1
|
Peng H, He Y, Li T, Peng X. Acyclovir contamination in environment: Occurrence, transformation, toxicity, risk, and evaluation as a pharmaceutical indicator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177412. [PMID: 39510279 DOI: 10.1016/j.scitotenv.2024.177412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Acyclovir (ACV), a widely used antiviral medication effective against herpes simplex viruses (HSV), is raising concern due to its pervasive presence in global water and the associated potential risks. ACV can undergo transformation under varying conditions, leading to the generation of diverse transformation products that may exhibit heightened toxicity. This review aims to present a comprehensive overview of the environmental impact of ACV. We compile data on ACV concentrations in different water sources worldwide to shed light on its global prevalence. The levels of ACV detected in both wastewater and natural water sources generally remain at low concentrations, typically in the range of ng L-1 level. ACV poses minimal threats to aquatic organisms and humans in comparison to its transformation products, and conventional wastewater treatment methods utilizing biological processes can reduce ACV concentrations, yet only achieve transformation rather than complete elimination of risks, as the intermediates often demonstrate elevated toxicity levels and increased persistence. Additionally, perspectives are proposed to inspire future research on risk assessment of ACV, its intermediates and other pharmaceuticals. Given the challenges in keeping pace with the proliferation of chemical varieties, prioritizing and optimizing risk assessment methodologies is imperative. To this end, the suitability of ACV indicators is evaluated by summarizing data across diverse water bodies.
Collapse
Affiliation(s)
- Haoxian Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Seki K, Yoneda K, Yoneda Y, Takenaka Y, Kaburaki T, Takeuchi M. Clinical Features of Varicella-Zoster Virus-Associated Anterior Uveitis with or without Ophthalmic Herpes Zoster. Ocul Immunol Inflamm 2024:1-8. [PMID: 39637343 DOI: 10.1080/09273948.2024.2435477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE This study aimed to investigate the clinical characteristics, diagnostic markers, and treatment outcomes of varicella-zoster virus-associated anterior uveitis (VZV-AU) with and without ophthalmic herpes zoster (herpes zoster ophthalmicus (HZO) and zoster sine herpete (ZSH), respectively). METHODS Clinical records of 47 VZV-AU patients (21 ZSH, 26 hZO) were retrospectively reviewed for clinical findings, medication use, and PCR using aqueous humor (AH) results. RESULTS There was no significant difference in age, gender, visual acuity (VA), or intraocular pressure (IOP) between the two groups. At the initial visit, small-to-medium white keratic precipitates (KPs) were significantly more observed in ZSH group than in HZO group, although there was no significant difference in the frequencies of other ocular findings between the two groups. Early antiviral medication use was significantly higher in HZO group (96.2%) than in ZSH group (19.1%). PCR was performed in 85.7% of ZSH and 53.8% of HZO patients. VZV-DNA positivity and viral load were similar between groups. Multivariate analysis revealed a positive correlation between white KPs and VZV viral load in AH. Although the ultimate use of antiviral medication was still less in ZSH group (71.4%), there were no significant differences in VA and IOP at the last visit between the two groups. CONCLUSION Patients with ZSH had more white KPs and received less early antiviral medication than those with HZO. However, visual outcomes were similar between the two groups. Small-to-medium white KPs were significantly associated with the viral load of VZV in AH, suggesting that they could be an active marker.
Collapse
Affiliation(s)
- Kyosuke Seki
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Japan
| | - Keisuke Yoneda
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Japan
| | - Yu Yoneda
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Japan
| | - Yuki Takenaka
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Japan
| | - Toshikatu Kaburaki
- Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Ohmiya, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
3
|
Szulc W, Szydłowska N, Smyk JM, Majewska A. Progress and Challenges in the Management of Congenital Cytomegalovirus Infection. Clin Pract 2024; 14:2445-2462. [PMID: 39585019 PMCID: PMC11587044 DOI: 10.3390/clinpract14060191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Congenital cytomegalovirus (CMV) infection is the most common intrauterine viral infection with a significant impact on the foetus and newborn. Current diagnostic practice includes serological testing for specific antibodies, but there are no global screening protocols. Maternal CMV screening is often performed in conjunction with antenatal ultrasound. While most infections are asymptomatic, severe cases can lead to long-term disability or death. Antiviral therapies, mainly ganciclovir and valganciclovir, are reserved for symptomatic patients, especially those with central nervous system involvement. Although effective, these treatments are associated with significant side effects such as neutropenia and hepatotoxicity. Foscarnet and cidofovir are used as alternatives, but their efficacy and safety require further study in paediatric patient populations. The effectiveness of passive prophylaxis is still uncertain. The lack of universally accepted guidelines for diagnosis, treatment, and prevention and the risk of serious side effects highlight the need for continued research. This review evaluates current therapeutic strategies, discusses their efficacy and associated risks, and highlights the need for innovative approaches to improve outcomes for affected neonates.
Collapse
Affiliation(s)
| | | | | | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004 Warsaw, Poland; (W.S.); (J.M.S.)
| |
Collapse
|
4
|
Khamkhenshorngphanuch T, Mee-udorn P, Utsintong M, Thepparit C, Srimongkolpithak N, Theeramunkong S. Study of Hydrolysis Kinetics and Synthesis of Single Isomer of Phosphoramidate ProTide-Acyclovir. ACS OMEGA 2024; 9:45221-45231. [PMID: 39554450 PMCID: PMC11561759 DOI: 10.1021/acsomega.4c06645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
Acyclovir (ACV) is a vital treatment for herpes simplex (HSV) and varicella-zoster virus (VZV) infections that inhibit viral DNA polymerase. Phosphoramidate ProTides-ACV, a promising technology, circumvents the reliance on thymidine kinase (TK) for activation. Twelve novel single isomers of phosphoramidate ProTide-ACV were synthesized. Successful isomer separation was achieved, emphasizing the importance of single isomers in medical advancements. The enzymatic hydrolysis kinetics of the synthesized compounds were investigated by using carboxypeptidase Y (CPY). The results revealed a faster conversion for the isomer Rp- than for the Sp-diastereomer. Hydrolysis experiments confirmed steric hindrance effects, particularly with the tert-butyl and isopropyl groups. Molecular modeling elucidated the mechanisms of hydrolysis, supporting the results of the experiments. This research sheds light on the potential of phosphoramidate ProTides-ACV, bridging the gap in understanding their biological and metabolic properties, while supporting future investigations into anti-HSV activity. Preliminary screening revealed that three of the four single isomers demonstrated superior antiviral efficacy against wild-type HSV-1 compared to acyclovir, with isomer 24a ultimately reducing the viral yield at 200 μM. These findings emphasize the importance of isolating racemic ACV-ProTides as pure single isomers for future drug development.
Collapse
Affiliation(s)
- Thitiphong Khamkhenshorngphanuch
- Thammasat
University Research Unit in Drug, Health Product Development and Application
(DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand
| | - Pitchayathida Mee-udorn
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong
Luang, Pathum Thani 12120, Thailand
| | - Maleeruk Utsintong
- Department
of Pharmaceutical Care, School of Pharmaceutical
Sciences, University of Phayao, 19 Moo 2 Lumpang-Phayao Road,
Maeka, Mueang, Phayao 56000, Thailand
| | - Chutima Thepparit
- Center
for Vaccine Development, Institute of Molecular
Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Rd, Salaya,
Phuttamonthon, Nakorn Pathom 73170, Thailand
| | - Nitipol Srimongkolpithak
- National
Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
(NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong
Luang, Pathum Thani 12120, Thailand
| | - Sewan Theeramunkong
- Thammasat
University Research Unit in Drug, Health Product Development and Application
(DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
5
|
Mirzaei S, Nejad ZG, Khozaimeh F, Mohammadi S, Loqmani A. Therapeutic effects of acyclovir and acyclovir-clobetasol nanofibers vs. cream formulation for recurrent herpes labialis. BMC Oral Health 2024; 24:1348. [PMID: 39506756 PMCID: PMC11539845 DOI: 10.1186/s12903-024-04948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES This study aims to compare the therapeutic effects of acyclovir nanofiber and acyclovir-clobetasol nanofiber formulations with their non-nano formulations (cream formulation) on recurrent labial herpes. MATERIALS AND METHODS Eighty patients with labial herpes lesions were divided into four groups, each receiving one of the following treatments: acyclovir-clobetasol nano patch, acyclovir-clobetasol cream, acyclovir nano patch, or acyclovir cream. Pain levels and recovery times were assessed. The Wilcoxon test compared pain levels, while the log-rank test compared healing and scabbing times. RESULTS Acyclovir-clobetasol nanofiber and cream, along with acyclovir nanofiber, significantly reduced symptoms compared to the acyclovir cream. The recovery and scabbing times were shorter in patients who received acyclovir-clobetasol formulations compared to those receiving acyclovir alone. CONCLUSION Acyclovir-clobetasol combinations accelerated recovery times compared to acyclovir alone. Additionally, nanofiber formulations demonstrated enhanced healing efficacy over cream formulations. TRIAL REGISTRATION This trial was retrospectively registered by Iranian Registry of Clinical Trials (IRCT) at 14/11/2023. TRIAL REGISTRATION NUMBER IRCT20230926059521N1.
