1
|
Hua X, Ficaro MK, Wallace NL, Dai J. Epidermal RORα Maintains Barrier Integrity and Prevents Allergic Inflammation by Regulating Late Differentiation and Lipid Metabolism. Int J Mol Sci 2024; 25:10698. [PMID: 39409027 PMCID: PMC11476758 DOI: 10.3390/ijms251910698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The skin epidermis provides a barrier that is imperative for preventing transepidermal water loss (TEWL) and protecting against environmental stimuli. The underlying molecular mechanisms for regulating barrier functions and sustaining its integrity remain unclear. RORα is a nuclear receptor highly expressed in the epidermis of normal skin. Clinical studies showed that the epidermal RORα expression is significantly reduced in the lesions of multiple inflammatory skin diseases. In this study, we investigate the central roles of RORα in stabilizing skin barrier function using mice with an epidermis-specific Rora gene deletion (RoraEKO). While lacking spontaneous skin lesions or dermatitis, RoraEKO mice exhibited an elevated TEWL rate and skin characteristics of barrier dysfunction. Immunostaining and Western blot analysis revealed low levels of cornified envelope proteins in the RoraEKO epidermis, suggesting disturbed late epidermal differentiation. In addition, an RNA-seq analysis showed the altered expression of genes related to "keratinization" and "lipid metabolism" in RORα deficient epidermis. A lipidomic analysis further uncovered an aberrant ceramide composition in the RoraEKO epidermis. Importantly, epidermal Rora ablation greatly exaggerated percutaneous allergic inflammatory responses to oxazolone in an allergic contact dermatitis (ACD) mouse model. Our results substantiate the essence of epidermal RORα in maintaining late keratinocyte differentiation and normal barrier function while suppressing cutaneous inflammation.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Maria K. Ficaro
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Nicole L. Wallace
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
| | - Jun Dai
- School of Pharmacy, The University of Wisconsin, Madison, WI 53705, USA; (X.H.); (M.K.F.); (N.L.W.)
- Carbone Cancer Center, The University of Wisconsin, Madison, WI 53705, USA
- Skin Disease Research Center, The University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
2
|
Zeldin J, Ratley G, Shobnam N, Myles IA. The clinical, mechanistic, and social impacts of air pollution on atopic dermatitis. J Allergy Clin Immunol 2024; 154:861-873. [PMID: 39151477 PMCID: PMC11456380 DOI: 10.1016/j.jaci.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024]
Abstract
Atopic dermatitis (AD) is a complex disease characterized by dry, pruritic skin and significant atopic and psychological sequelae. Although AD has always been viewed as multifactorial, early research was dominated by overlapping genetic determinist views of either innate barrier defects leading to inflammation or innate inflammation eroding skin barrier function. Since 1970, however, the incidence of AD in the United States has increased at a pace that far exceeds genetic drift, thus suggesting a modern, environmental etiology. Another implicated factor is Staphylococcus aureus; however, a highly contagious microorganism is unlikely to be the primary etiology of a noncommunicable disease. Recently, the roles of the skin and gut microbiomes have received greater attention as potentially targetable drivers of AD. Here too, however, dysbiosis on a population scale would require induction by an environmental factor. In this review, we describe the evidence supporting the environmental hypothesis of AD etiology and detail the molecular mechanisms of each of the AD-relevant toxins. We also outline how a pollution-focused paradigm demands earnest engagement with environmental injustice if the field is to meaningfully address racial and geographic disparities. Identifying specific toxins and their mechanisms can also inform in-home and national mitigation strategies.
Collapse
Affiliation(s)
- Jordan Zeldin
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Grace Ratley
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Nadia Shobnam
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
3
|
Nguyen TD, Nguyen TH, Vo VT, Nguyen TQ. Panoramic review on polymeric microneedle arrays for clinical applications. Biomed Microdevices 2024; 26:41. [PMID: 39312013 DOI: 10.1007/s10544-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 11/01/2024]
Abstract
Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, 700000 HCMC, Viet Nam.
- Vietnam National University, Ho Chi Minh City, 700000 HCMC, Vietnam.
| |
Collapse
|
4
|
Chiang CC, Cheng WJ, Dela Cruz JRMS, Raviraj T, Wu NL, Korinek M, Hwang TL. Neutrophils in Atopic Dermatitis. Clin Rev Allergy Immunol 2024:10.1007/s12016-024-09004-3. [PMID: 39294505 DOI: 10.1007/s12016-024-09004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/20/2024]
Abstract
Neutrophils have a critical role in inflammation. Recent studies have identified their distinctive presence in certain types of atopic dermatitis (AD), yet their exact function remains unclear. This review aims to compile studies elucidating the role of neutrophils in AD pathophysiology. Proteins released by neutrophils, including myeloperoxidase, elastase, and lipocalin, contribute to pruritus progression in AD. Neutrophilic oxidative stress and the formation of neutrophil extracellular traps may further worsen AD. Elevated neutrophil elastase and high-mobility group box 1 protein expression in AD patients' skin exacerbates epidermal barrier defects. Neutrophil-mast cell interactions in allergic inflammation steer the immunological response toward Th2 imbalance and activate the Th17 pathway, particularly in response to allergens or infections linked to AD. Notably, drugs alleviating pruritic symptoms in AD inhibit neutrophilic inflammation. In conclusion, these findings underscore that neutrophils may be therapeutic targets for AD symptoms, emphasizing their inclusion in AD treatment strategies.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Wei-Jen Cheng
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Joseph Renz Marion Santiago Dela Cruz
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Thiyagarajan Raviraj
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences and Department of Medicine, Mackay Medical College, New Taipei, Taiwan.
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Mótyán JA, Tőzsér J. The human retroviral-like aspartic protease 1 (ASPRV1): From in vitro studies to clinical correlations. J Biol Chem 2024; 300:107634. [PMID: 39098535 PMCID: PMC11402058 DOI: 10.1016/j.jbc.2024.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a retroviral-like protein that was first identified in the skin due to its expression in the stratum granulosum layer of the epidermis. Accordingly, it is also referred to as skin-specific aspartic protease. Similar to the retroviral polyproteins, the full-length ASPRV1 also undergoes self-proteolysis, the processing of the precursor is necessary for the autoactivation of the protease domain. ASPRV1's functions are well-established at the level of the skin: it is part of the epidermal proteolytic network and has a significant contribution to skin moisturization via the limited proteolysis of filaggrin; it is only natural protein substrate identified so far. Filaggrin and ASPRV1 are also specific for mammalians, these proteins provide unique features for the skins of these species, and the importance of filaggrin processing in hydration is proved by the fact that some ASPRV1 mutations are associated with skin diseases such as ichthyosis. ASPRV1 was also found to be expressed in macrophage-like neutrophil cells, indicating that its functions are not limited to the skin. In addition, differential expression of ASPRV1 was detected in many diseases, with yet unknown significance. The currently known enzymatic characteristics-that had been revealed mainly by in vitro studies-and correlations with pathogenic phenotypes imply potentially important functions in multiple cell types, which makes the protein a promising target of functional studies. In this review we describe the currently available knowledge and future perspective in regard to ASPRV1.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Chen HY, Chen CL, Wu YH, Lin TK, Su YN, Guo YL, Lin SY, Lee CN. Neonatal Filaggrin Genetic Screening and Counseling to Prevent Atopic Dermatitis in High-Risk Infants. Dermatitis 2024; 35:483-488. [PMID: 38563786 DOI: 10.1089/derm.2023.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background: Mutations in filaggrin (FLG), the gene that codes for the skin barrier protein, have been shown to be associated with atopic dermatitis (AD). Objective: The objectives of this study were to determine the effects of genetic counseling and parental education on infants at a high risk of AD. Methods: We enrolled 7521 newborns in Taiwan from January 1, 2016, to March 30, 2020, and all of them received genetic testing encompassing 20 known FLG mutations. The genetic counseling and AD prevention and care team consisted of pediatricians, dermatologists, social workers, and genetic counselors. The counseling was arranged for at least 30 minutes within 45 days after delivery. Results: A total of 2963 high-risk infants (39.4%) were identified. Homozygous c.1432C>T was the most commonly identified mutation. A total of 418 neonates' parents were stratified into counseling and noncounseling groups, where the effect of parental education was evaluated. The genetically stratified parental education program was effective in preventing AD development by 63.3% in high-risk infants before 12 months of life (P < 0.0001). Conclusion: Genetic stratification and parental education are effective in preventing the development of AD in high-risk infants before 12 months of life.
