1
|
Toma T, Miyakawa N, Arakaki Y, Watanabe T, Nakahara R, Ali TFS, Biswas T, Todaka M, Kondo T, Fujita M, Otsuka M, Araki E, Tateishi H. An antifibrotic compound that ameliorates hyperglycaemia and fat accumulation in cell and HFD mouse models. Diabetologia 2024; 67:2568-2584. [PMID: 39251430 DOI: 10.1007/s00125-024-06260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/03/2024] [Indexed: 09/11/2024]
Abstract
AIMS/HYPOTHESIS Appropriate management of blood glucose levels and the prevention of complications are important in the treatment of diabetes. We have previously reported on a compound named HPH-15 that is not only antifibrotic but also AMP-activated protein kinase (AMPK)-activating. In this study, we evaluated whether HPH-15 is useful as a therapeutic medication for diabetes. METHODS We examined the effects of HPH-15 on AMPK activation, glucose uptake, fat accumulation and lactic acid production in L6-GLUT4, HepG2 and 3T3-L1 cells, as a model of muscle, liver and fat tissue, respectively. Additionally, we investigated the glucose-lowering, fat-accumulation-suppressing, antifibrotic and AMPK-activating effect of HPH-15 in mice fed a high-fat diet (HFD). RESULTS HPH-15 at a concentration of 10 µmol/l increased AMPK activation, glucose uptake and membrane translocation of GLUT4 in each cell model to the same extent as metformin at 2 mmol/l. The production of lactic acid (which causes lactic acidosis) in HPH-15-treated cells was equal to or less than that observed in metformin-treated cells. In HFD-fed mice, HPH-15 lowered blood glucose from 11.1±0.3 mmol/l to 8.2±0.4 mmol/l (10 mg/kg) and 7.9±0.4 mmol/l (100 mg/kg) and improved insulin resistance. The HPH-15 (10 mg/kg) group showed the same level of AMPK activation as the metformin (300 mg/kg) group in all organs. The HPH-15-treated HFD-fed mice also showed suppression of fat accumulation and fibrosis in the liver and fat tissue; these effects were more significant than those obtained with metformin. Mice treated with high doses of HPH-15 also exhibited a 44% reduction in subcutaneous fat. CONCLUSIONS/INTERPRETATION HPH-15 activated AMPK at lower concentrations than metformin in vitro and in vivo and improved blood glucose levels and insulin resistance in vivo. In addition, HPH-15 was more effective than metformin at ameliorating fatty liver and adipocyte hypertrophy in HFD-fed mice. HPH-15 could be effective in preventing fatty liver, a common complication in diabetic individuals. Additionally, in contrast to metformin, high doses of HPH-15 reduced subcutaneous fat in HFD-fed mice. Presumably, HPH-15 has a stronger inhibitory effect on fat accumulation and fibrosis than metformin, accounting for the reduction of subcutaneous fat. Therefore, HPH-15 is potentially a glucose-lowering medication that can lower blood glucose, inhibit fat accumulation and ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobukazu Miyakawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuiichi Arakaki
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuro Watanabe
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryosei Nakahara
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taha F S Ali
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tanima Biswas
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Research and Development, Science Farm Ltd, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
- Kikuchi Medical Association Hospital, Kumamoto, Japan.
- Research Center for Health and Sport Sciences, Kumamoto Health Science University, Kumamoto, Japan.