Collapse
Affiliation(s)
- Shahla Mirzaei
- Pharmaceutical Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Golestan Nejad
- Dental Research Center, Department of Diagnosis of Oral and Dental Diseases, Faculty of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Khozaimeh
- Dental Research Center, Department of Diagnosis of Oral and Dental Diseases, Faculty of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Solmaz Mohammadi
- Student Research Committee, Faculty of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Alireza Loqmani
- Student Research Committee, Faculty of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Suri C, Pande B, Sahithi LS, Sahu T, Verma HK. Interplay between Lung Diseases and Viral Infections: A Comprehensive Review. Microorganisms 2024; 12:2030. [PMID: 39458339 PMCID: PMC11510474 DOI: 10.3390/microorganisms12102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The intricate relationship between chronic lung diseases and viral infections is a significant concern in respiratory medicine. We explore how pre-existing lung conditions, including chronic obstructive pulmonary disease, asthma, and interstitial lung diseases, influence susceptibility, severity, and outcomes of viral infections. We also examine how viral infections exacerbate and accelerate the progression of lung disease by disrupting immune responses and triggering inflammatory pathways. By summarizing current evidence, this review highlights the bidirectional nature of these interactions, where underlying lung diseasesincrease vulnerability to viral infections, while these infections, in turn, worsen the clinical course. This review underscores the importance of preventive measures, such as vaccination, early detection, and targeted therapies, to mitigate adverse outcomes in patients with chronic lung conditions. The insights provided aim to inform clinical strategies that can improve patient management and reduce the burden of chronic lung diseases exacerbated by viral infections.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | | | - Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
7
|
Chang JY, Balch C, Oh HS. Toward the Eradication of Herpes Simplex Virus: Vaccination and Beyond. Viruses 2024; 16:1476. [PMID: 39339952 PMCID: PMC11437400 DOI: 10.3390/v16091476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Herpes simplex virus (HSV) has coevolved with Homo sapiens for over 100,000 years, maintaining a tenacious presence by establishing lifelong, incurable infections in over half the human population. As of 2024, an effective prophylactic or therapeutic vaccine for HSV remains elusive. In this review, we independently screened PubMed, EMBASE, Medline, and Google Scholar for clinically relevant articles on HSV vaccines. We identified 12 vaccines from our literature review and found promising candidates across various classes, including subunit vaccines, live vaccines, DNA vaccines, and mRNA vaccines. Notably, several vaccines-SL-V20, HF10, VC2, and mRNA-1608-have shown promising preclinical results, suggesting that an effective HSV vaccine may be within reach. Additionally, several other vaccines such as GEN-003 (a subunit vaccine from Genocea), HerpV (a subunit vaccine from Agenus), 0ΔNLS/RVx201 (a live-attenuated replication-competent vaccine from Rational Vaccines), HSV 529 (a replication-defective vaccine from Sanofi Pasteur), and COR-1 (a DNA-based vaccine from Anteris Technologies) have demonstrated potential in clinical trials. However, GEN-003 and HerpV have not advanced further despite promising results. Continued progress with these candidates brings us closer to a significant breakthrough in preventing and treating HSV infections.
Collapse
Affiliation(s)
- Jane Y Chang
- Ascendant Biotech Inc., Foster City, CA 94404, USA
| | - Curt Balch
- Bioscience Advising, Cincinnati, OH 45208, USA
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Mansilla-Polo M, Escutia-Muñoz B, Martín-Torregrosa D, Botella-Estrada R. [Vesicular lesions on an erythematous basis in the elderly: not everything is herpes zoster]. Rev Esp Geriatr Gerontol 2024; 59:101509. [PMID: 38824791 DOI: 10.1016/j.regg.2024.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/06/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024]
Affiliation(s)
- Miguel Mansilla-Polo
- Departamento de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, España.
| | - Begoña Escutia-Muñoz
- Departamento de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, España
| | - Daniel Martín-Torregrosa
- Departamento de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, España
| | - Rafael Botella-Estrada
- Departamento de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, España; Facultad de Medicina, Universitat de València, Valencia, España
| |
Collapse
|
9
|
Rácz R, Gellért Á, Papp T, Doszpoly A. Exploring the Effectiveness of Acyclovir against Ranaviral Thymidine Kinases: Molecular Docking and Experimental Validation in a Fish Cell Line. Life (Basel) 2024; 14:1050. [PMID: 39337837 PMCID: PMC11433535 DOI: 10.3390/life14091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The effectiveness of acyclovir, a selective anti-herpesvirus agent, was tested both in silico and in vitro against two ranaviruses, namely the European catfish virus (ECV) and Frog virus 3 (FV3). ECV can cause significant losses in catfish aquaculture, while FV3 poses a risk to vulnerable amphibian populations. The genome of ranaviruses encodes thymidine kinases (TKs) similar to those of herpesviruses. Molecular docking simulations demonstrated that the acyclovir molecule can bind to the active sites of both investigated viral TKs in an orientation conducive to phosphorylation. Subsequently, the antiviral effect of acyclovir was tested in vitro in Epithelioma Papulosum Cyprini (EPC) cells with endpoint titration and qPCR. Acyclovir was used at a concentration of 800 µM, which significantly reduced the viral loads and titers of the ranaviruses. A similar reduction rate was observed with Ictalurid herpesvirus 2, which was used as a positive control virus. These promising results indicate that acyclovir might have a wider range of uses; besides its effectiveness against herpesviruses, it could also be used against ranavirus infections.
Collapse
Affiliation(s)
| | | | | | - Andor Doszpoly
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary; (R.R.); (Á.G.); (T.P.)
| |
Collapse
|
10
|
Deng H, Cao H, Wang Y, Li J, Dai J, Li LF, Qiu HJ, Li S. Viral replication organelles: the highly complex and programmed replication machinery. Front Microbiol 2024; 15:1450060. [PMID: 39144209 PMCID: PMC11322364 DOI: 10.3389/fmicb.2024.1450060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
11
|
Gao C, Dong X, Zhang J, Mao L, Guo C, Qin X, Zou Z. Recommendations for the selection of nucleoside analogues as antihuman herpesvirus drugs: a real-world analysis of reported cases from the FDA adverse event reporting system. Expert Opin Drug Saf 2024:1-15. [PMID: 38943630 DOI: 10.1080/14740338.2024.2374919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/22/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE The aim of this study is to provide guidance for refining medication protocols, developing alternative strategies, and enhancing protection against herpesvirus infections in personalized clinical settings. METHODS Adverse drug events (ADEs) data for anti-herpesvirus from the first quarter of 2004 to the fourth quarter of 2022 were collected from the FDA Adverse Event Reporting System (FAERS). Disproportionality analysis was performed using Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), and Bayesian Confidence Propagation Neural Network (BCPNN) methods for data mining. RESULTS A total of 18,591, 24,206, 6,150, and 419 reports of ADEs associated with acyclovir (ACV), valacyclovir (VACV), ganciclovir (GCV), and famciclovir (FCV) were screened and extracted from the FAERS. In this study, the report summarized the high frequency and strong correlation of ADEs for the four drugs at the Preferred Term (PT) level. Additionally, the analysis also identified the relationship between ADEs and factors such as age, gender, and severity of outcome at the System Organ Class (SOC) level. CONCLUSION The safety reports for the four-nucleoside analogue anti-herpesvirus drugs are diverse and interconnected. Dosing for patients with herpesvirus infections should be tailored to their specific conditions and the potential risk of disease.
Collapse
Affiliation(s)
- Caixia Gao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Xiaomei Dong
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Changxin Guo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, P.R. China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Chianese A, Giugliano R, Palma F, Nastri BM, Monti A, Doti N, Zannella C, Galdiero M, De Filippis A. The antiherpetic and anti-inflammatory activity of the frog-derived peptide Hylin-a1. J Appl Microbiol 2024; 135:lxae165. [PMID: 38991986 DOI: 10.1093/jambio/lxae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
AIM The high incidence of virus-related infections and the large diffusion of drug-resistant pathogens stimulate the search and identification of new antiviral agents with a broad spectrum of action. Antivirals can be designed to act on a single target by interfering with a specific step in the viral lifecycle. On the contrary, antiviral peptides (AVPs) are known for acting on a wide range of viruses, with a diversified mechanism of action targeting virus and/or host cell. In the present study, we evaluated the antiviral potential of the peptide Hylin-a1 secreted by the frog Hypsiobas albopunctatus against members of the Herpesviridae family. METHODS AND RESULTS The inhibitory capacity of the peptide was evaluated in vitro by plaque assays in order to understand the possible mechanism of action. The results were also confirmed by real-time PCR and Western blot evaluating the expression of viral genes. Hylin-a1 acts to block the herpetic infection interfering at the early stages of both herpes simplex virus type 1 (HSV-1) and type 2 infection. Its mechanism is mainly directed on the membrane, probably by damaging the viral envelope. The same effect was also observed against HSV-1 strains resistant to acyclovir. CONCLUSIONS The data presented in this study, such as the increased activity of the peptide when combined to acyclovir, a weak hemolytic profile, an anti-inflammatory effect, and a tolerable half-life in serum, indicates Hylin-a1 as a novel antiherpetic molecule with promising potential in the clinical setting.