Collapse
Affiliation(s)
- Han-Ying Chen
- From the Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- Program for Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei, Taiwan
| | - Chih-Ling Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hui Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tze-Kang Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Sofiva Genomics Co., Ltd., Taipei, Taiwan
| | - Yi-Ning Su
- Dianthus Maternal Fetal Medicine Clinic, Taipei, Taiwan
- Sofiva Genomics Co., Ltd., Taipei, Taiwan
| | - Yue-Liang Guo
- Department of Environment and Occupational Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Yu Lin
- From the Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Nan Lee
- From the Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
He K, Zang J, Ren T, Feng S, Liu M, Zhang X, Sun W, Chu J, Xu D, Liu F. Therapeutic Potential and Mechanisms of Mesenchymal Stem Cell and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Atopic Dermatitis. J Inflamm Res 2024; 17:5783-5800. [PMID: 39224661 PMCID: PMC11368146 DOI: 10.2147/jir.s479444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense itchiness that is highly prevalent worldwide.The pathogenesis of AD is complex and closely related to genetic factors, immunopathogenic factors, environmental factors, and skin infections. Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells derived from the mesenchymal stroma. They have anti-inflammatory, anti-apoptotic, and regenerative properties. Numerous studies demonstrate that MSCs can play a therapeutic role in AD by regulating various immune cells, maintaining immune homeostasis, and promoting the repair of damaged tissues. The key mediators for their biological functions are extracellular vesicles (MSC-Evs) and soluble cytokines derived from MSCs. The safety and efficacy of MSCs have been demonstrated in clinical Phase I / IIa trials for AD. This paper provides a comprehensive review of the pathogenesis of AD and the currently published studies on the function of MSCs and MSC-Evs in AD, primarily including the pathogenesis and the immunomodulatory impacts of MSCs and MSC-Evs, along with advancements in clinical studies. It provides insights for comprehending AD pathogenesis and investigating treatments based on MSCs.
Collapse
Affiliation(s)
- Kang He
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Jie Zang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Tingting Ren
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Shaojie Feng
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Mohan Liu
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Xude Zhang
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Wenchang Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Jinjin Chu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Donghua Xu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Fengxia Liu
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| |
Collapse
|
8
|
Xiao Q, Guo J, Lu Y, Gao J, Jia C, Huang M, Chu W, Yao W, Ning P, Xu Q, Xu N. Molybdenum Nanoparticles Alleviate MC903-Induced Atopic Dermatitis-Like Symptoms in Mice by Modulating the ROS-Mediated NF-κB and Nrf2 /HO-1 Signaling Pathways. Int J Nanomedicine 2024; 19:8779-8796. [PMID: 39220192 PMCID: PMC11365534 DOI: 10.2147/ijn.s472999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Atopic dermatitis (AD) is a chronic inflammatory skin condition that can affect individuals of all ages. Recent research has shown that oxidative stress plays a crucial role in the development of AD. Therefore, inhibiting oxidative stress may be an effective therapeutic approach for AD. Nano-molybdenum is a promising material for use as an antioxidant. We aimed to evaluate the therapeutic effects and preliminary mechanisms of molybdenum nanoparticles (Mo NPs) by using a murine model of chemically induced AD-like disease. Methods HaCaT cells, a spontaneously immortalized human keratinocyte cell line, were stimulated by tumor necrosis factor-alpha /interferon-gamma after pre-treatment with Mo NPs. Reactive oxygen species levels, production of inflammatory factors, and activation of the nuclear factor kappa-B and the nuclear factor erythroid 2-related factor pathways were then evaluated. Mo NPs was topically applied to treat a murine model of AD-like disease induced by MC903, a vitamin D3 analog. Dermatitis scores, pruritus scores, transepidermal water loss and body weight were evaluated. AD-related inflammatory factors and chemokines were evaluated. Activation of the nuclear factor kappa-B and nuclear factor erythroid 2-related factor / heme oxygenase-1 pathways was assessed. Results Our data showed that the topical application of Mo NPs dispersion could significantly alleviate AD skin lesions and itching and promote skin barrier repair. Further mechanistic experiments revealed that Mo NPs could inhibit the excessive activation of the nuclear factor kappa-B pathway, promote the expression of nuclear factor erythroid 2-related factor and heme oxygenase-1 proteins, and suppress oxidative stress reactions. Additionally, they inhibited the expression of thymic stromal lymphopoietin, inflammatory factors, and chemokines, thereby alleviating skin inflammation. Conclusion Mo NPs present a promising alternative treatment option for patients with AD as they could address three pivotal mechanisms in the pathogenesis of AD concurrently.
Collapse
Affiliation(s)
- Qin Xiao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jing Guo
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yongzhou Lu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jin Gao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Chuanlong Jia
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Minghuan Huang
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Weifang Chu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Wei Yao
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Peng Ning
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University, Shanghai, People’s Republic of China
| | - Qiannan Xu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Marques-Mejias A, Bartha I, Ciaccio CE, Chinthrajah RS, Chan S, Hershey GKK, Hui-Beckman JW, Kost L, Lack G, Layhadi JA, Leung DYM, Marshall HF, Nadeau KC, Radulovic S, Rajcoomar R, Shamji MH, Sindher S, Brough HA. Skin as the target for allergy prevention and treatment. Ann Allergy Asthma Immunol 2024; 133:133-143. [PMID: 38253125 DOI: 10.1016/j.anai.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/27/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
The fact that genetic and environmental factors could trigger disruption of the epithelial barrier and subsequently initiate a TH2 inflammatory cascade conversely proposes that protecting the same barrier and promoting adequate interactions with other organs, such as the gut, may be crucial for lowering the risk and preventing atopic diseases, particularly, food allergies. In this review, we provide an overview of structural characteristics that support the epithelial barrier hypothesis in patients with atopic dermatitis, including the most relevant filaggrin gene mutations, the recent discovery of the role of the transient receptor potential vanilloid 1, and the role involvement of the microbiome in healthy and damaged skin. We present experimental and human studies that support the mechanisms of allergen penetration, particularly the dual allergen exposure and the outside-in, inside-out, and outside-inside-outside hypotheses. We discuss classic skin-targeted therapies for food allergy prevention, including moisturizers, steroids, and topical calcineurin inhibitors, along with pioneering trials proposed to change their current use (Prevention of Allergy via Cutaneous Intervention and Stopping Eczema and ALlergy). We provide an overview of the novel therapies that enhance the skin barrier, such as probiotics and prebiotics topical application, read-through drugs, direct and indirect FLG replacement, and interleukin and janus kinases inhibitors. Last, we discuss the newer strategies for preventing and treating food allergies in the form of epicutaneous immunotherapy and the experimental use of single-dose of adeno-associated virus vector gene immunotherapy.
