1
|
Ninatti G, Pini C, Lazar A, Gelardi F. The wings of progress: technological and radiopharmaceutical innovations in nuclear medicine. Eur J Nucl Med Mol Imaging 2024; 51:3815-3821. [PMID: 39264424 DOI: 10.1007/s00259-024-06913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Gaia Ninatti
- Nuclear Medicine Department, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristiano Pini
- Nuclear Medicine Department, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Alexandra Lazar
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Fabrizia Gelardi
- Nuclear Medicine Department, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, 20132, Italy
- Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024; 101:102481. [PMID: 39236855 DOI: 10.1016/j.arr.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.
Collapse
Affiliation(s)
- Pushpa Tryphena Kamatham
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rashi Shukla
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK.
| |
Collapse
|
3
|
Fernandes DA. Multifunctional gold nanoparticles for cancer theranostics. 3 Biotech 2024; 14:267. [PMID: 39416669 PMCID: PMC11473483 DOI: 10.1007/s13205-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The diagnosis and treatment of cancer can often be challenging requiring more attractive options. Some types of cancers are more aggressive than others and symptoms for many cancers are subtle, especially in the early stages. Nanotechnology provides high sensitivity, specificity and multimodal capability for cancer detection, treatment and monitoring. In particular, metal nanoparticles (NPs) such as gold nanoparticles (AuNPs) are attractive nanosystems for researchers interested in bioimaging and therapy. The size, shape and surface of AuNPs can be modified for improving targeting and accumulation in cancer cells, for example through introduction of ligands and surface charge. The interactions of AuNPs with electromagnetic radiation (e.g., visible-near-infrared, X-rays) can be used for photothermal therapy and radiation therapy, through heat generated from light absorption and emission of Auger electrons, respectively. The subsequent expansion and high X-ray attenuation from AuNPs can be used for enhancing contrast for tumor detection (e.g., using photoacoustic, computed tomography imaging). Multi-functionality can be further extended through covalent/non-covalent functionalization, for loading additional imaging/therapeutic molecules for combination therapy and multimodal imaging. In order to cover the important aspects for designing and using AuNPs for cancer theranostics, this review focuses on the synthesis, functionalization and characterization methods that are important for AuNPs, and presents their unique properties and different applications in cancer theranostics.
Collapse
|
4
|
McNeil BL, Ramogida CF. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Chem Soc Rev 2024; 53:10409-10449. [PMID: 39360601 DOI: 10.1039/d4cs00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
5
|
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkula TH, Osayawe OJK. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv 2024; 14:33681-33740. [PMID: 39450067 PMCID: PMC11498270 DOI: 10.1039/d4ra05732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs in vivo, which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.
Collapse
Affiliation(s)
- Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Awoyemi Taiwo Christopher
- Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria
| | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | - Juliet C Igboanugo
- Department of Health, Human Performance, and Recreation 155 Stadium Drive Arkansas 72701 USA
| | - Uzochukwu Udogu
- Department of Chemistry, Federal University of Technology Owerri Nigeria
| | | | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | |
Collapse
|
6
|
İlem-Özdemir D, Santos-Oliveira R. Can radiopharmaceuticals be delivered by quantum dots? Expert Opin Drug Deliv 2024:1-3. [PMID: 39420518 DOI: 10.1080/17425247.2024.2419446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Derya İlem-Özdemir
- Faculty of Pharmacy, Department of Radiopharmacy, Ege University, Bornova, Izmir, Turkey
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Synthesis of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Xie N. Application of Protein Expression in Mycoplasma Study. SCIENTIFICA 2024; 2024:4142663. [PMID: 39435316 PMCID: PMC11493480 DOI: 10.1155/2024/4142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024]
Abstract
Mycoplasma is a kind of pathogenic microorganism, and its survival and replication need to be parasitic inside the host cell. Therefore, studies on the metabolic pathway, protein composition, and biological characteristics of Mycoplasma require the use of protein expression techniques. In this paper, the application of protein expression in Mycoplasma research was reviewed, including commonly used protein expression systems, optimization strategy of protein expression, protein omics analysis, and protein function research, and the future development direction has been prospected.
Collapse
Affiliation(s)
- Nian Xie
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3168, VIC, Australia
| |
Collapse
|
8
|
Li Z, Jiang Y, Ruan Q, Yin G, Han P, Duan X, Zhang J. Synthesis and Evaluation of 99mTc-Labeled DPro-Gly-Containing Tracers Targeting PSMA. Mol Pharm 2024; 21:5305-5314. [PMID: 39298677 DOI: 10.1021/acs.molpharmaceut.4c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The specific expression of prostate-specific membrane antigen (PSMA) makes it an ideal target for the diagnosis and treatment of prostate cancer. Currently, many 99mTc-labeled PSMA-targeted tracers have been developed. However, the high renal uptake of these 99mTc-labeled tracers is a common problem that limits their clinical application. In this work, the ligand (EUKPG) using DPro-Gly as the linker was synthesized and three 99mTc-labeled complexes ([99mTc]Tc-EUKPG-EDDA, [99mTc]Tc-EUKPG-TPPTS, [99mTc]Tc-EUKPG-TPPMS) with different coligands were prepared and evaluated. Among them, [99mTc]Tc-EUKPG-EDDA showed the most favorable pharmacokinetic properties, with significantly reduced uptake in the kidney (14.04 ± 0.23% ID/g), rapid clearance and low uptake in nontarget organs, thus making it to exhibit high tumor-to-background ratios (tumor/blood: 7.47, tumor/muscle: 12.65). Affinity studies have shown that it has high specificity for PSMA both in vivo and in vitro. Therefore, [99mTc]Tc-EUKPG-EDDA has great potential as a promising molecular tracer to target PSMA for tumor imaging.
Collapse
Affiliation(s)
- Zuojie Li
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing Normal University, Beijing 100875, P. R. China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Physics and Astronomy, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing Normal University, Beijing 100875, P. R. China
| | - Peiwen Han
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, College of Chemistry, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
9
|
Richter A, Stukenborg-Colsman C, Plaass C. SPECT/CT of Total Ankle Arthroplasty. Clin Podiatr Med Surg 2024; 41:649-663. [PMID: 39237177 DOI: 10.1016/j.cpm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Use of SPECT/CT (Single Photon Emission Computed Tomography/Computed Tomography) is increasing providing additional information in patients with inconclusive clinical examination and unremarkable imaging findings presenting with chronic pain after total ankle arthroplasty. To differentiate the cause of pain after total ankle arthroplasty can be challenging. SPECT/CT combines structural and metabolic imaging as a hybrid tool leading to higher specificity and overall diagnostic accuracy presumably in cases of gutter impingement, prosthetic loosening, and osteoarthritis of adjacent joints. Moreover, SPECT/CT can complement diagnostic work up in periprosthetic joint infections. Basal tracer enhancement has to be considered for the interpretation of imaging findings.
Collapse
Affiliation(s)
- Alena Richter
- Department for Foot and Ankle surgery, DIAKOVERE Annastift, Orthopedic Clinic of the Hannover Medical School, Anna-von-Borries Strasse 1-7, Hannover 30625, Germany
| | - Christina Stukenborg-Colsman
- Department for Foot and Ankle surgery, DIAKOVERE Annastift, Orthopedic Clinic of the Hannover Medical School, Anna-von-Borries Strasse 1-7, Hannover 30625, Germany
| | - Christian Plaass
- Department for Foot and Ankle surgery, DIAKOVERE Annastift, Orthopedic Clinic of the Hannover Medical School, Anna-von-Borries Strasse 1-7, Hannover 30625, Germany.
| |
Collapse
|
10
|
Saleem SM, Jabbar T, Imran MB, Noureen A, Sherazi TA, Afzal MS, Rab Nawaz HZ, Ramadan MF, Alkahtani AM, Alsuwat MA, Almubarak HA, Momenah MA, Naqvi SAR. Radiosynthesis and Preclinical Evaluation of [ 99mTc]Tc-Tigecycline Radiopharmaceutical to Diagnose Bacterial Infections. Pharmaceuticals (Basel) 2024; 17:1283. [PMID: 39458924 PMCID: PMC11510260 DOI: 10.3390/ph17101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES As a primary source of mortality and disability, bacterial infections continue to develop a severe threat to humanity. Nuclear medicine imaging (NMI) is known for its promising potential to diagnose deep-seated bacterial infections. This work aims to develop a new technetium-99m (99mTc) labeled tigecycline radiopharmaceutical as an infection imaging agent. METHODS Reduced 99mTc was used to make a coordinate complex with tigecycline at pH 7.7-7.9 at room temperature. Instantaneous thin-layer chromatography impregnated with silica gel (ITLC-SG) and ray detector equipped high-performance liquid chromatography (ray-HPLC) was performed to access the radiolabeling yield and radiochemical purity (RCP). RESULTS More than 91% labeling efficiency was achieved after 25 min of mild shaking of the reaction mixture. The radiolabeled complex was found intact up to 4 h in saline. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) infection-induced rats were used to record the biodistribution of the radiopharmaceutical and its target specificity; 2 h' post-injection biodistribution revealed a 2.39 ± 0.29 target/non-target (T/NT) ratio in the E. coli infection-induced animal model, while a 2.9 ± 0.31 T/NT value was recorded in the S. aureus bacterial infection-induced animal model. [99mTc]Tc-tigecycline scintigraphy was performed in healthy rabbits using a single photon emission computed tomography (SPECT) camera. Scintigrams showed normal kidney perfusion and excretion into the bladder. CONCLUSION In conclusion, the newly developed [99mTc]Tc-tigecycline radiopharmaceutical could be considered to diagnose broad-spectrum bacterial infections.
Collapse
Affiliation(s)
- Syeda Marab Saleem
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38040, Pakistan
| | - Tania Jabbar
- Punjab Institute of Nuclear Medicine, Faisalabad 38040, Pakistan
| | | | - Asma Noureen
- Department of Zoology, Ghazi University, Dera Ghazi Khan 03222, Pakistan
| | - Tauqir A. Sherazi
- Department of Chemistry, COMSAT University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | | | - Hafiza Zahra Rab Nawaz
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38040, Pakistan
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdullah M. Alkahtani
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Meshari A. Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hassan Ali Almubarak
- Assistant Professor Nuclear Medicine, Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha 61421, Saudi Arabia
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38040, Pakistan
| |
Collapse
|
11
|
Tang Y, Liang H, Yang X, Xue X, Zhan J. The metaverse in nuclear medicine: transformative applications, challenges, and future directions. Front Med (Lausanne) 2024; 11:1459701. [PMID: 39371341 PMCID: PMC11452868 DOI: 10.3389/fmed.2024.1459701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
The metaverse, a rapidly evolving virtual reality space, holds immense potential to revolutionize nuclear medicine by enhancing education, training, diagnostics, and therapeutics. This review explores the transformative applications of the metaverse in nuclear medicine, where immersive virtual learning environments, simulation-based training, artificial intelligence (AI)-powered decision support systems integrated into interactive three-dimensional (3D) visualizations, and personalized dosimetry using realistic patient-specific virtual models are seamlessly incorporated into the metaverse ecosystem, creating a synergistic platform for healthcare professionals and patients alike. However, the responsible and sustainable adoption of the metaverse in nuclear medicine requires a multidisciplinary approach to address challenges related to standardization, accessibility, data security, and ethical concerns. The formation of cross-disciplinary consortia, increased research and development (R&D) investment, and the strengthening of data governance and cybersecurity measures are crucial steps in ensuring the safe and effective integration of the metaverse in healthcare. As the metaverse continues to evolve, researchers, practitioners, and policymakers must collaborate and explore its potential, navigate the challenges, and shape a future where technology and medicine seamlessly integrate to enhance patient care and outcomes in nuclear medicine. Further research is needed to fully understand the implications of the metaverse in clinical practice, education, and research, as well as to develop evidence-based guidelines for its responsible implementation. By embracing responsible innovation and collaboration, the nuclear medicine community can harness the power of the metaverse to transform and improve patient care.