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Bianca M Nastri
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples 80131, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples 80131, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio, 7, Naples 80138, Italy
| |
Collapse
|
13
|
Borodianskiy-Shteinberg T, Bisht P, Das B, Kinchington PR, Goldstein RS. Commercial human 3D corneal epithelial equivalents for modeling epithelial infection in herpes keratitis. Virology 2024; 595:110096. [PMID: 38710129 DOI: 10.1016/j.virol.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Herpes stromal keratitis is the leading cause of infectious blindness in the western world. Infection by HSV1 is most common, but VZV and hCMV also infect the cornea. Multiple models of HSV1 corneal infection exist, but none for VZV and hCMV because of their host specificity. Here, we used commercially available 3D human corneal epithelial equivalents (HCEE) to study infection by these herpesviruses. HCEE was infected by HSV-1 and hCMV without requiring scarification and resulted in spreading infections. Spread of HSV-1 infection was rapid, while that of hCMV was slow. In contrast, infections with VZV required damage to the HCEE and did not spread. Acyclovir dramatically reduced replication of HSV-1 in this model. We conclude that highly quality-controlled, readily available HCEE is a useful model to study human-restricted herpesvirus infection of the human corneal epithelium and for screening of antiviral drugs for treating HSK in an 3D model system.
Collapse
Affiliation(s)
| | - Punam Bisht
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Biswajit Das
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Paul R Kinchington
- Departments of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ronald S Goldstein
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
14
|
Shamel S, Zarkesh MR. Acyclovir extravasation in a newborn: a case report. J Med Case Rep 2024; 18:271. [PMID: 38845030 PMCID: PMC11157697 DOI: 10.1186/s13256-024-04585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
OBJECTIVE Extravasation of infused drugs is not a rare problem in medical practice. Acyclovir is a vesicant and an antiviral medication commonly used for young children. In the present study, we presented a neonate with soft tissue damage due to acyclovir extravasation. CASE REPORT A female newborn (Iranian, Asian) with gestational age 37+2 weeks and breech presentation was born by Cesarean delivery from a mother with a recent history of Herpes simplex virus (HSV) infection (Yas Women's Hospital, Tehran, Iran). Intravenous administration of acyclovir was initiated through a peripheral catheter inserted on the dorsal side of the left hand. A few minutes after the second dose, the patient showed a diffused firm swelling, local discoloration, and induration in the dorsum of the hand. The peripheral catheter was removed immediately. Hyaluronidase was injected subcutaneously in five different regions around the catheterization site. Intermittent limb elevation and cold compression (for 10 minutes) were applied. Serial follow-ups and examinations were performed hourly to check limb inflammation, ischemia, and compartment syndrome. The limb swelling and discoloration significantly improved 4 hours after the second dose of hyaluronidase. CONCLUSION Early diagnosis of acyclovir extravasation and immediate management could prevent severe complications in neonates. Further studies are needed to suggest a standard approach and treatment protocol for acyclovir extravasation.
Collapse
Affiliation(s)
- Shirin Shamel
- Department of Neonatology, Yas Hospital Complex, Tehran University of Medical Sciences, Sarv Ave., North Nejatolahi Street, Tehran, 1598718311, Iran
| | - Mohammad Reza Zarkesh
- Department of Neonatology, Yas Hospital Complex, Tehran University of Medical Sciences, Sarv Ave., North Nejatolahi Street, Tehran, 1598718311, Iran.
- Maternal, Fetal, and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Xu H, Zhou N, Huang Z, Wu J, Qian Y. Harmol used for the treatment of herpes simplex virus induced keratitis. Virol J 2024; 21:118. [PMID: 38802860 PMCID: PMC11131330 DOI: 10.1186/s12985-024-02384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection of the eyes results in herpes simplex keratitis (HSK), which has led to vision loss and even blindness in patients. However, the rate of drug resistance in HSV is on the rise; therefore, new antiviral agents with sufficient safety profiles must be developed. At present, we assessed the anti-HSV-1 activity of 502 natural compounds and their ability to reduce the HSV-1-induced cytopathic effect. We chose harmol for further studies because it exhibited the highest antiviral activity. We found that harmol inhibited both HSV-1 F and HSV-1/153 (a clinical drug-resistant strain) replication, with an EC50 of 9.34 µM and 5.84 µM, respectively. Moreover, harmol reduced HSV-1 replication in corneal tissues and viral progeny production in tears, and also alleviated early corneal surface lesions related to HSK. For example, harmol treatment preserved corneal thickness and nerve density in HSK mice. Interestingly, harmol also showed a promising antiviral effect on HSV-1/153 induced HSK in mouse model. Furthermore, harmol combined with acyclovir (ACV) treatment showed a greater antiviral effect than either one alone in vitro. Therefore, harmol may be a promising therapeutic agent for managing HSK.
Collapse
Affiliation(s)
- Huanhuan Xu
- Department of Ophthalmology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Zhou
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, 22# Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Zhenping Huang
- Department of Ophthalmology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jing Wu
- Medical School of Nanjing University, 22# Hankou Road, Nanjing, 210093, Jiangsu Province, China.
| | - Yajie Qian
- Department of Caries and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30# Zhongyang Road, Xuanwu District, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
16
|
Morán-Serradilla C, Plano D, Sanmartín C, Sharma AK. Selenization of Small Molecule Drugs: A New Player on the Board. J Med Chem 2024; 67:7759-7787. [PMID: 38716896 DOI: 10.1021/acs.jmedchem.3c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
There is an urgent need to develop safer and more effective modalities for the treatment of a wide range of pathologies due to the increasing rates of drug resistance, undesired side effects, poor clinical outcomes, etc. Throughout the years, selenium (Se) has attracted a great deal of attention due to its important role in human health. Besides, a growing body of work has unveiled that the inclusion of Se motifs into a great number of molecules is a promising strategy for obtaining novel therapeutic agents. In the current Perspective, we have gathered the most recent literature related to the incorporation of different Se moieties into the scaffolds of a wide range of known drugs and their feasible pharmaceutical applications. In addition, we highlight different representative examples as well as provide our perspective on Se drugs and the possible future directions, promises, opportunities, and challenges of this ground-breaking area of research.
Collapse
Affiliation(s)
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
- Penn State Cancer Institute, 400 University Drive,Hershey, Pennsylvania 17033, United States
| |
Collapse
|
17
|
Palazzotti D, Sguilla M, Manfroni G, Cecchetti V, Astolfi A, Barreca ML. Small Molecule Drugs Targeting Viral Polymerases. Pharmaceuticals (Basel) 2024; 17:661. [PMID: 38794231 PMCID: PMC11124969 DOI: 10.3390/ph17050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Small molecules that specifically target viral polymerases-crucial enzymes governing viral genome transcription and replication-play a pivotal role in combating viral infections. Presently, approved polymerase inhibitors cover nine human viruses, spanning both DNA and RNA viruses. This review provides a comprehensive analysis of these licensed drugs, encompassing nucleoside/nucleotide inhibitors (NIs), non-nucleoside inhibitors (NNIs), and mutagenic agents. For each compound, we describe the specific targeted virus and related polymerase enzyme, the mechanism of action, and the relevant bioactivity data. This wealth of information serves as a valuable resource for researchers actively engaged in antiviral drug discovery efforts, offering a complete overview of established strategies as well as insights for shaping the development of next-generation antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (D.P.); (M.S.); (G.M.); (V.C.); (A.A.)
| |
Collapse
|
18
|
Sharma DD, Girgis P, Gandhi D, Adapa S, Karishma F, Kaur G, Balasingh GP, Ismail Elnimer MM. Contemporary Insights Into HIV Esophagitis: Pathogenesis, Therapeutic Strategies, and Prognostic Outcomes. Cureus 2024; 16:e60788. [PMID: 38903321 PMCID: PMC11189106 DOI: 10.7759/cureus.60788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Opportunistic infections caused by various bacteria, viruses, fungi, or parasites can cause esophagitis. The fungus Candida albicans is often believed to be the thief behind this disorder. This condition's distinctive signs include the process of inflammation and the development of esophageal ulcers. The underlying immunodeficiency condition in HIV/AIDS patients, especially those in the late stages of the disease, may lead to severe illness or even death if the lowered immune system can no longer combat common infections. These individuals are, therefore, more at risk of contracting diseases like Candidiasis since they already have weakened immune systems. Furthermore, bacteria and mycobacteria can cause esophagitis in the same way that viruses can. Tobacco use, alcohol drinking, and nutritional deficiency are three additional problems that can lead to an HIV esophagitis infection. Complaints of inability to swallow, suffocating feeling or discomfort behind the breastbone, and painful swallowing are the primary symptoms of the patients. White plaques or ulcers observed in the esophagus during an endoscopy can be biopsied for further examination. The presence of C. albicans hyphae and inflammatory infiltrates in these samples confirms the diagnosis of HIV-associated esophagitis. Treatment involves the use of antifungal medications and addressing any underlying causes of esophagitis, which is linked to AIDS. For superficial to moderate infections, fluconazole is typically used first. If the disease is severe or recurs after treatment, intravenous amphotericin B may be necessary. Patients with recurring oral symptoms of HIV esophagitis might also need to take antifungal drugs as a preventative measure.
