristics and significance of Trop2 in breast cancer (BC). METHODS Patients diagnosed with BC (n = 77) were enrolled to investigate expression level and clinical characteristics of Trop2. Database of cBioPortal and Kaplan-Meier Plotter were used to evaluate the effects of Trop2 (TACSTD2) genomic ateration and mRNA expression levels on disease-free survival (DFS) and relapse-free survival (RFS), respectively. Based on next generation sequencing analysis, the Trop2 mutation characteristics of BC patients were deeply depicted. In addition, Trop2 expression, mutation and methylation signature associated with Trop2 mutations were analyzed. RESULTS Trop2 mutation and high expression of Trop2 were predictive biomarker for shorter DFS and RFS in BC. The positive rate of Trop2 expression in these 77 BC patients was 96.1% (74/77). Based on the Trop2 expression level, the patients were classified into Trop2 negative group, medium expression group and high expression group. The mutation frequencies of MAP3K1, NOTCH2, PTEN and MAGI2 were significantly higher in Trop2 medium expression group than high expression group. Moreover, we investigated the effect of the Trop2 mutations on other genes, including co-expressed genes, differentially mutated genes, differentially expressed genes, gene methylation and phosphorylation. We found that MED8, DPH2, KDM4A, EBNA1BP2, USP1, IPO13, CGAS, PRKAA2, NCOA7, ASCC3 and ABRACL were differentially expressed, mutated and methylated between Trop2 mutation group and wild group. CONCLUSION MAP3K1, NOTCH2, PTEN and MAGI2 mutations were significantly different between Trop2 medium expression and Trop2 high expression BC patients. The effects of Trop2 mutation on the expression, variation, methylation, and phosphorylation of other genes were comprehensively revealed. High expression level of Trop2 and Trop2 mutation were predictive biomarker for poor prognosis and targeted therapy in BC.
Collapse
Affiliation(s)
- Jianguo Lai
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shuxuan Deng
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jiyuan Cao
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yongqi Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zanmei Xu
- Medical Department, Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Xiaofang Qi
- Medical Department, Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Mian Xu
- Medical Department, Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Yang S, Li D. Role of microRNAs in triple‑negative breast cancer and new therapeutic concepts (Review). Oncol Lett 2024; 28:431. [PMID: 39049985 PMCID: PMC11268089 DOI: 10.3892/ol.2024.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer has surpassed lung cancer as the most prevalent malignancy affecting women worldwide. Triple-negative breast cancer (TNBC) is the type of breast cancer with the worst prognosis. As a heterogeneous disease, TNBC has a pathogenesis that involves multiple oncogenic pathways, including involvement of gene mutations and alterations in signaling pathways. MicroRNAs (miRNAs) are small endogenous, single-stranded non-coding RNAs that bind to the 3' untranslated region of target cell mRNAs to negatively regulate the gene expression of these specific mRNAs. Therefore, miRNAs are involved in cell growth, development, division and differentiation stages. miRNAs are also involved in gene targeting in tumorigenesis, tumor growth and the regulation of metastasis, including in breast cancer. Meanwhile, miRNAs also regulate components of signaling pathways. In this review, the role of miRNAs in the TNBC signaling pathway discovered in recent years is described in detail. The new concept of bi-targeted therapy for breast cancer using miRNA and artificial intelligence is also discussed.
Collapse
Affiliation(s)
- Shaofeng Yang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Donghai Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
10
|
Wang Y, Zhang Y, Qi X. EP300 promotes tumor stemness via epigenetic activation of CRISP3 leading to lobaplatin resistance in triple-negative breast cancer. Hum Cell 2024; 37:1475-1488. [PMID: 38879857 DOI: 10.1007/s13577-024-01091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/02/2024] [Indexed: 08/23/2024]
Abstract
Lobaplatin shows antitumor activity against a wide range of tumors, including triple-negative breast cancer (TNBC), and has been linked to cancer stem cell pool. Here, we investigated the molecular mechanisms behind lobaplatin resistance and stemness in vitro and in vivo. Two chemoresistance-related GEO data sets (GSE70690 and GSE103115) were included to screen out relevant genes. Cysteine-rich secretory protein 3 (CRISP3) was found to be overexpressed in lobaplatin-resistant TNBC and related to poor diagnosis. CRISP3 expression was significantly correlated with tumor stemness markers in lobaplatin-resistant cells. E1A-associated protein p300 (EP300) regulated CRISP3 expression by affecting the H3K27ac modification of the CRISP3 promoter. In addition, knocking down EP300 curbed the malignant biological behavior of lobaplatin-resistant cells, which was antagonized by CRISP3 overexpression. Collectively, our results highlight the EP300/CRISP3 axis as a key driver of lobaplatin resistance in TNBC and suggest that therapeutic targeting of this axis may be an effective strategy for enhancing platinum sensitivity in TNBC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
11
|
Shibata K, Koibuchi N, Sanada F, Katsuragi N, Kanemoto Y, Tsunetoshi Y, Ikebe S, Yamamoto K, Morishita R, Shimazu K, Taniyama Y. The Importance of Suppressing Pathological Periostin Splicing Variants with Exon 17 in Both Stroma and Cancer. Cells 2024; 13:1410. [PMID: 39272982 PMCID: PMC11394140 DOI: 10.3390/cells13171410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Periostin (POSTN) is a type of matrix protein that functions by binding to other matrix proteins, cell surface receptors, or other molecules, such as cytokines and proteases. POSTN has four major splicing variants (PN1-4), which are primarily expressed in fibroblasts and cancer. We have reported that we should inhibit pathological POSTN (PN1-3), but not physiological POSTN (PN4). In particular, pathological POSTN with exon 17 is present in both stroma and cancer, but it is unclear whether the stroma or cancer pathological POSTN should be suppressed. METHODS AND RESULTS We transplanted 4T1 cells (breast cancer) secreting POSTN with exon 17 into 17KO mice lacking POSTN exon 17 to suppress stromal POSTN with exon 17. The results show that 17KO mice had smaller primary tumors and fewer metastases. Furthermore, to suppress cancer POSTN with exon 17, 4T1 cells transfected with POSTN exon 17 skipping oligo or control oligo were transplanted from the tail vein into the lungs. The results show that POSTN exon 17 skipping oligo significantly suppressed lung metastasis. CONCLUSIONS These findings suggest that it is important to suppress POSTN exon 17 in both stroma and cancer. Antibody targeting POSTN exon 17 may be a therapeutic candidate for breast cancer.
Collapse
Affiliation(s)
- Kana Shibata
- Department of Advanced Molecular Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Nobutaka Koibuchi
- Department of Advanced Molecular Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Fumihiro Sanada
- Department of Clinical Gene Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Naruto Katsuragi
- Department of Advanced Molecular Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yuko Kanemoto
- Department of Breast and Endocrine Surgery, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yasuo Tsunetoshi
- Department of Geriatric and General Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Shoji Ikebe
- Graduate School of Dentistry (Oral and Maxillofacial Surgery), Osaka Dental University, Hirakata 573-1121, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yoshiaki Taniyama
- Department of Advanced Molecular Therapy, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
12
|
Chen WJ, Ye QQ, Wu HT, Wu Z, Lan YZ, Fang ZX, Lin WT, Liu J. MiR-338-5p, a novel metastasis-related miRNA, inhibits triple-negative breast cancer progression by targeting the ETS1/NOTCH1 axis. Heliyon 2024; 10:e34949. [PMID: 39157351 PMCID: PMC11327603 DOI: 10.1016/j.heliyon.2024.e34949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Breast cancer ranks as the most prevalent cancer globally, surpassing lung cancer, with recurrence/metastasis to be its main account for the cancer-related mortality. MicroRNAs (miRNAs) participate critically in various physiological and pathological processes through posttranscriptional regulation of downstream genes. Our preliminary findings identified miR-338-5p, potentially linked to metastasis in breast cancer, a previously unexplored area. Analysis of the GSE38867 dataset revealed the decreased miR-338-5p expression in metastatic breast cancer compared to normal tissues. Cellular function experiments and a xenograft tumor model demonstrated the inhibitory function of miR-338-5p on the progression of breast cancer in vitro and in vivo. Furthermore, it downregulated the expression of mesenchymal biomarkers and NOTCH1 significantly. With the predicting targets of miR-338-5p and transcription factors of the NOTCH1 gene, coupled with dual luciferase reporter assays, it is identified ETS1 as the interactor between miR-338-5p and NOTCH1. In breast cancer tissues, as well as in our xenograft tumor model, expression of ETS1 and NOTCH1 was positively correlated using immunohistochemical staining. This study reports, for the first time, on the miR-338-5p/ETS1/NOTCH1 axis and its pivotal role in breast cancer proliferation and metastasis. These findings propose a novel therapeutic strategy for breast cancer patients and lays a foundation for its clinical detection and treatment evaluation.
Collapse
Affiliation(s)
- Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Department of Pathology, Ganzhou Women and Children's Health Care Hospital, Ganzhou, 341000, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Wen-Ting Lin
- Department of Pathology, Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
13
|
Zou ZF, Yang L, Nie HJ, Gao J, Lei SM, Lai Y, Zhang F, Wagner E, Yu HJ, Chen XH, Xu ZA. Tumor-targeted PROTAC prodrug nanoplatform enables precise protein degradation and combination cancer therapy. Acta Pharmacol Sin 2024; 45:1740-1751. [PMID: 38609561 PMCID: PMC11272941 DOI: 10.1038/s41401-024-01266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Proteolysis targeting chimeras (PROTACs) have emerged as revolutionary anticancer therapeutics that degrade disease-causing proteins. However, the anticancer performance of PROTACs is often impaired by their insufficient bioavailability, unsatisfactory tumor specificity and ability to induce acquired drug resistance. Herein, we propose a polymer-conjugated PROTAC prodrug platform for the tumor-targeted delivery of the most prevalent von Hippel-Lindau (VHL)- and cereblon (CRBN)-based PROTACs, as well as for the precise codelivery of a degrader and conventional small-molecule drugs. The self-assembling PROTAC prodrug nanoparticles (NPs) can specifically target and be activated inside tumor cells to release the free PROTAC for precise protein degradation. The PROTAC prodrug NPs caused more efficient regression of MDA-MB-231 breast tumors in a mouse model by degrading bromodomain-containing protein 4 (BRD4) or cyclin-dependent kinase 9 (CDK9) with decreased systemic toxicity. In addition, we demonstrated that the PROTAC prodrug NPs can serve as a versatile platform for the codelivery of a PROTAC and chemotherapeutics for enhanced anticancer efficiency and combination benefits. This study paves the way for utilizing tumor-targeted protein degradation for precise anticancer therapy and the effective combination treatment of complex diseases.