Collapse
Affiliation(s)
| | | | | | - Xiangming Xue
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, China
| | - Jingming Zhan
- Division of Radiology and Environmental Medicine, China Institute for Radiation Protection, Taiyuan, China
| |
Collapse
|
12
|
Tesse G, Tolomeo A, De Filippis B, Giampietro L. Radiolabeled Probes from Derivatives of Natural Compounds Used in Nuclear Medicine. Molecules 2024; 29:4260. [PMID: 39275108 PMCID: PMC11396893 DOI: 10.3390/molecules29174260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024] Open
Abstract
Natural compounds are important precursors for the synthesis of new drugs. The development of novel molecules that are useful for various diseases is the main goal of researchers, especially for the diagnosis and treatment of many diseases. Some pathologies need to be treated with radiopharmaceuticals, and, for this reason, radiopharmaceuticals that use the radiolabeling of natural derivates molecules are arousing more and more interest. Radiopharmaceuticals can be used for both diagnostic and therapeutic purposes depending on the radionuclide. β+- and gamma-emitting radionuclides are used for diagnostic use for PET or SPECT imaging techniques, while α- and β--emitting radionuclides are used for in metabolic radiotherapy. Based on these assumptions, the purpose of this review is to highlight the studies carried out in the last ten years, to search for potentially useful radiopharmaceuticals for nuclear medicine that use molecules of natural origin as lead structures. In this context, the main radiolabeled compounds containing natural products as scaffolds are analyzed, in particular curcumin, stilbene, chalcone, and benzofuran. Studies on structural and chemical modifications are emphasized in order to obtain a collection of potential radiopharmaceuticals that exploit the biological properties of molecules of natural origin. The radionuclides used to label these compounds are 68Ga, 44Sc, 18F, 64Cu, 99mTc, and 125I for diagnostic imaging.
Collapse
Affiliation(s)
- Giuseppe Tesse
- Radiopharma Division, ITEL Telecomunicazioni s.r.l., 70037 Ruvo di Puglia, BA, Italy
| | - Anna Tolomeo
- Radiopharma Division, ITEL Telecomunicazioni s.r.l., 70037 Ruvo di Puglia, BA, Italy
| | - Barbara De Filippis
- Department of Pharmacy, Università degli Studi G. d'Annunzio, 66100 Chieti, CH, Italy
| | - Letizia Giampietro
- Department of Pharmacy, Università degli Studi G. d'Annunzio, 66100 Chieti, CH, Italy
| |
Collapse
|
13
|
Cuartero-Martínez A, García-Otero X, Codesido J, Gómez-Lado N, Mateos J, Bravo SB, Rodríguez-Fernández CA, González-Barcia M, Aguiar P, Ortega-Hortas M, Otero-Espinar FJ, Fernández-Ferreiro A. Preclinical characterization of endotoxin-induced uveitis models using OCT, PET/CT and proteomics. Int J Pharm 2024; 662:124516. [PMID: 39067549 DOI: 10.1016/j.ijpharm.2024.124516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Uveitis is a group of inflammatory ocular pathologies. Endotoxin-Induced Uveitis (EIU) model represent a well-known model induced by administration of Lipopolysaccharide (LPS). The aim is to characterize two models of EIU through two routes of administration with novel noninvasive imaging techniques. 29 rats underwent Intraocular Pressure (IOP) measurements, Optical Coherence Tomography (OCT), proteomic analysis, and Positron Emission Tomography and Computed Tomography (PET/CT). Groups included healthy controls (C), BSS administered controls (Ci), systemically induced EIU with LPS (LPSs), and intravitreally induced EIU with LPS (LPSi) for IOP, OCT, and proteomic studies. For 18F-FDG PET/CT study, animals were divided into FDG-C, FDG-LPSs and FDG-LPSi groups and scanned using a preclinical PET/CT system. LPSi animals exhibited higher IOP post-induction compared to C and LPSs groups. LPSi showed increased cellular infiltrate, fibrotic membranes, and iris inflammation. Proinflammatory proteins were more expressed in EIU models, especially LPSi. PET/CT indicated higher eye uptake in induced models compared to FDG-C. FDG-LPSi showed higher eye uptake than FDG-LPSs but systemic uptake was higher in FDG-LPSs due to generalized inflammation. OCT is valuable for anterior segment assessment in experimental models. 18F-FDG PET/CT shows promise as a noninvasive biomarker for ocular inflammatory diseases. Intravitreal induction leads to higher ocular inflammation. These findings offer insights for future inflammatory disease research and drug studies.
Collapse
Affiliation(s)
- Andrea Cuartero-Martínez
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain.
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Nuclear Medicine Service and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Jessica Codesido
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Noemí Gómez-Lado
- Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Nuclear Medicine Service and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Jesús Mateos
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 1570f Santiago de Compostela, Spain.
| | - Carmen Antía Rodríguez-Fernández
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain; Ophthalmology Department, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Miguel González-Barcia
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Pablo Aguiar
- Molecular Imaging Biomarkers and Theragnosis Lab, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Nuclear Medicine Service and Molecular Imaging Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| | - Marcos Ortega-Hortas
- VARPA Group, INIBIC. Research Center CITIC, University of A Coruña, 15071 A Coruña, Spain.
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain.
| | - Anxo Fernández-Ferreiro
- FarmaChusLab Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
14
|
Binmujlli MA. Exploring Radioiodinated Anastrozole and Epirubicin as AKT1-Targeted Radiopharmaceuticals in Breast Cancer: In Silico Analysis and Potential Therapeutic Effect with Functional Nuclear Imagining Implications. Molecules 2024; 29:4203. [PMID: 39275052 PMCID: PMC11397058 DOI: 10.3390/molecules29174203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
This study evaluates radio-iodinated anastrozole ([125I]anastrozole) and epirubicin ([125I]epirubicin) for AKT1-targeted breast cancer therapy, utilizing radiopharmaceutical therapy (RPT) for personalized treatment. Through molecular docking and dynamics simulations (200 ns), it investigates these compounds' binding affinities and mechanisms to the AKT1 enzyme, compared to the co-crystallized ligand, a known AKT1 inhibitor. Molecular docking results show that [125I]epirubicin has the highest ΔGbind (-11.84 kcal/mol), indicating a superior binding affinity compared to [125I] anastrozole (-10.68 kcal/mol) and the co-crystallized ligand (-9.53 kcal/mol). Molecular dynamics (MD) simulations confirmed a stable interaction with the AKT1 enzyme, with [125I]anastrozole and [125I]epirubicin reaching stability after approximately 68 ns with an average RMSD of around 2.2 Å, while the co-crystallized ligand stabilized at approximately 2.69 Å after 87 ns. RMSF analysis showed no significant shifts in residues or segments, with consistent patterns and differences of less than 2 Å, maintaining enzyme stability. The [125I]epirubicin complex maintained an average of four H-bonds, indicating strong and stable interactions, while [125I]anastrozole consistently formed three H-bonds. The average Rg values for both complexes were ~16.8 ± 0.1 Å, indicating no significant changes in the enzyme's compactness, thus preserving structural integrity. These analyses reveal stable binding and minimal structural perturbations, suggesting the high potential for AKT1 inhibition. MM-PBSA calculations confirm the potential of these radio-iodinated compounds as AKT1 inhibitors, with [125I]epirubicin exhibiting the most favorable binding energy (-23.57 ± 0.14 kcal/mol) compared to [125I]anastrozole (-20.03 ± 0.15 kcal/mol) and the co-crystallized ligand (-16.38 ± 0.14 kcal/mol), highlighting the significant role of electrostatic interactions in stabilizing the complex. The computational analysis shows [125I]anastrozole and [125I]epirubicin may play promising roles as AKT1 inhibitors, especially [125I]epirubicin for its high binding affinity and dynamic receptor interactions. These findings, supported by molecular docking scores and MM-PBSA binding energies, advocate for their potential superior inhibitory capability against the AKT1 enzyme. Nevertheless, it is crucial to validate these computational predictions through in vitro and in vivo studies to thoroughly evaluate the therapeutic potential and viability of these compounds for AKT1-targeted breast cancer treatment.
Collapse
Affiliation(s)
- Mazen Abdulrahman Binmujlli
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
15
|
Debs P, Ahlawat S, Fayad LM. Bone tumors: state-of-the-art imaging. Skeletal Radiol 2024; 53:1783-1798. [PMID: 38409548 DOI: 10.1007/s00256-024-04621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
Imaging plays a central role in the management of patients with bone tumors. A number of imaging modalities are available, with different techniques having unique applications that render their use advantageous for various clinical purposes. Coupled with detailed clinical assessment, radiological imaging can assist clinicians in reaching a proper diagnosis, determining appropriate management, evaluating response to treatment, and monitoring for tumor recurrence. Although radiography is still the initial imaging test of choice for a patient presenting with a suspected bone tumor, technological innovations in the last decades have advanced the role of other imaging modalities for assessing bone tumors, including advances in computed tomography, magnetic resonance imaging, scintigraphy, and hybrid imaging techniques that combine two existing modalities, providing clinicians with diverse tools for bone tumor imaging applications. Determining the most suitable modality to use for a particular application requires familiarity with the modality in question, its advancements, and its limitations. This review highlights the various imaging techniques currently available and emphasizes the latest developments in imaging, offering a framework that can help guide the imaging of patients with bone tumors.