Collapse
Affiliation(s)
- Andreina Marques-Mejias
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| | - Irene Bartha
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| | - Christina E Ciaccio
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Department of Medicine, The University of Chicago, Chicago, Illinois
| | - R Sharon Chinthrajah
- Department of Medicine, and Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Susan Chan
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Laurie Kost
- Department of Medicine, and Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Gideon Lack
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Janice A Layhadi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Hannah F Marshall
- Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| | - Kari C Nadeau
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Suzana Radulovic
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Reena Rajcoomar
- Department of Medicine, and Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sayantani Sindher
- Department of Medicine, and Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, California
| | - Helen A Brough
- Department of Women and Children's Health (Paediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Children's Allergy Service, Evelina London, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
10
|
Jacques C, Jamin EL, Noustens A, Lauze C, Jouanin I, Doat G, Debrauwer L, Bessou-Touya S, Stockfleth E, Duplan H. Multi-omics analysis to evaluate the effects of solar exposure and a broad-spectrum SPF50+ sunscreen on markers of skin barrier function in a skin ecosystem model. Photochem Photobiol 2024. [PMID: 39054579 DOI: 10.1111/php.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Sun exposure induces major skin alterations, but its effects on skin metabolites and lipids remain largely unknown. Using an original reconstructed human epidermis (RHE) model colonized with human microbiota and supplemented with human sebum, we previously showed that a single dose of simulated solar radiation (SSR) significantly impacted the skin metabolome and microbiota. In this article, we further analyzed SSR-induced changes on skin metabolites and lipids in the same RHE model. Among the significantly altered metabolites (log2-fold changes with p ≤ 0.05), we found several natural moisturizing factors (NMFs): amino acids, lactate, glycerol, urocanic acid, pyrrolidone carboxylic acid and derivatives. Analyses of the stratum corneum lipids also showed that SSR induced lower levels of free fatty acids and higher levels of ceramides, cholesterols and its derivatives. An imbalance in NMFs and ceramides combined to an increase of proinflammatory lipids may participate in skin permeability barrier impairment, dehydration and inflammatory reaction to the sun. Our skin model also allowed the evaluation of an innovative ultraviolet/blue light (UV/BL) broad-spectrum sunscreen with a high sun protection factor (SPF50+). We found that using this sunscreen prior to SSR exposure could in part prevent SSR-induced alterations in NMFs and lipids in the skin ecosystem RHE model.
Collapse
Affiliation(s)
- Carine Jacques
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Anais Noustens
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Christophe Lauze
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Isabelle Jouanin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Gautier Doat
- Laboratoires Eau thermale Avène, Cauquillous, Lavaur, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Eggert Stockfleth
- Department of Dermatology, Venerology and Allergology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| |
Collapse
|
11
|
Hartmane I. Study of Genetic Mutations and Their Association With the Development of Atopic Dermatitis and Other Skin Diseases. PLASTIC AND AESTHETIC NURSING 2024; 44:200-209. [PMID: 39028474 DOI: 10.1097/psn.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The purpose of this study was to identify the heterogeneity of atopic dermatitis and to identify key genetic factors. This can lead to new approaches and personalized treatment strategies. I conducted a literature review of three scientific publication platforms (i.e., PubMed, Cochrane Library, Scopus) for records published between July 2011 and July 2023 using key words related to the genetics of atopic dermatitis. The high heritability and genetic pleiotropia of atopic dermatitis emphasize the importance of its genetic predisposition and interaction with concomitant diseases. The study also shows the role of various genes associated with immunity and inflammatory reactions, as well as the high heritability of atopic dermatitis, particularly among twins. Genetic mutations, specifically polymorphisms of genes encoding immune factors and inflammatory responses, determine an individual's predisposition to atopic dermatitis. Research findings also point to genetic aspects associated with other skin conditions such as psoriasis and vitiligo, confirming the existence of common genetic mechanisms between these diseases. Specifically, polymorphisms of the filaggrin gene have been found to be key genetic determinants of atopic dermatitis. I analyzed the genetic basis of atopic dermatitis, emphasizing the importance of genetic determinants and their interaction with the immune system and extracellular matrix. This study contributes to the understanding of the mechanisms of atopic dermatitis and opens new perspectives for individualized treatments.
Collapse
Affiliation(s)
- Ilona Hartmane
- Ilona Hartmane, MD, is a Dermatologist at the Department of Dermatology and Venereology, Rīga Stradinš University, Rīga, Latvia
| |
Collapse
|
12
|
Briot J, Pons C, Foucher A, Goudounèche D, Gaudenzio N, Donovan M, Bernard D, Méchin MC, Simon M. Prolyl Endopeptidase Is Involved in Filaggrinolysis and Cornification. J Invest Dermatol 2024:S0022-202X(24)00435-4. [PMID: 38879153 DOI: 10.1016/j.jid.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 08/12/2024]
Abstract
FLG is a well-known biomarker of atopic dermatitis and skin dryness. Its full proteolysis (or filaggrinolysis) produces the major constituents of the natural moisturizing factor. Some proteases/peptidases remain to be identified in this multistep process. Mining 16 omics analyses, we identified prolyl endopeptidase (PREP) as a candidate peptidase. Indirect immunofluorescence and confocal analysis demonstrated its localization in the granular and deep cornified layers, where it colocalized with FLG. Tandem mass spectroscopy and fluorescent quenching activity assays showed that PREP cleaved several synthetic peptides derived from the FLG sequence, at the carboxyl side of an internal proline. Deimination of these peptides increased PREP enzymatic efficiency. Specific inhibition of PREP in reconstructed human epidermis using benzyloxycarbonyl-pro-prolinal induced the accumulation of FLG monomers. Downregulation of PREP expression in reconstructed human epidermis using RNA interference confirmed the impact of PREP on FLG metabolism and highlighted a more general role of PREP in keratinocyte differentiation. Indeed, quantitative global proteomic, western blotting, and RT-qPCR analyses showed a strong reduction in the expression of bleomycin hydrolase, known to be involved in filaggrinolysis, and of several other actors of cornification such as loricrin. Consequently, at the functional level, the transepidermal electric resistance was drastically reduced.
Collapse
Affiliation(s)
- Julie Briot
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Carole Pons
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Aude Foucher
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Toulouse III University, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France; Genoskin SAS, Toulouse, France
| | - Mark Donovan
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | | | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France.
| |
Collapse
|
13
|
Chen Q, Wei N, Lu Y. A modified protocol for studying filaggrin degradation using a reconstructed human epidermis model under low and high humidity. Int J Cosmet Sci 2024; 46:380-390. [PMID: 38124299 DOI: 10.1111/ics.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Filaggrin (FLG) is an essential protein that plays a vital role in maintaining skin barrier function and moisture levels, allowing the skin to adapt to dry environments. However, the precise temporal dynamics of FLG metabolism in the human epidermis remain poorly understood, and suitable tools to study these time-dependent effects are currently lacking. OBJECTIVE To investigate the molecular mechanisms and time course of FLG metabolism and skin barrier function under high- and low-humidity conditions, utilizing a reconstructed epidermis model. METHODS EpiSkin specimens cultured under humid or dry conditions for varying durations (2-48 h) were compared by assessing FLG degradation and skin barrier formation using immunofluorescence staining and western blotting. RESULTS Under conditions of low humidity, the proteolysis of FLG in EpiSkin increased between 4 and 12 h and was accompanied by elevated levels of cysteine-aspartic protease (caspase)-14. The expression of peptidyl arginine deiminase 1 and calpain 1 also increased at 4 h. However, after 24 h, the expression of these three FLG-degrading proteins significantly decreased. Conversely, the levels of pyrrolidone-5-carboxylic acid and urocanic acid initially decreased at 2 h and then increased between 12 and 24 h. Additionally, the expression of skin barrier proteins, such as FLG, transglutaminase 5, loricrin and zonula occludens-1, decreased starting from 12 h. Notably, epidermal cell viability and activity were also inhibited. CONCLUSION We propose a reliable and ethical model to study the temporal dynamics of FLG metabolism and its role in skin barrier function. Using a commercially reconstructed epidermis to mimic dry skin formation obviates the need for animal and human testing.