Collapse
Affiliation(s)
- Zhi-Feng Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemistry Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lei Yang
- State Key Laboratory of Chemistry Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Jun Nie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Gao
- State Key Laboratory of Chemistry Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Shu-Min Lei
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi Lai
- State Key Laboratory of Chemistry Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fan Zhang
- Department of Chemistry, Fudan University, Shanghai, 20043, China
| | - Ernst Wagner
- Department of Pharmacy, Ludwig-Maximilians-Universität, 81377, München, Germany
| | - Hai-Jun Yu
- State Key Laboratory of Chemistry Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiao-Hua Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Zhi-Ai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
14
|
Han D, Li Z, Luo L, Jiang H. Targeting Hypoxia and HIF1α in Triple-Negative Breast Cancer: New Insights from Gene Expression Profiling and Implications for Therapy. BIOLOGY 2024; 13:577. [PMID: 39194515 DOI: 10.3390/biology13080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Breast cancer is a complex and multifaceted disease with diverse risk factors, types, and treatment options. Triple-negative breast cancer (TNBC), which lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is the most aggressive subtype. Hypoxia is a common feature of tumors and is associated with poor prognosis. Hypoxia can promote tumor growth, invasion, and metastasis by stimulating the production of growth factors, inducing angiogenesis, and suppressing antitumor immune responses. In this study, we used mRNA-seq technology to systematically investigate the gene expression profile of MDA-MB-231 cells under hypoxia. We found that the hypoxia-inducible factor (HIF) signaling pathway is the primary pathway involved in the cellular response to hypoxia. The genes in which expression levels were upregulated in response to hypoxia were regulated mainly by HIF1α. In addition, hypoxia upregulated various genes, including Nim1k, Rimkla, Cpne6, Tpbgl, Kiaa11755, Pla2g4d, and Ism2, suggesting that it regulates cellular processes beyond angiogenesis, metabolism, and known processes. We also found that HIF1α was hyperactivated in MDA-MB-231 cells under normoxia. A HIF1α inhibitor effectively inhibited the invasion, migration, proliferation, and metabolism of MDA-MB-231 cells. Our findings suggest that hypoxia and the HIF signaling pathway play more complex and multifaceted roles in TNBC than previously thought. These findings have important implications for the development of new therapeutic strategies for TNBC.
Collapse
Affiliation(s)
- Delong Han
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zeyu Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Lingjie Luo
- Institute for Inheritance-Based Innovation of Chinese Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
15
|
Crespo B, Illera JC, Silvan G, Lopez-Plaza P, Herrera de la Muela M, de la Puente Yague M, Diaz del Arco C, de Andrés PJ, Illera MJ, Caceres S. Bicalutamide Enhances Conventional Chemotherapy in In Vitro and In Vivo Assays Using Human and Canine Inflammatory Mammary Cancer Cell Lines. Int J Mol Sci 2024; 25:7923. [PMID: 39063165 PMCID: PMC11276844 DOI: 10.3390/ijms25147923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are highly aggressive neoplastic diseases that share numerous characteristics. In IBC and IMC, chemotherapy produces a limited pathological response and anti-androgen therapies have been of interest for breast cancer treatment. Therefore, the aim was to evaluate the effect of a therapy based on bicalutamide, a non-steroidal anti-androgen, with doxorubicin and docetaxel chemotherapy on cell proliferation, migration, tumor growth, and steroid-hormone secretion. An IMC-TN cell line, IPC-366, and an IBC-TN cell line, SUM149, were used. In vitro assays revealed that SUM149 exhibited greater sensitivity, reducing cell viability and migration with all tested drugs. In contrast, IPC-366 exhibited only significant in vitro reductions with docetaxel as a single agent or in different combinations. Decreased estrogen levels reduced in vitro tumor growth in both IMC and IBC. Curiously, doxorubicin resulted in low efficacy, especially in IMC. In addition, all drugs reduced the tumor volume in IBC and IMC by increasing intratumoral testosterone (T) levels, which have been related with reduced tumor progression. In conclusion, the addition of bicalutamide to doxorubicin and docetaxel combinations may represent a potential treatment for IMC and IBC.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Paula Lopez-Plaza
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - María Herrera de la Muela
- Obstetrics and Gynecology Department, Hospital Clinico San Carlos, Instituto de Salud de la Mujer, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IsISSC), 28040 Madrid, Spain;
| | - Miriam de la Puente Yague
- Department of Public and Maternal Child Health University, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Paloma Jimena de Andrés
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| |
Collapse
|
16
|
Oladeru O, Rajack F, Esnakula A, Naab TJ, Kanaan Y, Ricks-Santi L. Beyond Triple-Negative: High Prevalence of Quadruple-Negative Breast Cancer in African Americans. Biomedicines 2024; 12:1522. [PMID: 39062096 PMCID: PMC11275194 DOI: 10.3390/biomedicines12071522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Quadruple-negative breast cancer (QNBC) is a triple-negative breast cancer (TNBC) subtype that lacks expression of the androgen (AR) receptor. Few studies have focused on this highly aggressive breast cancer, portending worse survival rates. We aimed to determine the following: (1) QNBC's molecular and clinical characteristics and compare them with other subtypes and (2) QNBC's association with clinicopathological factors and prognostic markers. We performed immunohistochemical evaluations of ARs on tissue tumor microarrays from FFPE tumor blocks of invasive ductal breast carcinomas in 202 African American women. Univariate analysis was performed using the chi-square test, with survival rates calculated using Kaplan-Meier curves. Overall, 75.8% of TNBCs were AR-negative. Compared to the luminal subtypes, TNBC and QNBC tumors were likely to be a higher grade (p < 0.001); HER2+/AR- and QNBCs were also larger than the other subtypes (p < 0.001). They also expressed increasing mean levels of proteins involved in invasion, such as CD44, fascin, and vimentin, as well as decreasing the expression of proteins involved in mammary differentiation, such as GATA3 and mammaglobin. We found no association between QNBC and stage, recurrence-free survival, or overall survival rates. The high prevalence of TNBC AR-negativity in these women could explain observed worse outcomes, supporting the existence of the unique QNBC subtype.
Collapse
Affiliation(s)
| | - Fareed Rajack
- Department of Pathology, Howard University Hospital, Washington, DC 20059, USA; (F.R.)
| | - Ashwini Esnakula
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tammey J. Naab
- Department of Pathology, Howard University Hospital, Washington, DC 20059, USA; (F.R.)
| | - Yasmine Kanaan
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Luisel Ricks-Santi
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Liu F, Zhang J, Gu X, Guo Q, Guo W. Single-cell transcriptome sequencing reveals SPP1-CD44-mediated macrophage-tumor cell interactions drive chemoresistance in TNBC. J Cell Mol Med 2024; 28:e18525. [PMID: 38982317 PMCID: PMC11233263 DOI: 10.1111/jcmm.18525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is often considered one of the most aggressive subtypes of breast cancer, characterized by a high recurrence rate and low overall survival (OS). It is notorious for posing challenges related to drug resistance. While there has been progress in TNBC research, the mechanisms underlying chemotherapy resistance in TNBC remain largely elusive. We collect single-cell RNA sequencing (scRNA-seq) data from five TNBC patients susceptible to chemotherapy and five resistant cases. Comprehensive analyses involving copy number variation (CNV), pseudotime trajectory, cell-cell interactions, pseudospace analysis, as well as transcription factor and functional enrichment are conducted specifically on macrophages and malignant cells. Furthermore, we performed validation experiments on clinical samples using multiplex immunofluorescence. We identified a subset of SPP1+ macrophages that secrete SPP1 signals interacting with CD44 on malignant cell surfaces, potentially activating the PDE3B pathway within malignant cells via the integrin pathway, leading to chemotherapy resistance. The abnormally enhanced SPP1 signal between macrophages and malignant cells may serve as a factor promoting chemotherapy resistance in TNBC patients. Therefore, SPP1+ macrophages could potentially serve as a therapeutic target to reduce chemotherapy resistance.
Collapse
Affiliation(s)
- Fuzhong Liu
- Xinjiang Medical University Affiliated Cancer HospitalUrumqiChina
| | - Junfeng Zhang
- Xinjiang Medical University Affiliated Cancer HospitalUrumqiChina
| | - Xiaowei Gu
- Xinjiang Medical University Affiliated Cancer HospitalUrumqiChina
| | | | - Wenjia Guo
- Xinjiang Medical University Affiliated Cancer HospitalUrumqiChina
- Xinjiang Key Laboratory of Translational Biomedical EngineeringUrumqiChina
| |
Collapse
|
18
|
Zhou H, Wang Z, Guo J, Zhu Z, Sun G. Analysis of the potential biological significance of glycosylation in triple-negative breast cancer on patient prognosis. Am J Transl Res 2024; 16:2212-2232. [PMID: 39006258 PMCID: PMC11236660 DOI: 10.62347/pxar3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/06/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Breast cancer is the most common malignancy in women, with its prognosis varying greatly according to its subtype. Triple-negative breast cancer (TNBC) has the worst prognosis among all subtypes. Glycosylation is a critical factor influencing the prognosis of patients with TNBC. Our aim is to develop a tumor prognosis model by analyzing genes related to glycosylation to predict patient outcomes. METHODS The dataset used in this study was downloaded from the Cancer Genome Atlas Program (TCGA) database, and predictive genes were identified through Cox one-way regression analysis. The model genes with the highest risk scores among the 18 samples were obtained by lasso regression analysis to establish the model. We analyzed the pathways affecting the progression of TNBC and discovered key genes for subsequent research. RESULTS Our model was constructed using data from TCGA database and validated through Kaplan-Meier curve analysis and Receiver Operating Characteristic (ROC) curve assessment. Our analysis revealed that a high expression of tumor-related chemokines in the high-risk group may be associated with poor tumor prognosis. Furthermore, we conducted a random survival forest analysis and identified two significant genes, namely DPM2 and PINK1, which have been selected for further investigation. CONCLUSION The prognostic analysis model, developed based on the glycosylation genes in TNBC, exhibits excellent validation efficacy. This model is valuable for the prognostic analysis of patients with TNBC.