Collapse
Affiliation(s)
| | - Peter Girgis
- Internal Medicine, Ross University School of Medicine, Bridgetown, BRB
| | - Dhruv Gandhi
- Internal Medicine, K. J. Somaiya Medical College, Mumbai, IND
| | | | - Fnu Karishma
- Internal Medicine, Ghulam Muhammad Mahar Medical College, Khairpur, PAK
| | - Gurvir Kaur
- Internal Medicine, American University of Antigua, Los Angeles, USA
| | | | | |
Collapse
|
19
|
Žlabravec Z, Kvapil P, Slavec B, Zorman Rojs O, Švara T, Račnik J. Herpesvirus and Subsequent Usutu Virus Infection in a Great Grey Owl ( Strix nebulosa) at the Ljubljana Zoo, Slovenia. Animals (Basel) 2024; 14:1200. [PMID: 38672348 PMCID: PMC11047632 DOI: 10.3390/ani14081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Herpesvirus (HV) has been known to cause disease in owls, with various clinical signs and outcomes for the last several decades. The HV DNA polymerase gene was detected in oropharyngeal and cloacal swabs of a male great grey owl (Strix nebulosa) in a zoological collection in Ljubljana, Slovenia. In the following 4 months, despite continuous HV detection in swabs, no clinical signs with a clear link to HV disease were observed. Hepatoprotective and immunostimulant therapies applied during this period did not prevent HV shedding. Therefore, peroral antiviral therapy with acyclovir (150 mg/kg q24 h for seven days) was performed, and the owl tested negative at the next sampling and remained negative for the next 8 months. After that, the owl again tested positive for HV presence, and the same protocol with antiviral therapy was performed. After 3 weeks with a negative test for HV presence, without any clinical signs of illness, the owl suddenly died because of Usutu virus (USUV) infection. Among all the owls at the zoo, interestingly, only the HV-positive great grey owl died because of USUV infection. The USUV sequence detected and obtained in this study clusters together with other Europe 2 sequences detected in neighboring countries. Our study shows the potential of acyclovir therapy in the prevention of herpesvirus shedding and, moreover, lowering the possibility for spreading HV to other owls and birds. To the best of our knowledge, this is the first report of HV presence and USUV infection in a great grey owl in Slovenia.
Collapse
Affiliation(s)
- Zoran Žlabravec
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| | - Pavel Kvapil
- Veterinary Department, Ljubljana Zoo, Večna Pot 70, 1000 Ljubljana, Slovenia
| | - Brigita Slavec
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| | - Olga Zorman Rojs
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| | - Tanja Švara
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia;
| | - Jožko Račnik
- Institute for Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia; (Z.Ž.)
| |
Collapse
|
20
|
Piperi E, Papadopoulou E, Georgaki M, Dovrat S, Bar Illan M, Nikitakis NG, Yarom N. Management of oral herpes simplex virus infections: The problem of resistance. A narrative review. Oral Dis 2024; 30:877-894. [PMID: 37279074 DOI: 10.1111/odi.14635] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Herpes Simplex Virus (HSV) type 1 (HSV-1) and type 2 (HSV-2) are among the most common human viral pathogens, affecting several billion people worldwide. Although in healthy patients clinical signs and symptoms of HSV infection are usually mild and self-limiting, HSV-infections in immunocompromised patients are frequently more aggressive, persistent, and even life-threatening. Acyclovir and its derivatives are the gold standard antiviral drugs for the prevention and treatment of HSV infections. Although the development of acyclovir resistance is a rather uncommon condition, it may be associated with serious complications, especially in immunocompromised patients. In this review, we aim to address the problem of drug resistant HSV infection and discuss the available alternative therapeutic interventions. All relative studies concerning alternative treatment modalities of acyclovir resistant HSV infection published in PubMed between 1989 to 2022 were reviewed. Long-term treatment and prophylaxis with antiviral agents predisposes to drug resistance, especially in immunocompromised patients. Cidofovir and foscarnet could serve as alternative treatments in these cases. Although rare, acyclovir resistance may be associated with severe complications. Hopefully, in the future, novel antiviral drugs and vaccines will be available in order to avoid the existing drug resistance.
Collapse
Affiliation(s)
- Evangelia Piperi
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Erofili Papadopoulou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria Georgaki
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Sara Dovrat
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mor Bar Illan
- Oral Medicine Unit, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nikolaos G Nikitakis
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Noam Yarom
- Oral Medicine Unit, Sheba Medical Center, Tel-Hashomer, Israel
- School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Shamsian S, Nabipour I, Mohebbi G, Baghban N, Zare M, Zandi K, Vazirizadeh A, Maryamabadi A, Delattre C. In-vitro and in-silico anti-HSV-1 activity of a marine steroid from the jellyfish Cassiopea andromeda venom. Microb Pathog 2024; 186:106486. [PMID: 38056601 DOI: 10.1016/j.micpath.2023.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, we investigated the potential in vitro anti-HSV-1 activities of the Cassiopea andromeda jellyfish tentacle extract (TE) and its fractions, as well as computational work on the thymidine kinase (TK) inhibitory activity of the identified secondary metabolites. The LD50, secondary metabolite identification, preparative and analytical chromatography, and in silico TK assessment were performed using the Spearman-Karber, GC-MS, silica gel column chromatography, RP-HPLC, LC-MS, and docking methods, respectively. The antiviral activity of TE and the two purified compounds Ca2 and Ca7 against HSV-1 in Vero cells was evaluated by MTT and RT-PCR assays. The LD50 (IV, mouse) values of TE, Ca2, and Ca7 were 104.0 ± 4, 5120 ± 14, and 197.0 ± 7 (μg/kg), respectively. They exhibited extremely effective antiviral activity against HSV-1. The CC50 and MNTD of TE, Ca2, and Ca7 were (125, 62.5), (25, 12.5), and (50, 3.125) μg/ml, respectively. GC-MS analysis of the tentacle extract revealed seven structurally distinct chemical compositions. Four of the seven compounds had a steroid structure. According to the docking results, all compounds showed binding affinity to the active sites of both thymidine kinase chains. Among them, the steroid compound Pregn-5-ene-3,11-dione, 17,20:20,21 bis [methylenebis(oxy)]-, cyclic 3-(1,2-ethane diyl acetal) (Ca2) exhibited the highest affinity for both enzyme chains, surpassing that of standard acyclovir. In silico data confirmed the experimental results. We conclude that the oxosteroid Ca2 may act as a potent agent against HSV-1.
Collapse
Affiliation(s)
- Shakib Shamsian
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Masoud Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Keivan Zandi
- Tropical Infectious Diseases Research and Education Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.
| | - Amir Vazirizadeh
- Department of Marine Biotechnology, The Persian Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran.
| | - Ammar Maryamabadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 7500, Paris, France.
| |
Collapse
|
22
|
Wu J, Cai Y, Jiang N, Qian Y, Lyu R, You Q, Zhang F, Tao H, Zhu H, Nawaz W, Chen D, Wu Z. Pralatrexate inhibited the replication of varicella zoster virus and vesicular stomatitis virus: An old dog with new tricks. Antiviral Res 2024; 221:105787. [PMID: 38145756 DOI: 10.1016/j.antiviral.2023.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Varicella zoster virus (VZV) is associated with herpes zoster (HZ) or herpes zoster ophthalmicus (HZO). All antiviral agents currently licensed for the management of VZV replication via modulating different mechanisms, and the resistance is on the rise. There is a need to develop new antiviral agents with distinct mechanisms of action and adequate safety profiles. Pralatrexate (PDX) is a fourth-generation anti-folate agent with an inhibitory activity on folate (FA) metabolism and has been used as an anti-tumor drug. We observed that PDX possessed potent inhibitory activity against VZV infection. In this study, we reported the antiviral effects and the underlying mechanism of PDX against VZV infection. The results showed that PDX not only inhibited VZV replication in vitro and in mice corneal tissues but also reduced the inflammatory response and apoptosis induced by viral infection. Furthermore, PDX treatment showed a similar anti-VSV inhibitory effect in both in vitro and in vivo models. Mechanistically, PDX inhibited viral replication by interrupting the substrate supply for de novo purine and thymidine synthesis. In conclusion, this study discovered the potent antiviral activity of PDX with a novel mechanism and presented a new strategy for VZV treatment that targets a cellular metabolic mechanism essential for viral replication. The present study provided a new insight into the development of broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Jing Wu
- Medical School of Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Na Jiang
- Medical School of Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruining Lyu
- Medical School of Nanjing University, Nanjing, China
| | - Qiao You
- Medical School of Nanjing University, Nanjing, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongji Tao
- Medical School of Nanjing University, Nanjing, China
| | - Haotian Zhu
- Medical School of Nanjing University, Nanjing, China
| | - Waqas Nawaz
- Hȏpital Maisonneuve-Rosemont, School of Medicine, University of Montreal, Canada
| | - Deyan Chen
- Medical School of Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- Medical School of Nanjing University, Nanjing, China; Northern Jiangsu People's Hospital, Affiliated Teaching Hospital of Medical School, Nanjing University, Yangzhou, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; School of Life Science, Ningxia University, Yinchuan, China.