Collapse
Affiliation(s)
- Qilong Chen
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| | - Ning Wei
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
| | - Yina Lu
- Technology Innovation Center, JAKA Biotech. Co., Ltd., Shanghai, China
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Fioretti T, Martora F, De Maggio I, Ambrosio A, Piscopo C, Vallone S, Amato F, Passaro D, Acquaviva F, Gaudiello F, Di Girolamo D, Maiolo V, Zarrilli F, Esposito S, Vitiello G, Auricchio L, Sammarco E, Brasi DD, Petillo R, Gambale A, Cattaneo F, Ammendola R, Nappa P, Esposito G. Comprehensive Molecular Analysis of Disease-Related Genes as First-Tier Test for Early Diagnosis, Classification, and Management of Patients Affected by Nonsyndromic Ichthyosis. Biomedicines 2024; 12:1112. [PMID: 38791074 PMCID: PMC11117922 DOI: 10.3390/biomedicines12051112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited ichthyoses are a group of clinically and genetically heterogeneous rare disorders of skin keratinization with overlapping phenotypes. The clinical picture and family history are crucial to formulating the diagnostic hypothesis, but only the identification of the genetic defect allows the correct classification. In the attempt to molecularly classify 17 unrelated Italian patients referred with congenital nonsyndromic ichthyosis, we performed massively parallel sequencing of over 50 ichthyosis-related genes. Genetic data of 300 Italian unaffected subjects were also analyzed to evaluate frequencies of putative disease-causing alleles in our population. For all patients, we identified the molecular cause of the disease. Eight patients were affected by autosomal recessive congenital ichthyosis associated with ALOX12B, NIPAL4, and TGM1 mutations. Three patients had biallelic loss-of-function variants in FLG, whereas 6/11 males were affected by X-linked ichthyosis. Among the 24 different disease-causing alleles we identified, 8 carried novel variants, including a synonymous TGM1 variant that resulted in a splicing defect. Moreover, we generated a priority list of the ichthyosis-related genes that showed a significant number of rare and novel variants in our population. In conclusion, our comprehensive molecular analysis resulted in an effective first-tier test for the early classification of ichthyosis patients. It also expands the genetic, mutational, and phenotypic spectra of inherited ichthyosis and provides new insight into the current understanding of etiologies and epidemiology of this group of rare disorders.
Collapse
Affiliation(s)
- Tiziana Fioretti
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
| | - Fabrizio Martora
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Ilaria De Maggio
- Medical and Laboratory Genetics Unit, AORN A. Cardarelli, 80131 Naples, Italy; (I.D.M.); (C.P.); (R.P.)
| | - Adelaide Ambrosio
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
| | - Carmelo Piscopo
- Medical and Laboratory Genetics Unit, AORN A. Cardarelli, 80131 Naples, Italy; (I.D.M.); (C.P.); (R.P.)
| | - Sabrina Vallone
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Felice Amato
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Diego Passaro
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Fabio Acquaviva
- Medical Genetics Unit, Department of General and Emergency Paediatrics, AORN Santobono-Pausilipon, 80122 Naples, Italy; (F.A.); (D.D.B.)
| | - Francesca Gaudiello
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Daniela Di Girolamo
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Valeria Maiolo
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Federica Zarrilli
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Speranza Esposito
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Giuseppina Vitiello
- Medical Genetics Unit, Integrated Care Department of Laboratory and Transfusion Medicine, Federico II Hospital, 80131 Naples, Italy; (G.V.); (A.G.)
| | - Luigi Auricchio
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Elena Sammarco
- Pediatric Dermatology Unit, Department of Dermo-Immuno-Rheumatology Paediatrics, AORN Santobono-Pausilipon, 80122 Naples, Italy;
| | - Daniele De Brasi
- Medical Genetics Unit, Department of General and Emergency Paediatrics, AORN Santobono-Pausilipon, 80122 Naples, Italy; (F.A.); (D.D.B.)
| | - Roberta Petillo
- Medical and Laboratory Genetics Unit, AORN A. Cardarelli, 80131 Naples, Italy; (I.D.M.); (C.P.); (R.P.)
| | - Antonella Gambale
- Medical Genetics Unit, Integrated Care Department of Laboratory and Transfusion Medicine, Federico II Hospital, 80131 Naples, Italy; (G.V.); (A.G.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| | - Paola Nappa
- Section of Dermatology, Department of Clinical Medicine and Surgery, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (F.M.); (F.G.); (L.A.); (P.N.)
| | - Gabriella Esposito
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy; (T.F.); (A.A.); (S.V.); (F.A.); (F.Z.); (S.E.)
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine, University of Naples “Federico II”, 80131 Naples, Italy; (D.P.); (V.M.); (F.C.); (R.A.)
| |
Collapse
|
15
|
Luo M, Zheng Y, Zhuo Q, Lin L, Han Y. The causal effects of atopic dermatitis on the risk of skin cancers: A two-sample Mendelian randomization study. J Eur Acad Dermatol Venereol 2024; 38:703-709. [PMID: 38009387 DOI: 10.1111/jdv.19674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Observational and epidemiological studies show conflicting results on the relationship between atopic dermatitis and skin cancer. Additionally, observational studies are susceptible to the reverse causation and confounders, thus, may not interpret true causal relationships. The causal effects of atopic dermatitis on the risk of skin cancers remains unclear. OBJECTIVES To investigate the causal relationship between atopic dermatitis and skin cancer including cutaneous malignant melanoma, cutaneous squamous cell carcinoma, basal cell carcinoma and actinic keratosis. METHODS We performed a two-sample Mendelian randomization analysis based on summary datasets of public genome-wide association studies of European ancestry. The inverse variance-weighted approach was applied as the main analysis. MR-Egger and weighted median methods were used to complement the inverse variance-weighted results. A series of sensitivity analyses were used to ensure the robustness of the causality estimates. RESULTS Inverse variance-weighted method showed that genetically predicted dermatitis patients were significantly associated with an increased incidence of basal cell carcinoma (OR, 1.20; 95% CI, 1.10-1.31; p = 4.07E-05) and cutaneous squamous cell carcinoma (OR, 1.14; 95% CI, 1.10-1.19; p = 1.05E-11). However, we did not find a significant causality for atopic dermatitis on melanoma neither did we find actinic keratosis. Subsequent sensitive analyses supported these results. CONCLUSIONS Our study identified the causality between atopic dermatitis basal cell carcinoma and squamous cell carcinoma. Accordingly, regular skin cancer screening is recommended for patients with atopic dermatitis.