Collapse
Affiliation(s)
- Han Zhou
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zhiwei Wang
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Jun Guo
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
- Department of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Zihui Zhu
- Department of Breast Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Gang Sun
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous RegionUrumqi 830011, Xinjiang, China
| |
Collapse
|
19
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
20
|
Chen JJ, Shi P, Cui ZC, Jiang N, Ma J. CircRNA_0044556 affects the sensitivity of triple-negative breast cancer cells to paclitaxel by regulating miR-665. J Chemother 2024:1-9. [PMID: 38850033 DOI: 10.1080/1120009x.2024.2345028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/15/2024] [Indexed: 06/09/2024]
Abstract
CircRNAs have been implicated in the development of resistance in triple-negative breast cancer (TNBC). However, the association between circRNA_0044556 and paclitaxel (PTX) resistance in TNBC is still limited. Therefore, the purpose of this study was to investigate the effect of circRNA_0044556 on biological function and PTX resistance in TNBC cells. PTX-resistant TNBC cells (MDA-MB-231/PTX) were obtained by continuously exposing MDA-MB-231 cells to increasing paclitaxel levels. The expression levels of circRNA_0044556 and miR-665 were measured by qRT-PCR. The regulatory relationship between miR-665 and circRNA_0044556 was verified by biological information website analysis and double-luciferase reporter gene detection experiments. MTT assay, clone assay, flow cytometry and Western blot analysis were used to evaluate the influence of cell biological function. Elevated circRNA_0044556 was observed in TNBC, and paclitaxel increased the expression of circRNA_0044556 in TNBC cells. In TNBC, circRNA_0044556 acted as a ceRNA for miR-665. In addition, low expression of circRNA_0044556 combined with miR-665 inhibited the proliferation of TNBC cells and paclitaxel-resistant TNBC cells while inducing cell death. Our study demonstrated that the downregulation of circRNA_0044556 inhibits the malignant progression of TNBC cells and paclitaxel resistance via miR-665. Thus, circRNA_0044556 may be a potential therapeutic target for PTX-resistance TNBC.
Collapse
Affiliation(s)
- Jing-Jing Chen
- Department of Breast Surgery (No.1), Tangshan People's Hospital, Tangshan, China
| | - Peng Shi
- Department of Urology, Tangshan People's Hospital, Tangshan, China
| | - Zhi-Chao Cui
- Department of Breast Surgery (No.1), Tangshan People's Hospital, Tangshan, China
| | - Nan Jiang
- Department of Breast Surgery (No.1), Tangshan People's Hospital, Tangshan, China
| | - Jie Ma
- Department of Breast Surgery (No.1), Tangshan People's Hospital, Tangshan, China
| |
Collapse
|
21
|
Kaplan HG, Dowdell AK, Berry AB, Shimol RB, Robinson FL, Carney CA, Piening BD. Multi-omic profiling of simultaneous ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res Treat 2024; 205:451-464. [PMID: 38523186 PMCID: PMC11101558 DOI: 10.1007/s10549-024-07270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/24/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE The progression of ductal carcinoma in situ (DCIS) to invasive breast carcinoma (IBC) in humans is highly variable. To better understand the relationship between them, we performed a multi-omic characterization of co-occurring DCIS and IBC lesions in a cohort of individuals. METHODS Formalin-fixed paraffin-embedded tissue samples from 50 patients with co-occurring DCIS and IBC lesions were subjected to DNA-seq and whole transcriptome RNA-seq. Paired DCIS and IBC multi-omics profiles were then interrogated for DNA mutations, gene expression profiles and pathway analysis. RESULTS Most small variants and copy number variations were shared between co-occurring DCIS and IBC lesions, with IBC exhibiting on average a higher degree of additional mutations. However, 36% of co-occurring lesions shared no common mutations and 49% shared no common copy number variations. The most frequent genomic variants in both DCIS and IBC were PIK3CA, TP53, KMT2C, MAP3K1, GATA3 and SF3B1, with KMT2C being more frequent in DCIS and TP53 and MAP3K1 more frequent in IBC, though the numbers are too small for definitive conclusions. The most frequent copy number variations were seen in MCL1, CKSB1 and ERBB2. ERBB2 changes were not seen in IBC unless present in the corresponding DCIS. Transcriptional profiles were highly distinct between DCIS and IBC, with DCIS exhibiting upregulation of immune-related signatures, while IBC showed significant overexpression in genes and pathways associated with cell division and proliferation. Interestingly, DCIS and IBC exhibited significant differential expression of different components of extracellular matrix (ECM) formation and regulation, with DCIS showing overexpression of ECM-membrane interaction components while IBC showed upregulation of genes associated with fibronectin and invadopodia. CONCLUSION While most co-occurring DCIS and IBC were mutationally similar and suggestive of a common clonal progenitor, transcriptionally the lesions are highly distinct, with IBC expressing key pathways that facilitate invasion and proliferation. These results are suggestive of additional levels of regulation, epigenetic or other, that facilitate the acquisition of invasive properties during tumor evolution.
Collapse
MESH Headings
- Humans
- Female
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Mutation
- DNA Copy Number Variations
- Gene Expression Profiling/methods
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/metabolism
- Biomarkers, Tumor/genetics
- Middle Aged
- Neoplasm Invasiveness
- Gene Expression Regulation, Neoplastic
- Transcriptome
- Aged
- Adult
- Genomics/methods
- Multiomics
Collapse
Affiliation(s)
- Henry G Kaplan
- Swedish Cancer Institute, 1221 Madison St., Suite 920, Seattle, WA, 98104, USA.
| | - Alexa K Dowdell
- Earle A. Chiles Research Institute, Providence Health, Portland, OR, 97213, USA
| | - Anna B Berry
- Swedish Cancer Institute, 1221 Madison St., Suite 920, Seattle, WA, 98104, USA
| | - Racheli Ben Shimol
- Earle A. Chiles Research Institute, Providence Health, Portland, OR, 97213, USA
| | - Fred L Robinson
- Earle A. Chiles Research Institute, Providence Health, Portland, OR, 97213, USA
| | | | - Brian D Piening
- Earle A. Chiles Research Institute, Providence Health, Portland, OR, 97213, USA
| |
Collapse
|
22
|
Guidelines for diagnosis and treatment of advanced breast cancer in China (2022 edition). JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:107-127. [PMID: 39282589 PMCID: PMC11390704 DOI: 10.1016/j.jncc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 09/19/2024] Open
Abstract
Breast cancer is the most common cancer among women worldwide. It has been estimated that about 416 000 new cases and over 117 000 deaths of breast cancer occurred in China in 2020. Among the new cases of breast cancer diagnosed each year, 3-10% have distant metastasis at the time of initial diagnosis. In addition, approximately 30% of patients with early-stage breast cancer may eventually experience recurrence or metastases. The 5-year survival rate of patients with advanced breast cancer is only 20% with a median overall survival of 2-3 years. Although advanced breast cancer remains incurable at present, new therapeutic options and multidisciplinary treatment could be utilized to alleviate symptoms, improve quality of life, and prolong patients' survival. The choice of treatment regimens for patients with advanced breast cancer is very important, and the optimal treatment strategy beyond the first- and second-line therapy is often lacking. Herein, the China Advanced Breast Cancer Guideline Panel discussed and summarized recent clinical evidence, updated the guidelines for the diagnosis and treatment of advanced breast cancer based on the 2020 edition, and formulated the "Guidelines for diagnosis and treatment of advanced breast cancer in China (2022 edition)" for clinicians' reference.
Collapse
|
23
|
Sato K, Miura K, Tamori S, Akimoto K. Identification of a Gene Expression Signature to Predict the Risk of Early Recurrence and the Degree of Immune Cell Infiltration in Triple-negative Breast Cancer. Cancer Genomics Proteomics 2024; 21:316-326. [PMID: 38670590 PMCID: PMC11059597 DOI: 10.21873/cgp.20450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND/AIM Patients with triple-negative breast cancer (TNBC) have a high rate of recurrence within 3 years of diagnosis and a high rate of death within 5 years compared to other subtypes. The number of clinical trials investigating various new agents and combination therapies has recently increased; however, current strategies benefit only a minority of patients. This study aimed to identify specific genes that predict patients at high risk of recurrence and the immune status of the tumor microenvironment at an early stage, thereby providing insight into potential therapeutic targets to improve clinical outcomes in TNBC patients. MATERIALS AND METHODS We evaluated the prognostic significance of microarray mRNA expression of 20,603 genes in 233 TNBC patients from the METABRIC dataset and further validated the results using RNA-seq mRNA expression data in 143 TNBC patients from the GSE96058 dataset. RESULTS Eighteen differentially expressed genes (AKNA, ARHGAP30, CA9, CD3D, CD3G, CD6, CXCR6, CYSLTR1, DOCK10, ENO1, FLT3LG, IFNG, IL2RB, LPXN, PRKCB, PVRIG, RASSF5, and STAT4) identified in both datasets were found to be reliable biomarkers for predicting TNBC recurrence and progression. Notably, the genes whose low expression was associated with increased risk of recurrence and death were immune-related genes, with significant differences in levels of immune cell infiltration in the tumor microenvironment between high- and low- expression groups. CONCLUSION Genes reported herein may be effective biomarkers to identify TNBC patients who will and will not benefit from immunotherapy and may be particularly important genes for developing future treatment strategies, including immunotherapy.