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
- Research and Development Department, Research and Development Headquarters, Hirata Corporation, Kumamoto, Japan.
| |
Collapse
|
2
|
Toma T, Miyakawa N, Tateishi M, Todaka M, Kondo T, Fujita M, Otsuka M, Araki E, Tateishi H. An ADAM17 selective inhibitor promotes glucose uptake by activating AMPK. J Pharmacol Sci 2024; 154:37-46. [PMID: 38081682 DOI: 10.1016/j.jphs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
AMPK activation promotes glucose and lipid metabolism. Here, we found that our previously reported ADAM17 inhibitor SN-4 activates AMPK and promotes membrane translocation and sugar uptake of GLUT4. AMPK inhibitor dorsomorphin reversed this effect of SN-4, confirming that the effect is mediated by AMPK activation. In addition, SN-4 inhibited lipid accumulation in HepG2 under high glucose conditions by promoting lipid metabolism and inhibiting lipid synthesis. Although lactic acidosis is a serious side effect of biguanides such as metformin, SN-4 did not affect lactate production. Furthermore, SN-4 was confirmed to inhibit the release of TNF-α, a causative agent of insulin resistance, from adipocytes. In diabetes treatment, it is important to not only regulate blood sugar levels but also prevent complications. Our findings reveal the therapeutic potential of SN-4 as a new antidiabetic drug that can also help prevent future complications.
Collapse
Affiliation(s)
- Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Nobukazu Miyakawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Mika Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mikio Todaka
- Todaka Internal Medical Clinic, 2-13-5 Shimoezu, Higashi-ku, Kumamoto, 862-0960, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Kikuchi Medical Association Hospital, 75-3 Dairinji, Kikuchi, Kumamoto, 861-1306, Japan; Research Center for Health and Sport Sciences, Kumamoto Health Science University, 325 Izumicho, Kita-ku, Kumamoto, 861-5533, Japan.
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Research & Development, Hirata Corporation, 111 Hitotsugi Uekimachi, Kita-ku, Kumamoto, 861-0135, Japan.
| |
Collapse
|
3
|
Han B, Li S, Huang S, Huang J, Wu T, Chen X. Cuproptosis-related lncRNA SNHG16 as a biomarker for the diagnosis and prognosis of head and neck squamous cell carcinoma. PeerJ 2023; 11:e16197. [PMID: 37846311 PMCID: PMC10576967 DOI: 10.7717/peerj.16197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/06/2023] [Indexed: 10/18/2023] Open
Abstract
Background We aim to investigate the potential value of cuproptosis-related lncRNA signaling in predicting clinical prognosis and immunotherapy and its relationship with drug sensitivity in head and neck squamous cell carcinoma (HNSCC). Methods We first identified the lncRNAs associated with cuproptosis genes in HNSCC and then conducted a series of analytical studies to investigate the expression and prognostic significance of these lncRNAs. Finally, we used RT-qPCR to validate our findings in a laryngeal squamous cell carcinoma cell line and 12 pairs of laryngeal squamous cell carcinoma and adjacent normal tissues. Results We identified 11 differentially expressed lncRNAs that were associated with cuproptosis genes in HNSCC and also served as prognostic markers for this cancer. Enrichment analysis revealed that these lncRNAs were related to immune-related functions that were suppressed in patients with oncogene mutations in the high-risk group. The patients with a high tumor mutation burden exhibited poor overall survival (OS). We used the tumor immune dysfunction and exclusion model to show that the patients in the high-risk group had great potential for immune evasion and less effective immunotherapy. We also identified several drugs that could be effective in treating HNSCC. Experimental validation showed that AC090587.1 and AC012184.3 exhibited differential expression between the TU686 and HBE cell lines, and SNHG16 showed differential expression among the TU686, TU212, and control HBE cells. Among the 12 pairs of cancer and adjacent tissues collected in the clinic, only SNHG16 showed differential expression. Targeted therapy against SNHG16 holds promise as a prospective novel strategy for the clinical management of HNSCC.