Collapse
Affiliation(s)
- Min Luo
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yaxuan Zheng
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qianwei Zhuo
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| | - Lihang Lin
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yue Han
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Tan IJ, Podwojniak A, Parikh A, Cohen BA. Precision Dermatology: A Review of Molecular Biomarkers and Personalized Therapies. Curr Issues Mol Biol 2024; 46:2975-2990. [PMID: 38666916 PMCID: PMC11049353 DOI: 10.3390/cimb46040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The evolution of personalized medicine in dermatology signifies a transformative shift towards individualized treatments, driven by the integration of biomarkers. These molecular indicators serve beyond diagnostics, offering insights into disease staging, prognosis, and therapeutic monitoring. Specific criteria guide biomarker selection, ensuring attributes like specificity, sensitivity, cost feasibility, stability, rapid detection, and reproducibility. This literature review, based on data from PubMed, SCOPUS, and Web of Science, explores biomarkers in Hidradenitis Suppurativa (HS), Psoriasis, Atopic Dermatitis (AD), Alopecia Areata (AA), Vitiligo, and Chronic Spontaneous Urticaria (CSU). In HS, TNF-α, IL-1β, and MMPs serve as biomarkers, influencing targeted therapies like adalimumab and anakinra. Psoriasis involves biomarkers such as TNF-α, IL-23, and HLA genes, shaping treatments like IL23 and IL17 inhibitors. AD biomarkers include ECP, IL-4, IL-13, guiding therapies like dupilumab and tralokinumab. For AA, lipocalin-2, cytokines, and genetic polymorphisms inform JAK inhibitors' use. Vitiligo biomarkers range from cytokines to genetic markers like TYR, TYRP1, guiding treatments like JAK inhibitors. CSU biomarkers encompass IgE, cytokines, and autologous serum tests, influencing therapies like omalizumab and cyclosporine. Comparing conditions, common proinflammatory markers reveal limited specificity. While some biomarkers aid diagnosis and standard treatments, others hold more scientific than clinical value. Precision medicine, driven by biomarkers, has shown success in skin malignancies. Future directions involve AI-powered algorithms, nanotechnology, and multi-omics integration for personalized dermatological care.
Collapse
Affiliation(s)
- Isabella J. Tan
- Rutgers Robert Wood Johnson Medical School, 125 Paterson Steet, New Brunswick, NJ 08901, USA; (I.J.T.); (A.P.)
| | - Alicia Podwojniak
- Rowan-Virtua School of Osteopathic Medicine, 113 E Laurel Road, Stratford, NJ 08084, USA;
| | - Aarushi Parikh
- Rutgers Robert Wood Johnson Medical School, 125 Paterson Steet, New Brunswick, NJ 08901, USA; (I.J.T.); (A.P.)
| | - Bernard A. Cohen
- Department of Dermatology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
17
|
Terhaar H, Saleem M, Yusuf N. Extracorporeal Photopheresis in Dermatological Diseases. Int J Mol Sci 2024; 25:3011. [PMID: 38474257 DOI: 10.3390/ijms25053011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Extracorporeal photopheresis (ECP) is an apheresis procedure that is conventionally used as a first-line treatment for cutaneous and leukemic subtypes of T-cell lymphoma, such as Sezary's syndrome and mycosis fungoides. Over the past three decades, its immunotherapeutic properties have been tested on a variety of autoimmune conditions, including many dermatologic diseases. There is ample evidence of ECP's ability to modify leukocytes and alter cytokine production for certain dermatologic diseases that have been refractory to first-line treatments, such as atopic dermatitis. However, the evidence on the efficacy of ECP for the treatment of these dermatologic diseases is unclear and/or lacks sufficient evidence. The purpose of this paper is to review the literature on the utilization and clinical efficacy of ECP in the treatment of several [autoimmune] dermatologic diseases and discuss its applications, guidelines, recommendations, and future implementation for dermatologic diseases.
Collapse
Affiliation(s)
- Hanna Terhaar
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Saleem
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
18
|
Zhang H, Jia T, Che D, Peng B, Chu Z, Song X, Zeng W, Geng S. Decreased TET2/5-hmC reduces the integrity of the epidermal barrier via epigenetic dysregulation of filaggrin in psoriatic lesions. J Dermatol Sci 2024; 113:103-112. [PMID: 38331641 DOI: 10.1016/j.jdermsci.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND TET2 participates in tumor progression and intrinsic immune homeostasis via epigenetic regulation. TET2 has been reported to be involved in maintaining epithelial barrier homeostasis and inflammation. Abnormal epidermal barrier function and TET2 expression have been detected in psoriatic lesions. However, the mechanisms underlying the role of TET2 in psoriasis have not yet been elucidated. OBJECTIVE To define the role of TET2 in maintaining epithelial barrier homeostasis and the exact epigenetic mechanism in the dysfunction of the epidermal barrier in psoriasis. METHODS We analyzed human psoriatic skin lesions and datasets from the GEO database, and detected the expression of TET2/5-hmC together with barrier molecules by immunohistochemistry. We constructed epidermal-specific TET2 knockout mice to observe the effect of TET2 deficiency on epidermal barrier function via toluidine blue penetration assay. Further, we analyzed changes in the expression of epidermal barrier molecules by immunofluorescence in TET2-specific knockout mice and psoriatic model mice. RESULTS We found that decreased expression of TET2/5-hmC correlated with dysregulated barrier molecules in human psoriatic lesions. Epidermal-specific TET2 knockout mice showed elevated transdermal water loss associated with abnormal epidermal barrier molecules. Furthermore, we observed that TET2 knockdown in keratinocytes reduced filaggrin expression via filaggrin promoter methylation. CONCLUSION Aberrant epidermal TET2 affects the integrity of the epidermal barrier through the epigenetic dysregulation of epidermal barrier molecules, particularly filaggrin. Reduced TET2 expression is a critical factor contributing to an abnormal epidermal barrier in psoriasis.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Jia
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Delu Che
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Bin Peng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Zhaowei Chu
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China
| | - Xiangjin Song
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weihui Zeng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China.
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, The Second Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, China; Center for Dermatology Disease, Precision Medical Institute, Xi'an, China.
| |
Collapse
|
19
|
Yun JH, Hong Y, Hong MH, Kim G, Lee JS, Woo RS, Lee J, Yang EJ, Kim IS. Anti-inflammatory effects of neuregulin-1 in HaCaT keratinocytes and atopic dermatitis-like mice stimulated with Der p 38. Cytokine 2024; 174:156439. [PMID: 38134557 DOI: 10.1016/j.cyto.2023.156439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023]
Abstract
Neuregulin (NRG)-1 plays fundamental roles in several organ systems after binding to its receptors, ErbB2 and ErbB4. This study examines the role of NRG-1 in atopic dermatitis (AD), a chronic skin disease that causes dryness, pruritus, and inflammation. In mice administered Der p 38, the skin presents AD-like symptoms including filaggrin downregulation and infiltration of neutrophils and eosinophils. Noticeably, there is an increased expression of NRG-1, ErbB2, and ErbB4 in the skin. Upregulation of these proteins is significantly correlated to the clinical skin severity score. In human keratinocyte HaCaT cells, exposure to Der p 38 decreased filaggrin expression, and NRG-1 alone had no effect on the expression. However, co-treatment of Der p 38 with NRG-1 enhanced the filaggrin expression decreased by Der p 38. Pre-treatment with AG879 (an ErbB2 inhibitor) or ErbB4 siRNA blocked the recovery of filaggrin expression in the cells after co-treatment with Der p 38 and NRG-1. Der p 38 treatment enhanced the secretion of interleukin-6 (IL-6), IL-8, and monocyte chemoattractant protein-1 (MCP-1). Co-treatment of Der p 38 with NRG-1 lowered the cytokine secretion increased by Der p 38, although NRG-1 alone was not effective on cytokine alteration. Neutrophil apoptosis was not altered by NRG-1 or supernatants of cells treated with NRG-1, but the cell supernatants co-treated with Der p 38 and NRG-1 blocked the anti-apoptotic effects of Der p 38-treated supernatants on neutrophils, which was involved in the activation of caspase 9 and caspase 3. Taken together, we determined that NRG-1 has anti-inflammatory effects in AD triggered by Der p 38. These results will pave the way to understanding the functions of NRG-1 and in the future development of AD treatment.