| |
Collapse
|
23
|
Mai H, Li J, Luo Y, Ou J, Chen G, Ye L. Anti-Herpes Simplex Virus Type 1 Activity Evaluation of Natural Derived Phloroglucinol Derivatives and Their Molecular Mechanisms Study. Chem Biodivers 2023; 20:e202301111. [PMID: 38009609 DOI: 10.1002/cbdv.202301111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
HSV-1 is a common infection that can cause cold sores. In this study, the anti-HSV-1 virus activity of three series compounds A1-A9, B1-B12, C1-C22 was screened by MTT assay, qRT-PCR assay, Western blot assay and viruses' plaque assays. The results of MTT assay disclosed that phloroglucinol derivatives C2 and C3 effectively inhibited the death of HSV-1 infected vero cells with the CC50 values of C2 and C3 were 72.64 μmol/L and 32.62 μmol/L in HaCaT cells, 137.6 μmol/L and 48.55 μmol/L in Hela cells. The IC50 values of C3 in vero cells and Hela cells were 19.26 μmol/L and 22.98 μmol/L, respectively. In the qRT-PCR experiments, it showed that C2 and C3 effectively reduced the synthesis of HSV-1 early viral gene VP16 and late viral gene gD. The Western blot results showed that both C2 and C3 inhibited the expression of HSV-1 gD protein in a concentration-dependent manner. Lastly, viruses' plaque assay results showed that C2 and C3 inhibited the production of HSV-1 progeny virus in Hela cells and HaCaT cells in a concentration-dependent manner. Taken together, these results suggest that C2 and C3 are promising candidate that warrants further attention in the development of anti-HSV-1 drugs.
Collapse
Affiliation(s)
- Haiyan Mai
- The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, P. R. China
| | - Junjian Li
- Zhaoqing Hospital, The Third Affiliated Hospital of Sun Yat-sen University, No.1 Yanyang Road, Dinghu District, Zhaoqing, P. R. China
| | - Yuyan Luo
- The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, P. R. China
| | - Jiayi Ou
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, P. R. China
| | - Gong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, P. R. China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Outer Ring East Road, University City, Guangzhou, P. R. China
| |
Collapse
|
24
|
Wild M, Karner D, Eickhoff J, Wagner S, Kicuntod J, Chang W, Barry P, Jonjić S, Lenac Roviš T, Marschall M. Combined Treatment with Host-Directed and Anticytomegaloviral Kinase Inhibitors: Mechanisms, Synergisms and Drug Resistance Barriers. Pharmaceutics 2023; 15:2680. [PMID: 38140021 PMCID: PMC10748244 DOI: 10.3390/pharmaceutics15122680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Despite the availability of currently approved antiviral drugs, infections with human cytomegalovirus (HCMV) still cause clinically challenging, sometimes life-threatening situations. There is an urgent need for enhanced anti-HCMV drugs that offer improved efficacy, reduced dosages and options for long-term treatment without risk of the development of viral drug resistance. Recently, we reported the pronounced anti-HCMV efficacy of pharmacological inhibitors of cyclin-dependent kinases (CDKs), in particular, the potential of utilizing drug synergies upon combination treatment with inhibitors of host CDKs and the viral CDK-like kinase pUL97 (vCDK/pUL97). Here, we expand this finding by further assessing the in vitro synergistic antiviral interaction between vCDK and CDK inhibitors towards HCMV as well as non-human cytomegaloviruses. An extension of this synergy approach was achieved in vivo by using the recombinant MCMV-UL97/mouse model, confirming the high potential of combination treatment with the clinically approved vCDK inhibitor maribavir (MBV) and the developmental CDK7 inhibitor LDC4297. Moreover, mechanistic aspects of this synergistic drug combination were illustrated on the levels of intracellular viral protein transport and viral genome replication. The analysis of viral drug resistance did not reveal resistance formation in the case of MBV + LDC4297 combination treatment. Spanning various investigational levels, these new results strongly support our concept, employing the great potential of anti-HCMV synergistic drug treatment.
Collapse
Affiliation(s)
- Markus Wild
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (S.W.); (J.K.)
| | - Dubravka Karner
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (D.K.); (S.J.); (T.L.R.)
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany;
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (S.W.); (J.K.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (S.W.); (J.K.)
| | - William Chang
- Department of Medical Microbiology and Immunology, California National Primate Research Center, University of California, 3146 Tupper Hall, 1 Shields Avenue, Davis, CA 95616, USA; (W.C.); (P.B.)
| | - Peter Barry
- Department of Medical Microbiology and Immunology, California National Primate Research Center, University of California, 3146 Tupper Hall, 1 Shields Avenue, Davis, CA 95616, USA; (W.C.); (P.B.)
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (D.K.); (S.J.); (T.L.R.)
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; (D.K.); (S.J.); (T.L.R.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany; (M.W.); (S.W.); (J.K.)
| |
Collapse
|
25
|
Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A. Alzheimer's disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 2023; 91:102068. [PMID: 37704050 DOI: 10.1016/j.arr.2023.102068] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Rossella Bruno
- Sudent at the Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88050 Catanzaro, Italy
| | - Leognano Ceraudo
- Sudent at the Department of Medical and Surgical Sciences, University of Parma, 43121 Parma, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
26
|
Stewart DD. Can Nitazoxanide and/or other anti-viral medications be a solution to long COVID? Case report with a brief literature review. Clin Case Rep 2023; 11:e8162. [PMID: 38028066 PMCID: PMC10654558 DOI: 10.1002/ccr3.8162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Key Clinical Message Findings here imply lingering of virus, SARS-CoV-2, in the body for months. Thus, Nitazoxanide and/or other anti-viral medications might be potential options to combat long COVID. This could transform treatment for long COVID patients globally. Abstract Long COVID or post-acute sequelae of COVID-19 (PASC) continues to affect many people even after a relatively mild acute illness. Underlying causes of PASC are poorly understood. There is no particular treatment or management program developed yet. Thus, the possibility of well-known, safe anti-viral medications use against PASC is proposed here.
Collapse
|
27
|
Coppola N, Cantile T, Adamo D, Canfora F, Baldares S, Riccitiello F, Musella G, Mignogna MDD, Leuci S. Supportive care and antiviral treatments in primary herpetic gingivostomatitis: a systematic review. Clin Oral Investig 2023; 27:6333-6344. [PMID: 37733027 PMCID: PMC10630243 DOI: 10.1007/s00784-023-05250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Herpes simplex virus 1 (HSV-1) is the main pathogen responsible for herpes infections. In 13-30% of the cases, primary HSV-1 leads to the primary herpetic gingivostomatitis (PHGS), often a self-limiting infection; however, it can limit the ability to drink/eat with, sometimes, the need for hospitalization. Multiple therapeutic methods have been proposed. This systematic review aims to collect and critically appraise the available evidence about the clinical management of PHGS. MATERIALS AND METHODS Literature search including three databases (PubMed, Scopus, Embase), study design, and data analysis were performed following PRISMA guidelines, according to the PICO tool (PROSPERO n° CRD42023391386). Risk of bias was assessed with RoB 2 and ROBINS-I. RESULTS Five studies on a total of 364 patients (average age: 7.6 years) were identified. The treatment regimens were summarized in acyclovir; acyclovir + honey; fluids and analgesic; maalox + diphenhydramine; lidocaine; chlorhexidine (CHX); CHX + ialuronic acid; CHX + Mucosyte®; antimicrobial photodynamic therapy (aPDT); topical antiviral; topical antiviral + aPDT; and others. CONCLUSIONS Although PHGS is a disease with a high worldwide prevalence, the lack of consensus about therapeutic management indicates gaps in existing evidence. Most of the proposed treatment consists in symptomatic drugs with empiric regimens which are ineffective for the viral replication. The main limit to realize randomized clinical trial is due to the rapid onset and remission of the disease. In fact, the diagnostic delay, estimated in 72 h, decreases the effectiveness of any antiviral drugs. CLINICAL RELEVANCE Out of the five studies included in this systematic review, only one was able to provide some weak evidence that ACV is an effective treatment, improving healing of oral lesions and reducing duration of symptoms.
Collapse
Affiliation(s)
- Noemi Coppola
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Tiziana Cantile
- Pediatric Dentistry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Baronissi, Italy.
| | - Daniela Adamo
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Federica Canfora
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Baldares
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Riccitiello
- Pediatric Dentistry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Gennaro Musella
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Michele Davide D Mignogna
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Leuci
- Oral Medicine Unit, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
28
|
Hyun J, Lee SK, Kim JH, Cho EJ, Kim HS, Kim JS, Song W, Kim HS. Variant Analysis of the Thymidine Kinase and DNA Polymerase Genes of Herpes Simplex Virus in Korea: Frequency of Acyclovir Resistance Mutations. Viruses 2023; 15:1709. [PMID: 37632051 PMCID: PMC10458183 DOI: 10.3390/v15081709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The thymidine kinase (TK) and DNA polymerase (pol) genes of the herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) are two important genes involved in antiviral resistance. We investigated the genetic polymorphisms of the HSV-TK and pol genes in clinical isolates from Korean HSV-infected patients using next-generation sequencing (NGS) for the first time in Korea. A total of 81 HSV-1 and 47 HSV-2 isolates were examined. NGS was used to amplify and sequence the TK and pol genes. Among the 81 HSV-1 isolates, 12 and 17 natural polymorphisms and 9 and 23 polymorphisms of unknown significance in TK and pol were found, respectively. Two HSV-1 isolates (2.5%) exhibited the E257K amino acid substitution in TK, associated with antiviral resistance. Out of 47 HSV-2 isolates, 8 natural polymorphisms were identified in TK, and 9 in pol, with 13 polymorphisms of unknown significance in TK and 10 in pol. No known resistance-related mutations were observed in HSV-2. These findings contribute to our understanding of the genetic variants associated with antiviral resistance in HSV-1 and HSV-2 in Korea, with frequencies of known antiviral resistance-related mutations of 2.5% and 0% in HSV-1 and HSV-2, respectively.