Collapse
Affiliation(s)
- Keiko Sato
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan;
| | - Kentaro Miura
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Shoma Tamori
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
24
|
Calahorra J, Blaya-Cánovas JL, Castellini-Pérez O, Aparicio-Puerta E, Cives-Losada C, Marin JJG, Rementeria M, Cara FE, López-Tejada A, Griñán-Lisón C, Aulicino F, Berger I, Marchal JA, Delgado-Almenta V, Granados-Principal S. Unlocking the effective alliance of β-lapachone and hydroxytyrosol against triple-negative breast cancer cells. Biomed Pharmacother 2024; 174:116439. [PMID: 38518601 DOI: 10.1016/j.biopha.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, β-lapachone (β-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1. We aimed to study whether these compounds could have synergistic anticancer activity in TNBC cells and the possible role of NQO1. For this pourpose, we assessed the impact of β-LP (0.5 or 1.5 μM) and HT (50 and 100 μM) on five TNBC cell lines. We demonstrated that the combination of β-LP and HT exhibits anti-proliferative, pro-apoptotic, and cell cycle arrest effects in several TNBC cells, including docetaxel-resistant TNBC cells. Additionally, it effectively inhibits the self-renewal and clonogenicity of CSCs, modifying their aggressive phenotype. However, the notable impact of the β-LP-HT combination does not appear to be solely associated with the levels of the NQO1 protein and ROS. RNA-Seq analysis revealed that the combination's anticancer activity is linked to a strong induction of endoplasmic reticulum stress and apoptosis through the unfolded protein response. In conclusion, in this study, we demonstrated how the combination of β-LP and HT could offer an affordable, safe, and effective approach against TNBC.
Collapse
Affiliation(s)
- Jesús Calahorra
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén 23007, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain.
| | - José L Blaya-Cánovas
- UGC de Oncología Médica, Hospital Universitario de Jaén, Jaén 23007, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Olivia Castellini-Pérez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Ernesto Aparicio-Puerta
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, Saarbrücken 66123, Germany
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca 37007, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca 37007, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Markel Rementeria
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Francisca E Cara
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain
| | - Araceli López-Tejada
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Carmen Griñán-Lisón
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain
| | - Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | - Imre Berger
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK; Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Juan A Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain
| | - Violeta Delgado-Almenta
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Granada 18100, Spain; GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain; Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada 18071, Spain.
| |
Collapse
|
25
|
Kim HY, Kim YM, Hong S. CK2α-mediated phosphorylation of GRP94 facilitates the metastatic cascade in triple-negative breast cancer. Cell Death Discov 2024; 10:185. [PMID: 38649679 PMCID: PMC11035675 DOI: 10.1038/s41420-024-01956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Distant metastasis is a significant hallmark affecting to the high death rate of patients with triple-negative breast cancer (TNBC). Thus, it is crucial to identify and develop new therapeutic strategies to hinder cancer metastasis. While emerging studies have hinted a pivotal role of glucose-regulated protein 94 (GRP94) in tumorigenesis, the exact biological functions and molecular mechanisms of GRP94 in modulating cancer metastasis remain to be elucidated. Our study demonstrated an increased expression of GRP94 in TNBC correlated with metastatic progression and unfavorable prognosis in patients. Functionally, we identified that GRP94 depletion significantly diminished TNBC tumorigenesis and subsequent lung metastasis. In contrast, GRP94 overexpression exacerbated the invasiveness, migration, and lung metastasis of non-TNBC cells. Mechanistically, we found that casein kinase 2 alpha (CK2α) active in advanced breast cancer phosphorylated GRP94 at a conserved serine 306 (S306) residue. This phosphorylation increased the stability of GRP94 and enhanced its interaction with LRP6, leading to activation of canonical Wnt signaling. From a therapeutic standpoint, we found that benzamidine, a novel CK2α inhibitor, effectively suppressed GRP94 phosphorylation, LRP6 stabilization, and metastasis of TNBC. Our results point to the critical role of CK2α-mediated GRP94 phosphorylation in TNBC metastasis through activation of Wnt signaling, highlighting GRP94 as a therapeutic target to impede TNBC metastasis.
Collapse
Affiliation(s)
- Hye-Youn Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Young-Mi Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Suntaek Hong
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea.
| |
Collapse
|
26
|
Niu Z, Wu J, Zhao Q, Zhang J, Zhang P, Yang Y. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies. Front Immunol 2024; 15:1385571. [PMID: 38680498 PMCID: PMC11045891 DOI: 10.3389/fimmu.2024.1385571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Surgery, chemotherapy, and endocrine therapy have improved the overall survival and postoperative recurrence rates of Luminal A, Luminal B, and HER2-positive breast cancers but treatment modalities for triple-negative breast cancer (TNBC) with poor prognosis remain limited. The effective application of the rapidly developing chimeric antigen receptor (CAR)-T cell therapy in hematological tumors provides new ideas for the treatment of breast cancer. Choosing suitable and specific targets is crucial for applying CAR-T therapy for breast cancer treatment. In this paper, we summarize CAR-T therapy's effective targets and potential targets in different subtypes based on the existing research progress, especially for TNBC. CAR-based immunotherapy has resulted in advancements in the treatment of breast cancer. CAR-macrophages, CAR-NK cells, and CAR-mesenchymal stem cells (MSCs) may be more effective and safer for treating solid tumors, such as breast cancer. However, the tumor microenvironment (TME) of breast tumors and the side effects of CAR-T therapy pose challenges to CAR-based immunotherapy. CAR-T cells and CAR-NK cells-derived exosomes are advantageous in tumor therapy. Exosomes carrying CAR for breast cancer immunotherapy are of immense research value and may provide a treatment modality with good treatment effects. In this review, we provide an overview of the development and challenges of CAR-based immunotherapy in treating different subtypes of breast cancer and discuss the progress of CAR-expressing exosomes for breast cancer treatment. We elaborate on the development of CAR-T cells in TNBC therapy and the prospects of using CAR-macrophages, CAR-NK cells, and CAR-MSCs for treating breast cancer.
Collapse
Affiliation(s)
- Zhipu Niu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jinyu Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pengyu Zhang
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
27
|
Saleh RO, Ibrahim FM, Pallathadka H, Kaur I, Ahmad I, Ali SHJ, Redhee AH, Ghildiyal P, Jawad MA, Alsaadi SB. Nucleic acid vaccines-based therapy for triple-negative breast cancer: A new paradigm in tumor immunotherapy arena. Cell Biochem Funct 2024; 42:e3992. [PMID: 38551221 DOI: 10.1002/cbf.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Nucleic acid vaccines (NAVs) have the potential to be economical, safe, and efficacious. Furthermore, just the chosen antigen in the pathogen is the target of the immune responses brought on by NAVs. Triple-negative breast cancer (TNBC) treatment shows great promise for nucleic acid-based vaccines, such as DNA (as plasmids) and RNA (as messenger RNA [mRNA]). Moreover, cancer vaccines offer a compelling approach that can elicit targeted and long-lasting immune responses against tumor antigens. Bacterial plasmids that encode antigens and immunostimulatory molecules serve as the foundation for DNA vaccines. In the 1990s, plasmid DNA encoding the influenza A nucleoprotein triggered a protective and targeted cytotoxic T lymphocyte (CTL) response, marking the first instance of DNA vaccine-mediated immunity. Similarly, in vitro transcribed mRNA was first successfully used in animals in 1990. At that point, mice were given an injection of the gene encoding the mRNA sequence, and the researchers saw the production of a protein. We begin this review by summarizing our existing knowledge of NAVs. Next, we addressed NAV delivery, emphasizing the need to increase efficacy in TNBC.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Fatma M Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
- Geriatric Nursing, Mansoura University, Mansoura, Egypt
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, Iraq
| |
Collapse
|
28
|
Rangel N, Sánchez IL, Valbuena DS, Rondón-Lagos M. ZNF217 Gene Copy Number as a Marker of Response to Standard Therapy Drugs According to ERα Status in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:127-139. [PMID: 38505863 PMCID: PMC10950081 DOI: 10.2147/bctt.s445753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 03/21/2024]
Abstract
Purpose The therapeutic decision for the management of breast cancer (BC) patients is based on the evaluation of prognostic factors alongside clinical and pathological parameters. Despite the use of standard biomarkers, response and resistance to therapy represent a challenge for clinicians. Among the new potential biomarkers for BC the ZNF217 gene have gained importance in recent years. However, while associations between ZNF217 gene copy number and clinicopathological characteristics have been established, its correlation with treatment response remains unclear. Patients and Methods This study aimed to evaluate the ZNF217 gene copy number and establish its associations with treatment response in estrogen receptor positive (ERα+) and ERα negative (ERα-) BC cell lines. In addition, a validation of the relationship between ZNF217 gene copy number and its prognostic value was performed using datasets of BC patients retrieved from the cBioPortal public database. Results Our data show that in ERα+ cells, ZNF217 gene copy number increase (amplification), while cell proliferation decreases in response to standard drug treatments. In contrast, both ZNF217 gene copy number (gain) and cell proliferation increases in response to standard drug treatments in ERα- cells. The results obtained align with findings from the cBioPortal database analysis, demonstrating that ERα+/HER2- low proliferation patients, exhibiting ZNF217 gene amplification or gain, have a significantly higher survival probability after treatment, compared to ERα-/HER2- and HER2+ patients. Conclusion Our results suggest that in ERα+ BC cells, ZNF217 gene amplification could be indicative of a favorable response, while in ERα- BC cells, ZNF217 gene gain could be postulated as a potential predictor of treatment resistance. A broader understanding of the role of ZNF217 gene in treatment response, together with prospective studies in BC patients, could contribute to confirming our data, as well as optimizing existing treatments and exploring novel approaches to improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Iris Lorena Sánchez
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| |
Collapse
|
29
|
Nicolini A, Ferrari P, Silvestri R, Gemignani F. The breast cancer tumor microenvironment and precision medicine: immunogenicity and conditions favoring response to immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:14-24. [PMID: 39036381 PMCID: PMC11256721 DOI: 10.1016/j.jncc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 07/23/2024] Open
Abstract
