1
|
Huang H, Yang C, Li S, Zhan H, Tan J, Chen C, Liu J, Wang M, Li H. Lizhong decoction alleviates experimental ulcerative colitis via regulating gut microbiota-SCFAs-Th17/Treg axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119958. [PMID: 40350047 DOI: 10.1016/j.jep.2025.119958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lizhong decoction (LZD), a Traditional Chinese Medicine formula, is widely utilized to treat gastrointestinal diseases, including ulcerative colitis in China for thousands of years. AIM OF THE STUDY To investigate whether the protective effect of LZD on ulcerative colitis is dependent on gut microbiota and T-cell immune homeostasis. MATERIAL AND METHODS The preventive effects of LZD on dextran sodium sulfate (DSS)-induced colitis mice were evaluated through the measurement of body weight, disease activity index, colon length and hematoxylin-eosin staining. Flow cytometry was used to detect the ratio of Th17/Treg cells. Pseudo sterile mice and fecal transplantation experiments were used to investigate whether the preventive effect of LZD was dependent on the gut microbiota. The alterations of gut microbiota were identified by the 16S rDNA sequencing. The content of intestinal short-chain fatty acids (SCFAs) was detected by LC-MS/MS analysis. The downstream signal pathways of SCFAs were detected by the immunoblotting. RESULTS LZD administration significantly alleviated weight loss and intestinal injury in DSS-induced colitis mice. LZD administration also promotes the balance of Th17/Treg cells. Moreover, LZD administration relies on gut microbiota to alleviate ulcerative colitis and regulate Th17/Treg cell balance. LZD administration significantly improves gut microbial composition in colitis mice, elevating the abundance of SCFAs producing bacterium such as lachnospiraceae_nk4a136_group and Akkermansia. LZD treatment further increases the abundance of SCFAs and promotes activation of free fatty acid activated receptor 2 (FFAR2). CONCLUSION LZD administration promotes Th17/Treg cell balance in a gut microbiota-SCFAs dependent manner, which in turn ameliorates ulcerative colitis.
Collapse
MESH Headings
- Animals
- Gastrointestinal Microbiome/drug effects
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/microbiology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Dextran Sulfate
- Male
- Mice
- Mice, Inbred C57BL
- Fatty Acids, Volatile/metabolism
- Disease Models, Animal
- Colon/drug effects
- Colon/pathology
- Colon/microbiology
- Fecal Microbiota Transplantation
Collapse
Affiliation(s)
- Hengjun Huang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China.
| | - Chengyu Yang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Silu Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Huang Zhan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jinlong Tan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Congcong Chen
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Jian Liu
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Maolin Wang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China
| | - Hui Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330115, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Luo J, Wang J, Qiu Z, Zeng H, Tan Y, Huang Y, Shu W. Natural Bicarbonate Water Might Enhance Nitrogen Balance and Lipid Metabolism and Improve Calcium Balance: A Full Quantitative Targeted Metabolomics Study in Rats. Nutrients 2025; 17:1875. [PMID: 40507150 PMCID: PMC12157924 DOI: 10.3390/nu17111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/21/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Background/Objectives: Drinking natural bicarbonate water (NBW) has been associated with decreased bone resorption, improved lipid profile, and reduced cardiovascular risk. However, the specific molecular mechanisms underlying these effects remain unclear. Methods: Twenty 10-month-old female Sprague Dawley rats were randomly allocated to two experimental groups; one received purified water (PW) and the other was administered NBW over a three-month intervention period. The liver's metabolic properties were analyzed using a comprehensive quantitative targeted metabolomics technique. Results: Sixty-nine differential metabolites (67 upregulated and 2 downregulated) were detected in the NBW group compared to the PW group. These metabolites included 34 amino acids, 11 carbohydrates, 7 fatty acids, 7 short-chain fatty acids (SCFAs), and 10 other biomolecules. Furthermore, 10 metabolic pathways exhibited significant alterations: aminoacyl-tRNA biosynthesis; alanine-aspartate-glutamate metabolism; nitrogen-butanoate metabolism; histidine-phenylalanine metabolism; arginine-proline metabolism; glycine-serine-threonine metabolism; valine-leucine-isoleucine biosynthesis; and phenylalanine-tyrosine-tryptophan biosynthesis. The NBW group demonstrated a statistical tendency toward lower urinary calcium/creatinine ratio compared to the PW group. Conclusions: These findings suggest that the consumption of NBW may induce positive nitrogen balance, enhance the level of certain polyunsaturated fatty acids and SCFAs, and improve calcium balance. Such metabolic alterations could potentially explain the beneficial effects of NBW.
Collapse
Affiliation(s)
- Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.L.); (Z.Q.); (H.Z.); (Y.T.)
| | - Jia Wang
- Department of Medical English, College of Basic Medicine, Army Medical University, Chongqing 400038, China;
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.L.); (Z.Q.); (H.Z.); (Y.T.)
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.L.); (Z.Q.); (H.Z.); (Y.T.)
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.L.); (Z.Q.); (H.Z.); (Y.T.)
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.L.); (Z.Q.); (H.Z.); (Y.T.)
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China; (J.L.); (Z.Q.); (H.Z.); (Y.T.)
| |
Collapse
|
3
|
Zhou Y, Li MY, Li CY, Sheng YJ, Ye QT, Chen RY, Zhou KY, Zhang Y, Shen LF, Shou D. Effective mechanism of polysaccharides from Erxian herbal pair in promoting bone repair in traumatic osteomyelitis by activating osteoblast GPR41 and inhibiting the MEK/ERK/MAPK signalling axis. Int J Biol Macromol 2025; 307:141858. [PMID: 40058443 DOI: 10.1016/j.ijbiomac.2025.141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Polysaccharides are the key components of natural products; however, their effects on bone repair haven't been fully evaluated. This study aimed to assess the efficacy and mechanism of polysaccharides in promoting bone repair. The Erxian herb pair polysaccharide (EHP) was isolated and purified using water extraction (1:20 (w/v); 100 ± 2 °C; 5 h) and alcohol precipitation (80 ± 2 %). A traumatic osteomyelitis (TO) rat model was established using lipopolysaccharide (LPS). The gut microbiota was analysed through intestinal flora and metagenomic sequencing. The results revealed that the yields of crude polysaccharide and purified polysaccharide EHP were 3.73 ± 0.34 % and 0.48 ± 0.06 %, respectively. The total sugar content of EHP was 83.53 ± 0.16 %. The EHP, with a molecular weight of 31.964 kDa, was primarily composed of mannose, rhamnose, glucose, galactose, and arabinose. In vivo experiments demonstrated that EHP intervention (300 mg/kg/day) significantly augmented bone density and enhanced the activity of alkaline phosphatase (ALP) (P < 0.01). EHP upregulated the abundance of probiotics and increased the production of butyric acid (P < 0.05). In vitro experiments revealed that butyric acid (500-1000 μM) enhanced osteoblast activity and inhibited the expression of mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) (P < 0.01). These findings indicate that polysaccharides may represent a promising therapeutic agent for bone-healing.
Collapse
Affiliation(s)
- Yun Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Meng Ying Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Cheng Yan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yun Jie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Qi Tao Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Ru Yi Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Kang Yu Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yang Zhang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China.
| | - Li Feng Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Affiliated with the Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
4
|
John HT, Thomas TC, Chukwuebuka EC, Ali AB, Anass R, Tefera YY, Babu B, Negrut N, Ferician A, Marian P. The Microbiota-Human Health Axis. Microorganisms 2025; 13:948. [PMID: 40284784 PMCID: PMC12029893 DOI: 10.3390/microorganisms13040948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Trillions of microorganisms play a pivotal role in maintaining health and preventing disease in humans. Their presence influences daily life, habits, energy levels, and pathologies. The present narrative review synthesized recent studies of microbial diversity across organ systems. The composition of the microbiota regulates the intestinal barrier, modulates the immune response, influences metabolism, and produces essential compounds such as short-chain fatty acids and neurotransmitters. Dysbiosis is associated with numerous pathologies, including metabolic, autoimmune, neurodegenerative, and cardiovascular diseases. The microbiota is key to maintaining physiological balance and reducing disease risk. Therapeutic interventions, such as probiotics, prebiotics, postbiotics, and microbiome transplantation, offer promising perspectives in restoring microbial homeostasis and preventing chronic diseases.
Collapse
Affiliation(s)
- Harrie Toms John
- Department of Intensive Care, Epsom and St. Helier University Hospitals NHS Trust, Wrythe Ln, Sutton SM5 1AA, UK
| | - Treesa Clare Thomas
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | - Ezenwa Collins Chukwuebuka
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | - Ali Bacar Ali
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | - Reggani Anass
- Faculty of Medicine and Pharmacy, University of Oradea, Piaţa 1 Decembrie 10, 410068 Oradea, Romania; (T.C.T.); (E.C.C.); (A.B.A.); (R.A.)
| | | | - Bency Babu
- Department of General Internal Medicine, Northampton General Hospital, NHS Trust, Northampton NN1 5BD, UK;
| | - Nicoleta Negrut
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anca Ferician
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.); (P.M.)
| | - Paula Marian
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.F.); (P.M.)