Collapse
Affiliation(s)
- Jungwon Hyun
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Republic of Korea; (J.H.); (S.K.L.); (J.H.K.); (E.-J.C.)
| | - Su Kyung Lee
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Republic of Korea; (J.H.); (S.K.L.); (J.H.K.); (E.-J.C.)
| | - Ji Hyun Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Republic of Korea; (J.H.); (S.K.L.); (J.H.K.); (E.-J.C.)
| | - Eun-Jung Cho
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Republic of Korea; (J.H.); (S.K.L.); (J.H.K.); (E.-J.C.)
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea;
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Republic of Korea; (J.H.); (S.K.L.); (J.H.K.); (E.-J.C.)
| |
Collapse
|
29
|
De Rose DU, Bompard S, Maddaloni C, Bersani I, Martini L, Santisi A, Longo D, Ronchetti MP, Dotta A, Auriti C. Neonatal herpes simplex virus infection: From the maternal infection to the child outcome. J Med Virol 2023; 95:e29024. [PMID: 37592873 DOI: 10.1002/jmv.29024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
This review examines the recent literature on the management of herpes simplex virus (HSV) infections in neonates. We summarized the three clinical categories of maternal HSV infection during pregnancy (primary first episode, nonprimary first episode, or recurrent episode) and the mechanisms of fetal damage. Considering when the transmission of the infection from the mother to the fetus/newborn occurs, three types of neonatal infection can be distinguished: intrauterine infection (5% of cases), postnatal infection (10% of cases), and perinatal infections (85% of cases). Neonatal presentation could range from a limited disease with skin, eye, and mouth disease to central nervous system disease or disseminated disease: the treatment with acyclovir should be tailored according to symptoms and signs of infection, and virological tests. These children need a multidisciplinary follow-up, to timely intercept any deviation from normal neurodevelopmental milestones. Prevention strategies remain a challenge, in the absence of an available vaccine against HSV.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, "Tor Vergata" University of Rome, Rome, Italy
| | - Sarah Bompard
- Neurorehabilitation Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Chiara Maddaloni
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Iliana Bersani
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Ludovica Martini
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | | | - Andrea Dotta
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, Rome, Italy
- Saint Camillus International University, Rome, Italy
| |
Collapse
|
30
|
Malahe SRK, van Kampen JJA, Manintveld OC, Hoek RAS, den Hoed CM, Baan CC, Kho MML, Verjans GMGM. Current Perspectives on the Management of Herpesvirus Infections in Solid Organ Transplant Recipients. Viruses 2023; 15:1595. [PMID: 37515280 PMCID: PMC10383436 DOI: 10.3390/v15071595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Solid organ transplant recipients (SOTRs) are at high risk of human herpesvirus (HHV)-related morbidity and mortality due to the use of immunosuppressive therapy. We aim to increase awareness and understanding of HHV disease burden in SOTRs by providing an overview of current prevention and management strategies as described in the literature and guidelines. We discuss challenges in both prevention and treatment as well as future perspectives.
Collapse
Affiliation(s)
- S Reshwan K Malahe
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Transplant Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jeroen J A van Kampen
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Olivier C Manintveld
- Erasmus MC Transplant Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rogier A S Hoek
- Erasmus MC Transplant Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Caroline M den Hoed
- Erasmus MC Transplant Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Transplant Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marcia M L Kho
- Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Erasmus MC Transplant Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- HerpeslabNL, Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
31
|
Das Mahapatra A, Patra C, Sepay N, Sinha C, Chattopadhyay D. Anti-HSV nucleoside and non-nucleoside analogues: spectroscopic characterisation of naphthyl and coumarinyl amides and their mode and mechanism of antiviral action. 3 Biotech 2023; 13:245. [PMID: 37361241 PMCID: PMC10284772 DOI: 10.1007/s13205-023-03658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023] Open
Abstract
Nucleoside analogues acyclovir, valaciclovir, and famciclovir are the preferred drugs against human Herpes Simplex Viruses (HSVs). However, the viruses rapidly develop resistance against these analogues which demand safer, more efficient, and nontoxic antiviral agents. We have synthesized two non-nucleoside amide analogues, 2-Oxo-2H-chromene-3-carboxylic acid [2-(pyridin-2-yl methoxy)-phenyl]-amide (HL1) and 2-hydroxy-1-naphthaldehyde-(4-pyridine carboxylic) hydrazone (HL2). The compounds were characterized by different physiochemical methods including elementary analysis, FT-IR, Mass spectra, 1H-NMR; and evaluated for their antiviral efficacy against HSV-1F by Plaque reduction assay. The 50% cytotoxicity (CC50), determined by MTT test, revealed that HL1 (270.4 μg/ml) and HL2 (362.6 μg/ml) are safer, while their antiviral activity (EC50) against HSV-1F was 37.20 μg/ml and 63.4 μg/ml against HL1 and HL2 respectively, compared to the standard antiviral drug Acyclovir (CC50 128.8 ± 3.4; EC50 2.8 ± 0.1). The Selectivity Index (SI) of these two compounds are also promising (4.3 for HL1 and 9.7 for HL2), compared to Acyclovir (49.3). Further study showed that these amide derivatives block the early stage of the HSV-1F life cycle. Additionally, both these amides make the virus inactive, and reduce the number of plaques, when infected Vero cells were exposed to HL1 and HL2 for a short period of time. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03658-0.
Collapse
Affiliation(s)
- Ananya Das Mahapatra
- ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, 700010 India
- Department of Biotechnology, Brainware University, Kolkata, 7000125 India
| | - Chiranjit Patra
- ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, 700010 India
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University, Kolkata, 700032 India
| | | | - Debprasad Chattopadhyay
- ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, 700010 India
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010 India
- School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata, 700102 India
| |
Collapse
|
32
|
Faruq O, Sarkar ER, Sikder S. A Rare Incidence of Sweating Sickness-Like Symptoms in a Crossbred Holstein Friesian Cow in Chattogram, Bangladesh. Case Rep Vet Med 2023; 2023:6470133. [PMID: 37324955 PMCID: PMC10264709 DOI: 10.1155/2023/6470133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
In this report, an incidence of sweating sickness-like symptoms in a crossbred Holstein Friesian cow was diagnosed. The cow was suffering from vaporization of the skin, dehydration, wet hair coat, and matting of hair due to excessive sweating. There were several ticks, flies, and mosquitoes in tail switch and other parts of the body. Blood and urine parameters were tested. We treated the patient successfully with ivermectin as ectoparasite control, ceftiofur sodium antibiotic to treat bacterial infections, ketoprofen as analgesics and antipyretics, chlorpheniramine maleate as H2-blocker, and trichlorfon and povidone-iodine skin spray to prevent fly invasion and prevent opportunistic bacterial infection, respectively. Acyclovir and oil of turpentine were suggested to be sprayed on the floor and wall of the shed for viral and ectoparasitic control. Our treatment regime successfully recovered the cow with no recurrence.
Collapse
Affiliation(s)
- Omar Faruq
- Department of Medicine & Surgery, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh 4225
| | - Eti R. Sarkar
- Department of Biochemistry and Biotechnology, Faculty of Basic Medical and Pharmaceutical Sciences, University of Science and Technology Chittagong, Chattogram 4225, Bangladesh
| | - Suchandan Sikder
- Department of Medicine & Surgery, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh 4225
| |
Collapse
|
33
|
Balestrieri M, Carnovale-Scalzo C, Garbuglia AR, Chiantore MV, Accardi L, Di Bonito P. Conventional therapy for genital herpesvirus and remission of HPV-related lesions: a case series. Infect Agent Cancer 2023; 18:36. [PMID: 37269015 DOI: 10.1186/s13027-023-00511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
This report covers the case of 7 women affected by pathologies related to genital Herpesvirus and Papillomavirus. They were referred to the gynaecology outpatient clinic for colposcopic examination, and received pharmacological antiviral treatment. The patients presented clinical signs of genital Herpesvirus infections in the cervix and vulva. Cervical lesions and condylomatosis, which are characteristic of Papillomavirus infections were also detected, and patients underwent cervical cancer screening. Patients received oral and topical treatment with Acyclovir or oral treatment with Valacyclovir. During weekly or biweekly gynaecological follow-up visits, patients showed different times of remission of genital Herpesvirus. During the antiviral treatments, the vulvar and cervical Papillomavirus lesions also showed complete resolution with restitutio ad integrum of the tissues, and no recurrence at follow-up visits. Herpesvirus and Papillomavirus infections are often associated in genital infections and, as sexual transmitted infections, share the same risk factors. In the cases presented, the observed remission of HPV-related pathologies during Acyclovir and Valaciclovir treatments may suggest that antivirals are also effective in the treatment of HPV lesions. The cases described could pave the way for further investigations and clinical studies.