Collapse
Affiliation(s)
- Jeong Hee Yun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Yujin Hong
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Min Hwa Hong
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Geunyeong Kim
- Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan 54538, Republic of Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, Eulji University School of Medicine, Daejeon 34824, Republic of Korea
| | - Juram Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Eun Ju Yang
- Department of Biomedical Laboratory Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea.
| | - In Sik Kim
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Uijeongbu 11759, Republic of Korea; Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea.
| |
Collapse
|
20
|
Kim SH, Yu SY, Choo JH, Kim J, Ahn K, Hwang SY. Epigenetic Methylation Changes in Pregnant Women: Bisphenol Exposure and Atopic Dermatitis. Int J Mol Sci 2024; 25:1579. [PMID: 38338858 PMCID: PMC10855599 DOI: 10.3390/ijms25031579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Bisphenol is a chemical substance widely used in plastic products and food containers. In this study, we observed a relationship between DNA methylation and atopic dermatitis (AD) in the peripheral blood mononuclear cells (PBMCs) of pregnant women exposed to bisphenol A (BPA) and its alternatives, bisphenol S (BPS) and bisphenol F (BPF). DNA methylation is an epigenetic mechanism that regulates gene expression, which can be altered by environmental factors, and affects the onset and progression of diseases. We found that genes belonging to the JAK-STAT and PI3K-AKT signaling pathways were hypomethylated in the blood of pregnant women exposed to bisphenols. These genes play important roles in skin barrier function and immune responses, and may influence AD. Therefore, we suggest that not only BPA, but also BPS and BPF, which are used as alternatives, can have a negative impact on AD through epigenetic mechanisms.
Collapse
Affiliation(s)
- Seung Hwan Kim
- Department of Bio-Nanotechnology, Hanyang University, Ansan 15588, Republic of Korea;
| | - So Yeon Yu
- Department of Molecular & Life Science, Hanyang University, Ansan 15588, Republic of Korea; (S.Y.Y.); (J.H.C.)
| | - Jeong Hyeop Choo
- Department of Molecular & Life Science, Hanyang University, Ansan 15588, Republic of Korea; (S.Y.Y.); (J.H.C.)
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea (K.A.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea (K.A.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Seung Yong Hwang
- Department of Medicinal and Life Sciences, Hanyang University, Ansan 15588, Republic of Korea
- Department of Applied Artificial Intelligence, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
21
|
Steinbinder J, Sachslehner AP, Holthaus KB, Eckhart L. Comparative genomics of monotremes provides insights into the early evolution of mammalian epidermal differentiation genes. Sci Rep 2024; 14:1437. [PMID: 38228724 PMCID: PMC10791643 DOI: 10.1038/s41598-024-51926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
The function of the skin as a barrier against the environment depends on the differentiation of epidermal keratinocytes into highly resilient corneocytes that form the outermost skin layer. Many genes encoding structural components of corneocytes are clustered in the epidermal differentiation complex (EDC), which has been described in placental and marsupial mammals as well as non-mammalian tetrapods. Here, we analyzed the genomes of the platypus (Ornithorhynchus anatinus) and the echidna (Tachyglossus aculeatus) to determine the gene composition of the EDC in the basal clade of mammals, the monotremes. We report that mammal-specific subfamilies of EDC genes encoding small proline-rich proteins (SPRRs) and late cornified envelope proteins as well as single-copy EDC genes such as involucrin are conserved in monotremes, suggesting that they have originated in stem mammals. Monotremes have at least one gene homologous to the group of filaggrin (FLG), FLG2 and hornerin (HRNR) in placental mammals, but no clear one-to-one pairwise ortholog of either FLG, FLG2 or HRNR. Caspase-14, a keratinocyte differentiation-associated protease implicated in the processing of filaggrin, is encoded by at least 3 gene copies in the echidna. Our results reveal evolutionarily conserved and clade-specific features of the genetic regulation of epidermal differentiation in monotremes.
Collapse
Affiliation(s)
- Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Li MWY, Burnett L, Dai P, Avery DT, Noori T, Voskoboinik I, Shah PR, Tatian A, Tangye SG, Gray PE, Ma CS. Filaggrin-Associated Atopic Skin, Eye, Airways, and Gut Disease, Modifying the Presentation of X-Linked Reticular Pigmentary Disorder (XLPDR). J Clin Immunol 2024; 44:38. [PMID: 38165470 DOI: 10.1007/s10875-023-01637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND X-linked reticular pigmentary disorder (XLPDR) is a rare condition characterized by skin hyperpigmentation, ectodermal features, multiorgan inflammation, and recurrent infections. All probands identified to date share the same intronic hemizygous POLA1 hypomorphic variant (NM_001330360.2(POLA1):c.1393-354A > G) on the X chromosome. Previous studies have supported excessive type 1 interferon (IFN) inflammation and natural killer (NK) cell dysfunction in disease pathogenesis. Common null polymorphisms in filaggrin (FLG) gene underlie ichthyosis vulgaris and atopic predisposition. CASE A 9-year-old boy born to non-consanguineous parents developed eczema with reticular skin hyperpigmentation in early infancy. He suffered recurrent chest infections with chronic cough, clubbing, and asthma, moderate allergic rhinoconjunctivitis with keratitis, multiple food allergies, and vomiting with growth failure. Imaging demonstrated bronchiectasis, while gastroscopy identified chronic eosinophilic gastroduodenitis. Interestingly, growth failure and bronchiectasis improved over time without specific treatment. METHODS Whole-genome sequencing (WGS) using Illumina short-read sequencing was followed by both manual and orthogonal automated bioinformatic analyses for single-nucleotide variants, small insertions/deletions (indels), and larger copy number variations. NK cell cytotoxic function was assessed using 51Cr release and degranulation assays. The presence of an interferon signature was investigated using a panel of six interferon-stimulated genes (ISGs) by QPCR. RESULTS WGS identified a de novo hemizygous intronic variant in POLA1 (NM_001330360.2(POLA1):c.1393-354A > G) giving a diagnosis of XLPDR, as well as a heterozygous nonsense FLG variant (NM_002016.2(FLG):c.441del, NP_0020.1:p.(Arg151Glyfs*43)). Compared to healthy controls, the IFN signature was elevated although the degree moderated over time with the improvement in his chest disease. NK cell functional studies showed normal cytotoxicity and degranulation. CONCLUSION This patient had multiple atopic manifestations affecting eye, skin, chest, and gut, complicating the presentation of XLPDR. This highlights that common FLG polymorphisms should always be considered when assessing genotype-phenotype correlations of other genetic variation in patients with atopic symptoms. Additionally, while the patient exhibited an enhanced IFN signature, he does not have an NK cell defect, suggesting this may not be a constant feature of XLPDR.
Collapse
Affiliation(s)
- Margaret W Y Li
- Department of Allergy and Immunology, Sydney Children's Hospital, Sydney, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia.
| | - Leslie Burnett
- Garvan Institute of Medical Research, Sydney, Australia
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, St Vincent's Healthcare Clinical Campus, UNSW Sydney, Sydney, Australia
| | - Pei Dai
- Garvan Institute of Medical Research, Sydney, Australia
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Sydney, Australia
| | | | | | | | - Parth R Shah
- Department of Ophthalmology, Sydney Children's Hospital, Sydney, Australia
| | - Artiene Tatian
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Department of Dermatology, Sydney Children's Hospital, Sydney, Australia
| | - Stuart G Tangye
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Sydney, Australia
| | - Paul E Gray
- Department of Allergy and Immunology, Sydney Children's Hospital, Sydney, Australia.
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Sydney, Australia.