Some main recent researches that have dissected tumor microenvironment (TME) by imaging mass cytometry (IMC) in different subtypes of primary breast cancer samples were considered. The many phenotypic variants, clusters of epithelial tumor and immune cells, their structural features as well as the main genetic aberrations, sub-clonal heterogeneity and their systematic classification also have been examined. Mutational evolution has been assessed in primary and metastatic breast cancer samples. Overall, based on these findings the current concept of precision medicine is questioned and challenged by alternative therapeutic strategies. In the last two decades, immunotherapy as a powerful and harmless tool to fight cancer has received huge attention. Thus, the tumor immune microenvironment (TIME) composition, its prognostic role for clinical course as well as a novel definition of immunogenicity in breast cancer are proposed. Investigational clinical trials carried out by us and other findings suggest that G0-G1 state induced in endocrine-dependent metastatic breast cancer is more suitable for successful immune manipulation. Residual micro-metastatic disease seems to be another specific condition that can significantly favor the immune response in breast and other solid tumors.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
30
|
Chen L, Liu Q, Tan C, Wu T, Wu M, Tan X, Liu J, Wang J. The Age-Male-Albumin-Bilirubin-Platelets (aMAP) Risk Score Predicts Liver Metastasis Following Surgery for Breast Cancer in Chinese Population: A Retrospective Study. Immunotargets Ther 2024; 13:75-94. [PMID: 38352235 PMCID: PMC10861995 DOI: 10.2147/itt.s446545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Objective The current study is conducted to investigate the potential prognostic value of the age-male-albumin-bilirubin-platelets (aMAP) score in breast cancer patients with liver metastasis after surgery. Methods This is a retrospective study of 178 breast cancer patients who developed liver metastasis after surgery. These patients were treated and followed up from 2000 to 2018 at our hospital. The aMAP risk score was estimated in accordance with the following formula: . The optimal cutoff value of the aMAP was evaluated via X-tile. Kaplan-Meier, Log-rank and Cox proportional hazards regression models were applied to determine the clinical influence of the aMAP score on the survival outcomes. The nomogram models were established by multivariate analyses. The calibration curves and decision curve analysis were applied to evaluate the estimated performance of the nomogram models. Results A total of 178 breast cancer patients were divided into low aMAP score group (<47.6) and high aMAP score group (≥47.6) via X-tile plots. The aMAP score was a potential prognostic factor in multivariate analysis. The median disease free survival (p=0.0013) and overall survival (p=0.0003) in low aMAP score group were longer than in high aMAP score group. The nomograms were constructed to predict the DFS with a C-index of 0.722 (95% CI, 0.673-0.771), and the OS with a C-index of 0.708 (95% CI, 0.661-0.755). The aMAP-based nomograms had good predictive performance. Conclusion The aMAP score is a potential prognostic factor in breast cancer with liver metastasis after surgery. The aMAP score-based nomograms were conducive to discriminate patients at high risks of liver metastasis and develop adjuvant treatment and prevention strategies.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Chunlei Tan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tiangen Wu
- Department of Hepatobiliary&Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People’s Republic of China
| | - Meng Wu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jinwen Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| |
Collapse
|
31
|
Lv F, Si W, Xu X, He X, Wang Y, Li Y, Li F. RUNX2 prompts triple negative breast cancer drug resistance through TGF-β pathway regulating breast cancer stem cells. Neoplasia 2024; 48:100967. [PMID: 38219710 PMCID: PMC10826822 DOI: 10.1016/j.neo.2024.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Triple-negative breast cancer (TNBC) stands out as the most aggressive subtype within the spectrum of breast cancer. The current clinical guidelines propose treatment strategies involving cytotoxic agents like epirubicin or paclitaxel. However, the emergence of acquired resistance frequently precipitates secondary tumor recurrence or the spread of metastasis. In recent times, significant attention has been directed toward the transcription factor RUNX2, due to its pivotal role in both tumorigenesis and the progression of cancer. Previous researches suggest that RUNX2 might be intricately linked to the development of resistance against chemotherapy, with its mechanism of action possibly intertwined with the signaling of TGF-β. Nevertheless, the precise interplay between their effects and the exact molecular mechanisms underpinning chemoresistance in TNBC remain elusive. Therefore, we have taken a multifaceted approach from in vitro and in vivo experiments to validate the relationship between RUNX2 and TGF-β and to search for their pathogenic mechanisms in chemoresistance. In conclusion, we found that RUNX2 affects chemoresistance by regulating cancer cell stemness through direct binding to TGF-β, and that TGF-β dually regulates RUNX2 expression. The important finding will provide a new reference for clinical reversal of the development of chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Fengxu Lv
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Wentao Si
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Xiaodan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Xiaogang He
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68169, Germany
| | - Ying Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Yetian Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China.
| | - Feifei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, PR China..
| |
Collapse
|
32
|
Tantawy MN, McIntyre JO, Yull F, Calcutt MW, Koktysh DS, Wilson AJ, Zu Z, Nyman J, Rhoades J, Peterson TE, Colvin D, McCawley LJ, Rook JM, Fingleton B, Crispens MA, Alvarez RD, Gore JC. Tumor therapy by targeting extracellular hydroxyapatite using novel drugs: A paradigm shift. Cancer Med 2024; 13:e6812. [PMID: 38239047 PMCID: PMC11025459 DOI: 10.1002/cam4.6812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND It has been shown that tumor microenvironment (TME) hydroxyapatite (HAP) is typically associated with many malignancies and plays a role in tumor progression and growth. Additionally, acidosis in the TME has been reported to play a key role in selecting for a more aggressive tumor phenotype, drug resistance and desensitization to immunotherapy for many types of cancers. TME-HAP is an attractive target for tumor detection and treatment development since HAP is generally absent from normal soft tissue. We provide strong evidence that dissolution of hydroxyapatite (HAP) within the tumor microenvironment (TME-HAP) using a novel therapeutic can be used to kill cancer cells both in vitro and in vivo with minimal adverse effects. METHODS We developed an injectable cation exchange nano particulate sulfonated polystyrene solution (NSPS) that we engineered to dissolve TME-HAP, inducing localized acute alkalosis and inhibition of tumor growth and glucose metabolism. This was evaluated in cell culture using 4T1, MDA-MB-231 triple negative breast cancer cells, MCF10 normal breast cells, and H292 lung cancer cells, and in vivo using orthotopic mouse models of cancer that contained detectable microenvironment HAP including breast (MMTV-Neu, 4T1, and MDA-MB-231), prostate (PC3) and colon (HCA7) cancer using 18 F-NaF for HAP and 18 F-FDG for glucose metabolism with PET imaging. On the other hand, H292 lung tumor cells that lacked detectable microenvironment HAP and MCF10a normal breast cells that do not produce HAP served as negative controls. Tumor microenvironment pH levels following injection of NSPS were evaluated via Chemical Exchange Saturation (CEST) MRI and via ex vivo methods. RESULTS Within 24 h of adding the small concentration of 1X of NSPS (~7 μM), we observed significant tumor cell death (~ 10%, p < 0.05) in 4T1 and MDA-MB-231 cell cultures that contain HAP but ⟨2% in H292 and MCF10a cells that lack detectable HAP and in controls. Using CEST MRI, we found extracellular pH (pHe) in the 4T1 breast tumors, located in the mammary fat pad, to increase by nearly 10% from baseline before gradually receding back to baseline during the first hour post NSPS administration. in the tumors that contained TME-HAP in mouse models, MMTV-Neu, 4T1, and MDA-MB-231, PC3, and HCA7, there was a significant reduction (p<0.05) in 18 F-Na Fuptake post NSPS treatment as expected; 18 F- uptake in the tumor = 3.8 ± 0.5 %ID/g (percent of the injected dose per gram) at baseline compared to 1.8 ±0.5 %ID/g following one-time treatment with 100 mg/kg NSPS. Of similar importance, is that 18 F-FDG uptake in the tumors was reduced by more than 75% compared to baseline within 24 h of treatment with one-time NSPS which persisted for at least one week. Additionally, tumor growth was significantly slower (p < 0.05) in the mice treated with one-time NSPS. Toxicity showed no evidence of any adverse effects, a finding attributed to the absence of HAP in normal soft tissue and to our therapeutic NSPS having limited penetration to access HAP within skeletal bone. CONCLUSION Dissolution of TME-HAP using our novel NSPS has the potential to provide a new treatment paradigm to enhance the management of cancer patients with poor prognosis.
Collapse
Affiliation(s)
- Mohammed N. Tantawy
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - J. Oliver McIntyre
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
- Department of PharmacologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Fiona Yull
- Department of PharmacologyVanderbilt UniversityNashvilleTennesseeUSA
- Department of Obstetrics and GynecologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - M. Wade Calcutt
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Mass Spectrometry Research Center of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | - Dmitry S. Koktysh
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Institute of Nanoscale Science and EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Andrew J. Wilson
- Department of Obstetrics and GynecologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Jeff Nyman
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Orthopaedic SurgeryVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Julie Rhoades
- Orthopaedic SurgeryVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashvilleTennesseeUSA
| | - Todd E. Peterson
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Daniel Colvin
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Lisa J. McCawley
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Jerri. M. Rook
- Department of PharmacologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Barbara Fingleton
- Department of PharmacologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Marta Ann Crispens
- Department of Obstetrics and GynecologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
- Division of Gynecologic OncologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - Ronald D. Alvarez
- Department of Obstetrics and GynecologyVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| | - John C. Gore
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Departments of Radiology and Radiological SciencesVanderbilt Univerity Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
33
|
Ilari A, Cogliati V, Sherif N, Grassilli E, Ramazzotti D, Cordani N, Cazzaniga G, Di Bella C, Lavitrano M, Cazzaniga ME, Cerrito MG. Differential Expression of NOTCH-1 and Its Molecular Targets in Response to Metronomic Followed by Conventional Therapy in a Patient with Advanced Triple-Negative Breast Cancer. Biomedicines 2024; 12:272. [PMID: 38397874 PMCID: PMC10886740 DOI: 10.3390/biomedicines12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
A group of 27 patients diagnosed with metastatic triple-negative breast cancer (mTNBC) was randomly distributed into two groups and underwent different lines of metronomic treatment (mCHT). The former group (N 14) received first-line mCHT and showed a higher overall survival rate than the second group (N 13), which underwent second-line mCHT. Analysis of one patient still alive from the first group, diagnosed with mTNBC in 2019, showed a complete metabolic response (CMR) after a composite approach implicating first-line mCHT followed by second-line epirubicin and third-line nab-paclitaxel, and was chosen for subsequent molecular characterization. We found altered expression in the cancer stemness-associated gene NOTCH-1 and its corresponding protein. Additionally, we found changes in the expression of oncogenes, such as MYC and AKT, along with their respective proteins. Overall, our data suggest that a first-line treatment with mCHT followed by MTD might be effective by negatively regulating stemness traits usually associated with the emergence of drug resistance.