Collapse
Affiliation(s)
- Patrick Debs
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Laura M Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
- Division of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 North Caroline Street, JHOC 3014, Baltimore, MD, 21287, USA.
| |
Collapse
|
16
|
Xu W, Langhans SA, Johnson DK, Stauff E, Kandula VVR, Kecskemethy HH, Averill LW, Yue X. Radiotracers for Molecular Imaging of Angiotensin-Converting Enzyme 2. Int J Mol Sci 2024; 25:9419. [PMID: 39273366 PMCID: PMC11395405 DOI: 10.3390/ijms25179419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzymes (ACE) are well-known for their roles in both blood pressure regulation via the renin-angiotensin system as well as functions in fertility, immunity, hematopoiesis, and many others. The two main isoforms of ACE include ACE and ACE-2 (ACE2). Both isoforms have similar structures and mediate numerous effects on the cardiovascular system. Most remarkably, ACE2 serves as an entry receptor for SARS-CoV-2. Understanding the interaction between the virus and ACE2 is vital to combating the disease and preventing a similar pandemic in the future. Noninvasive imaging techniques such as positron emission tomography and single photon emission computed tomography could noninvasively and quantitatively assess in vivo ACE2 expression levels. ACE2-targeted imaging can be used as a valuable tool to better understand the mechanism of the infection process and the potential roles of ACE2 in homeostasis and related diseases. Together, this information can aid in the identification of potential therapeutic drugs for infectious diseases, cancer, and many ACE2-related diseases. The present review summarized the state-of-the-art radiotracers for ACE2 imaging, including their chemical design, pharmacological properties, radiochemistry, as well as preclinical and human molecular imaging findings. We also discussed the advantages and limitations of the currently developed ACE2-specific radiotracers.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Sigrid A Langhans
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Division of Neurology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - David K Johnson
- Computational Chemical Biology Core, Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Erik Stauff
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Vinay V R Kandula
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Heidi H Kecskemethy
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Lauren W Averill
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| | - Xuyi Yue
- Department of Radiology, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
- Diagnostic & Research PET/MR Center, Nemours Children's Health, Delaware, Wilmington, DE 19803, USA
| |
Collapse
|
17
|
Martins SA, Correia JDG. 99mTc(I)-Labeled His-Tagged Proteins: Impact in the Development of Novel Imaging Probes and in Drug Discovery. Chembiochem 2024:e202400645. [PMID: 39158861 DOI: 10.1002/cbic.202400645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Technetium-99 m (99mTc) remains the cornerstone of nuclear medicine for single photon emission computed tomography (SPECT) due to its widespread availability and chemical and physical features. Its multiple oxidation states allow for the design and production of radiopharmaceuticals with versatile properties, namely in terms of pharmacokinetic profile. 99mTc(V) is the most common oxidation state, but 99mTc(I) gained traction after the pioneering work of Alberto and colleagues, which resulted in the introduction of the organometallic core fac-[99mTc(CO)3(H2O)3]+. This core is readily available from [99mTcO4]- and displays three labile water molecules that can be easily swapped for ligands with different denticity and/or donor atoms in aqueous environment. This makes it possible to radiolabel small molecules as well as high molecular weight molecules, such as antibodies or other proteins, while assuring biological activity. Direct radiolabelling of those proteins with fac-[99mTc(CO)3]+ under mild conditions is accomplished through incorporation of a polyhistidine tag (His-tag), a commonly used tag for purification of recombinant proteins. This review aims to address the direct radiolabelling of His-tagged macromolecules with fac-[99mTc(CO)3]+ for development of molecular imaging agents and the impact of this technology in the discovery and development of imaging and/or therapeutic agents towards clinical application.
Collapse
Affiliation(s)
- Sofia A Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
18
|
Almahmoud A, Parekh HS, Paterson BM, Tupally KR, Vegh V. Intranasal delivery of imaging agents to the brain. Theranostics 2024; 14:5022-5101. [PMID: 39267777 PMCID: PMC11388076 DOI: 10.7150/thno.98473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The potential of intranasal administered imaging agents to altogether bypass the blood-brain barrier offers a promising non-invasive approach for delivery directly to the brain. This review provides a comprehensive analysis of the advancements and challenges of delivering neuroimaging agents to the brain by way of the intranasal route, focusing on the various imaging modalities and their applications in central nervous system diagnostics and therapeutics. The various imaging modalities provide distinct insights into the pharmacokinetics, biodistribution, and specific interactions of imaging agents within the brain, facilitated by the use of tailored tracers and contrast agents. Methods: A comprehensive literature search spanned PubMed, Scopus, Embase, and Web of Science, covering publications from 1989 to 2024 inclusive. Starting with advancements in tracer development, we going to explore the rationale for integration of imaging techniques, and the critical role novel formulations such as nanoparticles, nano- and micro-emulsions in enhancing imaging agent delivery and visualisation. Results: The review highlights the use of innovative formulations in improving intranasal administration of neuroimaging agents, showcasing their ability to navigate the complex anatomical and physiological barriers of the nose-to-brain pathway. Various imaging techniques, MRI, PET, SPECT, CT, FUS and OI, were evaluated for their effectiveness in tracking these agents. The findings indicate significant improvements in brain targeting efficiency, rapid uptake, and sustained brain presence using innovative formulations. Conclusion: Future directions involve the development of optimised tracers tailored for intranasal administration, the potential of multimodal imaging approaches, and the implications of these advancements for diagnosing and treating neurological disorders.
Collapse
Affiliation(s)
- Abdallah Almahmoud
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Department of Allied Medical Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Brett M Paterson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | | | - Viktor Vegh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Jirvankar P, Agrawal S, Chambhare N, Agrawal R. Harnessing Biopolymer Gels for Theranostic Applications: Imaging Agent Integration and Real-Time Monitoring of Drug Delivery. Gels 2024; 10:535. [PMID: 39195064 DOI: 10.3390/gels10080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Biopolymer gels have gained tremendous potential for therapeutic applications due to their biocompatibility, biodegradability, and ability to adsorb and bind biological fluids, making them attractive for drug delivery and therapy. In this study, the versatility of biopolymer gels is explored in theranostic backgrounds, with a focus on integrating imaging features and facilitating real-time monitoring of drug delivery. Different methods of delivery are explored for incorporating imaging agents into biopolymer gels, including encapsulation, surface functionalization, nanoparticle encapsulation, and layer-by-layer assembly techniques. These methods exhibit the integration of agents and real-time monitoring drug delivery. We summarize the synthesis methods, general properties, and functional mechanisms of biopolymer gels, demonstrating their broad applications as multimodal systems for imaging-based therapeutics. These techniques not only enable multiple imaging but also provide signal enhancement and facilitate imaging targets, increasing the diagnostic accuracy and therapeutic efficacy. In addition, current techniques for incorporating imaging agents into biopolymer gels are discussed, as well as their role in precise drug delivery and monitoring.
Collapse
Affiliation(s)
- Pranita Jirvankar
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha 442001, Maharashtra, India
| | - Surendra Agrawal
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha 442001, Maharashtra, India
| | - Nikhita Chambhare
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha 442001, Maharashtra, India
| | - Rishabh Agrawal
- Bajiraoji Karanjekar College of Pharmacy, Sakoli 441802, Maharashtra, India
| |
Collapse
|
20
|
Wang Q, Ketteler S, Bagheri S, Ebrahimifard A, Luster M, Librizzi D, Yousefi BH. Diagnostic efficacy of [ 99mTc]Tc-PSMA SPECT/CT for prostate cancer: a meta-analysis. BMC Cancer 2024; 24:982. [PMID: 39118101 PMCID: PMC11312272 DOI: 10.1186/s12885-024-12734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Prompt and accurate diagnosis of prostate cancer (PCa) is of paramount importance for effective treatment planning. While Gallium-68 labeled prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) has proven efficacy in detecting PCa, limited availability poses challenges. As a potential alternative, [99mTc]Tc-PSMA single photon emission computed tomography (SPECT)/computed tomography (CT) holds promise. This systematic review and meta-analysis aimed to evaluate the diagnostic value of [99mTc]Tc-PSMA SPECT/CT for prostate cancer. METHODS A comprehensive search of PubMed, Cochrane, EMBASE, Scopus, Ovid, and Web of Science databases was conducted until July 2024. Sensitivity and specificity data were extracted to assess the diagnostic accuracy of [99mTc]Tc-PSMA SPECT/CT, while the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to evaluate study quality. Statistical analyses were performed using STATA 18, with MetaDisc 1.4 employed to detect threshold effects. Diagnostic accuracy indicators, including sensitivity, specificity, diagnostic odds ratio (DOR), negative likelihood ratio (LR-), and positive likelihood ratio (LR+), were pooled. The area under the curve (AUC) of the combined model was calculated using summary receiver-operating characteristic (SROC) curves. RESULTS Seven studies meeting the inclusion criteria were identified from an initial pool of 1467 articles, with no publication bias observed. The pooled sensitivity, specificity, and AUC of [99mTc]Tc-PSMA SPECT/CT were found to be 0.89 (95% CI, 0.84-0.93), 0.92 (95% CI, 0.67-0.99), and 0.93 (95% CI, 0.90-0.95), respectively. Additionally, the comprehensive diagnostic odds ratio, diagnostic score, positive likelihood ratio, and negative likelihood ratio were calculated as 95.24 (95% CI, 17.30-524.41), 4.56 (95% CI, 2.85-6.26), 11.35 (95% CI, 2.31-55.71), and 0.12 (95% CI, 0.08-0.18), respectively. CONCLUSIONS In conclusion, our findings demonstrate that [99mTc]Tc-PSMA SPECT/CT exhibits favorable diagnostic performance for prostate cancer and can provide valuable supplementary information, particularly in regions and settings where [68Ga]Ga-PSMA PET/CT availability is limited, such as remote areas. These results highlight the potential of [99mTc]Tc-PSMA SPECT/CT as a valuable tool in the diagnosis and management of prostate cancer, warranting further investigation and validation in larger patient cohorts.
Collapse
Affiliation(s)
- Qi Wang
- Department of Nuclear Medicine, University Hospital Marburg, Philipps University Marburg, Baldinger-Strasse, 35043, Marburg, Germany
- Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Svea Ketteler
- Department of Nuclear Medicine, University Hospital Marburg, Philipps University Marburg, Baldinger-Strasse, 35043, Marburg, Germany
| | - Shamim Bagheri
- Department of Nuclear Medicine, University Hospital Marburg, Philipps University Marburg, Baldinger-Strasse, 35043, Marburg, Germany
| | - Ali Ebrahimifard
- Department of Nuclear Medicine, University Hospital Marburg, Philipps University Marburg, Baldinger-Strasse, 35043, Marburg, Germany
| | - Markus Luster
- Department of Nuclear Medicine, University Hospital Marburg, Philipps University Marburg, Baldinger-Strasse, 35043, Marburg, Germany
| | - Damiano Librizzi
- Department of Nuclear Medicine, University Hospital Marburg, Philipps University Marburg, Baldinger-Strasse, 35043, Marburg, Germany
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Philipps University Marburg, Hans-Meerwein- Str. 3, 35043, Marburg, Germany
| | - Behrooz H Yousefi
- Department of Nuclear Medicine, University Hospital Marburg, Philipps University Marburg, Baldinger-Strasse, 35043, Marburg, Germany.
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Philipps University Marburg, Hans-Meerwein- Str. 3, 35043, Marburg, Germany.
| |
Collapse
|
21
|
Ferrari G, Lopez-Martinez I, Wanek T, Kuntner C, Montagner D. Recent Advances on Pt-Based Compounds for Theranostic Applications. Molecules 2024; 29:3453. [PMID: 39124859 PMCID: PMC11313463 DOI: 10.3390/molecules29153453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Since the discovery of cisplatin's antitumoral activity and its approval as an anticancer drug, significant efforts have been made to enhance its physiological stability and anticancer efficacy and to reduce its side effects. With the rapid development of targeted and personalized therapies, and the promising theranostic approach, platinum drugs have found new opportunities in more sophisticated systems. Theranostic agents combine diagnostic and therapeutic moieties in one scaffold, enabling simultaneous disease monitoring, therapy delivery, response tracking, and treatment efficacy evaluation. In these systems, the platinum core serves as the therapeutic agent, while the functionalized ligand provides diagnostic tools using various imaging techniques. This review aims to highlight the significant role of platinum-based complexes in theranostic applications, and, to the best of our knowledge, this is the first focused contribution on this type of platinum compounds. This review presents a brief introduction to the development of platinum chemotherapeutic drugs, their limitations, and resistance mechanisms. It then describes recent advancements in integrating platinum complexes with diagnostic agents for both tumor treatment and monitoring. The main body is organized into three categories based on imaging techniques: fluorescence, positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). Finally, this review outlines promising strategies and future perspectives in this evolving field.