Collapse
Affiliation(s)
- Maria Balestrieri
- Gynaecology and Diagnostic Colposcopy Clinic, Via Enea, 23, 00181, Rome, Italy
| | - Caterina Carnovale-Scalzo
- Histopathology Laboratory, Ospedale San Carlo di Nancy, GVM Care and Research, Via Aurelia 265, 00165, Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, EVOR Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Luisa Accardi
- Department of Infectious Diseases, EVOR Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paola Di Bonito
- Department of Infectious Diseases, EVOR Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
34
|
Jurak I, Cokarić Brdovčak M, Djaković L, Bertović I, Knežević K, Lončarić M, Jurak Begonja A, Malatesti N. Photodynamic Inhibition of Herpes Simplex Virus 1 Infection by Tricationic Amphiphilic Porphyrin with a Long Alkyl Chain. Pharmaceutics 2023; 15:pharmaceutics15030956. [PMID: 36986817 PMCID: PMC10058617 DOI: 10.3390/pharmaceutics15030956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Photodynamic therapy (PDT) is broadly used to treat different tumors, and it is a rapidly developing approach to inactivating or inhibiting the replication of fungi, bacteria, and viruses. Herpes simplex virus 1 (HSV-1) is an important human pathogen and a frequently used model to study the effects of PDT on enveloped viruses. Although many photosensitizers (PSs) have been tested for their antiviral properties, analyses are usually limited to assessing the reduction in viral yield, and thus the molecular mechanisms of photodynamic inactivation (PDI) remain poorly understood. In this study, we investigated the antiviral properties of TMPyP3-C17H35, a tricationic amphiphilic porphyrin-based PS with a long alkyl chain. We show that light-activated TMPyP3-C17H35 can efficiently block virus replication at certain nM concentrations without exerting obvious cytotoxicity. Moreover, we show that the levels of viral proteins (immediate-early, early, and late genes) were greatly reduced in cells treated with subtoxic concentrations of TMPyP3-C17H35, resulting in markedly decreased viral replication. Interestingly, we observed a strong inhibitory effect of TMPyP3-C17H35 on the virus yield only when cells were treated before or shortly after infection. In addition to the antiviral activity of the internalized compound, we show that the compound dramatically reduces the infectivity of free virus in the supernatant. Overall, our results demonstrate that activated TMPyP3-C17H35 effectively inhibits HSV-1 replication and that it can be further developed as a potential novel treatment and used as a model to study photodynamic antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Igor Jurak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Correspondence:
| | - Maja Cokarić Brdovčak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Lara Djaković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Ivana Bertović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Klaudia Knežević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Martin Lončarić
- Photonics and Quantum Optics Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| |
Collapse
|
35
|
To EE. Cell and Tissue Specific Metabolism of Nucleoside and Nucleotide Drugs: Case Studies and Implications for Precision Medicine. Drug Metab Dispos 2023; 51:360-368. [PMID: 36446610 DOI: 10.1124/dmd.122.000856] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Many clinically used antiviral drugs are nucleoside or nucleotide analog drugs, which have a unique mechanism of action that requires intracellular phosphorylation. This dependence on intracellular activation presents novel challenges for the discovery and development of nucleoside/nucleotide analog drugs. Contrary to many small molecule drug development programs that rely on plasma pharmacokinetics and systemic exposures, the precise mechanisms that result in efficacious intracellular nucleoside triphosphate concentrations must be understood in the process of nucleoside/nucleotide drug development. The importance is highlighted here, using the following as case studies: the herpes treatment acyclovir, the cytomegalovirus therapy ganciclovir, and human immunodeficiency virus (HIV) treatments based on tenofovir, which are also in use for HIV prophylaxis. For each drug, the specificity of metabolism that results in its activation in different cells or tissues is discussed, and the implications explored. Acyclovir's dependence on a viral enzyme for activation provides selective pressure for resistance mutations. Ganciclovir is also dependent on a viral enzyme for activation, and suicide gene therapy capitalizes on that for a novel oncology treatment. The tissue of most relevance for tenofovir activation depends on its use as treatment or as prophylaxis, and the pharmacogenomics and drug-drug interactions in those tissues must be considered. Finally, differential metabolism of different tenofovir prodrugs and its effects on toxicity risk are explored. Taken together, these examples highlight the importance of understanding tissue specific metabolism for optimal use of nucleoside/nucleotide drugs in the clinic. SIGNIFICANCE STATEMENT: Nucleoside and nucleotide analogue drugs are cornerstones in current antiviral therapy and prevention efforts that require intracellular phosphorylation for activity. Understanding their cell and tissue specific metabolism enables their rational, precision use for maximum efficacy.
Collapse
Affiliation(s)
- Elaine E To
- Gilead Sciences, Inc., Foster City, California, USA
| |
Collapse
|
36
|
Abeywickrema M, Kelly D, Kadambari S. Management of neonatal central nervous system viral infections: Knowledge gaps and research priorities. Rev Med Virol 2023; 33:e2421. [PMID: 36639694 DOI: 10.1002/rmv.2421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
Congenital CMV, enteroviruses, human parechovirus and herpes simplex virus are all common causes of severe central nervous system (CNS) infection in neonates. The introduction of screening (i.e. newborn hearing screening programme), integration of molecular syndromic testing (i.e. multiplex polymerase chain reaction assays) and increase in sexually transmitted infections (i.e. anogenital herpes) have contributed to increases in each of these infections over the last decade. However, therapeutic options are highly limited in part due to the lack of epidemiological data informing trials. This review will describe our current understanding of the clinical burden and epidemiology of these severe neonatal CNS infections, outline the novel antiviral and vaccines in the pipeline and suggest future research studies which could help develop new therapeutics.
Collapse
Affiliation(s)
- Movin Abeywickrema
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dominic Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Seilesh Kadambari
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,University College London, Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
37
|
Combination Therapy for the Treatment of Shingles with an Immunostimulatory Vaccine Virus and Acyclovir. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Practically the entire global population is infected by herpesviruses that establish lifelong latency and can be reactivated. Alpha-herpesviruses, herpes simplex viruses 1 and 2 (HSV-1/HSV-2) and varicella zoster virus (VZV), establish latency in sensory neurons and then reactivate to infect epithelial cells in the mucosa or skin, resulting in a vesicular rash. Licensed antivirals inhibit virus replication, but do not affect latency. On reactivation, VZV causes herpes zoster, also known as shingles. The 76-year-old first author of this paper published an autobiography of his own severe herpes zoster ophthalmicus (HZO) infection with orbital edema, which is considered an emergency condition. Acyclovir (ACV) treatment was complemented with an immunostimulatory viral therapy, which resolved most symptoms within a few days. The orally administered live-attenuated infectious bursal disease vaccine virus (IBDV) delivers its double-stranded RNA (dsRNA) cargo to host cells and activates the natural antiviral interferon (IFN) gene defense system from within the host cells. IBDV has already been demonstrated to be safe and effective against five different families of viruses, hepatitis A virus (HAV), hepatitis B and C virus (HBV/HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and varicella zoster virus (VZV). Here we propose a short phase I/II trial in elderly shingles patients who will be assigned to receive either ACV monotherapy or ACV combined with R903/78, an attenuated immunostimulatory IBDV strain. The primary endpoints will be safety, but the efficacy of the combination therapy against the ACV monotherapy also will be assessed.
Collapse
|
38
|
Huntjens DW, Dijkstra JA, Verwiel LN, Slijkhuis M, Elbers P, Welkers MRA, Veldkamp AI, Kuijvenhoven MA, de Leeuw DC, Abdullah-Koolmees H, Kuipers MT, Bartelink IH. Optimizing Antiviral Dosing for HSV and CMV Treatment in Immunocompromised Patients. Pharmaceutics 2023; 15:pharmaceutics15010163. [PMID: 36678792 PMCID: PMC9863155 DOI: 10.3390/pharmaceutics15010163] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) and cytomegalovirus (CMV) are DNA viruses that are common among humans. Severely immunocompromised patients are at increased risk of developing HSV or CMV disease due to a weakened immune system. Antiviral therapy can be challenging because these drugs have a narrow therapeutic window and show significant pharmacokinetic variability. Above that, immunocompromised patients have various comorbidities like impaired renal function and are exposed to polypharmacy. This scoping review discusses the current pharmacokinetic (PK) and pharmacodynamic (PD) knowledge of antiviral drugs for HSV and CMV treatment in immunocompromised patients. HSV and CMV treatment guidelines are discussed, and multiple treatment interventions are proposed: early detection of drug resistance; optimization of dose to target concentration by therapeutic drug monitoring (TDM) of nucleoside analogs; the introduction of new antiviral drugs; alternation between compounds with different toxicity profiles; and combinations of synergistic antiviral drugs. This research will also serve as guidance for future research, which should focus on prospective evaluation of the benefit of each of these interventions in randomized controlled trials.