Collapse
Affiliation(s)
- Alice Ilari
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Viola Cogliati
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy;
| | - Noorhan Sherif
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Emanuela Grassilli
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Daniele Ramazzotti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Nicoletta Cordani
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Giorgio Cazzaniga
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy; (G.C.); (C.D.B.)
| | - Camillo Di Bella
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy; (G.C.); (C.D.B.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| | - Marina Elena Cazzaniga
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy;
| | - Maria Grazia Cerrito
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy; (A.I.); (N.S.); (E.G.); (D.R.); (N.C.); (M.L.); (M.E.C.)
| |
Collapse
|
34
|
Nicolini A, Ferrari P. Targeted Therapies and Drug Resistance in Advanced Breast Cancer, Alternative Strategies and the Way beyond. Cancers (Basel) 2024; 16:466. [PMID: 38275906 PMCID: PMC10814066 DOI: 10.3390/cancers16020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
"Targeted therapy" or "precision medicine" is a therapeutic strategy launched over two decades ago. It relies on drugs that inhibit key molecular mechanisms/pathways or genetic/epigenetic alterations that promote different cancer hallmarks. Many clinical trials, sponsored by multinational drug companies, have been carried out. During this time, research has increasingly uncovered the complexity of advanced breast cancer disease. Despite high expectations, patients have seen limited benefits from these clinical trials. Commonly, only a minority of trials are successful, and the few approved drugs are costly. The spread of this expensive therapeutic strategy has constrained the resources available for alternative research. Meanwhile, due to the high cost/benefit ratio, other therapeutic strategies have been proposed by researchers over time, though they are often not pursued due to a focus on precision medicine. Notable among these are drug repurposing and counteracting micrometastatic disease. The former provides an obvious answer to expensive targeted therapies, while the latter represents a new field to which efforts have recently been devoted, offering a "way beyond" the current research.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera—Universitaria Pisana, 56125 Pisa, Italy;
| |
Collapse
|
35
|
Liang H, Yin G, Shi G, Liu Z, Liu X, Li J. Echinacoside regulates PI3K/AKT/HIF-1α/VEGF cross signaling axis in proliferation and apoptosis of breast cancer. Anal Biochem 2024; 684:115360. [PMID: 37865269 DOI: 10.1016/j.ab.2023.115360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
CONTEXT Echinacoside (ECH) is a natural anti-cancer compound and is of great value in cancer treatment. However, the mechanism underlying this effect on breast cancer (BC) was unclear. OBJECTIVE To explore the mechanism of ECH treating BC by network pharmacology and experimental validation. MATERIALS & METHODS Several databases were searched to screen potential targets of ECH and obtain information on targets related to BC. STRING was applied to construct a Protein-protein interaction (PPI) network. DAVID was applied for Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gene Expression Profiling Interactive Analysis (GEPIA) was searched for the relationship between the expression profile and overall survival of major targets in normal breast and BC tissues. Finally, the results of network pharmacology analysis were validated by experiments. RESULTS Seventeen targets of ECH overlapped with targets in BC. Ten hub targets were determined through PPI. By GO and KEGG analysis 15 entries and 25 pathways were obtained, in which phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) played greater roles. Validation of key targets in the GEPIA database showed that PIK3R1 and PIK3CD remained consistent with the results of the study. Experiments in vitro showed ECH inhibited proliferation, induced apoptosis and reduced mRNA levels and protein expression of PI3K, AKT, hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) in MCF-7 cells. Furthermore, experiments in vivo revealed that ECH significantly reduced tumor growth, promoted apoptosis and decreased the related mRNA levels and protein expression, suggesting ECH works on BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. DISCUSSION & CONCLUSION In summary, ECH played an important role in anti-BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. Furthermore, ECH had multi-target and multi-pathway effects, which may be a promising natural compound for treating BC.
Collapse
Affiliation(s)
- Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Guangxi Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Zhiyong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xiaofei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
| | - Jingwei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
36
|
Wang Y, Sun Y, Wang F, Wang H, Hu J. Ferroptosis induction via targeting metabolic alterations in triple-negative breast cancer. Biomed Pharmacother 2023; 169:115866. [PMID: 37951026 DOI: 10.1016/j.biopha.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive form of breast cancer, presents severe threats to women's health. Therefore, it is critical to find novel treatment approaches. Ferroptosis, a newly identified form of programmed cell death, is marked by the buildup of lipid reactive oxygen species (ROS) and high iron concentrations. According to previous studies, ferroptosis sensitivity can be controlled by a number of metabolic events in cells, such as amino acid metabolism, iron metabolism, and lipid metabolism. Given that TNBC tumors are rich in iron and lipids, inducing ferroptosis in these tumors is a potential approach for TNBC treatment. Notably, the metabolic adaptability of cancer cells allows them to coordinate an attack on one or more metabolic pathways to initiate ferroptosis, offering a novel perspective to improve the high drug resistance and clinical therapy of TNBC. However, a clear picture of ferroptosis in TNBC still needs to be completely revealed. In this review, we provide an overview of recent advancements regarding the connection between ferroptosis and amino acid, iron, and lipid metabolism in TNBC. We also discuss the probable significance of ferroptosis as an innovative target for chemotherapy, radiotherapy, immunotherapy, nanotherapy and natural product therapy in TNBC, highlighting its therapeutic potential and application prospects.
Collapse
Affiliation(s)
- Yaru Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Sun
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Feiran Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hongyi Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jing Hu
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
37
|
Zheng W, Shen P, Yu C, Tang Y, Qian C, Yang C, Gao M, Wu Y, Yu S, Tang W, Wan G, Wang A, Lu Y, Zhao Y. Ginsenoside Rh1, a novel casein kinase II subunit alpha (CK2α) inhibitor, retards metastasis via disrupting HHEX/CCL20 signaling cascade involved in tumor cell extravasation across endothelial barrier. Pharmacol Res 2023; 198:106986. [PMID: 37944834 DOI: 10.1016/j.phrs.2023.106986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Tumor cell extravasation across endothelial barrier has been recognized as a pivotal event in orchestrating metastasis formation. This event is initiated by the interactions of extravasating tumor cells with endothelial cells (ECs). Therefore, targeting the crosstalk between tumor cells and ECs might be a promising therapeutic strategy to prevent metastasis. In this study, we demonstrated that Rh1, one of the main ingredients of ginseng, hindered the invasion of breast cancer (BC) cells as well as diminished the permeability of ECs both in vitro and in vivo, which was responsible for the attenuated tumor cell extravasation across endothelium. Noteworthily, we showed that ECs were capable of inducing the epithelial-mesenchymal transition (EMT) and invadopodia of BC cells that are essential for tumor cell migration and invasion through limiting the nuclear translocation of hematopoietically expressed homeobox (HHEX). The decreased nuclear HHEX paved the way for initiating the CCL20/CCR6 signaling axis, which in turn contributed to damaged endothelial junctions, uncovering a new crosstalk mode between tumor cells and ECs. Intriguingly, Rh1 inhibited the kinase activity of casein kinase II subunit alpha (CK2α) and further promoted the nuclear translocation of HHEX in the BC cells, which resulted in the disrupted crosstalk between chemokine (C-C motif) ligand 20 (CCL20) in the BC cells and chemokine (C-C motif) receptor 6 (CCR6) in the ECs. The prohibited CCL20-CCR6 axis by Rh1 enhanced vascular integrity and diminished tumor cell motility. Taken together, our data suggest that Rh1 serves as an effective natural CK2α inhibitor that can be further optimized to be a therapeutic agent for reducing tumor cell extravasation.
Collapse
Affiliation(s)
- Weiwei Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peiliang Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunmei Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mingliang Gao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Guiping Wan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
38
|
Moamin MR, Allen R, Woods SL, Brown JE, Nunns H, Juncker-Jensen A, Lewis CE. Changes in the immune landscape of TNBC after neoadjuvant chemotherapy: correlation with relapse. Front Immunol 2023; 14:1291643. [PMID: 38090569 PMCID: PMC10715438 DOI: 10.3389/fimmu.2023.1291643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Patients with high-risk, triple negative breast cancer (TNBC) often receive neoadjuvant chemotherapy (NAC) alone or with immunotherapy. Various single-cell and spatially resolved techniques have demonstrated heterogeneity in the phenotype and distribution of macrophages and T cells in this form of breast cancer. Furthermore, recent studies in mice have implicated immune cells in perivascular (PV) areas of tumors in the regulation of metastasis and anti-tumor immunity. However, little is known of how the latter change during NAC in human TNBC or their impact on subsequent relapse, or the likely efficacy of immunotherapy given with or after NAC. Methods We have used multiplex immunofluorescence and AI-based image analysis to compare the immune landscape in untreated and NAC-treated human TNBCs. We quantified changes in the phenotype, distribution and intercellular contacts of subsets of tumor-associated macrophages (TAMs), CD4+ and CD8+ T cells, and regulatory T cells (Tregs) in PV and non-PV various areas of the stroma and tumor cell islands. These were compared in tumors from patients who had either developed metastases or were disease-free (DF) after a three-year follow up period. Results In tumors from patients who remained DF after NAC, there was a marked increase in stromal CD163+ TAMs, especially those expressing the negative checkpoint regulator, T-cell immunoglobulin and mucin domain 3 (TIM-3). Whereas CD4+ T cells preferentially located to PV areas in the stroma of both untreated and NAC-treated tumors, specific subsets of TAMs and Tregs only did so only after NAC. Distinct subsets of CD4+ and CD8+ T cells formed PV clusters with CD163+ TAMs and Tregs. These were retained after NAC. Discussion Quantification of stromal TIM-3+CD163+ TAMs in tumor residues after NAC may represent a new way of identifying patients at high risk of relapse. PV clustering of immune cells is highly likely to regulate the activation and function of T cells, and thus the efficacy of T cell-based immunotherapies administered with or after NAC.