| |
Collapse
|
5
|
Sharma S, Tiwari N, Tanwar SS. The current findings on the gut-liver axis and the molecular basis of NAFLD/NASH associated with gut microbiome dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04069-z. [PMID: 40202676 DOI: 10.1007/s00210-025-04069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Recent research has highlighted the complex relationship between gut microbiota, metabolic pathways, and nonalcoholic fatty liver disease (NAFLD) progression. Gut dysbiosis, commonly observed in NAFLD patients, impairs intestinal permeability, leading to the translocation of bacterial products like lipopolysaccharides, short-chain fatty acids, and ethanol to the liver. These microbiome-associated mechanisms contribute to intestinal and hepatic inflammation, potentially advancing NAFLD to NASH. Dietary habits, particularly those rich in saturated fats and fructose, can modify the microbiome composition, leading to dysbiosis and fatty liver development. Metabolomic approaches have identified unique profiles in NASH patients, with specific metabolites like ethanol linked to disease progression. While bariatric surgery has shown promise in preventing NAFLD progression, the role of gut microbiome and metabolites in this improvement remains to be proven. Understanding these microbiome-related pathways may provide new diagnostic and therapeutic targets for NAFLD and NASH. A comprehensive review of current literature was conducted using multiple medical research databases, including PubMed, Scopus, Web of Science, Embase, Cochrane Library, ClinicalTrials.gov, ScienceDirect, Medline, ProQuest, and Google Scholar. The review focused on studies that examine the relationship between gut microbiota composition, metabolic pathways, and NAFLD progression. Key areas of interest included microbial dysbiosis, endotoxin production, and the influence of diet on gut microbiota. The analysis revealed that gut dysbiosis contributes to NAFLD through several mechanisms, diet significantly influences gut microbiota composition, which in turn affects liver function through the gut-liver axis. High-fat diets can lead to dysbiosis, altering microbial metabolic activities and promoting liver inflammation. Specifically, gut microbiota-mediated generation of saturated fatty acids, such as palmitic acid, can activate liver macrophages and increase TNF-α expression, contributing to NASH development. Different dietary components, including cholesterol, fiber, fat, and carbohydrates, can modulate the gut microbiome and influence NAFLD progression. This gut-liver axis plays a crucial role in maintaining immune homeostasis, with the liver responding to gut-derived bacteria by activating innate and adaptive immune responses. Microbial metabolites, such as bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis, contributing to NASH pathogenesis. Additionally, the microbiome of NASH patients shows an elevated capacity for alcohol production, suggesting similarities between alcoholic steatohepatitis and NASH. These findings indicate that targeting the gut microbiota may be a promising approach for NASH treatment and prevention. Recent research highlights the potential of targeting gut microbiota for managing nonalcoholic fatty liver disease (NAFLD). The gut-liver axis plays a crucial role in NAFLD pathophysiology, with dysbiosis contributing to disease progression. Various therapeutic approaches aimed at modulating gut microbiota have shown promise, including probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and dietary interventions. Probiotics have demonstrated efficacy in human randomized controlled trials, while other interventions require further investigation in clinical settings. These microbiota-targeted therapies may improve NAFLD outcomes through multiple mechanisms, such as reducing inflammation and enhancing metabolic function. Although lifestyle modifications remain the primary recommendation for NAFLD management, microbiota-focused interventions offer a promising alternative for patients struggling to achieve weight loss targets.
Collapse
Affiliation(s)
- Seema Sharma
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India
| | - Nishant Tiwari
- Acropolis Institute of Pharmaceutical Education and Research, Indore, M.P, India
| | - Sampat Singh Tanwar
- Department of Pharmacy, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore, M.P, India.
| |
Collapse
|
6
|
Ni Y, Tong Q, Xu M, Gu J, Ye H. Gut Microbiota-Induced Modulation of the Central Nervous System Function in Parkinson's Disease Through the Gut-Brain Axis and Short-Chain Fatty Acids. Mol Neurobiol 2025; 62:2480-2492. [PMID: 39134825 DOI: 10.1007/s12035-024-04370-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/12/2024] [Indexed: 01/28/2025]
Abstract
Recent insights into Parkinson's disease (PD), a progressive neurodegenerative disorder, suggest a significant influence of the gut microbiome on its pathogenesis and progression through the gut-brain axis. This study integrates 16S rRNA sequencing, high-throughput transcriptomic sequencing, and animal model experiments to explore the molecular mechanisms underpinning the role of gut-brain axis in PD, with a focus on short-chain fatty acids (SCFAs) mediated by the SCFA receptors FFAR2 and FFAR3. Our findings highlighted prominent differences in the gut microbiota composition between PD patients and healthy individuals, particularly in taxa such as Escherichia_Shigella and Bacteroidetes, which potentially impact SCFA levels through secondary metabolite biosynthesis. Notably, fecal microbiota transplantation (FMT) from healthy to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models significantly improved motor function, enhanced dopamine and serotonin levels in the striatum, and increased the number of dopaminergic neurons in the substantia nigra while reducing glial cell activation. This therapeutic effect was associated with increased levels of SCFAs such as acetate, propionate, and butyrate in the gut of MPTP-lesioned mice. Moreover, transcriptomic analyses revealed upregulated expression of FFAR2 and FFAR3 in MPTP-lesioned mice, indicating their crucial role in mediating the benefits of FMT on the central nervous system. These results provide compelling evidence that gut microbiota and SCFAs play a critical role in modulating the gut-brain axis, offering new insights into PD's etiology and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yiting Ni
- Department of Neurology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, 325000, China
| | - Qiaowen Tong
- Department of Neurology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, 325000, China
| | - Mengying Xu
- Department of Neurology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, 325000, China
| | - Jiayi Gu
- Department of Neurology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, 325000, China
| | - Hua Ye
- Department of Neurology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, 325000, China.
| |
Collapse
|
7
|
Rampanelli E, Romp N, Troise AD, Ananthasabesan J, Wu H, Gül IS, De Pascale S, Scaloni A, Bäckhed F, Fogliano V, Nieuwdorp M, Bui TPN. Gut bacterium Intestinimonas butyriciproducens improves host metabolic health: evidence from cohort and animal intervention studies. MICROBIOME 2025; 13:15. [PMID: 39833973 PMCID: PMC11744835 DOI: 10.1186/s40168-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease. It is therefore of interest to investigate the causal role of this bacterium and fructoselysine metabolism in metabolic disorders. RESULTS We assessed associations of I. butyriciproducens with metabolic risk biomarkers at both strain and functional levels using a human cohort characterized by fecal metagenomic analysis. We observed that the level of the bacterial strain as well as fructoselysine fermentation genes were negatively associated with BMI, triglycerides, HbA1c, and fasting insulin levels. We also investigated the fructoselysine degradation capacity within the Intestinimonas genus using a culture-dependent approach and found that I. butyriciproducens is a key player in the butyrogenic fructoselysine metabolism in the gut. To investigate the function of I. butyriciproducens in host metabolism, we used the diet-induced obesity mouse model to mimic the human metabolic syndrome. Oral supplementation with I. butyriciproducens counteracted body weight gain, hyperglycemia, and adiposity. In addition, within the inguinal white adipose tissue, bacterial administration reduced inflammation and promoted pathways involved in browning and insulin signaling. The observed effects may be partly attributable to the formation of the short-chain fatty acids butyrate from dietary fructoselysine, as butyrate plasma and cecal levels were significantly increased by the bacterial strain, thereby contributing to the systemic effects of the bacterial treatment. CONCLUSIONS I. butyriciproducens ameliorates host metabolism in the context of obesity and may therefore be a good candidate for new microbiota-therapeutic approaches to prevent or treat metabolic diseases. Video Abstract.
Collapse
Affiliation(s)
- Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Nadia Romp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Antonio Dario Troise
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055, Portici (Naples), Italy
| | | | - Hao Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan Microbiome Center, and Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | | | - Sabrina De Pascale
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055, Portici (Naples), Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055, Portici (Naples), Italy
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Stråket 16, 41345, Gothenburg, Sweden
| | - Vincenzo Fogliano
- Department of Food Quality and Design, Wageningen University, Wageningen, the Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Bauset C, Carda-Diéguez M, Cejudo-Garcés A, Buetas E, Seco-Cervera M, Macias-Ceja DC, Navarro-Vicente F, Esplugues JV, Calatayud S, Mira Á, Ortiz-Masiá D, Barrachina MD, Cosín-Roger J. A disturbed metabolite-GPCR axis is associated with microbial dysbiosis in IBD patients: Potential role of GPR109A in macrophages. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167489. [PMID: 39233260 DOI: 10.1016/j.bbadis.2024.167489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Inflammatory Bowel Disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract characterized by disrupted immune function. Indeed, gut microbiota dysbiosis and metabolomic profile alterations, are hallmarks of IBD. In this scenario, metabolite-sensing G-protein coupled receptors (GPCRs), involved in several biological processes, have emerged as pivotal players in the pathophysiology of IBD. The aim of this study was to characterize the axis microbiota-metabolite-GPCR in intestinal surgical resections from IBD patients. Results showed that UC patients had a lower microbiota richness and bacterial load, with a higher proportion of the genus Cellulosimicrobium and a reduced proportion of Escherichia, whereas CD patients showed a decreased abundance of Enterococcus. Furthermore, metabolomic analysis revealed alterations in carboxylic acids, fatty acids, and amino acids in UC and CD samples. These patients also exhibited upregulated expression of most metabolite-sensing GPCRs analysed, which positively correlated with pro-inflammatory and pro-fibrotic markers. The role of GPR109A was studied in depth and increased expression of this receptor was detected in epithelial cells and cells from lamina propria, including CD68+ macrophages, in IBD patients. The treatment with β-hydroxybutyrate increased gene expression of GPR109A, CD86, IL1B and NOS2 in U937-derived macrophages. Besides, when GPR109A was transiently silenced, the mRNA expression and secretion of IL-1β, IL-6 and TNF-α were impaired in M1 macrophages. Finally, the secretome from siGPR109A M1 macrophages reduced the gene and protein expression of COL1A1 and COL3A1 in intestinal fibroblasts. A better understanding of metabolite-sensing GPCRs, such as GPR109A, could establish their potential as therapeutic targets for managing IBD.
Collapse
Affiliation(s)
- Cristina Bauset
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - Andrea Cejudo-Garcés
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Elena Buetas
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | | | | | | | - Juan Vicente Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| | - Sara Calatayud
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| | - Álex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain; CIBER Center for Epidemiology and Public Health, Madrid, Spain
| | - Dolores Ortiz-Masiá
- CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| | - María Dolores Barrachina
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain.
| | - Jesús Cosín-Roger
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain; CIBERehd (Centro de Investigaciones en Red Enfermedad Hepática y Digestiva), Madrid, Spain
| |
Collapse
|
9
|
Wu XQ, Zhao L, Zhao YL, He XY, Zou L, Zhao YY, Li X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:423-435. [PMID: 38757785 PMCID: PMC11104709 DOI: 10.1080/13880209.2024.2351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Lei Zhao
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yan-Long Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Xin-Yao He
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Tang MY, Xie H, Tao JT, Zhang C, Luo YH, Zhang C, Peng SQ, Xie LX, Lv WB, Zhang C, Huang L. Pathophysiological relevance and therapeutic outlook of GPR43 in atherosclerosis. Biochem Cell Biol 2024; 102:418-429. [PMID: 39013204 DOI: 10.1139/bcb-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Atherosclerosis (AS) is an inflammatory arterial disorder that occurs due to the deposition of the excessive lipoprotein under the artery intima, mainly including low-density lipoprotein and other apolipoprotein B-containing lipoproteins. G protein-coupled receptors (GPCRs) play a crucial role in transmitting signals in physiological and pathophysiological conditions. GPCRs recognize inflammatory mediators, thereby serving as important players during chronic inflammatory processes. It has been demonstrated that free fatty acids can function as ligands for various GPCRs, such as free fatty acid receptor (FFAR)1/GPR40, FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120, and the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). This review discusses GPR43 and its ligands in the pathogenesis of AS, especially focusing on its distinct role in regulating chronic vascular inflammation, inhibiting oxidative stress, ameliorating endothelial dysfunction and improving dyslipidemia. It is hoped that this review may provide guidance for further studies aimed at GPR43 as a promising target for drug development in the prevention and therapy of AS.