- School of Medicine, Western Sydney University, Sydney, Australia.
| | - Cindy S Ma
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
- Clinical Immunogenomics Research Consortium Australasia (CIRCA), Sydney, Australia
| |
Collapse
|
23
|
Ständer S, Luger T, Kim B, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Yosipovitch G. Cutaneous Components Leading to Pruritus, Pain, and Neurosensitivity in Atopic Dermatitis: A Narrative Review. Dermatol Ther (Heidelb) 2024; 14:45-57. [PMID: 38182845 PMCID: PMC10828226 DOI: 10.1007/s13555-023-01081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic, relapsing immunoinflammatory skin condition characterized by sensations such as pruritis, pain, and neuronal hypersensitivity. The mechanisms underlying these sensations are multifactorial and involve complex crosstalk among several cutaneous components. This review explores the role these components play in the pathophysiology of atopic dermatitis. In the skin intercellular spaces, sensory nerves interact with keratinocytes and immune cells via myriad mediators and receptors. These interactions generate action potentials that transmit pruritis and pain signals from the peripheral nervous system to the brain. Keratinocytes, the most abundant cell type in the epidermis, are key effector cells, triggering crosstalk with immune cells and sensory neurons to elicit pruritis, pain, and inflammation. Filaggrin expression by keratinocytes is reduced in atopic dermatitis, causing a weakened skin barrier and elevated skin pH. Fibroblasts are the main cell type in the dermis and, in atopic dermatitis, appear to reduce keratinocyte differentiation, further weakening the skin barrier. Fibroblasts and mast cells promote inflammation while dermal dendritic cells appear to attenuate inflammation. Inflammatory cytokines and chemokines play a major role in AD pathogenesis. Type 2 immune responses typically generate pruritis, and the type 1 and type 3 responses generate pain. Type 2 responses and increased skin pH contribute to barrier dysfunction and promote dysbiosis of the skin microbiome, causing the proliferation of Staphyloccocus aureus. In conclusion, understanding the dynamic interactions between cutaneous components in AD could drive the development of therapies to improve the quality of life for patients with AD.
Collapse
Affiliation(s)
- Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany.
| | | | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, MA, USA
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | - Amy Cha
- Pfizer Inc, New York, NY, USA
| | - Gil Yosipovitch
- Pfizer Inc, New York, NY, USA
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
24
|
Briot J, Arbey E, Goudounèche D, Bernard D, Simon M, Méchin MC. Human filaggrin monomer does not seem to be a proteasome target. Exp Dermatol 2024; 33:e14772. [PMID: 36807394 DOI: 10.1111/exd.14772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Absence of a functional proteasome in the suprabasal layers of the epidermis is responsible for keratosis linearis with ichthyosis congenital and sclerosing keratoderma syndrome. Patient epidermis shows hypergranulosis associated with abnormally shaped keratohyalin granules and abnormal distribution of filaggrin in the Stratum granulosum and Stratum corneum. This suggests that the proteasome is involved in the degradation of filaggrin. To test this hypothesis, the proteasome proteolytic activity was inhibited in 3D reconstructed human epidermis (RHE) with the specific clasto-lactacystin β-lactone inhibitor. Confirming the efficacy of inhibition, ubiquitinated proteins accumulated in treated RHEs as compared to controls. Levels of urocanic acid (UCA) and pyrrolidone carboxylic acid (PCA), the end products of filaggrin degradation, were reduced. However, neither filaggrin accumulation nor appearance of filaggrin-derived peptides were observed. On the contrary, the amount of filaggrin was shown to decrease, and a similar tendency was observed for profilaggrin, its precursor. Accumulation of small cytoplasmic vesicles associated with a significant increase in autophagy markers indicated activation of the autophagy process upon proteasome inhibition. Taken together, these results suggest that the perturbation of UCA and PCA production after proteasome inhibition was probably due to down-regulation of filaggrin expression rather than to blocking of filaggrin proteolysis.
Collapse
Affiliation(s)
- Julie Briot
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Eric Arbey
- L'Oréal Research and Innovation, Aulnay-sous-bois, Aulnay-sous-bois, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie, Université de Toulouse, Toulouse, France
| | - Dominique Bernard
- L'Oréal Research and Innovation, Aulnay-sous-bois, Aulnay-sous-bois, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| |
Collapse
|
25
|
Méchin MC, Simon M. Deimination in epidermal barrier and hair formation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220245. [PMID: 37778378 PMCID: PMC10542453 DOI: 10.1098/rstb.2022.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 10/03/2023] Open
Abstract
Peptidylarginine deiminases (PADs) transform a protein arginine residue into the non-standard amino acid citrulline. This calcium-dependent post-translational modification of proteins is called citrullination or deimination. As described in this special issue, PADs play a role in various physiological processes, and PAD deregulations are involved in many human diseases. Three PADs are expressed in the epidermis, where their roles begin to be deciphered. PAD1 and PAD3 are involved in keratinocyte differentiation, particularly in the epidermal barrier function, keratins, filaggrin and filaggrin-related proteins being the most abundant deiminated epidermal proteins. Reduced amounts of deiminated proteins and PAD1 expression may be involved in the pathogenesis of psoriasis and atopic dermatitis, two very frequent and chronic skin inflammatory diseases. The trichohyalin/PAD3/transglutaminase three pathway is important for hair shaft formation. Mutations of the PADI3 gene, leading to a decreased activity or abnormal localization of the corresponding isotype, are the cause of a rare hair disorder called uncombable hair syndrome, and are associated with the central centrifugal cicatricial alopecia, a frequent alopecia mainly affecting women of African ancestry. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, University Paul Sabatier, 31024 Toulouse, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, University Paul Sabatier, 31024 Toulouse, France
| |
Collapse
|
26
|
Minzaghi D, Pavel P, Kremslehner C, Gruber F, Oberreiter S, Hagenbuchner J, Del Frari B, Blunder S, Gruber R, Dubrac S. Excessive Production of Hydrogen Peroxide in Mitochondria Contributes to Atopic Dermatitis. J Invest Dermatol 2023; 143:1906-1918.e8. [PMID: 37085042 DOI: 10.1016/j.jid.2023.03.1680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023]
Abstract
Atopic dermatitis (AD) is a complex disease characterized by chronic recurring eczema and pruritus. In addition, patients with AD display increased cutaneous and systemic levels of oxidative damage markers, whose source remains elusive. In this study, we investigated oxidative and mitochondrial stress in AD epidermis. The levels of superoxide dismutase 2 and hydrogen peroxide are augmented in the mitochondria of flaky tail (ft/ft) mouse keratinocytes, which is associated with the inhibition of the glutathione system and catalase. Furthermore, reduced levels of glutathione peroxidase 4 are associated with accumulation of malondialdehyde, 4-hydroxy-2-nonenal, and oxidized phosphatidylcholines in ft/ft epidermis. Cytochrome c is markedly increased in ft/ft epidermis, hence showing mitochondrial stress. Topical application of MitoQ, which is a mitochondrial-targeting antioxidant, to ft/ft mouse skin reduced damage to macromolecules and inflammation and restored epidermal homeostasis. Absence of alteration in the expression of superoxide dismutase 2, catalase, and glutathione peroxidase 4 and limited lipid peroxidation as well as oxidized phosphatidylcholines in the epidermis of Flg-/- mice suggest that FLG deficiency marginally contributes to oxidative stress in ft/ft epidermis. Increased superoxide dismutase 2, lipid peroxidation, and cytochrome c in the epidermis of patients with AD, associated with reduced antioxidant response in primary AD keratinocytes, corroborate mitochondrial dysfunction and lack of cellular adjustment to oxidative stress in AD epidermis.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sophie Oberreiter
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Barbara Del Frari
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
27
|