Collapse
Affiliation(s)
- Daan W. Huntjens
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jacob A. Dijkstra
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-444-3524
| | - Lisanne N. Verwiel
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Mirjam Slijkhuis
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Paul Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence (LCCI), Amsterdam Medical Data Science (AMDS), Amsterdam Cardiovascular Science (ACS), Amsterdam Institute for Infection and Immunity (AII), Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Matthijs R. A. Welkers
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Agnes I. Veldkamp
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marianne A. Kuijvenhoven
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - David C. de Leeuw
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Heshu Abdullah-Koolmees
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Postbus 85500, 3508 GA Utrecht, The Netherlands
- Clinical Pharmacy, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Maria T. Kuipers
- Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
39
|
Kim SH. Current scenario and future applicability of antivirals against herpes zoster. Korean J Pain 2023; 36:4-10. [PMID: 36573010 PMCID: PMC9812693 DOI: 10.3344/kjp.22391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Herpes zoster (HZ) is a common disease in the aging population and immunocompromised individuals, with a lifetime risk of 20%-30% that increases with age. HZ is caused by reactivation of the varicella-zoster virus (VZV), which remains latent in the spinal dorsal root ganglia and cranial sensory ganglia after resolution of the primary VZV infection. The main focus of HZ management is rapid recovery from VZV infection as well as the reduction and prevention of zoster-associated pain (ZAP) and postherpetic neuralgia (PHN). The use of antivirals against VZV is essential in the treatment of HZ. However, limited antivirals are only licensed clinically for the treatment of HZ, including acyclovir, valacyclovir, famciclovir, brivudine, and amenamevir. Fortunately, some new antivirals against different types of Herpesviridae have been investigated and suggested as novel drugs against VZV. Therefore, this review focuses on discussing the difference in efficacy and safety in the currently licensed antivirals for the treatment of HZ, the applicability of future novel antivirals against VZV, and the preventive or therapeutic effects of these antivirals on ZAP or PHN.
Collapse
Affiliation(s)
- Sang Hun Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju, Korea,Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju, Korea,Correspondence: Sang Hun Kim Department of Anesthesiology and Pain Medicine, Chosun University Hospital, 365 Pilmun-daero, Dong-gu, Gwangju 61453, Korea, Tel: +82-62-220-3223, Fax: +82-62-223-2333, E-mail:
| |
Collapse
|
40
|
Antiherpetic Activity of Carrageenan Complex with Echinochrome A and Its Liposomal Form. Int J Mol Sci 2022; 23:ijms232415754. [PMID: 36555404 PMCID: PMC9779482 DOI: 10.3390/ijms232415754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus (HSV) infections, the incidence of which is still widespread throughout the world, are actualizing the search and development of new, more effective antiherpetic drugs. The development of multifunctional drug delivery systems, including liposome-based ones, has become a relevant and attractive concept in nanotechnology. The ability of complexes of κ- and Σ-carrageenans (CRGs)-sulfated polysaccharides of red algae, with echinochrome A (Ech), as well as the liposomal form of the Σ-CRG/Ech complex-to inhibit different stages of HSV-1 infection in Vero cells was studied. By quantum chemical calculations, it was shown that CRG forms stable complexes with Ech. We have shown that complexes of κ-CRG/Ech and Σ-CRG/Ech exhibit highest virucidal activity with a selectivity index (SI) of 270 and 350, respectively, and inhibition of virus-cell interaction (SI of 83 and 32, respectively). The liposomal form of the Σ-CRG/Ech complex after virus adsorption and penetration to cells effectively reduced the HSV-1 plaque formation. The virus-inhibiting activity of the liposomal form of the Σ-CRG/Ech complex was three times higher than that of the Σ-CRG/Ech complex itself. Obtaining CRGs/Ech complexes and their liposomal forms can become the basis of a successful strategy for the development of promising antiherpetic drugs.
Collapse
|
41
|
Resistant herpes simplex virus infections - who, when, and what's new? Curr Opin Infect Dis 2022; 35:530-535. [PMID: 36206151 DOI: 10.1097/qco.0000000000000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW This review summarizes the literature on acyclovir resistant herpes infections and the most recent data pertinent to diagnosis and treatment in the immunocompromised patient population. RECENT FINDINGS Although fairly rare, acyclovir resistant herpes infections can be challenging to diagnose. Clinicians should be aware of this entity when facing refractory herpes infections. With updated diagnostics, the diagnosis is usually made through viral culture and sequencing. Therapeutic choices depend on the extent of disease. Topical therapy may be appropriate for mucocutaneous disease. Intravenous antiviral therapies such as foscarnet and cidofovir may be necessary for disseminated, ophthalmologic, central nervous system, or visceral disease. Experimental therapies such as pritelivir are in clinical trials. SUMMARY Immunosuppressed patients are at risk for developing acyclovir-resistant herpes, which can be challenging to diagnose and treat, although emerging therapeutic options look promising.
Collapse
|
42
|
Karpov DS, Demidova NA, Kulagin KA, Shuvalova AI, Kovalev MA, Simonov RA, Karpov VL, Snezhkina AV, Kudryavtseva AV, Klimova RR, Kushch AA. Complete and Prolonged Inhibition of Herpes Simplex Virus Type 1 Infection In Vitro by CRISPR/Cas9 and CRISPR/CasX Systems. Int J Mol Sci 2022; 23:ijms232314847. [PMID: 36499174 PMCID: PMC9738314 DOI: 10.3390/ijms232314847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Almost all people become infected with herpes viruses, including herpes simplex virus type 1 (HSV-1), during their lifetime. Typically, these viruses persist in a latent form that is resistant to all available antiviral medications. Under certain conditions, such as immunosuppression, the latent forms reactivate and cause disease. Moreover, strains of herpesviruses that are drug-resistant have rapidly emerged. Therefore, it is important to develop alternative methods capable of eradicating herpesvirus infections. One promising direction is the development of CRISPR/Cas systems for the therapy of herpesvirus infections. We aimed to design a CRISPR/Cas system for relatively effective long-term and safe control of HSV-1 infection. Here, we show that plasmids encoding the CRISPR/Cas9 system from Streptococcus pyogenes with a single sgRNA targeting the UL30 gene can completely suppress HSV-1 infection of the Vero cell line within 6 days and provide substantial protection within 9 days. For the first time, we show that CRISPR/CasX from Deltaproteobacteria with a single guide RNA against UL30 almost completely suppresses HSV-1 infection of the Vero cell line for 3 days and provides substantial protection for 6 days. We also found that the Cas9 protein without sgRNAs attenuates HSV-1 infection. Our results show that the developed CRISPR/Cas systems are promising therapeutic approaches to control HSV-1 infections.
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(499)-135-98-01
| | - Natalia A. Demidova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia
| | - Kirill A. Kulagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasija I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Ruslan A. Simonov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasiya V. Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anna V. Kudryavtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Regina R. Klimova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia
| | - Alla A. Kushch
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia
| |
Collapse
|
43
|
Hassan STS, Šudomová M, Mazurakova A, Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int J Mol Sci 2022; 23:ijms232213891. [PMID: 36430369 PMCID: PMC9693824 DOI: 10.3390/ijms232213891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.
Collapse
Affiliation(s)
- Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-774-630-604
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
44
|
Zannella C, Chianese A, De Bernardo M, Folliero V, Petrillo F, De Filippis A, Boccia G, Franci G, Rosa N, Galdiero M. Ophthalmic Solutions with a Broad Antiviral Action: Evaluation of Their Potential against Ocular Herpetic Infections. Microorganisms 2022; 10:microorganisms10091728. [PMID: 36144330 PMCID: PMC9506079 DOI: 10.3390/microorganisms10091728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
HSV-1 can be associated with severe and recurrent eye infections characterized by a strong inflammatory response that leads to blepharoconjunctivitis, epithelial and stromal keratitis, and retinal necrosis. The incidence of HSV-1 keratitis is 1.5 million every year worldwide, including more than 40,000 new cases exhibiting serious visual failures. Generally, the therapy uses antiviral drugs to promote healing; however, there are currently no compounds that are able to completely eradicate the virus. In addition, the phenomenon of resistance is rapidly spreading among HSV-1 strains, creating mutants developing resistance to the common antiviral drugs; therefore, deep research on this issue is warranted. The efficacy of different ophthalmic solutions already on the market was evaluated for reducing HSV-1 infection. Different plaque assays were set up on epithelial cells, revealing that two ophthalmic solutions were able to inhibit viral replication in the early stages of infection. The data were further confirmed by molecular tests analyzing the expression levels of the principal genes involved in HSV-1 infection, and a strong reduction was observed after only 1 min of eye-drop treatment. Collectively, these results suggested the use of ophthalmic solutions as potential antiviral options for the treatment of ocular herpetic infection.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maddalena De Bernardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Veronica Folliero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesco Petrillo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanni Boccia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Nicola Rosa
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Correspondence: (N.R.); (M.G.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (N.R.); (M.G.)
| |
Collapse
|