Collapse
Affiliation(s)
- Giulia Ferrari
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Ines Lopez-Martinez
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Thomas Wanek
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
| | - Claudia Kuntner
- Preclinical Imaging Lab (PIL), Department of Biomedical Imaging and Image–Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.); (C.K.)
- Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| | - Diego Montagner
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Ireland
- Kathleen Londsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
22
|
Chen S, Zhuang D, Jia Q, Guo B, Hu G. Advances in Noninvasive Molecular Imaging Probes for Liver Fibrosis Diagnosis. Biomater Res 2024; 28:0042. [PMID: 38952717 PMCID: PMC11214848 DOI: 10.34133/bmr.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/08/2024] [Indexed: 07/03/2024] Open
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury, which may lead to cirrhosis and cancer. Early-stage fibrosis is reversible, and it is difficult to precisely diagnose with conventional imaging modalities such as magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and ultrasound imaging. In contrast, probe-assisted molecular imaging offers a promising noninvasive approach to visualize early fibrosis changes in vivo, thus facilitating early diagnosis and staging liver fibrosis, and even monitoring of the treatment response. Here, the most recent progress in molecular imaging technologies for liver fibrosis is updated. We start by illustrating pathogenesis for liver fibrosis, which includes capillarization of liver sinusoidal endothelial cells, cellular and molecular processes involved in inflammation and fibrogenesis, as well as processes of collagen synthesis, oxidation, and cross-linking. Furthermore, the biological targets used in molecular imaging of liver fibrosis are summarized, which are composed of receptors on hepatic stellate cells, macrophages, and even liver collagen. Notably, the focus is on insights into the advances in imaging modalities developed for liver fibrosis diagnosis and the update in the corresponding contrast agents. In addition, challenges and opportunities for future research and clinical translation of the molecular imaging modalities and the contrast agents are pointed out. We hope that this review would serve as a guide for scientists and students who are interested in liver fibrosis imaging and treatment, and as well expedite the translation of molecular imaging technologies from bench to bedside.
Collapse
Affiliation(s)
- Shaofang Chen
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Danping Zhuang
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qingyun Jia
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application,
Harbin Institute of Technology, Shenzhen 518055, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
23
|
Ali M, Benfante V, Di Raimondo D, Laudicella R, Tuttolomondo A, Comelli A. A Review of Advances in Molecular Imaging of Rheumatoid Arthritis: From In Vitro to Clinic Applications Using Radiolabeled Targeting Vectors with Technetium-99m. Life (Basel) 2024; 14:751. [PMID: 38929734 PMCID: PMC11204982 DOI: 10.3390/life14060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder caused by inflammation of cartilaginous diarthrodial joints that destroys joints and cartilage, resulting in synovitis and pannus formation. Timely detection and effective management of RA are pivotal for mitigating inflammatory arthritis consequences, potentially influencing disease progression. Nuclear medicine using radiolabeled targeted vectors presents a promising avenue for RA diagnosis and response to treatment assessment. Radiopharmaceutical such as technetium-99m (99mTc), combined with single photon emission computed tomography (SPECT) combined with CT (SPECT/CT), introduces a more refined diagnostic approach, enhancing accuracy through precise anatomical localization, representing a notable advancement in hybrid molecular imaging for RA evaluation. This comprehensive review discusses existing research, encompassing in vitro, in vivo, and clinical studies to explore the application of 99mTc radiolabeled targeting vectors with SPECT imaging for RA diagnosis. The purpose of this review is to highlight the potential of this strategy to enhance patient outcomes by improving the early detection and management of RA.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Messina University, 98124 Messina, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
24
|
Chu J, Yu X, Jiang G, Tao Y, Wu W, Han S. Bacterial imaging in tumour diagnosis. Microb Biotechnol 2024; 17:e14474. [PMID: 38808743 PMCID: PMC11135020 DOI: 10.1111/1751-7915.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024] Open
Abstract
Some bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), have an inherent ability to locate solid tumours, making them a versatile platform that can be combined with other tools to improve the tumour diagnosis and treatment. In anti-cancer therapy, bacteria function by carrying drugs directly or expressing exogenous therapeutic genes. The application of bacterial imaging in tumour diagnosis, a novel and promising research area, can indeed provide dynamic and real-time monitoring in both pre-treatment assessment and post-treatment detection. Different imaging techniques, including optical technology, acoustic imaging, magnetic resonance imaging (MRI) and nuclear medicine imaging, allow us to observe and track tumour-associated bacteria. Optical imaging, including bioluminescence and fluorescence, provides high-sensitivity and high-resolution imaging. Acoustic imaging is a real-time and non-invasive imaging technique with good penetration depth and spatial resolution. MRI provides high spatial resolution and radiation-free imaging. Nuclear medicine imaging, including positron emission tomography (PET) and single photon emission computed tomography (SPECT) can provide information on the distribution and dynamics of bacterial population. Moreover, strategies of synthetic biology modification and nanomaterial engineering modification can improve the viability and localization ability of bacteria while maintaining their autonomy and vitality, thus aiding the visualization of gut bacteria. However, there are some challenges, such as the relatively low bacterial abundance and heterogeneously distribution within the tumour, the high dimensionality of spatial datasets and the limitations of imaging labeling tools. In summary, with the continuous development of imaging technology and nanotechnology, it is expected to further make in-depth study on tumour-associated bacteria and develop new bacterial imaging methods for tumour diagnosis.
Collapse
Affiliation(s)
- Jian Chu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| | - Xiang Yu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| | - Gaofei Jiang
- Key Lab of Organic‐Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste UtilizationNanjing Agricultural UniversityNanjingChina
| | - Ye Tao
- Shanghai BIOZERON Biotechnology Co., Ltd.ShanghaiChina
| | - Wei Wu
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| | - Shuwen Han
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouChina
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive CancerHuzhouChina
- Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital)HuzhouChina
| |
Collapse
|
25
|
Khorshidi A. Chemical radioanalysis of production of positron-emitting radioisotope Gallium-68 via (p,n) and (p,2n) reactions using compact cyclotron for tomography applications. Heliyon 2024; 10:e31499. [PMID: 38813197 PMCID: PMC11133935 DOI: 10.1016/j.heliyon.2024.e31499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
In this study, the proton-induced reactions of 68Zn and 69Ga aimed at generating 68Ga were simulated and modeled using Talys code and neural network software. In the first step, both targets were simulated under different proton energies and at different bombardments times to generate a total of six thousand data. Then, the obtained data from the Talys, including the various cross-sections, contaminations, the main product i.e. 68Ga, and other options were completely saved in the output file. Afterwards, the inputs of the neural network were selected from the output of the Talys by analyzing and considering most of the key features. A total of four inputs, two of which are different energies related to the reaction, the other is the process sequence and the fourth input is the bombardment time, were recognized as suitable inputs and the model was trained differently depending on the type of target. The selected model was a feed-forward neural network with 5 nodes in a middle layer, which was able to estimate the output of Talys code by changing the input parameters with extremely high accuracy. Two different models including the main model for estimating the output of the main sample (product) and the sub-model for estimating process pollution or impurity were trained, and then the trained model was tested on the deduced process data. The implementation results fully demonstrated the high accuracy of the method. The neural network model is much easier to implement than the Talys code, and its execution speed is very high. In addition, it can be used appropriately as a system alternative for optimization and different structures in medical and biological engineering.
Collapse
Affiliation(s)
- Abdollah Khorshidi
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
- Soleimani Maktab, Central Branch, Qaem University, Kerman, Iran
| |
Collapse
|
26
|
Esze R, Balkay L, Barna S, Egeresi LS, Emri M, Páll D, Paragh G, Rajnai L, Somodi S, Képes Z, Garai I, Káplár M. Impact of Fat Distribution and Metabolic Diseases on Cerebral Microcirculation: A Multimodal Study on Type 2 Diabetic and Obese Patients. J Clin Med 2024; 13:2900. [PMID: 38792441 PMCID: PMC11122647 DOI: 10.3390/jcm13102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Since metabolic diseases and atherosclerotic vascular events are firmly associated, herein we investigate changes in central microcirculation and atherosclerosis-related body fat distribution in patients with type 2 diabetes mellitus and obesity. Methods: Resting brain perfusion single-photon emission computed tomography (SPECT) imaging with Technetium-99m hexamethylpropylene amine oxime ([99mTc]Tc-HMPAO SPECT) was performed, and the breath-holding index (BHI) and carotid intima-media thickness (cIMT) were measured to characterise central microcirculation. Besides CT-based abdominal fat tissue segmentation, C-peptide level, glycaemic and anthropometric parameters were registered to search for correlations with cerebral blood flow and vasoreactivity. Results: Although no significant difference was found between the resting cerebral perfusion of the two patient cohorts, a greater blood flow increase was experienced in the obese after the breath-holding test than in the diabetics (p < 0.05). A significant positive correlation was encountered between resting and provocation-triggered brain perfusion and C-peptide levels (p < 0.005). BMI and cIMT were negatively correlated (rho = -0.27 and -0.23 for maximum and mean cIMT, respectively), while BMI and BHI showed a positive association (rho = 0.31 and rho = 0.29 for maximum and mean BHI, respectively), which could be explained by BMI-dependent changes in fat tissue distribution. cIMT demonstrated a disproportional relationship with increasing age, and higher cIMT values were observed for the men. Conclusions: Overall, C-peptide levels and circulatory parameters seem to be strong applicants to predict brain microvascular alterations and related cognitive decline in such patient populations.
Collapse
Affiliation(s)
- Regina Esze
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
- Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - László Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
| | - Sándor Barna
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
| | - Lilla Szatmáriné Egeresi
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary;
| | - Miklós Emri
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
| | - Dénes Páll
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
- Department of Medical Clinical Pharmacology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
| | - Liliána Rajnai
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
| | - Sándor Somodi
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
| | - Ildikó Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (L.B.); (S.B.); (M.E.); (Z.K.); (I.G.)
- ScanoMed Ltd., Nuclear Medicine Centers, Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Miklós Káplár
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (D.P.); (G.P.); (L.R.); (S.S.); (M.K.)
| |
Collapse
|
27
|
Eissler N, Altena R, Alhuseinalkhudhur A, Bragina O, Feldwisch J, Wuerth G, Loftenius A, Brun N, Axelsson R, Tolmachev V, Sörensen J, Frejd FY. Affibody PET Imaging of HER2-Expressing Cancers as a Key to Guide HER2-Targeted Therapy. Biomedicines 2024; 12:1088. [PMID: 38791050 PMCID: PMC11118066 DOI: 10.3390/biomedicines12051088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a major prognostic and predictive marker overexpressed in 15-20% of breast cancers. The diagnostic reference standard for selecting patients for HER2-targeted therapy is based on the analysis of tumor biopsies. Previously patients were defined as HER2-positive or -negative; however, with the approval of novel treatment options, specifically the antibody-drug conjugate trastuzumab deruxtecan, many breast cancer patients with tumors expressing low levels of HER2 have become eligible for HER2-targeted therapy. Such patients will need to be reliably identified by suitable diagnostic methods. Biopsy-based diagnostics are invasive, and repeat biopsies are not always feasible. They cannot visualize the heterogeneity of HER2 expression, leading to a substantial number of misdiagnosed patients. An alternative and highly accurate diagnostic method is molecular imaging with radiotracers. In the case of HER2, various studies demonstrate the clinical utility and feasibility of such approaches. Radiotracers based on Affibody® molecules, small, engineered affinity proteins with a size of ~6.5 kDa, are clinically validated molecules with favorable characteristics for imaging. In this article, we summarize the HER2-targeted therapeutic landscape, describe our experience with imaging diagnostics for HER2, and review the currently available clinical data on HER2-Affibody-based molecular imaging as a novel diagnostic tool in breast cancer and beyond.