Collapse
Affiliation(s)
- Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hao Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jin-Tao Tao
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yao-Hua Luo
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Si-Qin Peng
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Xi Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Wen-Bo Lv
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
11
|
Rivera K, Gonzalez L, Bravo L, Manjarres L, Andia ME. The Gut-Heart Axis: Molecular Perspectives and Implications for Myocardial Infarction. Int J Mol Sci 2024; 25:12465. [PMID: 39596530 PMCID: PMC11595032 DOI: 10.3390/ijms252212465] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Myocardial infarction (MI) remains the leading cause of death globally, imposing a significant burden on healthcare systems and patients. The gut-heart axis, a bidirectional network connecting gut health to cardiovascular outcomes, has recently emerged as a critical factor in MI pathophysiology. Disruptions in this axis, including gut dysbiosis and compromised intestinal barrier integrity, lead to systemic inflammation driven by gut-derived metabolites like lipopolysaccharides (LPSs) and trimethylamine N-oxide (TMAO), both of which exacerbate MI progression. In contrast, metabolites such as short-chain fatty acids (SCFAs) from a balanced microbiota exhibit protective effects against cardiac damage. This review examines the molecular mediators of the gut-heart axis, considering the role of factors like sex-specific hormones, aging, diet, physical activity, and alcohol consumption on gut health and MI outcomes. Additionally, we highlight therapeutic approaches, including dietary interventions, personalized probiotics, and exercise regimens. Addressing the gut-heart axis holds promise for reducing MI risk and improving recovery, positioning it as a novel target in cardiovascular therapy.
Collapse
Affiliation(s)
- Katherine Rivera
- Doctoral Program in Medical Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 8331010, Chile;
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Leticia Gonzalez
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Liena Bravo
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Laura Manjarres
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Marcelo E. Andia
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| |
Collapse
|
12
|
Donati Zeppa S, Gervasi M, Bartolacci A, Ferrini F, Patti A, Sestili P, Stocchi V, Agostini D. Targeting the Gut Microbiota for Prevention and Management of Type 2 Diabetes. Nutrients 2024; 16:3951. [PMID: 39599740 PMCID: PMC11597803 DOI: 10.3390/nu16223951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder with a heterogeneous etiology encompassing societal and behavioral risk factors in addition to genetic and environmental susceptibility. The cardiovascular consequences of diabetes account for more than two-thirds of mortality among people with T2D. Not only does T2D shorten life expectancy, but it also lowers quality of life and is associated with extremely high health expenditures since diabetic complications raise both direct and indirect healthcare costs. An increasing body of research indicates a connection between T2D and gut microbial traits, as numerous alterations in the intestinal microorganisms have been noted in pre-diabetic and diabetic individuals. These include pro-inflammatory bacterial patterns, increased intestinal permeability, endotoxemia, and hyperglycemia-favoring conditions, such as the alteration of glucagon-like peptide-1 (GLP-1) secretion. Restoring microbial homeostasis can be very beneficial for preventing and co-treating T2D and improving antidiabetic therapy outcomes. This review summarizes the characteristics of a "diabetic" microbiota and the metabolites produced by microbial species that can worsen or ameliorate T2D risk and progression, suggesting gut microbiota-targeted strategies to restore eubiosis and regulate blood glucose. Nutritional supplementation, diet, and physical exercise are known to play important roles in T2D, and here their effects on the gut microbiota are discussed, suggesting non-pharmacological approaches that can greatly help in diabetes management and highlighting the importance of tailoring treatments to individual needs.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Alessia Bartolacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Antonino Patti
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| | - Vilberto Stocchi
- Department of Human Science for Promotion of Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (A.B.); (P.S.); (D.A.)
| |
Collapse
|
13
|
Xue Y, Lin S, Chen M, Ke J, Zhang J, Fan Q, Chen Y, Chen F. Altered colonic microflora and its metabolic profile in mice with acute viral myocarditis induced by coxsackievirus B3. Virol J 2024; 21:295. [PMID: 39550578 PMCID: PMC11568606 DOI: 10.1186/s12985-024-02571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Mounting evidence suggests that the gut-heart axis is critical in the pathogenesis of cardiovascular diseases. The gut serves as the primary pathway through which Coxsackievirus B3 (CVB3) infects its host, leading to acute viral myocarditis (AVMC). However, little is known about the role of gut microflora and its metabolites in the development of AVMC. The AVMC model was established by intraperitoneal injection of CVB3 in mice. Then, 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) untargeted metabolomics profiling were performed to analyze the microflora composition and metabolic profile of colonic contents. Compared to the Control mice, the AVMC mice displayed a significant reduction in gut microflora richness and diversity, as revealed by an increased abundance of Proteobacteria and a decreased abundance of Cyanobacteria and Desulfobacterota. LEfSe analysis indicated that the main genera differing between the two groups were Escherichia-Shigella, Lactobacillus, Clostridium_sensu_stricto_1, Prevotellaceae_UCG-001, and Odoribacter. Based on the criterion of OPLS-DA VIP ≥ 1.0 and p-value < 0.05, a total of 198 differential metabolites (DMs) were identified in the gut, including 79 upregulated and 119 downregulated metabolites, of which lipids and lipid-like molecules accounted for the largest proportion. Notably, both altered gut bacterial taxa and metabolites were significantly enriched in the Lipid metabolism pathway, with Traumatic acid (TA), Alpha-Linolenic acid (ALA), Eicosapentaenoic acid (EPA), and Docosahexaenoic acid (DHA) being the key DMs in the pathway. Additionally, significant positive correlations (|r| > 0.80 and p < 0.05) were found between TA levels and Anaerotruncus and Bilophila abundance, between EPA levels and Clostridium_sensu_stricto_1 abundance, and between DHA levels and Escherichia-Shigella abundance, respectively. CVB3 infection leads to notable alterations in gut microflora composition and its metabolic profile, which may participate in AVMC development. Our findings provide important clues for future in-depth studies on AVMC etiology.
Collapse
Affiliation(s)
- Yimin Xue
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Shirong Lin
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Mingguang Chen
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jun Ke
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jiuyun Zhang
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Qiaolian Fan
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Yimei Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Feng Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
14
|
Li L, Jin L, You L, Liu Q, Yan L. The association of preoperative serum free fatty acid levels with survival in breast cancer patients. Discov Oncol 2024; 15:629. [PMID: 39511004 PMCID: PMC11543952 DOI: 10.1007/s12672-024-01499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Serum free fatty acids (FFA) are associated with various types of cancer. However, the prognostic value of preoperative serum FFA levels and breast cancer (BC) remains unclear. This study aimed to elucidate the specific relationship between FFA levels and BC outcomes. METHODS A retrospective review was conducted on 4133 patients with BC admitted to Sun Yat-sen Memorial Hospital from January 2015 to October 2021. Preoperative serum FFA levels were detected by the enzymatic endpoint method. The relationship between serum FFA levels and clinical characteristics was analyzed based on FFA interquartile range. Restricted cubic splines and multivariate Cox regression analyses were used to assess the relationship between preoperative serum FFA levels and overall survival (OS) in patients with BC. The hazard ratios (HRs) and 95% confidence intervals (95% CIs) were calculated. RESULTS According to the FFA interquartile range, FFA levels were significantly correlated with OS (years) (p < 0.001). Restricted cubic spline analysis might reveal a U-shaped relationship between preoperative serum FFA levels and OS, after adjusting for other variables. According to the cutoff points for FFAs, multivariate Cox regression analyses showed that patients with low FFA levels (≤ 250 µmol/L) had higher rates of all-cause mortality and cancer-specific mortality than those with high FFA levels (530-700 µmol/L) in the total population and patients with a BMI of 18.5-24.0 kg/m2. A trend was observed indicating that elevated FFA levels (≥ 715 µmol/L) were associated with worse prognosis; however, this association failed to reach statistical significance. CONCLUSIONS There might be a nonlinear U-shaped relationship between preoperative serum FFA levels and survival in breast cancer patients, with lower FFA levels associated with worse OS. The effect of elevated FFA levels on prognosis requires further investigation.
Collapse
Affiliation(s)
- Liuran Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou key laboratory for Metabolic Diseases, Guangzhou, Guangdong, China
| | - Liang Jin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lili You
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou key laboratory for Metabolic Diseases, Guangzhou, Guangdong, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Clinical Research Center for Metabolic Diseases, Guangzhou key laboratory for Metabolic Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
16
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
17
|
Fu ZP, Lee S, Wang RY, Wang YQ. Cronobacter sakazakii induced sepsis-associated arrhythmias through its outer membrane vesicles. iScience 2024; 27:110572. [PMID: 39228788 PMCID: PMC11369384 DOI: 10.1016/j.isci.2024.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis-induced arrhythmia, linked to sudden cardiac death, is associated with gut microbiota, though the exact relationship is unclear. This study aimed to elucidate the relationship between Cronobacter sakazakii (C. sakazakii) and arrhythmia. The relative abundance of C. sakazakii was increased in cecal ligation and puncture (CLP)-induced septic mice. Live C. sakazakii, supernatant, and outer membrane vesicles (OMVs) resulted in premature ventricular beat (PVB), sinus arrhythmia (SA), and increased arrhythmia and mortality in sepsis model through dysregulated ion channel proteins. Moreover, short-chain fatty acids (SCFAs) showed antibacterial effects in vitro. We confirmed sodium acetate (C2) and sodium butyrate (C4) protect from C. sakazakii-induced arrhythmia, and C2 and C4 protected from septic arrhythmia by activating free fatty acid receptor 2 and 3 (FFAR2 and FFAR3) in mice. These findings point to how C. sakazakii's OMVs trigger arrhythmia, and SCFAs may be a treatment for septic arrhythmia.