Collapse
Affiliation(s)
- Baoai Han
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tingting Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Hamdy AK, Sakamoto T, Toma T, Sakamoto M, Abourehab MAS, Otsuka M, Fujita M, Tateishi H, Radwan MO. New Insights into the Structural Requirements of Isatin-Derived Pro-Apoptotic Agents against Acute Myeloid Leukemia. Pharmaceuticals (Basel) 2022; 15:ph15121579. [PMID: 36559030 PMCID: PMC9784816 DOI: 10.3390/ph15121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Searching for bioactive compounds within the huge chemical space is like trying to find a needle in a haystack. Isatin is a unique natural compound which is endowed with different bio-pertinent activities, especially in cancer therapy. Herein, we envisaged that adopting a hybrid strategy of isatin and α,β-unsaturated ketone would afford new chemical entities with strong chemotherapeutic potential. Of interest, compounds 5b and 5g demonstrated significant antiproliferative activities against different cancer genotypes according to NCI-60 screening. Concomitantly, their IC50 against HL-60 cells were 0.38 ± 0.08 and 0.57 ± 0.05 µM, respectively, demonstrating remarkable apoptosis and moderate cell cycle arrest at G1 phase. Intriguingly, an impressive safety profile for 5b was reflected by a 37.2 times selectivity against HL-60 over PBMC from a healthy donor. This provoked us to further explore their mechanism of action by in vitro and in silico tools. Conclusively, 5b and 5g stand out as strong chemotherapeutic agents that hold clinical promise against acute myeloid leukemia.
Collapse
Affiliation(s)
- Ahmed K. Hamdy
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Takashi Sakamoto
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Masaharu Sakamoto
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Department of Drug Discovery, Science Farm, Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Correspondence: (M.F.); (H.T.); (M.O.R.)
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Correspondence: (M.F.); (H.T.); (M.O.R.)
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza 12622, Egypt
- Correspondence: (M.F.); (H.T.); (M.O.R.)
| |
Collapse
|
5
|
Teixeira MP, Haddad NF, Passos EF, Andrade MN, Campos MLA, da Silva JMC, de Figueiredo CS, Giestal-de-Araujo E, de Carvalho DP, Miranda-Alves L, de Paiva LS. Ouabain Effects on Human Anaplastic Thyroid Carcinoma 8505C Cells. Cancers (Basel) 2022; 14:cancers14246168. [PMID: 36551653 PMCID: PMC9777381 DOI: 10.3390/cancers14246168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare, but aggressive, carcinoma derived from follicular cells. While conventional treatments may improve patients' survival, the lethality remains high. Therefore, there is an urgent need for more effective ATC treatments. Cardiotonic steroids, such as ouabain, have been shown to have therapeutic potential in cancer treatment. Thus, we aimed to evaluate ouabain's effects in human anaplastic thyroid cells. For this, 8505C cells were cultured in the presence or absence of ouabain. Viability, cell death, cell cycle, colony formation and migratory ability were evaluated in ouabain-treated and control 8505C cells. The expression of differentiation and epithelial-to-mesenchymal transition (EMT) markers, as well as IL-6, TGFb1 and their respective receptors were also quantified in these same cells. Our results showed that ouabain in vitro decreased the number of viable 8505C cells, possibly due to an inhibition of proliferation. A reduction in migration was also observed in ouabain-treated 8505C cells. In contrast, decreased mRNA levels of PAX8 and TTF1 differentiation markers and increased levels of the N-cadherin EMT marker, as well as IL-6 and TGFb1, were found in ouabain-treated 8505C cells. In short, ouabain may have anti-proliferative and anti-migratory effect on 8505C cells, but maintains an aggressive and undifferentiated profile.
Collapse
Affiliation(s)
- Mariana Pires Teixeira
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Correspondence: ; Tel.: +55-21-987080309
| | - Natalia Ferreira Haddad
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliza Freitas Passos
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcelle Novaes Andrade
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-912, Brazil
| | - Maria Luisa Arantes Campos
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| | - Joyle Moreira Carvalho da Silva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| | - Camila Saggioro de Figueiredo
- Departamento de Neurobiologia e Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-200, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Elizabeth Giestal-de-Araujo
- Departamento de Neurobiologia e Programa de Pós-Graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-200, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Denise Pires de Carvalho
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-912, Brazil
| | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24210-201, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| |
Collapse
|