Collapse
Affiliation(s)
| | - Renske Altena
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Solna, Sweden
- Medical Unit Breast, Endocrine Tumors and Sarcoma, Theme Cancer, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, 17164 Solna, Sweden
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
| | - Ali Alhuseinalkhudhur
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Olga Bragina
- Department of Nuclear Therapy and Diagnostic, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634055 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | | | | | | | | | - Rimma Axelsson
- Medical Radiation Physics and Nuclear Medicine, Functional Unit of Nuclear Medicine, Karolinska University Hospital, 14157 Huddinge, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| | - Jens Sörensen
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, 75310 Uppsala, Sweden
| | - Fredrik Y. Frejd
- Affibody AB, 17165 Solna, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75310 Uppsala, Sweden
| |
Collapse
|
28
|
Horstmann M, Quarles CD, Happel S, Sperling M, Faust A, Rahbar K, Clases D, Karst U. Quantification of [ 99Tc]TcO 4- in urine by means of anion-exchange chromatography-aerosol desolvation nebulization-inductively coupled plasma-mass spectrometry. Anal Bioanal Chem 2024; 416:2849-2858. [PMID: 38289357 PMCID: PMC11009747 DOI: 10.1007/s00216-024-05149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 04/13/2024]
Abstract
To sensitively determine 99Tc, a new method for internal quantification of its most common and stable species, [99Tc]Tc O 4 - , was developed. Anion-exchange chromatography (IC) was coupled to inductively coupled plasma-mass spectrometry (ICP-MS) and equipped with an aerosol desolvation system to provide enhanced detection power. Due to a lack of commercial Tc standards, an isotope dilution-like approach using a Ru spike and called isobaric dilution analysis (IBDA) was used for internal quantification of 99Tc. This approach required knowledge of the sensitivities of 99Ru and 99Tc in ICP-MS. The latter was determined using an in-house prepared standard manufactured from decayed medical 99mTc-generator eluates. This standard was cleaned and preconcentrated using extraction chromatography with TEVA resin and quantified via total reflection X-ray fluorescence (TXRF) analysis. IC coupled to ICP-MS enabled to separate, detect and quantify [99Tc]Tc O 4 - as most stable Tc species in complex environments, which was demonstrated in a proof of concept. We quantified this species in untreated and undiluted raw urine collected from a patient, who previously underwent scintigraphy with a 99mTc-tracer, and determined a concentration of 19.6 ± 0.5 ng L-1. The developed method has a high utility to characterize a range of Tc-based radiopharmaceuticals, to determine concentrations, purity, and degradation products in complex samples without the need to assess activity parameters of 99(m)Tc.
Collapse
Affiliation(s)
- Maximilian Horstmann
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | | | | | - Michael Sperling
- European Virtual Institute for Speciation Analysis (EVISA), Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), Münster, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Center, Münster, Germany
| | - David Clases
- Institute of Chemistry, University of Graz, Graz, Austria.
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany.
| |
Collapse
|
29
|
Shin M, Seo M, Lee K, Yoon K. Super-resolution techniques for biomedical applications and challenges. Biomed Eng Lett 2024; 14:465-496. [PMID: 38645589 PMCID: PMC11026337 DOI: 10.1007/s13534-024-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Super-resolution (SR) techniques have revolutionized the field of biomedical applications by detailing the structures at resolutions beyond the limits of imaging or measuring tools. These techniques have been applied in various biomedical applications, including microscopy, magnetic resonance imaging (MRI), computed tomography (CT), X-ray, electroencephalogram (EEG), ultrasound, etc. SR methods are categorized into two main types: traditional non-learning-based methods and modern learning-based approaches. In both applications, SR methodologies have been effectively utilized on biomedical images, enhancing the visualization of complex biological structures. Additionally, these methods have been employed on biomedical data, leading to improvements in computational precision and efficiency for biomedical simulations. The use of SR techniques has resulted in more detailed and accurate analyses in diagnostics and research, essential for early disease detection and treatment planning. However, challenges such as computational demands, data interpretation complexities, and the lack of unified high-quality data persist. The article emphasizes these issues, underscoring the need for ongoing development in SR technologies to further improve biomedical research and patient care outcomes.
Collapse
Affiliation(s)
- Minwoo Shin
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Minjee Seo
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyunghyun Lee
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
30
|
Akram AS, Grezenko H, Singh P, Ahmed M, Hassan BD, Hagenahalli Anand V, Elashry AA, Nazir F, Khan R. Advancing the Frontier: Neuroimaging Techniques in the Early Detection and Management of Neurodegenerative Diseases. Cureus 2024; 16:e61335. [PMID: 38947709 PMCID: PMC11213966 DOI: 10.7759/cureus.61335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Alzheimer's and Parkinson's diseases are among the most prevalent neurodegenerative conditions affecting aging populations globally, presenting significant challenges in early diagnosis and management. This narrative review explores the pivotal role of advanced neuroimaging techniques in detecting and managing these diseases at early stages, potentially slowing their progression through timely interventions. Recent advancements in MRI, such as ultra-high-field systems and functional MRI, have enhanced the sensitivity for detecting subtle structural and functional changes. Additionally, the development of novel amyloid-beta tracers and other emerging modalities like optical imaging and transcranial ultrasonography have improved the diagnostic accuracy and capability of existing methods. This review highlights the clinical applications of these technologies in Alzheimer's and Parkinson's diseases, where they have shown improved diagnostic performance, enabling earlier intervention and better prognostic outcomes. Moreover, the integration of artificial intelligence (AI) and longitudinal research is emerging as a promising enhancement to refine early detection strategies further. However, this review also addresses the technical, ethical, and accessibility challenges in the field, advocating for the more extensive use of advanced imaging technologies to overcome these barriers. Finally, we emphasize the need for a holistic approach that incorporates both neurological and psychiatric perspectives, which is crucial for optimizing patient care and outcomes in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ahmed S Akram
- Psychiatry, Faisalabad Medical University, Faisalabad, PAK
| | - Han Grezenko
- Medicine and Surgery, Guangxi Medical University, Nanning, CHN
- Translational Neuroscience, Barrow Neurological Institute, Phoenix, USA
| | - Prem Singh
- Neurology, Dow University of Health Sciences, Karachi, PAK
| | - Muhammad Ahmed
- Psychiatry and Behavioral Sciences, Dow University of Health Sciences, Karachi, PAK
| | | | | | | | - Faran Nazir
- Internal Medicine, Faisalabad Medical University, Faisalabad, PAK
| | - Rehman Khan
- Internal Medicine, Mayo Hospital, Lahore, PAK
| |
Collapse
|
31
|
Kanellopoulos P, Bezverkhniaia E, Abouzayed A, Rosenström U, Tolmachev V, Orlova A. Two Novel [ 68Ga]Ga-Labeled Radiotracers Based on Metabolically Stable [Sar 11]RM26 Antagonistic Peptide for Diagnostic Positron Emission Tomography Imaging of GRPR-Positive Prostate Cancer. ACS OMEGA 2024; 9:18608-18616. [PMID: 38680331 PMCID: PMC11044165 DOI: 10.1021/acsomega.4c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
Gastrin releasing peptide receptor (GRPR) is overexpressed in prostate cancer (PC-3) and can be used for diagnostic purposes. We herein present the design and preclinical evaluation of two novel NOTA/NODAGA-containing peptides suitable for labeling with the positron emission tomography (PET) radionuclide Ga-68. These analogs are based on the previously reported GRPR-antagonist DOTAGA-PEG2-[Sar11]RM26, developed for targeted radiotheraostic applications. Both NOTA-PEG2-[Sar11]RM26 and NODAGA-PEG2-[Sar11]RM26 were successfully labeled with Ga-68 and evaluated in vitro and in vivo using PC-3 cell models. Both, [68Ga]Ga-NOTA-PEG2-[Sar11]RM26 and [68Ga]Ga-NODAGA-PEG2-[Sar11]RM26 displayed high metal-chelate stability in phosphate buffered saline and against the EDTA-challenge. The two [68Ga]Ga-labeled conjugates demonstrated highly GRPR-mediated uptake in vitro and in vivo and exhibited a slow internalization over time, typical for radioantagonistis. The [natGa]Ga-loaded peptides displayed affinity in the low nanomole range for GRPR in competition binding experiments. The new radiotracers demonstrated biodistribution profiles suitable for diagnostic imaging shortly after administration with fast background clearance. Their high tumor uptake (13 ± 1 and 15 ± 3% IA/g for NOTA and NODAGA conjugates, respectively) and high tumor-to-blood ratios (60 ± 10 and 220 ± 70, respectively) 3 h pi renders them promising PET tracers for use in patients. Tumor-to-normal organ ratios were higher for [68Ga]Ga-NODAGA-PEG2-[Sar11]RM26 than for the NOTA-containing counterpart. The performance of the two radiopeptides was further supported with the PET/CT images. In conclusion, [68Ga]Ga-NODAGA-PEG2-[Sar11]RM26 is a promising PET imaging tracer for visualization of GRPR-expressing lesions with high imaging contrast shortly after administration.
Collapse
Affiliation(s)
| | | | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Ulrika Rosenström
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Vladimir Tolmachev
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala 752 37, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
- Science
for Life Laboratory, Uppsala University, Uppsala 752 37, Sweden
| |
Collapse
|
32
|
Karim S, Siddiqui NA, Khan MI, Wahajuddin M, Syed S. Editorial: Novel theranostic agents for precision therapeutics. Front Pharmacol 2024; 15:1407366. [PMID: 38694918 PMCID: PMC11061521 DOI: 10.3389/fphar.2024.1407366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Affiliation(s)
- Shahid Karim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasir Ali Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Imran Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Shariq Syed
- School of Pharmacy, Anjuman Islam Kalsekar Technical Campus, Navi Mumbai, India
| |
Collapse
|
33
|
Vandewalle N, Satilmis H, Verheye E, Fan R, Wang Y, De Groof TW, Bridoux J, Kerre T, De Beule N, De Becker A, De Bruyne E, Menu E, Vanderkerken K, Breckpot K, Devoogdt N, De Veirman K. AXL-specific single domain antibodies show diagnostic potential and anti-tumor activity in Acute Myeloid Leukemia. Theranostics 2024; 14:2656-2674. [PMID: 38773967 PMCID: PMC11103505 DOI: 10.7150/thno.91456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/16/2024] [Indexed: 05/24/2024] Open
Abstract
Rationale: AXL expression has been identified as a prognostic factor in acute myeloid leukemia (AML) and is detectable in approximately 50% of AML patients. In this study, we developed AXL-specific single domain antibodies (sdAbs), cross-reactive for both mouse and human AXL protein, to non-invasively image and treat AXL-expressing cancer cells. Methods: AXL-specific sdAbs were induced by immunizing an alpaca with mouse and human AXL proteins. SdAbs were characterized using ELISA, flow cytometry, surface plasmon resonance and the AlphaFold2 software. A lead compound was selected and labeled with 99mTc for evaluation as a diagnostic tool in mouse models of human (THP-1 cells) or mouse (C1498 cells) AML using SPECT/CT imaging. For therapeutic purposes, the lead compound was fused to a mouse IgG2a-Fc tail and in vitro functionality tests were performed including viability, apoptosis and proliferation assays in human AML cell lines and primary patient samples. Using these in vitro models, its anti-tumor effect was evaluated as a single agent, and in combination with standard of care agents venetoclax or cytarabine. Results: Based on its cell binding potential, cross-reactivity, nanomolar affinity and GAS6/AXL blocking capacity, we selected sdAb20 for further evaluation. Using SPECT/CT imaging, we observed tumor uptake of 99mTc-sdAb20 in mice with AXL-positive THP-1 or C1498 tumors. In THP-1 xenografts, an optimized protocol using pre-injection of cold sdAb20-Fc was required to maximize the tumor-to-background signal. Besides its diagnostic value, we observed a significant reduction in tumor cell proliferation and viability using sdAb20-Fc in vitro. Moreover, combining sdAb20-Fc and cytarabine synergistically induced apoptosis in human AML cell lines, while these effects were less clear when combined with venetoclax. Conclusions: Because of their diagnostic potential, sdAbs could be used to screen patients eligible for AXL-targeted therapy and to follow-up AXL expression during treatment and disease progression. When fused to an Fc-domain, sdAbs acquire additional therapeutic properties that can lead to a multidrug approach for the treatment of AXL-positive cancer patients.