Collapse
Affiliation(s)
- Zhi-ping Fu
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Shuang Lee
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Rui-yao Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Yu-qing Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| |
Collapse
|
18
|
Flori L, Benedetti G, Martelli A, Calderone V. Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmacol Res 2024; 207:107334. [PMID: 39103131 DOI: 10.1016/j.phrs.2024.107334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short‑chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
19
|
Jiang M, Wang J, Li Z, Xu D, Jing J, Li F, Ding J, Li Q. Dietary Fiber-Derived Microbial Butyrate Suppresses ILC2-Dependent Airway Inflammation in COPD. Mediators Inflamm 2024; 2024:6263447. [PMID: 39015676 PMCID: PMC11251798 DOI: 10.1155/2024/6263447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 07/18/2024] Open
Abstract
Group 2 innate lymphoid cells (ILC2) strongly modulate COPD pathogenesis. However, the significance of microbiota in ILC2s remains unelucidated. Herein, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) in regulating ILC2-associated airway inflammation and explores its associated mechanism in COPD. In particular, we assessed the SCFA-mediated regulation of survival, proliferation, and cytokine production in lung sorted ILC2s. To elucidate butyrate action in ILC2-driven inflammatory response in COPD models, we administered butyrate to BALB/c mice via drinking water. We revealed that SCFAs, especially butyrate, derived from dietary fiber fermentation by gut microbiota inhibited pulmonary ILC2 functions and suppressed both IL-13 and IL-5 synthesis by murine ILC2s. Using in vivo and in vitro experimentation, we validated that butyrate significantly ameliorated ILC2-induced inflammation. We further demonstrated that butyrate suppressed ILC2 proliferation and GATA3 expression. Additionally, butyrate potentially utilized histone deacetylase (HDAC) inhibition to enhance NFIL3 promoter acetylation, thereby augmenting its expression, which eventually inhibited cytokine production in ILC2s. Taken together, the aforementioned evidences demonstrated a previously unrecognized role of microbial-derived SCFAs on pulmonary ILC2s in COPD. Moreover, our evidences suggest that metabolomics and gut microbiota modulation may prevent lung inflammation of COPD.
Collapse
Affiliation(s)
- Min Jiang
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jing Wang
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Zheng Li
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Dan Xu
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jing Jing
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Fengsen Li
- Xinjiang Key Laboratory of Respiratory Disease ResearchTraditional Chinese Medical Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| | - Jianbing Ding
- Department of ImmunologyCollege of Basic MedicineXinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Qifeng Li
- Xinjiang Institute of PediatricsXinjiang Hospital of Beijing Children's HospitalChildren's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China
| |
Collapse
|
20
|
Ruhnke N, Beyer ASL, Kaemmerer D, Sänger J, Schulz S, Lupp A. Expression of free fatty acid receptor 2 in normal and neoplastic tissues. Exp Mol Pathol 2024; 137:104902. [PMID: 38788249 DOI: 10.1016/j.yexmp.2024.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Little information is available concerning protein expression of the free fatty acid receptor 2 (FFAR2), especially in tumours. Therefore, the aim of the present study was to comprehensively characterise the expression profile of FFAR2 in a large series of human normal and neoplastic tissues using immunohistochemistry thus providing a basis for further in-depth investigations into its potential diagnostic or therapeutic importance. METHODS We developed a novel rabbit polyclonal anti-FFAR2 antibody, 0524, directed against the C-terminal region of human FFAR2. Antibody specificity was confirmed via Western blot analyses and immunocytochemistry using the FFAR2-expressing cell line BON-1 and FFAR2-specific small interfering RNA as well as native and FFAR2-transfected HEK-293 cells. The antibody was then used for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic human tissues. RESULTS In normal tissues, FFAR2 was mainly present in distinct cell populations of the cerebral cortex, follicular cells and C cells of the thyroid, cardiomyocytes of the heart, bronchial epithelia and glands, hepatocytes and bile duct epithelia of the liver, gall bladder epithelium, exocrine and β-cells of the endocrine pancreas, glomerular mesangial cells and podocytes as well as collecting ducts of the kidney, intestinal mucosa (particularly enteroendocrine cells), prostate epithelium, seminiferous tubules of the testicles, and placental syncytiotrophoblasts. In neoplastic tissues, FFAR2 was particularly prevalent in papillary thyroid carcinomas, parathyroid adenomas, and gastric, colon, pancreatic, hepatocellular, cholangiocellular, urinary bladder, breast, cervical, and ovarian carcinomas. CONCLUSIONS We generated and characterised a novel rabbit polyclonal anti-human FFAR2 antibody that is well-suited for visualising FFAR2 expression in human routine pathology tissues. This antibody is also suitable for Western blot and immunocytochemistry experiments. To our knowledge, this antibody enabled the first broad FFAR2 protein expression profile in various normal and neoplastic human tissues.
Collapse
Affiliation(s)
- Niklas Ruhnke
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | | | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
21
|
Kranrod J, Konkel A, Valencia R, Darwesh AM, Fischer R, Schunck WH, Seubert JM. Cardioprotective properties of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids. J Biol Chem 2024; 300:107372. [PMID: 38754781 PMCID: PMC11214398 DOI: 10.1016/j.jbc.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 μM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 μM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 μM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Collapse
Affiliation(s)
- Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Valencia
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Vita AA, Roberts KM, Gundersen A, Farris Y, Zwickey H, Bradley R, Weir TL. Relationships between Habitual Polyphenol Consumption and Gut Microbiota in the INCLD Health Cohort. Nutrients 2024; 16:773. [PMID: 38542685 PMCID: PMC10974568 DOI: 10.3390/nu16060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
While polyphenol consumption is often associated with an increased abundance of beneficial microbes and decreased opportunistic pathogens, these relationships are not completely described for polyphenols consumed via habitual diet, including culinary herb and spice consumption. This analysis of the International Cohort on Lifestyle Determinants of Health (INCLD Health) cohort uses a dietary questionnaire and 16s microbiome data to examine relationships between habitual polyphenol consumption and gut microbiota in healthy adults (n = 96). In this exploratory analysis, microbial taxa, but not diversity measures, differed by levels of dietary polyphenol consumption. Taxa identified as exploratory biomarkers of daily polyphenol consumption (mg/day) included Lactobacillus, Bacteroides, Enterococcus, Eubacterium ventriosum group, Ruminococcus torques group, and Sutterella. Taxa identified as exploratory biomarkers of the frequency of polyphenol-weighted herb and spice use included Lachnospiraceae UCG-001, Lachnospiraceae UCG-004, Methanobrevibacter, Lachnoclostridium, and Lachnotalea. Several of the differentiating taxa carry out activities important for human health, although out of these taxa, those with previously described pro-inflammatory qualities in certain contexts displayed inverse relationships with polyphenol consumption. Our results suggest that higher quantities of habitual polyphenol consumption may support an intestinal environment where opportunistic and pro-inflammatory bacteria are represented in a lower relative abundance compared to those with less potentially virulent qualities.
Collapse
Affiliation(s)
- Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen M. Roberts
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH 43210, USA
| | - Anders Gundersen
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Yuliya Farris
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Herbert Wertheim School of Public Health, University of California, San Diego, CA 92037, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Chen L, Guo Y, Liu X, Zheng L, Wei B, Zhao Z. Cellulase with Bacillus velezensis improves physicochemical characteristics, microbiota and metabolites of corn germ meal during two-stage co-fermentation. World J Microbiol Biotechnol 2024; 40:59. [PMID: 38170296 DOI: 10.1007/s11274-023-03831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
Corn germ meal (CGM) is one of the major byproducts of corn starch extraction. Although CGM has rich fiber content, it lacks good protein content and amino acid balance, and therefore cannot be fully utilized as animal feed. In this study, we investigated the processing effect of cellulase synergized with Bacillus velezensis on the nutritional value of pretreated CGM (PCGM) in two-stage solid-state fermentation (SSF). High-throughput sequencing technology was used to explore the dynamic changes in microbial diversity. The results showed that compared with four combinations of B. velezensis + Lactiplantibacillus plantarum (PCGM-BL), cellulase + L. plantarum (PCGM-CL),control group (PCGM-CK), and cellulase + B. velezensis + L. plantarum (PCGM-BCL), the fourth combination of PCGM-BCL significantly improved the nutritional characteristics of PCGM. After two-stage SSF (48 h), viable bacterial count and contents of crude protein (CP) and trichloroacetic acid-soluble protein (TCA-SP) all were increased in PCGM-BCL (p < 0.05), while the pH was reduced to 4.38 ± 0.02. In addition, compared with PCGM-BL, the cellulose degradation rate increased from 5.02 to 50.74%, increasing the amounts of short-chain fatty acids (216.61 ± 2.74 to 1727.55 ± 23.00 µg/g) and total amino acids (18.60 to 21.02%) in PCGM-BCL. Furthermore, high-throughput sequencing analysis revealed significant dynamic changes in microbial diversity. In the first stage of PCGM-BCL fermentation, Bacillus was the dominant genus (99.87%), which after 24 h of anaerobic fermentation changed to lactobacillus (37.45%). Kyoto Encylopaedia of Genes and Genomes (KEGG) metabolic pathway analysis revealed that the pathways related to the metabolism of carbohydrates, amino acids, cofactors, and vitamins accounted for more than 10% of the enriched pathways throughout the fermentation period. Concisely, we show that cellulase can effectively improve the nutritional value of PCGM when synergized with B. velezensis in two-stage SSF.
Collapse
Affiliation(s)
- Long Chen
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100, Jilin Gongzhuling, People's Republic of China
| | - Yang Guo
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100, Jilin Gongzhuling, People's Republic of China
| | - Xin Liu
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100, Jilin Gongzhuling, People's Republic of China
| | - Lin Zheng
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100, Jilin Gongzhuling, People's Republic of China
| | - Bingdong Wei
- Institute of Animal Nutrition and Feed, Jilin Academy of Agricultural Sciences, No. 186 Dong Xinghua Street, Gongzhuling, 136100, Jilin Gongzhuling, People's Republic of China.