Collapse
Affiliation(s)
- Mohammed Ridha Moamin
- Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, Sheffield, United Kingdom
| | - Richard Allen
- Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, Sheffield, United Kingdom
| | - Steven Leslie Woods
- Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, Sheffield, United Kingdom
| | - Janet Elizabeth Brown
- Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, Sheffield, United Kingdom
| | - Harry Nunns
- Neogenomics Labs., Aliso Viejo, CA, United States
| | | | - Claire Elizabeth Lewis
- Division of Clinical Medicine, School of Medicine & Population Health, Faculty of Health, Sheffield, United Kingdom
| |
Collapse
|
39
|
Lee J, Bang JH, Ryu YC, Hwang BH. Multiple suppressing small interfering RNA for cancer treatment-Application to triple-negative breast cancer. Biotechnol J 2023; 18:e2300060. [PMID: 37478121 DOI: 10.1002/biot.202300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Certain cancers, such as triple-negative breast cancer (TNBC), pose a challenging prognosis due to the absence of identifiable hormone-related receptors and effective targeted therapies. Consequently, novel therapeutics are required for these cancers, offering minimal side effects and reduced drug resistance. Unexpectedly, siRNA-7, initially employed as a control, exhibited significant efficacy in inhibiting cell viability in MDA-MB-231 cells. Through a genome-wide search of seed sequences, the targets of siRNA-7 were identified as cancer-related genes, namely PRKCE, RBPJ, ZNF737, and CDC7 in MDA-MB-231 cells. The mRNA repression analysis confirmed the simultaneous suppression by siRNA-7. Combinatorial administration of single-targeting siRNAs demonstrated a comparable reduction in viability to that achieved by siRNA-7. Importantly, siRNA-7 selectively inhibited cell viability in MDA-MB-231 cells, while normal HDF-n cells remained unaffected. Furthermore, in a xenograft mouse model, siRNA-7 exhibited a remarkable 76% reduction in tumor volume without any loss in body weight. These findings position siRNA-7 as a promising candidate for a novel, safe, specific, and potent TNBC cancer therapeutic. Moreover, the strategy of multiple suppressing small interfering RNA holds potential for the treatment of various diseases associated with gene overexpression.
Collapse
Affiliation(s)
- Jaewook Lee
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Jang Hyuk Bang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Yeong Chae Ryu
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Byeong Hee Hwang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
- Research Center for Bio Material & Process Development, Incheon National University, Incheon, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
40
|
Yang F, Fan Z, Zhang L, He Y, Hu R, Xiang J, Fu S, Wang G, Wang J, Tao X, Zhang P. Preparation and anti-triple-negative breast cancer cell effect of a nanoparticle for the codelivery of paclitaxel and gemcitabine. DISCOVER NANO 2023; 18:119. [PMID: 37735318 PMCID: PMC10513990 DOI: 10.1186/s11671-023-03899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Amphiphilic polymers (HA-ANI) were prepared by grafting hyaluronic acid (HA) and 6-(2-nitroimidazole)hexylamine (ANI) and then self-assemble in water to form nanoparticles (NPs) that could be loaded with paclitaxel (PTX) and gemcitabine (GEM) by dialysis. Infrared spectroscopy and 1H-NMR indicated the successful synthesis of HA-ANI. Three different ratios of NPs were prepared by adjusting the ratios of hydrophilic and hydrophobic materials, and the particle size decreased as the ratio of hydrophilic materials increased. When HA:ANI = 2.0:1, the nanoparticles had the smallest size distribution, good stability and near spherical shape and had high drug loading and encapsulation rates. In vitro release experiments revealed that NADPH could accelerate the drug release from NPs. Cellular uptake rate reached 86.50% at 6 h. The toxic effect of dual drug-loaded nanoparticles (P/G NPs) on MDA-MB-231 cells at 48 h was stronger than that of the free drug. The AO/EB double-staining assay revealed that a large number of late apoptotic cells appeared in the P/G NPs group, and the degree of cell damage was significantly stronger than that of the free drug group. In the cell migration assay, the 24 h-cell migration rate of the P/G NPs group was 5.99%, which was much lower than that of the free group (13.87% and 17.00%). In conclusion, MDA-MB-231 cells could effectively take up P/G NPs, while the introduction of the nano-codelivery system could significantly enhance the toxicity of the drug to MDA-MB-231 cells as well as the migration inhibition effect.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zehui Fan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Lixia Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yanjuan He
- Department of Pediatrics, The Fourth Hospital of Changsha, 70 Lushan Road, Changsha, 410006, Hunan, China
| | - Run Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinkun Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiyang Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guowei Wang
- Department of Spine Surgery and Department of Infection, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianlong Wang
- Department of Spine Surgery and Department of Infection, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Pan Zhang
- Department of Spine Surgery and Department of Infection, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
41
|
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics (Basel) 2023; 13:2390. [PMID: 37510134 PMCID: PMC10378597 DOI: 10.3390/diagnostics13142390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15-20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Maram Aldawood
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Post Graduate and Zoology Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Fatimah Alanazi
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Abdul Latif Khan
- Tissue Biobank, KAIMRC, MNG-HA, Riyadh 11481, Saudi Arabia
- Pathology and Clinical Laboratory Medicine, King Abdulaziz Medical City (KAMC), Riyadh 11564, Saudi Arabia
| |
Collapse
|
42
|
Zhou T, Wu Y, Qian D, Tang H, Liu X, Qiu J, Wang D, Hong W, Meng X, Zheng Q. OTUD1 chemosensitizes triple-negative breast cancer to doxorubicin by modulating P16 expression. Pathol Res Pract 2023; 247:154571. [PMID: 37257246 DOI: 10.1016/j.prp.2023.154571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Chemotherapy remains a critical component of triple-negative breast cancer (TNBC) treatment; however, patients often develop resistance to chemotherapeutic agents. Accumulating evidence indicates that deubiquitylases (DUBs) play pivotal roles in regulating cell proliferation, differentiation, apoptosis, and tumorigenesis. Deubiquitylase OTUD1 is considered a tumor suppressor in various cancers, yet its role in doxorubicin sensitivity in breast cancer patients remains inadequately understood. In this study, we investigated the expression levels and prognostic role of OTUD1 in breast cancer. Our findings demonstrated that OTUD1 was downregulated in TNBC, and lower OTUD1 expression levels were correlated with poor prognosis. We utilized the CCK-8 cell viability assay, flow cytometric analysis, and a TNBC mouse xenograft model to examine the influence of OTUD1 on doxorubicin (DOX) chemotherapy sensitivity in vitro and in vivo. Western blot and immunohistochemistry were employed to explore the correlation between OTUD1 and P16. Our results indicated that upregulation of OTUD1 expression inhibits TNBC cell proliferation and enhances its sensitivity to doxorubicin. Additionally, rescue experiments confirmed that the chemosensitizing effect of OTUD1 overexpression could be reversed by the inhibition of P16. Therefore, our findings reveal that OTUD1 sensitizes TNBC cells to DOX by upregulating P16 expression, suggesting a potential new diagnostic biomarker and therapeutic target for the future treatment of TNBC.
Collapse
Affiliation(s)
- Tao Zhou
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Yihao Wu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, Jiangsu Province, China
| | - Hongchao Tang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China; Key Laboratory for diagnosis and treatment of upper limb edema and stasis of breast cancer, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xiaozhen Liu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China; Key Laboratory for diagnosis and treatment of upper limb edema and stasis of breast cancer, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Jie Qiu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Danhong Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Weimin Hong
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China; Key Laboratory for diagnosis and treatment of upper limb edema and stasis of breast cancer, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China.
| | - Qinghui Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China; Key Laboratory for diagnosis and treatment of upper limb edema and stasis of breast cancer, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
43
|
Tada H, Gonda K, Kitamura N, Ishida T. Clinical Significance of ABCG2/BCRP Quantified by Fluorescent Nanoparticles in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Cancers (Basel) 2023; 15:cancers15082365. [PMID: 37190293 DOI: 10.3390/cancers15082365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Breast cancer resistance protein (BCRP), also known as ATP-binding cassette transporter G2 (ABCG2), is associated with chemotherapy resistance. BCRP is also implicated in breast cancer stem cells, and is reported as a poor prognostic factor. However, the relationship of BCRP levels in breast cancer tissues with chemotherapy resistance and prognosis has not been clarified. We aimed to evaluate the correlation between BCRP expression and prognosis in breast cancer using immunohistochemistry with fluorescent phosphor-integrated dots (IHC-PIDs). A total of 37 breast cancer patients with residual cancer in the primary tumor and axillary lymph nodes were evaluated. BCRP levels in breast cancer tissue and metastatic lymph nodes were quantitatively detected after neoadjuvant chemotherapy (NAC). Among these 37 patients, 24 had corresponding core needle biopsies obtained before NAC. Biomarker assay with IHC-PIDs showed high accuracy for the quantitative assessment of BCRP with low expression. High BCRP expression in the primary tumor and metastatic lymph nodes after preoperative chemotherapy was associated with worse overall survival. In conclusion, high BCRP levels may be associated with poor prognosis in patients with breast cancer, having residual tumors within the primary tumor and lymph nodes after preoperative chemotherapy. These findings provide a basis for further appropriate adjuvant therapy in these patients.
Collapse
Affiliation(s)
- Hiroshi Tada
- Division of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Kohsuke Gonda
- Department of Medical Physics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Narufumi Kitamura
- Department of Medical Physics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| | - Takanori Ishida
- Division of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
44
|
Wu Y, Shum HCE, Wu K, Vadgama J. From Interaction to Intervention: How Mesenchymal Stem Cells Affect and Target Triple-Negative Breast Cancer. Biomedicines 2023; 11:1182. [PMID: 37189800 PMCID: PMC10136169 DOI: 10.3390/biomedicines11041182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expressions, making targeted therapies ineffective. Mesenchymal stem cells (MSCs) have emerged as a promising approach for TNBC treatment by modulating the tumor microenvironment (TME) and interacting with cancer cells. This review aims to comprehensively overview the role of MSCs in TNBC treatment, including their mechanisms of action and application strategies. We analyze the interactions between MSC and TNBC cells, including the impact of MSCs on TNBC cell proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance, along with the signaling pathways and molecular mechanisms involved. We also explore the impact of MSCs on other components of the TME, such as immune and stromal cells, and the underlying mechanisms. The review discusses the application strategies of MSCs in TNBC treatment, including their use as cell or drug carriers and the advantages and limitations of different types and sources of MSCs in terms of safety and efficacy. Finally, we discuss the challenges and prospects of MSCs in TNBC treatment and propose potential solutions or improvement methods. Overall, this review provides valuable insights into the potential of MSCs as a novel therapeutic approach for TNBC treatment.