Collapse
Affiliation(s)
- Niels Vandewalle
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Hatice Satilmis
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Emma Verheye
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, Brussels, Belgium
- Brussels Center of Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rong Fan
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Yanmeng Wang
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Timo W.M. De Groof
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jessica Bridoux
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Nathan De Beule
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ann De Becker
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, Brussels, Belgium
- Translational Oncology Research Center (TORC), team Hematology and Immunology (HEIM), Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
34
|
Kaur G, Roy B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024; 12:827. [PMID: 38672182 PMCID: PMC11048662 DOI: 10.3390/biomedicines12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Larkina M, Varvashenya R, Yuldasheva F, Plotnikov E, Bezverkhniaia E, Tretyakova M, Zelchan R, Schulga A, Konovalova E, Vorobyeva A, Belousov M, Orlova A, Tolmachev V, Deyev S. Comparative Preclinical Evaluation of HYNIC-Modified Designed Ankyrin Repeat Proteins G3 for the 99mTc-Based Imaging of HER2-Expressing Malignant Tumors. Mol Pharm 2024; 21:1919-1932. [PMID: 38557163 DOI: 10.1021/acs.molpharmaceut.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
HER2 status determination is a necessary step for the proper choice of therapy and selection of patients for the targeted treatment of cancer. Targeted radiotracers such as radiolabeled DARPins provide a noninvasive and effective way for the molecular imaging of HER2 expression. This study aimed to evaluate tumor-targeting properties of three 99mTc-labeled DARPin G3 variants containing Gly-Gly-Gly-Cys (G3C), (Gly-Gly-Gly-Ser)3-Cys ((G3S)3C), or Glu-Glu-Glu-Cys (E3C) amino acid linkers at the C-terminus and conjugated to the HYNIC chelating agent, as well as to compare them with the clinically evaluated DARPin G3 labeled with 99mTc(CO)3 using the (HE)3-tag at the N-terminus. The labeling of DARPin G3-HYNIC variants provided radiochemical yields in the range of 50-80%. Labeled variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 0.5-3 nM. There was no substantial influence of the linker and HYNIC chelator on the binding of 99mTc-labeled DARPin G3 variants to HER2 in vitro; however, [99mTc]Tc-G3-(G3S)3C-HYNIC had the highest affinity. Comparative biodistribution of [99mTc]Tc-G3-G3C-HYNIC, [99mTc]Tc-G3-(G3S)3C-HYNIC, [99mTc]Tc-G3-E3C-HYNIC, and [99mTc]Tc-(HE)3-G3 in healthy CD1 mice showed that there was a strong influence of the linkers on uptake in normal tissues. [99mTc]Tc-G3-E3C-HYNIC had an increased retention of activity in the liver and the majority of other organs compared to the other conjugates. The tumor uptake of [99mTc]Tc-G3-(G3S)3C-HYNIC and [99mTc]Tc-(HE)3-G3 in Nu/j mice bearing SKOV-3 xenografts was similar. The specificity of tumor targeting in vivo was demonstrated for both tracers. [99mTc]Tc-G3-(G3S)3C-HYNIC provided comparable, although slightly lower tumor-to-lung, tumor-to spleen and tumor-to-liver ratios than [99mTc]Tc-(HE)3-G3. Radiolabeling of DARPin G3-HYNIC conjugates with 99mTc provided the advantage of a single-step radiolabeling procedure; however, the studied HYNIC conjugates did not improve imaging contrast compared to the 99mTc-tricarbonyl-labeled DARPin G3. At this stage, [99mTc]Tc-(HE)3-G3 remains the most promising candidate for the clinical imaging of HER2-overexpressing cancers.
Collapse
Affiliation(s)
- Maria Larkina
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Ruslan Varvashenya
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Feruza Yuldasheva
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Evgenii Plotnikov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Ekaterina Bezverkhniaia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Maria Tretyakova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Roman Zelchan
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elena Konovalova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anzhelika Vorobyeva
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Mikhail Belousov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Sergey Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
36
|
Nicolae CL, Pîrvulescu DC, Antohi AM, Niculescu AG, Grumezescu AM, Croitoru GA. Silica nanoparticles in medicine: overcoming pathologies through advanced drug delivery, diagnostics, and therapeutic strategies. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:173-184. [PMID: 39020531 PMCID: PMC11384868 DOI: 10.47162/rjme.65.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Over the last decades, silica nanoparticles (SiNPs) have been studied for their applications in biomedicine as an alternative used for conventional diagnostics and treatments. Since their properties can be modified and adjusted for the desired use, they have many different potential applications in medicine: they can be used in diagnosis because of their ability to be loaded with dyes and their increased selectivity and sensitivity, which can improve the quality of the diagnostic process. SiNPs can be functionalized by targeting ligands or molecules to detect certain cellular processes or biomarkers with better precision. Targeted delivery is another fundamental use of SiNPs. They could be used as drug delivery systems (DDS) since their structure allows the loading of therapeutic agents or other compounds, and studies have demonstrated their biocompatibility. When SiNPs are used as DDS, the drug's toxicity and the off-target effects are reduced significantly, and they can be used to treat conditions like cancer and neurological diseases and even aid in regenerative processes, such as wound healing or bone repair. However, safety concerns must be considered before SiNPs can be used extensively in clinical practice because NPs can cause toxicity in certain conditions and accumulate at undesired locations. Therefore, an overview of the potential applications that SiNPs could have in medicine, as well as their safety concerns, will be covered in this review paper.
Collapse
Affiliation(s)
- Carmen Larisa Nicolae
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
37
|
Crișan G, Stan Ș, Chiș V. Exploring Geometrical, Electronic and Spectroscopic Properties of 2-Nitroimidazole-Based Radiopharmaceuticals via Computational Chemistry Methods. Molecules 2024; 29:1505. [PMID: 38611785 PMCID: PMC11013577 DOI: 10.3390/molecules29071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Tumor hypoxia plays an important role in the clinical management and treatment planning of various cancers. The use of 2-nitroimidazole-based radiopharmaceuticals has been the most successful for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging probes, offering noninvasive means to assess tumor hypoxia. In this study we performed detailed computational investigations of the most used compounds for PET imaging, focusing on those derived from 2-nitroimidazole: fluoromisonidazole (FMISO), fluoroazomycin arabinoside (FAZA), fluoroetanidazole (FETA), fluoroerythronitroimidazole (FETNIM) and 2-(2-nitroimidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5). Conformational analysis, structural parameters, vibrational IR and Raman properties (within both harmonic and anharmonic approximations), as well as the NMR shielding tensors and spin-spin coupling constants were obtained by density functional theory (DFT) calculations and then correlated with experimental findings, where available. Furthermore, time-dependent DFT computations reveal insight into the excited states of the compounds. Our results predict a significant change in the conformational landscape of most of the investigated compounds when transitioning from the gas phase to aqueous solution. According to computational data, the 2-nitroimidazole moiety determines to a large extent the spectroscopic properties of its derivatives. Due to the limited structural information available in the current literature for the investigated compounds, the findings presented herein deepen the current understanding of the electronic structures of these five radiopharmaceuticals.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeș-Bolyai University, Str. M. Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania; (G.C.); (Ș.S.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, RO-400006 Cluj-Napoca, Romania
| | - Ștefan Stan
- Faculty of Physics, Babeș-Bolyai University, Str. M. Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania; (G.C.); (Ș.S.)
| | - Vasile Chiș
- Faculty of Physics, Babeș-Bolyai University, Str. M. Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania; (G.C.); (Ș.S.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, RO-400327 Cluj-Napoca, Romania
| |
Collapse
|
38
|
Dyer MR, Jing Z, Duncan K, Godbe J, Shokeen M. Advancements in the development of radiopharmaceuticals for nuclear medicine applications in the treatment of bone metastases. Nucl Med Biol 2024; 130-131:108879. [PMID: 38340369 DOI: 10.1016/j.nucmedbio.2024.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Bone metastases are a painful and complex condition that overwhelmingly impacts the prognosis and quality of life of cancer patients. Over the years, nuclear medicine has made remarkable progress in the diagnosis and management of bone metastases. This review aims to provide a comprehensive overview of the recent advancements in nuclear medicine for the diagnosis and management of bone metastases. Furthermore, the review explores the role of targeted radiopharmaceuticals in nuclear medicine for bone metastases, focusing on radiolabeled molecules that are designed to selectively target biomarkers associated with bone metastases, including osteocytes, osteoblasts, and metastatic cells. The applications of radionuclide-based therapies, such as strontium-89 (Sr-89) and radium-223 (Ra-223), are also discussed. This review also highlights the potential of theranostic approaches for bone metastases, enabling personalized treatment strategies based on individual patient characteristics. Importantly, the clinical applications and outcomes of nuclear medicine in osseous metastatic disease are discussed. This includes the assessment of treatment response, predictive and prognostic value of imaging biomarkers, and the impact of nuclear medicine on patient management and outcomes. The review identifies current challenges and future perspectives on the role of nuclear medicine in treating bone metastases. It addresses limitations in imaging resolution, radiotracer availability, radiation safety, and the need for standardized protocols. The review concludes by emphasizing the need for further research and advancements in imaging technology, radiopharmaceutical development, and integration of nuclear medicine with other treatment modalities. In summary, advancements in nuclear medicine have significantly improved the diagnosis and management of osseous metastatic disease and future developements in the integration of innovative imaging modalities, targeted radiopharmaceuticals, radionuclide production, theranostic approaches, and advanced image analysis techniques hold great promise in improving patient outcomes and enhancing personalized care for individuals with bone metastases.