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, No. 1366 Cai Yu Street, Changchun, 130033, Jilin Province, People's Republic of China.
| |
Collapse
|
24
|
Marcotte-Chénard A, Tremblay R, Falkenhain K, Little JP, Riesco E. Effect of Acute and Chronic Ingestion of Exogenous Ketone Supplements on Blood Pressure: A Systematic Review and Meta-Analysis. J Diet Suppl 2023; 21:408-426. [PMID: 38145410 DOI: 10.1080/19390211.2023.2289961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Exogenous ketone supplements have been suggested to have potential cardiovascular benefits, but their overall effect on blood pressure is unclear. Our objective was to perform a systematic review and meta-analysis on the effects of exogenous ketone supplements on blood pressure (BP) and concomitant changes in resting heart rate (HR). Five databases were searched on January 27th, 2023, for randomized and non-randomized studies. A random-effects model meta-analysis was performed including all studies jointly and separately for acute and chronic ingestion of ketone supplements. Out of 4012 studies identified in the search, 4 acute and 6 chronic studies with n = 187 participants were included. Pooled results (n = 10) showed no change in systolic (SMD [95% CI]= -0.14 [-0.40; 0.11]; I2= 30%; p = 0.17) or diastolic BP (-0.12 [-0.30; 0.05]; I2= 0%; p = 0.69), with a potential tendency observed toward increased resting heart rate (0.17 [-0.14; 0.47]; I2= 40%; p = 0.10). Similar results for systolic and diastolic BP were observed when assessing separately the effect of acute and chronic ingestion of ketone supplements (p ≥ 0.33). Supplement dosage was found to modulate the increase in resting heart rate (0.019 ± 0.006; p = 0.013; R2=100%), suggesting that higher supplement doses lead to a higher resting heart rate. Based on currently available data, acute or prolonged ingestion of ketone supplements does not seem to modulate BP. However, a tendency for HR to increase after acute ingestion was observed, particularly with higher doses. Higher quality studies with appropriate standardized measurements are needed to confirm these results.
Collapse
Affiliation(s)
- Alexis Marcotte-Chénard
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Quebec, Canada
| | - Renaud Tremblay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Quebec, Canada
| | - Kaja Falkenhain
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Eléonor Riesco
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Research Centre on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
25
|
Lymperopoulos A. Gut microbiota alterations in acute myocardial infarction: (diabetic) context is everything. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:404. [PMID: 38213814 PMCID: PMC10777215 DOI: 10.21037/atm-23-1741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 01/13/2024]
|
26
|
Wang QY, Zhang W, Zhao Y, Chen HL, Liu Q, Wang ZH, Zeng LT, Li J, Chen SJ, Wei L, Iwakuma T, Cai JP. Colonic L-cell impairment in aged subjects with type 2 diabetes leads to diminished GLP-1 production. Diabetes Metab Syndr 2023; 17:102907. [PMID: 37980723 DOI: 10.1016/j.dsx.2023.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
AIMS Glucagon-like peptide 1 (GLP-1) is produced by the L subtype of enteroendocrine cells (EECs). Patients with type 2 diabetes (T2D) exhibit reduced incretin effect, but the pathophysiology and functional change of the L-cells remain unclear. Deciphering the mechanisms of the biological changes in L-cells under T2D conditions may assist in the research of gut-based strategies for T2D therapy. METHODS We investigated the fasting serum GLP-1 levels and the distribution of colonic L-cells in young and aged participants with and without T2D. Additionally, we established an aged male T2D Wistar rat model subjected to a long-term high-fat and high-fructose (HFHF) diet. Histological investigations and single-cell RNA sequencing (scRNA-seq) analyses were performed to explore the mechanisms underlying functional changes in the colonic EECs. RESULTS We observed a decline in circulating GLP-1 levels and a reduced number of colonic L-cells in elderly patients with T2D. The mechanisms underlying impaired L-cell formation and disturbed GLP-1 production were revealed using aged T2D rats induced by a long-term HFHF diet. The scRNA-seq results showed that the transcription factors that regulate L-cell commitment, such as Foxa1, were downregulated, and the expression of genes that participate in encoding GLP-1, GLP-1 posttranslational processing, hormone secretion, and nutrient sensing was disturbed. CONCLUSIONS Taken together, the reduced L-cell lineage commitment and disturbed L-cell functions might be the major cause of the reduced GLP-1 production in aged populations with T2D. Our study provides new insights for identifying novel targets in colonic L-cells for improving endogenous GLP-1 production.
Collapse
Affiliation(s)
- Qing-Yu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Wei Zhang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Zhao
- Clinical Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Hui-Lian Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zi-Hui Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Si-Jie Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Tomoo Iwakuma
- Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
27
|
Li X, Fan H, Song X, Song B, Liu W, Dong R, Zhang H, Guo S, Liang H, Schrodi SJ, Fu X, Kaushal S, Ren Y, Zhang D. DNA methylome and transcriptome profiling reveal key electrophysiology and immune dysregulation in hypertrophic cardiomyopathy. Epigenetics 2023; 18:2195307. [PMID: 37005704 PMCID: PMC10072074 DOI: 10.1080/15592294.2023.2195307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/15/2023] [Indexed: 04/04/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease. However, a detailed DNA methylation (DNAme) landscape has not yet been elucidated. Our study combined DNAme and transcriptome profiles for HCM myocardium and identify aberrant DNAme associated with altered myocardial function in HCM. The transcription of methylation-related genes did not significantly differ between HCM and normal myocardium. Nevertheless, the former had an altered DNAme profile compared with the latter. The hypermethylated and hypomethylated sites in HCM tissues had chromosomal distributions and functional enrichment of correlated genes differing from those of their normal tissue counterparts. The GO analysis of network underlying the genes correlated with DNAme alteration and differentially expressed genes (DEGs) shows functional clusters centred on immune cell function and muscle system processes. In KEGG analysis, only the calcium signalling pathway was enriched either by the genes correlated with changes in DNAme or DEGs. The protein-protein interactions (PPI) underlying the genes altered at both the DNAme and transcriptional highlighted two important functional clusters. One of these was related to the immune response and had the estrogen receptor-encoding ESR1 gene as its node. The other cluster comprised cardiac electrophysiology-related genes. Intelliectin-1 (ITLN1), a component of the innate immune system, was transcriptionally downregulated in HCM and had a hypermethylated site within 1500 bp upstream of the ITLN1 transcription start site. Estimates of immune infiltration demonstrated a relative decline in immune cell population diversity in HCM. A combination of DNAme and transcriptome profiles may help identify and develop new therapeutic targets for HCM.
Collapse
Affiliation(s)
- Xiaoyan Li
- Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Hailang Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bangrong Song
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenxian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ran Dong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haikun Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Hao Liang
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Xuebin Fu
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- Department of Cardiovascular-Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sunjay Kaushal
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- Department of Cardiovascular-Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yanlong Ren
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
28
|
Teyani R, Moniri NH. Gut feelings in the islets: The role of the gut microbiome and the FFA2 and FFA3 receptors for short chain fatty acids on β-cell function and metabolic regulation. Br J Pharmacol 2023; 180:3113-3129. [PMID: 37620991 DOI: 10.1111/bph.16225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are biosynthesized via fermentation of polysaccharides by gastrointestinal microbiota and have been shown to have wide-reaching effects on almost all tissues, including the pancreatic islets. Historically, the effects of SCFAs have been attributed to their intracellular metabolism and function as energy sources, but the discovery of free fatty acid G protein-coupled receptors (GPCRs) in the 2000s suggested that many functional outcomes of SCFAs are receptor-mediated. The SCFA receptors FFA2/GPR43 and FFA3/GPR41 are expressed on β-cells, where they regulate glucose-dependent insulin secretion, making them attractive targets for treatment of diabetes and other metabolic disorders. Here, we provide an update on the current evidence regarding regulation of FFA2/FFA3 receptors by specific probiotic bacterial species within the gut microbiome that synthesize SCFAs. We also review the body of research regarding the FFA2- and FFA3 receptor-specific function of SCFAs on β-cells and discuss the somewhat controversial and opposing findings within these studies.
Collapse
Affiliation(s)
- Razan Teyani
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, Georgia, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, Georgia, USA
- Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, Georgia, USA
| |
Collapse
|
29
|
Feng Y, Xu D. Short-chain fatty acids are potential goalkeepers of atherosclerosis. Front Pharmacol 2023; 14:1271001. [PMID: 38027009 PMCID: PMC10679725 DOI: 10.3389/fphar.2023.1271001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced by gut bacteria and play a crucial role in various inflammatory diseases. Increasing evidence suggests that SCFAs can improve the occurrence and progression of atherosclerosis. However, the molecular mechanisms through which SCFAs regulate the development of atherosclerosis have not been fully elucidated. This review provides an overview of the research progress on SCFAs regarding their impact on the risk factors and pathogenesis associated with atherosclerosis, with a specific focus on their interactions with the endothelium and immune cells. These interactions encompass the inflammation and oxidative stress of endothelial cells, the migration of monocytes/macrophages, the lipid metabolism of macrophages, the proliferation and migration of smooth muscle cells, and the proliferation and differentiation of Treg cells. Nevertheless, the current body of research is insufficient to comprehensively understand the full spectrum of SCFAs' mechanisms of action. Therefore, further in-depth investigations are imperative to establish a solid theoretical foundation for the development of clinical therapeutics in this context.
Collapse
Affiliation(s)
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Billamboz M, Jawhara S. Anti- Malassezia Drug Candidates Based on Virulence Factors of Malassezia-Associated Diseases. Microorganisms 2023; 11:2599. [PMID: 37894257 PMCID: PMC10609646 DOI: 10.3390/microorganisms11102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Malassezia is a lipophilic unicellular fungus that is able, under specific conditions, to cause severe cutaneous and systemic diseases in predisposed subjects. This review is divided into two complementary parts. The first one discusses how virulence factors contribute to Malassezia pathogenesis that triggers skin diseases. These virulence factors include Malassezia cell wall resistance, lipases, phospholipases, acid sphingomyelinases, melanin, reactive oxygen species (ROS), indoles, hyphae formation, hydrophobicity, and biofilm formation. The second section describes active compounds directed specifically against identified virulence factors. Among the strategies for controlling Malassezia spread, this review discusses the development of aryl hydrocarbon receptor (AhR) antagonists, inhibition of secreted lipase, and fighting biofilms. Overall, this review offers an updated compilation of Malassezia species, including their virulence factors, potential therapeutic targets, and strategies for controlling their spread. It also provides an update on the most active compounds used to control Malassezia species.