Collapse
Affiliation(s)
- Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Hang Chee Erin Shum
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ke Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jaydutt Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Agnello L, d’Argenio A, Nilo R, Fedele M, Camorani S, Cerchia L. Aptamer-Based Strategies to Boost Immunotherapy in TNBC. Cancers (Basel) 2023; 15:cancers15072010. [PMID: 37046670 PMCID: PMC10093095 DOI: 10.3390/cancers15072010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The immune system (IS) may play a crucial role in preventing tumor development and progression, leading, over the last years, to the development of effective cancer immunotherapies. Nevertheless, immune evasion, the capability of tumors to circumvent destructive host immunity, remains one of the main obstacles to overcome for maximizing treatment success. In this context, promising strategies aimed at reshaping the tumor immune microenvironment and promoting antitumor immunity are rapidly emerging. Triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with poor outcomes, is highly immunogenic, suggesting immunotherapy is a viable strategy. As evidence of this, already, two immunotherapies have recently become the standard of care for patients with PD-L1 expressing tumors, which, however, represent a low percentage of patients, making more active immunotherapeutic approaches necessary. Aptamers are short, highly structured, single-stranded oligonucleotides that bind to their protein targets at high affinity and specificity. They are used for therapeutic purposes in the same way as monoclonal antibodies; thus, various aptamer-based strategies are being actively explored to stimulate the IS’s response against cancer cells. The aim of this review is to discuss the potential of the recently reported aptamer-based approaches to boost the IS to fight TNBC.
Collapse
|
46
|
Wang W, Rana PS, Markovic V, Sossey-Alaoui K. The WAVE3/β-catenin oncogenic signaling regulates chemoresistance in triple negative breast cancer. Breast Cancer Res 2023; 25:31. [PMID: 36949468 PMCID: PMC10035207 DOI: 10.1186/s13058-023-01634-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Metastatic breast cancer is responsible for the death of the majority of breast cancer patients. In fact, metastatic BC is the 2nd leading cause of cancer-related deaths in women in the USA and worldwide. Triple negative breast cancer (TNBC), which lacks expression of hormone receptors (ER-α and PR) and ErbB2/HER2, is especially lethal due to its highly metastatic behavior, propensity to recur rapidly, and for its resistance to standard of care therapies, through mechanisms that remain incompletely understood. WAVE3 has been established as a promoter of TNBC development and metastatic progression. In this study, we investigated the molecular mechanisms whereby WAVE3 promotes therapy-resistance and cancer stemness in TNBC, through the regulation of β-catenin stabilization. METHODS The Cancer Genome Atlas dataset was used to assess the expression of WAVE3 and β-catenin in breast cancer tumors. Kaplan-Meier Plotter analysis was used to correlate expression of WAVE3 and β-catenin with breast cancer patients' survival probability. MTT assay was used to quantify cell survival. CRISPR/Cas9-mediated gene editing, 2D and 3D tumorsphere growth and invasion assays, Immunofluorescence, Western blotting, Semi-quantitative and real-time quantitative PCR analyses were applied to study the WAVE3/β-catenin oncogenic signaling in TNBC. Tumor xenograft assays were used to study the role of WAVE3 in mediating chemotherapy resistance of TNBC tumors. RESULTS Genetic inactivation of WAVE3 in combination of chemotherapy resulted in inhibition of 2D growth and 3D tumorsphere formation and invasion of TNBC cells in vitro, as well as tumor growth and metastasis in vivo. In addition, while re-expression of phospho-active WAVE3 in the WAVE3-deficient TNBC cells restored the oncogenic activity of WAVE3, re-expression of phospho-mutant WAVE3 did not. Further studies revealed that dual blocking of WAVE3 expression or phosphorylation in combination with chemotherapy treatment inhibited the activity and expression and stabilization of β-catenin. Most importantly, the combination of WAVE3-deficiency or WAVE3-phospho-deficiency and chemotherapy suppressed the oncogenic behavior of chemoresistant TNBC cells, both in vitro and in vivo. CONCLUSION We identified a novel WAVE3/β-catenin oncogenic signaling axis that modulates chemoresistance of TNBC. This study suggests that a targeted therapeutic strategy against WAVE3 could be effective for the treatment of chemoresistant TNBC tumors.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH, 44109, USA
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Priyanka S Rana
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH, 44109, USA
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Vesna Markovic
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA
| | - Khalid Sossey-Alaoui
- Department of Medicine, MetroHealth Medical Center, Cleveland, OH, 44109, USA.
- Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH, 44016, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
47
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
48
|
Li J, Liu X, Chen L, Zhu X, Yu Z, Dong L, Zhao X, Zou H, Wei Q, Feng Y, Zhu Y, Chai K, Li Q, Li M. Isopimaric acid, an ion channel regulator, regulates calcium and oxidative phosphorylation pathways to inhibit breast cancer proliferation and metastasis. Toxicol Appl Pharmacol 2023; 462:116415. [PMID: 36754215 DOI: 10.1016/j.taap.2023.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Breast cancer is the globally most common malignant tumor and the biggest threat to women. Even though the diagnosis and treatment of breast cancer are progressing continually, a large number of breast cancer patients eventually develop a metastatic tumor, especially triple-negative breast cancer (TNBC). Recently, metal ion homeostasis and ion signaling pathway have become important targets for cancer therapy. In this study, We analyzed the effects and mechanisms of isopimaric acid (IPA), an ion channel regulator, on the proliferation and metastasis of breast cancer cells (4 T1, MDA-MB-231and MCF-7) by cell functional assay, flow cytometry, western blot, proteomics and other techniques in vitro and in vivo. Results found that IPA significantly inhibited the proliferation and metastasis of breast cancer cells (especially 4 T1). Further studies on the anti-tumor mechanism of IPA suggested that IPA might affect EMT and Wnt signaling pathways by targeting mitochondria oxidative phosphorylation and Ca2+ signaling pathways, and then inducing breast cancer cell cycle arrest and apoptosis. Our research reveals the therapeutic value of IPA in breast cancer and provides a theoretical basis for the new treatment of breast cancer.
Collapse
Affiliation(s)
- Jiacheng Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China; Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Xiaozhen Liu
- Department of Medical and Radiation Oncology, Linyi People's Hospital, Linyi 276000, China
| | - Lin Chen
- Sericultural Research Institute, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinping Zhu
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Zhihong Yu
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Liyao Dong
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China; Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Xinyun Zhao
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China; Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Hongling Zou
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China; Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Qin Wei
- Key Laboratory of Fermentation Resources and Application in Universities of Sichuan Province, Yibin University, Yibin, Sichuan 644000, China
| | - Yongcai Feng
- Xujing (Hangzhou) Biotechnology Research Institute Co., Ltd., Hangzhou 310021, China
| | - Yongqiang Zhu
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Kequn Chai
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, China.
| | - Mingqian Li
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
49
|
Torres-Ruiz S, Tormo E, Garrido-Cano I, Lameirinhas A, Rojo F, Madoz-Gúrpide J, Burgués O, Hernando C, Bermejo B, Martínez MT, Lluch A, Cejalvo JM, Eroles P. High VEGFR3 Expression Reduces Doxorubicin Efficacy in Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24043601. [PMID: 36835014 PMCID: PMC9966352 DOI: 10.3390/ijms24043601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Due to the lack of specific targets, cytotoxic chemotherapy still represents the common standard treatment for triple-negative breast patients. Despite the harmful effect of chemotherapy on tumor cells, there is evidence that treatment could modulate the tumor microenvironment in a way favoring the propagation of the tumor. In addition, the lymphangiogenesis process and its factors could be involved in this counter-therapeutic event. In our study, we have evaluated the expression of the main lymphangiogenic receptor VEGFR3 in two triple-negative breast cancer in vitro models, resistant or not to doxorubicin treatment. The expression of the receptor, at mRNA and protein levels, was higher in doxorubicin-resistant cells than in parental cells. In addition, we confirmed the upregulation of VEGFR3 levels after a short treatment with doxorubicin. Furthermore, VEGFR3 silencing reduced cell proliferation and migration capacities in both cell lines. Interestingly, high VEGFR3 expression was significantly positively correlated with worse survival in patients treated with chemotherapy. Furthermore, we have found that patients with high expression of VEGFR3 present shorter relapse-free survival than patients with low levels of the receptor. In conclusion, elevated VEGFR3 levels correlate with poor survival in patients and with reduced doxorubicin treatment efficacy in vitro. Our results suggest that the levels of this receptor could be a potential marker of meager doxorubicin response. Consequently, our results suggest that the combination of chemotherapy and VEGFR3 blockage could be a potentially useful therapeutic strategy for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
| | - Eduardo Tormo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
| | | | - Ana Lameirinhas
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Federico Rojo
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Juan Madoz-Gúrpide
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Octavio Burgués
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Department of Medicine, Universidad de Valencia, 46010 Valencia, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Physiology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Universidad Politécnica de Valencia, 46022 Valencia, Spain
- Correspondence:
| |
Collapse
|
50
|
Systemically Identifying Triple-Negative Breast Cancer Subtype-Specific Prognosis Signatures, Based on Single-Cell RNA-Seq Data. Cells 2023; 12:cells12030367. [PMID: 36766710 PMCID: PMC9913740 DOI: 10.3390/cells12030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with different molecular subtypes. Although progress has been made, the identification of TNBC subtype-associated biomarkers is still hindered by traditional RNA-seq or array technologies, since bulk data detected by them usually have some non-disease tissue samples, or they are confined to measure the averaged properties of whole tissues. To overcome these constraints and discover TNBC subtype-specific prognosis signatures (TSPSigs), we proposed a single-cell RNA-seq-based bioinformatics approach for identifying TSPSigs. Notably, the TSPSigs we developed mostly were found to be disease-related and involved in cancer development through investigating their enrichment analysis results. In addition, the prognostic power of TSPSigs was successfully confirmed in four independent validation datasets. The multivariate analysis results showed that TSPSigs in two TNBC subtypes-BL1 and LAR, were two independent prognostic factors. Further, analysis results of the TNBC cell lines revealed that the TSPSigs expressions and drug sensitivities had significant associations. Based on the preceding data, we concluded that TSPSigs could be exploited as novel candidate prognostic markers for TNBC patients and applied to individualized treatment in the future.
Collapse
|