Collapse
Affiliation(s)
- Michael R Dyer
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhenghan Jing
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Duncan
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Godbe
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Shokeen
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA; Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
39
|
Parekh P, Badachhape AA, Tanifum EA, Annapragada AV, Ghaghada KB. Advances in nanoprobes for molecular MRI of Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1946. [PMID: 38426638 PMCID: PMC10983770 DOI: 10.1002/wnan.1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease is the most common cause of dementia and a leading cause of mortality in the elderly population. Diagnosis of Alzheimer's disease has traditionally relied on evaluation of clinical symptoms for cognitive impairment with a definitive diagnosis requiring post-mortem demonstration of neuropathology. However, advances in disease pathogenesis have revealed that patients exhibit Alzheimer's disease pathology several decades before the manifestation of clinical symptoms. Magnetic resonance imaging (MRI) plays an important role in the management of patients with Alzheimer's disease. The clinical availability of molecular MRI (mMRI) contrast agents can revolutionize the diagnosis of Alzheimer's disease. In this article, we review advances in nanoparticle contrast agents, also referred to as nanoprobes, for mMRI of Alzheimer's disease. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Parag Parekh
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Andrew A. Badachhape
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Eric A. Tanifum
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ananth V. Annapragada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| | - Ketan B. Ghaghada
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030
- Department of Radiology, Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
40
|
Wongso H, Kurniawan A, Setiadi Y, Kusumaningrum CE, Widyasari EM, Wibawa TH, Mahendra I, Febrian MB, Sriyani ME, Halimah I, Daruwati I, Gunawan R, Achmad A, Nugraha DH, Lesmana R, Nugraha AS. Translocator Protein 18 kDa (TSPO): A Promising Molecular Target for Image-Guided Surgery of Solid Cancers. Adv Pharm Bull 2024; 14:86-104. [PMID: 38585455 PMCID: PMC10997928 DOI: 10.34172/apb.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
The translocator protein 18-kDa (TSPO) is a mitochondrial membrane protein that is previously identified as the peripheral benzodiazepine receptor (PBR). Furthermore, it plays a significant role in a diverse range of biochemical processes, including steroidogenesis, mitochondrial cholesterol transport, cell survival and death, cell proliferation, and carcinogenesis. Several investigations also reported its roles in various types of cancers, including colorectal, brain, breast, prostate, and lung cancers, as well as melanoma. According to a previous study, the expression of TSPO was upregulated in cancer cells, which corresponds to an aggressive phenotype and/or poor prognosis. Consequently, the potential for crafting diagnostic and prognostic tools with a focus on TSPO holds great potential. In this context, several radioligands designed to target this protein have been identified, and some of the candidates have advanced to clinical trials. In recent years, the use of hybrid probes with radioactive and fluorescence molecules for image-guided surgery has exhibited promising results in animal and human studies. This indicates that the approach can serve as a valuable surgical navigator during cancer surgery. The current hybrid probes are built from various molecular platforms, including small molecules, nanoparticles, and antibodies. Although several TSPO-targeted imaging probes have been developed, their development for image-guided surgery of cancers is still limited. Therefore, this review aims to highlight recent findings on the involvement of TSPO in carcinogenesis, as well as provide a new perspective on the potential application of TSPO-targeted hybrid probes for image-guided surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten 15314, Indonesia
| | - Crhisterra E. Kusumaningrum
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
| | - Isti Daruwati
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Rudi Gunawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency Republic of Indonesia, Puspiptek, Banten 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
| | - Arifudin Achmad
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Ir. Soekarno KM 21, Jatinangor 45363, Indonesia
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
- Oncology and Stem Cells Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161
| | | | - Ronny Lesmana
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Physiology Molecular, Division of Biological Activity, Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Ari S. Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember 68121, Indonesia
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
41
|
Henary E, Casa S, Dost TL, Sloop JC, Henary M. The Role of Small Molecules Containing Fluorine Atoms in Medicine and Imaging Applications. Pharmaceuticals (Basel) 2024; 17:281. [PMID: 38543068 PMCID: PMC10975950 DOI: 10.3390/ph17030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/01/2024] Open
Abstract
The fluorine atom possesses many intrinsic properties that can be beneficial when incorporated into small molecules. These properties include the atom's size, electronegativity, and ability to block metabolic oxidation sites. Substituents that feature fluorine and fluorine-containing groups are currently prevalent in drugs that lower cholesterol, relieve asthma, and treat anxiety disorders, as well as improve the chemical properties of various medications and imaging agents. The dye scaffolds (fluorescein/rhodamine, coumarin, BODIPY, carbocyanine, and squaraine dyes) reported will address the incorporation of the fluorine atom in the scaffold and the contribution it provides to its application as an imaging agent. It is also important to recognize radiolabeled fluorine atoms used for PET imaging in the early detection of diseases. This review will discuss the many benefits of incorporating fluorine atoms into small molecules and give examples of fluorinated molecules used in the pharmaceutical industry and imaging techniques.
Collapse
Affiliation(s)
- Emily Henary
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA; (E.H.); (J.C.S.)
| | - Stefanie Casa
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
| | - Tyler L. Dost
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
| | - Joseph C. Sloop
- School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA; (E.H.); (J.C.S.)
| | - Maged Henary
- Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA; (S.C.); (T.L.D.)
- Center for Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
42
|
Kalaba P, Sanchez de la Rosa C, Möller A, Alewood PF, Muttenthaler M. Targeting the Oxytocin Receptor for Breast Cancer Management: A Niche for Peptide Tracers. J Med Chem 2024; 67:1625-1640. [PMID: 38235665 PMCID: PMC10859963 DOI: 10.1021/acs.jmedchem.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Breast cancer is a leading cause of death in women, and its management highly depends on early disease diagnosis and monitoring. This remains challenging due to breast cancer's heterogeneity and a scarcity of specific biomarkers that could predict responses to therapy and enable personalized treatment. This Perspective describes the diagnostic landscape for breast cancer management, molecular strategies targeting receptors overexpressed in tumors, the theranostic potential of the oxytocin receptor (OTR) as an emerging breast cancer target, and the development of OTR-specific optical and nuclear tracers to study, visualize, and treat tumors. A special focus is on the chemistry and pharmacology underpinning OTR tracer development, preclinical in vitro and in vivo studies, challenges, and future directions. The use of peptide-based tracers targeting upregulated receptors in cancer is a highly promising strategy complementing current diagnostics and therapies and providing new opportunities to improve cancer management and patient survival.
Collapse
Affiliation(s)
- Predrag Kalaba
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | | | - Andreas Möller
- QIMR
Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- The
Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Paul F. Alewood
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Markus Muttenthaler
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
43
|
Ito K, Yamaguchi M, Semba T, Tabata K, Tamura M, Aoyama M, Abe T, Asano O, Terada Y, Funahashi Y, Fujii H. Amelioration of Tumor-promoting Microenvironment via Vascular Remodeling and CAF Suppression Using E7130: Biomarker Analysis by Multimodal Imaging Modalities. Mol Cancer Ther 2024; 23:235-247. [PMID: 37816248 DOI: 10.1158/1535-7163.mct-23-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
E7130 is a novel anticancer agent created from total synthetic study of the natural compound norhalichondrin B. In addition to inhibiting microtubule dynamics, E7130 also ameliorates tumor-promoting aspects of the tumor microenvironment (TME) by suppressing cancer-associated fibroblasts (CAF) and promoting remodeling of tumor vasculature. Here, we demonstrate TME amelioration by E7130 using multi-imaging modalities, including multiplexed mass cytometry [cytometry by time-of-flight (CyTOF)] analysis, multiplex IHC analysis, and MRI. Experimental solid tumors characterized by large numbers of CAFs in TME were treated with E7130. E7130 suppressed LAP-TGFβ1 production, a precursor of TGFβ1, in CAFs but not in cancer cells; an effect that was accompanied by a reduction of circulating TGFβ1 in plasma. To our best knowledge, this is the first report to show a reduction of TGFβ1 production in TME. Furthermore, multiplex IHC analysis revealed reduced cellularity and increased TUNEL-positive apoptotic cells in E7130-treated xenografts. Increased microvessel density (MVD) and collagen IV (Col IV), an extracellular matrix (ECM) component associated with endothelial cells, were also observed in the TME, and plasma Col IV levels were also increased by E7130 treatment. MRI revealed increased accumulation of a contrast agent in xenografts. Moreover, diffusion-weighted MRI after E7130 treatment indicated reduction of tumor cellularity and interstitial fluid pressure. Overall, our findings strongly support the mechanism of action that E7130 alters the TME in therapeutically beneficial ways. Importantly, from a translational perspective, our data demonstrated MRI as a noninvasive biomarker to detect TME amelioration by E7130, supported by consistent changes in plasma biomarkers.
Collapse
Affiliation(s)
- Ken Ito
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
- National Cancer Center, Division of Functional Imaging, Kashiwa, Chiba, Japan
| | - Masayuki Yamaguchi
- National Cancer Center, Division of Functional Imaging, Kashiwa, Chiba, Japan
| | - Taro Semba
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Kimiyo Tabata
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Moe Tamura
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Muneo Aoyama
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Takanori Abe
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Osamu Asano
- Eisai Co., Ltd., Tsukuba Research Laboratory, Tsukuba, Ibaragi, Japan
| | - Yasuhiko Terada
- National Cancer Center, Division of Functional Imaging, Kashiwa, Chiba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Hirofumi Fujii
- National Cancer Center, Division of Functional Imaging, Kashiwa, Chiba, Japan
| |
Collapse
|
44
|
Mardanshahi A, Vaseghi S, Hosseinimehr SJ, Abedi SM, Molavipordanjani S. 99mTc(CO) 3-labeled 1-(2-Pyridyl)piperazine derivatives as radioligands for 5-HT 7 receptors. Ann Nucl Med 2024; 38:139-153. [PMID: 38032496 DOI: 10.1007/s12149-023-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The 5-hydroxytryptamine receptor (5-HTR) family includes seven classes of receptors. The 5-HT7R is the newest member of this family and contributes to different physiological and pathological processes. As a pathology, glioblastoma multiform (GBM) overexpresses 5-HT7R; hence, this study aims to develop radiolabeled aryl piperazine derivatives as 5-HT7R imaging agents. METHODS: Compounds 6 and 7 as 1-(3-nitropyridin-2-yl)piperazine derivatives were radiolabeled with fac-[99mTc(CO)3(H2O)3]+ and 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were obtained with high radiochemical purity (RCP > 94%). The stability of the radiotracers was evaluated in both saline and mouse serum. Specific binding on different cell lines including U-87 MG, MCF-7, SKBR3, and HT-29 was performed. The biodistribution of these radiotracers was evaluated in normal and U-87 MG Xenografted models. Finally, 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were applied for in vivo imaging in U-87 MG Xenografted models. RESULTS Specific binding study indicates that 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can recognize 5-HT7R of U87-MG cell line. The biodistribution study in normal mice indicates that the brain uptake of 99mTc(CO)3-[6] and 99mTc(CO)3-[7] is the highest at 30 min post-injection (0.8 ± 0.25 and 0.64 ± 0.18%ID/g, respectively). The data of the biodistribution study in the U87-MG xenograft model revealed that these radiotracers could accumulate in the tumor site, and the highest tumor uptake was observed at 60 min post-injection (3.38 ± 0.65 and 3.27 ± 0.5%ID/g, respectively). The injection of pimozide can block the tumor's radiotracer uptake, indicating the binding of these radiotracers to the 5-HT7R. The imaging study in the xenograft model also confirms the biodistribution data. The acquired images clearly show the tumor site, and the tumor-to-muscle ratio for 99mTc(CO)3-[6] and 99mTc(CO)3-[7] at 60 min was 3.33 and 3.88, respectively. CONCLUSIONS: 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can visualize tumor in the U87-MG xenograft model due to their affinity toward 5-HT7R.