Collapse
Affiliation(s)
- Muriel Billamboz
- INSERM, CHU Lille, Institut Pasteur Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, F-59000 Lille, France;
- JUNIA, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
| | - Samir Jawhara
- CNRS, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, University of Lille, 1 Place Verdun, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
- CHU Lille, Service de Parasitologie Mycologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| |
Collapse
|
31
|
Mizoguchi R, Karashima S, Miyajima Y, Ogura K, Kometani M, Aono D, Konishi S, Demura M, Tsujiguchi H, Hara A, Nakamura H, Yoneda T, Okamoto S, Satou K. Impact of gut microbiome on the renin-aldosterone system: Shika-machi Super Preventive Health Examination results. Hypertens Res 2023; 46:2280-2292. [PMID: 37280260 DOI: 10.1038/s41440-023-01334-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a regulatory mechanism of the endocrine system and is associated with various diseases, including hypertension and renal and cardiovascular diseases. The gut microbiota (GM) have been associated with various diseases, mainly in animal models. However, to our knowledge, no studies have examined the relationship between the RAAS and GM in humans. The present study aimed to assess the association between the systemic RAAS and GM genera and their causal relationships. The study participants were 377 members of the general population aged 40 years or older in Shika-machi, Japan. Plasma renin activity (PRA), plasma aldosterone concentration (PAC), aldosterone-renin ratio (ARR), and GM composition were analyzed using the 16S rRNA method. The participants were divided into high and low groups according to the PRA, PAC, and ARR values. U-tests, one-way analysis of covariance, and linear discriminant analysis of effect size were used to identify the important bacterial genera between the two groups, and binary classification modeling using Random Forest was used to calculate the importance of the features. The results showed that Blautia, Bacteroides, Akkermansia, and Bifidobacterium were associated with the RAAS parameters. Causal inference analysis using the linear non-Gaussian acyclic model revealed a causal effect of Blautia on PAC via SBP. These results strengthen the association between the systemic RAAS and GM in humans, and interventions targeting the GM may provide new preventive measures and treatments for hypertension and renal disease.
Collapse
Affiliation(s)
- Ren Mizoguchi
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan.
| | - Yuna Miyajima
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Kometani
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
| | - Daisuke Aono
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
| | - Seigo Konishi
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiromasa Tsujiguchi
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Yoneda
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
- Department of Health Promotion and Medicine of the Future, Kanazawa University, Kanazawa, Japan
- Faculty of Transdisciplinary Sciences for Innovation, Institute of Transdisciplinary Sciences for Innovation, Kanazawa University, Kanazawa, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Kenji Satou
- Faculty of Transdisciplinary Sciences for Innovation, Institute of Transdisciplinary Sciences for Innovation, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
32
|
Zhuo G, Wang L, Ali M, Jing Z, Hassan MF. Effect of hexavalent chromium on growth performance and metabolism in broiler chicken. Front Vet Sci 2023; 10:1273944. [PMID: 37822955 PMCID: PMC10562699 DOI: 10.3389/fvets.2023.1273944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Hexavalent chromium Cr (VI) is one of the most hazardous heavy metals in the environment and is toxic to living organisms causing tissue damage, disruption of the intestinal microbiota and cancer. However, there is little information on the relationship between the Cr (VI) and broiler chickens. The current study was performed to investigate the effect of Cr (VI) on growth performance, serum biochemical analysis, histopathological observations, and metabolomics analysis in broilers. Results show that Cr (VI) exposure significantly decreased the body weight (p < 0.01) and caused liver damages in broilers. With the extension of Cr (VI) action time, the liver appeared obvious pathological changes, including hepatic cord disorder, incomplete hepatocyte additionally, decreased serum biochemical indices of calcium (Ca), phosphorus (P), total protein (TP), phosphatase (ALP), and globin (GLB) significantly (p < 0.01). Moreover, metabolomics analysis indicated that 29 differential metabolites were identified, such as phytosphingosine, L-Serine, 12, 13-DHOME, Alpha-dimorphecolic acid, L-Methionine, L-Phenylalanine, 3-Dehydroshikimate, L-Tyrosine, and N-Acetyl-L-phenylalanine were significantly decreased under the action of Cr (VI) (p < 0.05). These 29 differential metabolites are mainly involved in 35 metabolic pathways, such as aminoacyl-tRNA biosynthesis, phenylalanine metabolism, sphingolipid, and linoleic metabolism. The study revealed that exposure to Cr (VI) resulted in a decrease in growth performance and metabolism, with the hazards and toxicity in broiler chicken. The findings provided new insight and a comprehensive understanding of the relationship between Cr (VI) and broiler chickens.
Collapse
Affiliation(s)
- Guorong Zhuo
- College of Small Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Lei Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Ali
- Basic Health Unit, Department of Health, Dera Ghazi Khan, Pakistan
| | - Zheng Jing
- College of Small Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | | |
Collapse
|
33
|
Paraskevaidis I, Xanthopoulos A, Tsougos E, Triposkiadis F. Human Gut Microbiota in Heart Failure: Trying to Unmask an Emerging Organ. Biomedicines 2023; 11:2574. [PMID: 37761015 PMCID: PMC10526035 DOI: 10.3390/biomedicines11092574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
There is a bidirectional relationship between the heart and the gut. The gut microbiota, the community of gut micro-organisms themselves, is an excellent gut-homeostasis keeper since it controls the growth of potentially harmful bacteria and protects the microbiota environment. There is evidence suggesting that a diet rich in fatty acids can be metabolized and converted by gut microbiota and hepatic enzymes to trimethyl-amine N-oxide (TMAO), a product that is associated with atherogenesis, platelet dysfunction, thrombotic events, coronary artery disease, stroke, heart failure (HF), and, ultimately, death. HF, by inducing gut ischemia, congestion, and, consequently, gut barrier dysfunction, promotes the intestinal leaking of micro-organisms and their products, facilitating their entrance into circulation and thus stimulating a low-grade inflammation associated with an immune response. Drugs used for HF may alter the gut microbiota, and, conversely, gut microbiota may modify the pharmacokinetic properties of the drugs. The modification of lifestyle based mainly on exercise and a Mediterranean diet, along with the use of pre- or probiotics, may be beneficial for the gut microbiota environment. The potential role of gut microbiota in HF development and progression is the subject of this review.
Collapse
Affiliation(s)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University Hospital of Larissa, 41110 Larissa, Greece; (A.X.); (F.T.)
| |
Collapse
|
34
|
Qiao B, Liu J, Peng X, Cai Y, Peng M, Li X, Tan Z, Deng N. Association of Short-Chain Fatty Acids with Gut Microbiota and Lipid Metabolism in Mice with Diarrhea Induced by High-Fat Diet in a Fatigued State. Mol Nutr Food Res 2023; 67:e2300452. [PMID: 37622564 DOI: 10.1002/mnfr.202300452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/26/2023] [Indexed: 08/26/2023]
Abstract
SCOPE Preliminary research finds that a high-fat diet (HFD) in a fatigued state triggers diarrhea, but the exact mechanism has not been clarified. To address concerns about the pathogenesis of diarrhea, the study evaluates the composition and metabolomics of the gut microbiota. METHODS AND RESULTS The study uses the multiple platform apparatus device to induce fatigue in mice, combined with intragastric administration of lard-caused diarrhea. Subsequently, the characteristics and interaction relationship of gut microbiota, short-chain fatty acids (SCFAs), inflammatory biomarkers, brain-gut peptides, and lipid metabolism are analyzed at the end of the experiment. HFD in a fatigued state results in a significant increase in interleukin-17, interleukin-6, cholecystokinin, somatostatin, and malondialdehyde content in mice (p < 0.05), along with a substantial decrease in high-density lipoprotein (p < 0.05). Additionally, an HFD in a fatigued state causes changes in the structure and composition of the gut microbiota, with Lactobacillus murinus as its characteristic bacteria, and reduces the production of SCFAs. CONCLUSIONS An HFD in a fatigued state triggers diarrhea, possibly associated with gut content microbiota dysbiosis, SCFAs deprivation, increased inflammation, and dysregulated lipid metabolism.
Collapse
Affiliation(s)
- Bo Qiao
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jing Liu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xinxin Peng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Ying Cai
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Maijiao Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiaoya Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Na Deng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
35
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
36
|
Patel D, Murray IA, Dong F, Annalora AJ, Gowda K, Coslo DM, Krzeminski J, Koo I, Hao F, Amin SG, Marcus CB, Patterson AD, Perdew GH. Induction of AHR Signaling in Response to the Indolimine Class of Microbial Stress Metabolites. Metabolites 2023; 13:985. [PMID: 37755265 PMCID: PMC10535990 DOI: 10.3390/metabo13090985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that plays an important role in gastrointestinal barrier function, tumorigenesis, and is an emerging drug target. The resident microbiota is capable of metabolizing tryptophan to metabolites that are AHR ligands (e.g., indole-3-acetate). Recently, a novel set of mutagenic tryptophan metabolites named indolimines have been identified that are produced by M. morganii in the gastrointestinal tract. Here, we determined that indolimine-200, -214, and -248 are direct AHR ligands that can induce Cyp1a1 transcription and subsequent CYP1A1 enzymatic activity capable of metabolizing the carcinogen benzo(a)pyrene in microsomal assays. In addition, indolimines enhance IL6 expression in a colonic tumor cell line in combination with cytokine treatment. The concentration of indolimine-248 that induces AHR transcriptional activity failed to increase DNA damage. These observations reveal an additional aspect of how indolimines may alter colonic tumorigenesis beyond mutagenic activity.
Collapse
Affiliation(s)
- Dhwani Patel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Iain A. Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew J. Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Denise M. Coslo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jacek Krzeminski
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shantu G. Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Craig B. Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gary H. Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
37
|
Mangmool S, Duangrat R, Parichatikanond W, Kurose H. New Therapeutics for Heart Failure: Focusing on cGMP Signaling. Int J Mol Sci 2023; 24:12866. [PMID: 37629047 PMCID: PMC10454066 DOI: 10.3390/ijms241612866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Current drugs for treating heart failure (HF), for example, angiotensin II receptor blockers and β-blockers, possess specific target molecules involved in the regulation of the cardiac circulatory system. However, most clinically approved drugs are effective in the treatment of HF with reduced ejection fraction (HFrEF). Novel drug classes, including angiotensin receptor blocker/neprilysin inhibitor (ARNI), sodium-glucose co-transporter-2 (SGLT2) inhibitor, hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, soluble guanylyl cyclase (sGC) stimulator/activator, and cardiac myosin activator, have recently been introduced for HF intervention based on their proposed novel mechanisms. SGLT2 inhibitors have been shown to be effective not only for HFrEF but also for HF with preserved ejection fraction (HFpEF). In the myocardium, excess cyclic adenosine monophosphate (cAMP) stimulation has detrimental effects on HFrEF, whereas cyclic guanosine monophosphate (cGMP) signaling inhibits cAMP-mediated responses. Thus, molecules participating in cGMP signaling are promising targets of novel drugs for HF. In this review, we summarize molecular pathways of cGMP signaling and clinical trials of emerging drug classes targeting cGMP signaling in the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (R.D.)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (S.M.); (R.D.)
| | | | - Hitoshi Kurose
- Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
38
|
Lei C, Zhang X, Chen E, Lin L, Zhou Z, Wang Z, Liu T, Liu Z. Compositional alterations of the gut microbiota in acute myocardial infarction patients with type 2 diabetes mellitus. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:317. [PMID: 37405000 PMCID: PMC10316093 DOI: 10.21037/atm-22-3521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/18/2022] [Indexed: 07/06/2023]
Abstract
Background Type 2 diabetes mellitus (T2DM) is a risk factor for acute myocardial infarction (AMI) and a common comorbidity in patients with AMI. T2DM doubles the fatality rate of patients with AMI in the acute phase of AMI and the follow-up period. However, the mechanisms by which T2DM increases the fatality rate remain unknown. This study sought to investigate changes in the gut microbiota of patients with AMI and T2DM (AMIDM) to extend understandings of the relative mechanisms from the aspects of gut microbiota. Methods Patients were recruited and divided into 2 groups comprising 15 patients with AMIDM and 15 patients with AMI but without T2DM (AMINDM). Their stool samples and clinical information were collected. 16S ribosomal DNA sequencing was used to analyze the structure and composition of the gut microbiota based on the operational taxonomic units. Results A significant difference was observed in the gut microbiota β diversity between the 2 groups. At the phylum level, the AMIDM patients showed an increase in the abundance of Firmicutes and a decrease in the abundance of Bacteroidetes compared to the AMINDM patients. At the genus level, the AMIDM patients showed an increase in the abundance of Companilactobacillus, Defluvitaleaceae UCG-011 and UCG-009, and a decrease in the abundance of Phascolarctobacterium and CAG 56 compared to the AMINDM patients. At the species level, the AMIDM patients showed an increase in the abundance of species unclassified NK4A214 group, Bacteroides clarus, Coprococcus comes, unclassified Defluviltaleaceae UCG-011, uncultured rumen bacterium, unclassified CAG 56, Barnesiella intestinihominis, Lachnospiraceae bacterium, Bacteroides nordii, unclassified UCG-009, and the Family XIII AD3011 group compared to the AMINDM patients. The gut microbiota function predictions indicated that the nucleotide metabolism-related pathway was significantly more increase in the patients with AMIDM than those with AMINDM. Additionally, the patients with AMIDM showed an increase in gram-positive bacteria and a decrease in the proportion of gram-negative bacteria. Our correlation analysis results on the gut microbiota and clinical parameters might extend understandings of the progression of AMI. Conclusions Changes in the gut microbiota composition of patients with AMIDM affect the severity of the metabolic disturbance and may be responsible for poorer clinical outcomes and worse disease progression in patients with AMIDM compared to those with AMINDM.
Collapse
Affiliation(s)
- Chao Lei
- Department of Internal Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaoming Zhang
- Department of Internal Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Enyue Chen
- Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Ludan Lin
- Department of General Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Zhou Zhou
- Department of Internal Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Zhimo Wang
- Department of Gastroenterology, Shenzhen Hospital of Huazhong University of Science and Technology Union, Shenzhen, China
| | - Ting Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Liu
- Innovation Centre for Advanced Interdisciplinary Medicine, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Anorectal Surgery, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| |
Collapse
|
39
|
Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O, Vallejos OP, Méndez C, Bueno SM, Melo-González F, Duarte Y, Opazo MC, Kalergis AM, Riedel CA. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne) 2023; 14:1192216. [PMID: 37455925 PMCID: PMC10349397 DOI: 10.3389/fendo.2023.1192216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.
Collapse
Affiliation(s)
- María José Mendoza-León
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Alejandro Regaldiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Enrique González-Madrid
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Oscar Álvarez-Mardonez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
40
|
Zhang D, He J, Cui J, Wang R, Tang Z, Yu H, Zhou M. Oral Microalgae-Nano Integrated System against Radiation-Induced Injury. ACS NANO 2023; 17:10560-10576. [PMID: 37253200 DOI: 10.1021/acsnano.3c01502] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The increasing applications of ionizing radiation in society raise the risk of radiation-induced intestinal and whole-body injury. Astaxanthin is a powerful antioxidant to reduce the reactive oxygen generated from radiation and the subsequent damage. However, the oral administration of astaxanthin remains challenging owing to its low solubility and poor bioavailability. Herein, we facilely construct an orally used microalgae-nano integrated system (SP@ASXnano) against radiation-induced intestinal and whole-body injury, combining natural microalgae Spirulina platensis (SP) with astaxanthin nanoparticles (ASXnano). SP and ASXnano show complementation in drug delivery to improve distribution in the intestine and blood. SP displays limited gastric drug loss, prolonged intestinal retention, constant ASXnano release, and progressive degradation. ASXnano improves drug solubility, gastric stability, cell uptake, and intestinal absorption. SP and ASXnano have synergy in many aspects such as anti-inflammation, microbiota protection, and fecal short-chain fatty acid up-regulation. In addition, the system is ensured with biosafety for long-term administration. The system organically combines the properties of microalgae and nanoparticles, which was expected to expand the medical application of SP as a versatile drug delivery platform.
Collapse
Affiliation(s)
- Dongxiao Zhang
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jian He
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiarong Cui
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ruoxi Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Hongyu Yu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Min Zhou
- Department of Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, 314400, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
41
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Significance of Endothelial Dysfunction Amelioration for Sodium-Glucose Cotransporter 2 Inhibitor-Induced Improvements in Heart Failure and Chronic Kidney Disease in Diabetic Patients. Metabolites 2023; 13:736. [PMID: 37367894 DOI: 10.3390/metabo13060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Beyond lowering plasma glucose levels, sodium-glucose cotransporter 2 inhibitors (SGLT2is) significantly reduce hospitalization for heart failure (HF) and retard the progression of chronic kidney disease (CKD) in patients with type 2 diabetes. Endothelial dysfunction is not only involved in the development and progression of cardiovascular disease (CVD), but is also associated with the progression of CKD. In patients with type 2 diabetes, hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia induce the development of endothelial dysfunction. SGLT2is have been shown to improve endothelial dysfunction, as assessed by flow-mediated vasodilation, in individuals at high risk of CVD. Along with an improvement in endothelial dysfunction, SGLT2is have been shown to improve oxidative stress, inflammation, mitochondrial dysfunction, glucotoxicity, such as the advanced signaling of glycation end products, and nitric oxide bioavailability. The improvements in endothelial dysfunction and such endothelium-derived factors may play an important role in preventing the development of coronary artery disease, coronary microvascular dysfunction and diabetic cardiomyopathy, which cause HF, and play a role in retarding CKD. The suppression of the development of HF and the progression of CKD achieved by SGLT2is might have been largely induced by their capacity to improve vascular endothelial function.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Chiba 272-8516, Japan
| |
Collapse
|
42
|
Zhuo X, Luo H, Lei R, Lou X, Bian J, Guo J, Luo H, Zhang X, Jiao Q, Gong W. Association between Intestinal Microecological Changes and Atherothrombosis. Microorganisms 2023; 11:1223. [PMID: 37317197 PMCID: PMC10222604 DOI: 10.3390/microorganisms11051223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large- and medium-sized arteries that causes ischemic heart disease, strokes, and peripheral vascular disease, collectively called cardiovascular disease (CVD), and is the leading cause of CVD resulting in a high rate of mortality in the population. AS is pathological by plaque development, which is caused by lipid infiltration in the vessel wall, endothelial dysfunction, and chronic low-grade inflammation. Recently, more and more scholars have paid attention to the importance of intestinal microecological disorders in the occurrence and development of AS. Intestinal G-bacterial cell wall lipopolysaccharide (LPS) and bacterial metabolites, such as oxidized trimethylamine (TMAO) and short-chain fatty acids (SCFAs), are involved in the development of AS by affecting the inflammatory response, lipid metabolism, and blood pressure regulation of the body. Additionally, intestinal microecology promotes the progression of AS by interfering with the normal bile acid metabolism of the body. In this review, we summarize the research on the correlation between maintaining a dynamic balance of intestinal microecology and AS, which may be potentially helpful for the treatment of AS.
Collapse
Affiliation(s)
- Xinyu Zhuo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Hui Luo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Rumei Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Xiaokun Lou
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Jing Bian
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Junfeng Guo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Hao Luo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
| | - Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Wenzhou Road, Gongshu District, Hangzhou 310000, China; (X.Z.); (H.L.); (R.L.); (X.L.); (J.B.); (J.G.); (H.L.); (X.Z.)
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| |
Collapse
|
43
|
Zhan M, Liang X, Chen J, Yang X, Han Y, Zhao C, Xiao J, Cao Y, Xiao H, Song M. Dietary 5-demethylnobiletin prevents antibiotic-associated dysbiosis of gut microbiota and damage to the colonic barrier. Food Funct 2023; 14:4414-4429. [PMID: 37097253 DOI: 10.1039/d3fo00516j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
5-Demethylnobiletin (5DN) is an important ingredient of citrus extract that is rich in polymethoxyflavones (PMFs). In this study, we systemically investigated the preventive effects of 5DN on antibiotic-associated intestinal disturbances. Experimental mice were gavaged 0.2 mL per day of the antibiotic cocktail (12.5 g L-1 cefuroxime and 10 g L-1 levofloxacin) for 10 days, accompanied by dietary 0.05% 5DN for 10 and 20 days. The results showed that the combination of cefuroxime and levofloxacin caused swelling of the cecum and injury to the colon tissue. Meanwhile, the balance of intestinal oxidative stress and the barrier function of mice was also damaged by the antibiotics through upregulation of the relative mRNA levels of superoxide dismutase 3 (SOD3), quinine oxidoreductase 1 (NQO1) and glutathione peroxidase 1 (GPX1), and downregulation of the relative protein levels of tight junction proteins (TJs). Moreover, antibiotic exposure led to disorder of the gut microbiota, particularly increased harmful bacteria (Proteobacteria) and decreased beneficial bacteria (Bacteroideta). However, dietary 5DN could reduce antibiotic-associated intestinal damage, evidenced by the results that 5DN alleviated gut oxidative damage and attenuated intestinal barrier injury via increasing the expression of TJs including occludin and zonula occluden1 (ZO1). Additionally, dietary 5DN modulated the composition of the gut microbiota in antibiotic-treated mice by increasing the relative levels of beneficial bacteria, such as Dubosiella and Lactobacillus. Moreover, PMFs increased the contents of isobutyric acid and butyric acid, which were almost eliminated by antibiotic exposure. In conclusion, 5DN could alleviate antibiotic-related imbalance of intestinal oxidative stress, barrier function damage, intestinal flora disorders and the reduction of short-chain fatty acids (SCFAs), which lays a foundation for exploring safer and more effective ways to prevent or mitigate antibiotic-associated intestinal damage.