Collapse
Affiliation(s)
- Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samaneh Vaseghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
45
|
Wang Y, Wang Y, Liu Y, Cheng H, Dagnew TM, Xu Y, Wang C. Synthesis and Characterization of a New Carbon-11 Labeled Positron Emission Tomography Radiotracer for Orexin 2 Receptors Neuroimaging. Drug Des Devel Ther 2024; 18:215-222. [PMID: 38312991 PMCID: PMC10838518 DOI: 10.2147/dddt.s404992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/13/2023] [Indexed: 02/06/2024] Open
Abstract
Purpose Orexin receptors (OXRs) play a crucial role in modulating various physiological and neuropsychiatric functions within the central nervous system (CNS). Despite their significance, the precise role of OXRs in the brain remains elusive. Positron emission tomography (PET) imaging is instrumental in unraveling CNS functions, and the development of specific PET tracers for OXRs is a current research focus. Methods The study investigated MDK-5220, an OX2R-selective agonist with promising binding properties (EC50 on OX2R: 0.023 μM, Ki on hOX2R: 0.14 μM). Synthesized and characterized as an OX2R PET probe, [11C]MDK-5220 was evaluated for its potential as a tracer. Biodistribution studies in mice were conducted to assess OX2R binding selectivity, with particular attention to its interaction with P-glycoprotein (P-gp) on the blood-brain barrier. Results [11C]MDK-5220 exhibited promising attributes as an OX2R PET probe, demonstrating robust OX2R binding selectivity in biodistribution studies. However, an observed interaction with P-gp impacted its brain uptake. Despite this limitation, [11C]MDK-5220 presents itself as a potential candidate for further development. Discussion The study provides insights into the functionality of the OX system and the potential of [11C]MDK-5220 as an OX2R PET probe. The observed interaction with P-gp highlights a consideration for future modifications to enhance brain uptake. The findings pave the way for innovative tracer development and propel ongoing research on OX systems, contributing to a deeper understanding of their role in the CNS. Conclusion [11C]MDK-5220 emerges as a promising OX2R PET probe, despite challenges related to P-gp interaction. This study lays the foundation for further exploration and development of PET probes targeting OXRs, opening avenues for advancing our understanding of OX system functionality within the brain.
Collapse
Affiliation(s)
- Yanli Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yongle Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- School of Pharmacy, Minzu University of China, Beijing, 100081, People’s Republic of China
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hua Cheng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tewodros Mulugeta Dagnew
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
46
|
Kondo Y, Kimura H, Chisaka R, Hattori Y, Kawashima H, Yasui H. One-pot two-step radioiodination based on copper-mediated iododeboronation and azide-alkyne cycloaddition reaction. Chem Commun (Camb) 2024; 60:714-717. [PMID: 38108251 DOI: 10.1039/d3cc04787c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This methodology demonstrates the ability to sequentially regulate copper-mediated radioiododeboronation and an azide-alkyne cycloaddition reaction, which facilitates the continuous incorporation of reagents into the reaction system and mediates the integration of the purification steps into the final process. Additionally, this reaction is suited to be conducted under mild conditions and yields target compounds through potent radiochemical conversions.
Collapse
Affiliation(s)
- Yuto Kondo
- Laboratory of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Hiroyuki Kimura
- Laboratory of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
- Division of Probe Chemistry for Disease Analysis, Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Ryota Chisaka
- Laboratory of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Yasunao Hattori
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hidekazu Kawashima
- Radioisotope Research Center, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hiroyuki Yasui
- Laboratory of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
47
|
Dhoundiyal S, Srivastava S, Kumar S, Singh G, Ashique S, Pal R, Mishra N, Taghizadeh-Hesary F. Radiopharmaceuticals: navigating the frontier of precision medicine and therapeutic innovation. Eur J Med Res 2024; 29:26. [PMID: 38183131 PMCID: PMC10768149 DOI: 10.1186/s40001-023-01627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024] Open
Abstract
This review article explores the dynamic field of radiopharmaceuticals, where innovative developments arise from combining radioisotopes and pharmaceuticals, opening up exciting therapeutic possibilities. The in-depth exploration covers targeted drug delivery, delving into passive targeting through enhanced permeability and retention, as well as active targeting using ligand-receptor strategies. The article also discusses stimulus-responsive release systems, which orchestrate controlled release, enhancing precision and therapeutic effectiveness. A significant focus is placed on the crucial role of radiopharmaceuticals in medical imaging and theranostics, highlighting their contribution to diagnostic accuracy and image-guided curative interventions. The review emphasizes safety considerations and strategies for mitigating side effects, providing valuable insights into addressing challenges and achieving precise drug delivery. Looking ahead, the article discusses nanoparticle formulations as cutting-edge innovations in next-generation radiopharmaceuticals, showcasing their potential applications. Real-world examples are presented through case studies, including the use of radiolabelled antibodies for solid tumors, peptide receptor radionuclide therapy for neuroendocrine tumors, and the intricate management of bone metastases. The concluding perspective envisions the future trajectory of radiopharmaceuticals, anticipating a harmonious integration of precision medicine and artificial intelligence. This vision foresees an era where therapeutic precision aligns seamlessly with scientific advancements, ushering in a new epoch marked by the fusion of therapeutic resonance and visionary progress.
Collapse
Affiliation(s)
- Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India.
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Gaaminepreet Singh
- Department of Physiology and Biophysics, Case Western Reserve University (CWRU), Cleveland, OH, USA
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Radheshyam Pal
- Department of Pharmacology, Pandaveswar School of Pharmacy, Pandaveswar, 713346, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, MP, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Lang M, Colby S, Ashby-Padial C, Bapna M, Jaimes C, Rincon SP, Buch K. An imaging review of the hippocampus and its common pathologies. J Neuroimaging 2024; 34:5-25. [PMID: 37872430 DOI: 10.1111/jon.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The hippocampus is a complex structure located in the mesial temporal lobe that plays a critical role in cognitive and memory-related processes. The hippocampal formation consists of the dentate gyrus, hippocampus proper, and subiculum, and its importance in the neural circuitry makes it a key anatomic structure to evaluate in neuroimaging studies. Advancements in imaging techniques now allow detailed assessment of hippocampus internal architecture and signal features that has improved identification and characterization of hippocampal abnormalities. This review aims to summarize the neuroimaging features of the hippocampus and its common pathologies. It provides an overview of the hippocampal anatomy on magnetic resonance imaging and discusses how various imaging techniques can be used to assess the hippocampus. The review explores neuroimaging findings related to hippocampal variants (incomplete hippocampal inversion, sulcal remnant and choroidal fissure cysts), and pathologies of neoplastic (astrocytoma and glioma, ganglioglioma, dysembryoplastic neuroepithelial tumor, multinodular and vacuolating neuronal tumor, and metastasis), epileptic (mesial temporal sclerosis and focal cortical dysplasia), neurodegenerative (Alzheimer's disease, progressive primary aphasia, and frontotemporal dementia), infectious (Herpes simplex virus and limbic encephalitis), vascular (ischemic stroke, arteriovenous malformation, and cerebral cavernous malformations), and toxic-metabolic (transient global amnesia and opioid-associated amnestic syndrome) etiologies.
Collapse
Affiliation(s)
- Min Lang
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha Colby
- Department of Neurosurgery, University of Utah Health, Salt Lake City, Utah, USA
| | | | - Monika Bapna
- School of Medicine, Georgetown University, Washington, DC, USA
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra P Rincon
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
49
|
Fayez H, Selim A, Shamma R, Rashed H. Intranasal Radioiodinated Ferulic Acid Polymeric Micelles as the First Nuclear Medicine Imaging Probe for ETRA Brain Receptor. Curr Radiopharm 2024; 17:209-217. [PMID: 38213167 DOI: 10.2174/0118744710269885231113070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 09/27/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION The aim of this work was to prepare a selective nuclear medicine imaging probe for the Endothelin 1 receptor A in the brain. MATERIAL AND METHODS Ferulic acid (an ETRA antagonist) was radiolabeled using 131I by direct electrophilic substitution method. The radiolabeled ferulic acid was formulated as polymeric micelles to allow intranasal brain delivery. Biodistribution was studied in Swiss albino mice by comparing brain uptake of 131I-ferulic acid after IN administration of 131I-ferulic acid polymeric micelles, IN administration of 131I-ferulic acid solution and IV administration of 131I-ferulic acid solution. RESULTS Successful radiolabeling was achieved with an RCY of 98 % using 200 μg of ferulic acid and 60 μg of CAT as oxidizing agents at pH 6, room temperature and 30 min reaction time. 131I-ferulic acid polymeric micelles were successfully formulated with the particle size of 21.63 nm and polydispersity index of 0.168. Radioactivity uptake in the brain and brain/blood uptake ratio for I.N 131I-ferulic acid polymeric micelles were greater than the two other routes at all periods. CONCLUSION Our results provide 131I-ferulic acid polymeric micelles as a hopeful nuclear medicine tracer for ETRA brain receptor.
Collapse
Affiliation(s)
- Hend Fayez
- Department of Labeled Compounds, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Adli Selim
- Department of Labeled Compounds, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rehab Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11561, Egypt
| | - Hassan Rashed
- Department of Labeled Compounds, Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University, Kantara, Egypt
| |
Collapse
|
50
|
Chiang CC, Wu YC, Lan CH, Wang KC, Tang HC, Chang ST. Exploring CNS Involvement in Pain Insensitivity in Hereditary Sensory and Autonomic Neuropathy Type 4: Insights from Tc-99m ECD SPECT Imaging. Tomography 2023; 9:2261-2269. [PMID: 38133079 PMCID: PMC10747491 DOI: 10.3390/tomography9060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Hereditary sensory and autonomic neuropathy type 4 (HSAN4), also known as congenital insensitivity to pain with anhidrosis (CIPA), is a rare genetic disorder caused by NTRK1 gene mutations, affecting nerve growth factor signaling. This study investigates the central nervous system's (CNS) involvement and its relation to pain insensitivity in HSAN4. We present a 15-year-old girl with HSAN4, displaying clinical signs suggestive of CNS impact, including spasticity and a positive Babinski's sign. Using Technetium-99m ethyl cysteinate dimer single-photon emission computed tomography (Tc-99m ECD SPECT) imaging, we discovered perfusion deficits in key brain regions, notably the cerebellum, thalamus, and postcentral gyrus. These regions process pain signals, providing insights into HSAN4's pain insensitivity. This study represents the first visualization of CNS perfusion abnormality in an HSAN4 patient. It highlights the intricate relationship between the peripheral and central nervous systems in HSAN4. The complexity of HSAN4 diagnosis, involving potential unidentified genes, underscores the need for continued research to refine diagnostic approaches and develop comprehensive treatments.
Collapse
Affiliation(s)
- Cheng-Chun Chiang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (C.-C.C.); (Y.-C.W.)
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.L.); (K.-C.W.); (H.-C.T.)
| | - Yu-Che Wu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; (C.-C.C.); (Y.-C.W.)
| | - Chiao-Hsin Lan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.L.); (K.-C.W.); (H.-C.T.)
| | - Kuan-Chieh Wang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.L.); (K.-C.W.); (H.-C.T.)
| | - Hsuan-Ching Tang
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.L.); (K.-C.W.); (H.-C.T.)
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, Taipei 114, Taiwan
| |
Collapse
|