Collapse
Affiliation(s)
- Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Xinyan Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Chenxi Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
44
|
Liu Y, Atiq A, Peterson A, Moody M, Novin A, Deymier AC, Afzal J, Kshitiz. Metabolic Acidosis Results in Sexually Dimorphic Response in the Heart Tissue. Metabolites 2023; 13:549. [PMID: 37110207 PMCID: PMC10142987 DOI: 10.3390/metabo13040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic acidosis (MA) is a highly prevalent disorder in a significant proportion of the population, resulting from imbalance in blood pH homeostasis. The heart, being an organ with very low regenerative capacity and high metabolic activity, is vulnerable to chronic, although low-grade, MA. To systematically characterize the effect of low-grade MA on the heart, we treated male and female mice with NH4Cl supplementation for 2 weeks and analyzed their blood chemistry and transcriptomic signature of the heart tissue. The reduction of pH and plasma bicarbonate levels without an associated change in anion gap indicated a physiological manifestation of low-grade MA with minimal respiratory compensation. On transcriptomic analysis, we observed changes in cardiac-specific genes with significant gender-based differences due to MA. We found many genes contributing to dilated cardiomyopathy to be altered in males, more than in females, while cardiac contractility and Na/K/ATPase-Src signaling were affected in the opposite way. Our model presents a systems-level understanding of how the cardiovascular tissue is affected by MA. As low-grade MA is a common ailment with many dietary and pharmaceutical interventions, our work presents avenues to limit chronic cardiac damage and disease manifestation, as well as highlighting the sex differences in MA-induced cardiovascular damage.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Amina Atiq
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Anna Peterson
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Mikayla Moody
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Alix C. Deymier
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| | - Junaid Afzal
- Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; (Y.L.)
| |
Collapse
|
45
|
Austin GO, Tomas A. Variation in responses to incretin therapy: Modifiable and non-modifiable factors. Front Mol Biosci 2023; 10:1170181. [PMID: 37091864 PMCID: PMC10119428 DOI: 10.3389/fmolb.2023.1170181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Type 2 diabetes (T2D) and obesity have reached epidemic proportions. Incretin therapy is the second line of treatment for T2D, improving both blood glucose regulation and weight loss. Glucagon-like peptide-1 (GLP-1) and glucose-stimulated insulinotropic polypeptide (GIP) are the incretin hormones that provide the foundations for these drugs. While these therapies have been highly effective for some, the results are variable. Incretin therapies target the class B G protein-coupled receptors GLP-1R and GIPR, expressed mainly in the pancreas and the hypothalamus, while some therapeutical approaches include additional targeting of the related glucagon receptor (GCGR) in the liver. The proper functioning of these receptors is crucial for incretin therapy success and here we review several mechanisms at the cellular and molecular level that influence an individual's response to incretin therapy.
Collapse
Affiliation(s)
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
46
|
Borges JI, Suster MS, Lymperopoulos A. Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. Int J Mol Sci 2023; 24:6136. [PMID: 37047106 PMCID: PMC10147095 DOI: 10.3390/ijms24076136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.
Collapse
Affiliation(s)
| | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
47
|
Otsuka R, Zhang S, Furuya K, Tange C, Sala G, Ando F, Shimokata H, Nishita Y, Arai H. Association between short-chain fatty acid intake and development of muscle strength loss among community-dwelling older Japanese adults. Exp Gerontol 2023; 173:112080. [PMID: 36634721 DOI: 10.1016/j.exger.2023.112080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) have been suggested to be associated with skeletal muscle mass maintenance. However, the role of dietary SCFAs in preserving muscle strength in the older population remains unclear. OBJECTIVES To clarify the longitudinal association between the dietary intake of SCFAs and the development of low muscle strength in older community dwellers. METHODS Data were obtained from the National Institute for Longevity Sciences-Longitudinal Study of Aging cohort. The participants included 441 men and 382 women who participated in the baseline survey (the fifth wave, between 2006 and 2008) and at least one follow-up examination (sixth to ninth waves, between 2008 and 2022) and were ≥60 years old and did not have low muscle strength (defined as a grip strength of <28 kg for men and <18 kg for women) at baseline. Baseline nutrient intakes were assessed with a 3-day dietary record. A generalized estimating equation was employed to estimate the odds ratio (OR) and 95 % confidence intervals (CIs) for low muscle strength per 1 standard deviation (SD) increase in the intake of SCFAs and other nutrients at baseline (adjusted for sex, age, follow-up time, baseline grip strength, physical activity, smoking, family income, education, and disease histories). RESULTS The mean (SD) follow-up time and number were 7.8 (3.2) years and 3.2 (1.0) times, respectively. Approximately 8.1 % of the participants exhibited muscle strength loss in at least one follow-up assessment. The multivariate-adjusted OR (95 % CIs) was 0.77 (0.63-0.93) for each 1-SD increase in SCFA intake (268 mg/day), and the ORs for the highest through the lowest tertiles of SCFA intake were 1.00 (reference), 1.44 (0.95-2.17), and 1.83 (1.20-2.78), respectively (trend p = 0.005). The results remained significant after multivariate adjusting for energy or fat intake. CONCLUSION Dietary intake of SCFAs may prevent muscle strength decline in community-dwelling older adults.
Collapse
Affiliation(s)
- Rei Otsuka
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan.
| | - Shu Zhang
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Kanae Furuya
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Chikako Tange
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Giovanni Sala
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Fujiko Ando
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan; Faculty of Health and Medical Sciences, Aichi Shukutoku University, Aichi 480-1197, Japan
| | - Hiroshi Shimokata
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Aichi 470-0196, Japan
| | - Yukiko Nishita
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Aichi 474-8511, Japan
| |
Collapse
|
48
|
Moderating Gut Microbiome/Mitochondrial Axis in Oxazolone Induced Ulcerative Colitis: The Evolving Role of β-Glucan and/or, Aldose Reductase Inhibitor, Fidarestat. Int J Mol Sci 2023; 24:ijms24032711. [PMID: 36769034 PMCID: PMC9917140 DOI: 10.3390/ijms24032711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
A mechanistic understanding of the dynamic interactions between the mitochondria and the gut microbiome is thought to offer innovative explanations for many diseases and thus provide innovative management approaches, especially in GIT-related autoimmune diseases, such as ulcerative colitis (UC). β-Glucans, important components of many nutritious diets, including oats and mushrooms, have been shown to exhibit a variety of biological anti-inflammatory and immune-modulating actions. Our research study sought to provide insight into the function of β-glucan and/or fidarestat in modifying the microbiome/mitochondrial gut axis in the treatment of UC. A total of 50 Wistar albino male rats were grouped into five groups: control, UC, β-Glucan, Fidarestat, and combined treatment groups. All the groups were tested for the presence of free fatty acid receptors 2 and 3 (FFAR-2 and -3) and mitochondrial transcription factor A (TFAM) mRNA gene expressions. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP content were found. The trimethylamine N-oxide (TMAO) and short-chain fatty acid (SCFA) levels were also examined. Nuclear factor kappa β (NF-kβ), nuclear factor (erythroid-2)-related factor 2 (Nrf2) DNA binding activity, and peroxisome proliferator-activated receptor gamma co-activator-1 (PGC-1) were identified using the ELISA method. We observed a substantial increase FFAR-2, -3, and TFAM mRNA expression after the therapy. Similar increases were seen in the ATP levels, MMP, SCFA, PGC-1, and Nrf2 DNA binding activity. The levels of ROS, TMAO, and NF-kβ, on the other hand, significantly decreased. Using β-glucan and fidarestat together had unique therapeutic benefits in treating UC by focusing on the microbiota/mitochondrial axis, opening up a new avenue for a potential treatment for such a complex, multidimensional illness.
Collapse
|
49
|
Kamel AA, Taha S, Mosa AA. Circulating expression patterns of TL1A and FFAR2 in patients with stable and unstable angina. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Background and aim
The primary factor in sudden cardiac death is coronary artery disease. We intended to discover the diagnostic worth of circulating tumor necrosis factor like cytokine 1A (TL1A) and free fatty acid receptor 2 (FFAR2) as early, noninvasive indicators for individuals with stable angina (SA) and unstable angina (UA).
Methods
In all, 90 people were enrolled in the current case–control study: 30 patients with SA, 30 patients with UA, and 30 healthy volunteers. Circulating TL1A and FFAR2 gene expression levels were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). FBG, TC, TG, and HDL-C were assessed by spectrophotometry, while hs-CRP and troponin T were measured by ELISA.
Results
Circulating TL1A expression was significantly elevated in SA (P < 0.001) and UA patients (P < 0.001) as compared to controls and also was significantly higher in UA patients (P < 0.001) as compared to SA patients. Circulating FFAR2 expression was significantly decreased in SA (P < 0.001) and UA patients (P < 0.001) in comparison with controls and was significantly lowered in UA patients (P = 0.001) in comparison with SA patients. Our results show that TL1A and FFAR2 were sensitive and specific biomarkers for discriminating SA patients from controls. Moreover, TL1A and FFAR2 displayed a remarkable ability to distinguish UA from SA. Multivariate regression analysis revealed that TL1A, FFAR2, FBG, TC, TG, LDL-C, and Troponin T were independent risk factors for SA, while TL1A, TG, and hs-CRP were independent risk factors for UA. TL1A has a significant positive correlation with LDL-C (r = 0.406, P = 0.001), hs-CRP (r = 0.673, P < 0.001), and troponin T (r = 0.653, P < 0.001). There was a significant inverse relationship between FFAR2 and each of TL1A (r = − 0.858, P < 0.001), FBG (r = − 0.325, P = 0.011), TC(r = − 0.306, P = 0.017), TG (r = − 0.368, P = 0.004), LDL-C (r = − 0.413, P = 0.001), hs-CRP (r = − 0.737, P < 0.001), and troponin T (r = − 0.715, P < 0.001).
Conclusion
Gene expression of TL1A and FFAR2 is a good new blood-based molecular indicator for early detection of SA and UA. Early detection of a possible UA is crucial for initiating appropriate treatment that results in better patient health.
Collapse
|
50
|
Del Calvo G, Baggio Lopez T, Lymperopoulos A. The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis 2023; 17:17539447231199350. [PMID: 37724539 PMCID: PMC10510358 DOI: 10.1177/17539447231199350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, HPD (Terry) Building/Room 1350, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|