Yadav R, Li QZ, Huang H, Bridges SL, Kahlenberg JM, Stecenko AA, Rada B. Cystic fibrosis autoantibody signatures associate with Staphylococcus aureus lung infection or cystic fibrosis-related diabetes. Front Immunol 2023; 14:1151422. [PMID: 37767091 PMCID: PMC10519797 DOI: 10.3389/fimmu.2023.1151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction While cystic fibrosis (CF) lung disease is characterized by persistent inflammation and infections and chronic inflammatory diseases are often accompanied by autoimmunity, autoimmune reactivity in CF has not been studied in depth. Methods In this work we undertook an unbiased approach to explore the systemic autoantibody repertoire in CF using autoantibody microarrays. Results and discussion Our results show higher levels of several new autoantibodies in the blood of people with CF (PwCF) compared to control subjects. Some of these are IgA autoantibodies targeting neutrophil components or autoantigens linked to neutrophil-mediated tissue damage in CF. We also found that people with CF with higher systemic IgM autoantibody levels have lower prevalence of S. aureus infection. On the other hand, IgM autoantibody levels in S. aureus-infected PwCF correlate with lung disease severity. Diabetic PwCF have significantly higher levels of IgA autoantibodies in their circulation compared to nondiabetic PwCF and several of their IgM autoantibodies associate with worse lung disease. In contrast, in nondiabetic PwCF blood levels of IgA autoantibodies correlate with lung disease. We have also identified other autoantibodies in CF that associate with P. aeruginosa airway infection. In summary, we have identified several new autoantibodies and associations of autoantibody signatures with specific clinical features in CF.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, GA, United States
| | - S. Louis Bridges
- Department of Medicine, Hospital for Special Surgery, Division of Rheumatology, Weill Cornell Medical College, New York, NY, United States
| | - J. Michelle Kahlenberg
- Division of Rheumatology, University of Michigan, School of Medicine, Ann Arbor, MI, United States
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| |
Collapse
|
28
|
Pfisterer K, Wielscher M, Samardzic D, Weinzettl P, Symmank D, Shaw LE, Campana R, Huang HJ, Farlik M, Bangert C, Vrtala S, Valenta R, Weninger W. Non-IgE-reactive allergen peptides deteriorate the skin barrier in house dust mite-sensitized atopic dermatitis patients. Front Cell Dev Biol 2023; 11:1240289. [PMID: 37675143 PMCID: PMC10478000 DOI: 10.3389/fcell.2023.1240289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by type 2 cytokine-driven skin inflammation and epithelial barrier dysfunction. The latter is believed to allow the increased penetration of chemicals, toxins, and allergens into the skin. House dust mite allergens, particularly Der p 2, are important triggers in sensitized individuals with AD; the precise actions of these allergens in epithelial biology remain, however, incompletely understood. In this study, we compared the effects of the protein allergen Der p 2 and a mix of non-IgE-reactive Der p 2 peptides on skin cells using patch tests in AD patients and healthy participants. We then analyzed mRNA expression profiles of keratinocytes by single-cell RNA-sequencing. We report that existing barrier deficiencies in the non-lesional skin of AD patients allow deep penetration of Der p 2 and its peptides, leading to local microinflammation. Der p 2 protein specifically upregulated genes involved in the innate immune system, stress, and danger signals in suprabasal KC. Der p 2 peptides further downregulated skin barrier genes, in particular the expression of genes involved in cell-matrix and cell-cell adhesion. Peptides also induced genes involved in hyperproliferation and caused disturbances in keratinocyte differentiation. Furthermore, inflammasome-relevant genes and IL18 were overexpressed, while KRT1 was downregulated. Our data suggest that Der p 2 peptides contribute to AD initiation and exacerbation by augmenting hallmark features of AD, such as skin inflammation, barrier disruption, and hyperplasia of keratinocytes.
Collapse
Affiliation(s)
- Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - David Samardzic
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pauline Weinzettl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Dorte Symmank
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Lisa E. Shaw
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Çetinarslan T, Kümper L, Fölster-Holst R. The immunological and structural epidermal barrier dysfunction and skin microbiome in atopic dermatitis-an update. Front Mol Biosci 2023; 10:1159404. [PMID: 37654796 PMCID: PMC10467310 DOI: 10.3389/fmolb.2023.1159404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Atopic dermatitis (AD) is a common, chronic and relapsing inflammatory skin disease with various clinical presentations and combinations of symptoms. The pathophysiology of AD is complex and multifactorial. There are several factors involved in the etiopathogenesis of AD including structural and immunological epidermal barrier defect, imbalance of the skin microbiome, genetic background and environmental factors. Alterations in structural proteins, lipids, proteases, and their inhibitors, lead to the impairment of the stratum corneum which is associated with the increased skin penetration and transepidermal water loss. The elevated serum immunoglobulin E levels and blood eosinophilia have been shown in the majority of AD patients. Type 2 T-helper cell immune pathway with increased expression of interleukin (IL)-4, IL-5, and IL-13, has an important role in the etiopathogenesis of AD. Both T cells and keratinocytes contribute to epidermal barrier impairment in AD via a dynamic interaction of cytokines and chemokines. The skin microbiome is another factor of relevance in the etiopathogenesis of AD. It has been shown that during AD flares, Staphylococcus aureus (S. aureus) colonization increased, while Staphylococcus epidermidis (S. epidermidis) decreased. On the contrary, S. epidermidis and species of Streptococcus, Corynebacterium and Propionibacterium increased during the remision phases. However, it is not clear whether skin dysbiosis is one of the symptoms or one of the causes of AD. There are several therapeutic options, targeting these pathways which play a critical role in the etiopathogenesis of AD. Although topical steroids are the mainstay of the treatment of AD, new biological therapies including IL-4, IL-13, and IL-31 inhibitors, as well as Janus kinase inhibitors (JAKi), increasingly gain more importance with new advances in the therapy of AD. In this review, we summarize the role of immunological and structural epidermal barrier dysfunction, immune abnormalities, impairment of lipids, filaggrin mutation and skin microbiome in the etiopathogenesis of AD, as well as the therapeutic options for AD and their effects on these abnormalities in AD skin.
Collapse
Affiliation(s)
- Tubanur Çetinarslan
- Department of Dermatology and Venereology, Manisa Celal Bayar University, Manisa, Türkiye
| | - Lisa Kümper
- MEDICE Arzneimittel Pütter GmbH and Co. KG, Iserlohn, Germany
| | - Regina Fölster-Holst
- Department of Dermatology-Venereology and Allergology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
30
|
Genander M. Citrullination at the Inflammatory Skin Barrier. J Invest Dermatol 2023; 143:1120-1122. [PMID: 36858900 DOI: 10.1016/j.jid.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 03/03/2023]
Affiliation(s)
- Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Hua X, Blosch CD, Dorsey H, Ficaro MK, Wallace NL, Hsung RP, Dai J. Epidermal Loss of RORα Enhances Skin Inflammation in a MC903-Induced Mouse Model of Atopic Dermatitis. Int J Mol Sci 2023; 24:10241. [PMID: 37373387 DOI: 10.3390/ijms241210241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease featuring skin barrier dysfunction and immune dysregulation. Previously, we reported that the retinoid-related orphan nuclear receptor RORα was highly expressed in the epidermis of normal skin. We also found that it positively regulated the expression of differentiation markers and skin barrier-related genes in human keratinocytes. In contrast, epidermal RORα expression was downregulated in the skin lesions of several inflammatory skin diseases, including AD. In this study, we generated mouse strains with epidermis-specific Rora ablation to understand the roles of epidermal RORα in regulating AD pathogenesis. Although Rora deficiency did not cause overt macroscopic skin abnormalities at the steady state, it greatly amplified MC903-elicited AD-like symptoms by intensifying skin scaliness, increasing epidermal hyperproliferation and barrier impairment, and elevating dermal immune infiltrates, proinflammatory cytokines, and chemokines. Despite the normal appearance at the steady state, Rora-deficient skin showed microscopic abnormalities, including mild epidermal hyperplasia, increased TEWL, and elevated mRNA expression of Krt16, Sprr2a, and Tslp genes, indicating subclinical impairment of epidermal barrier functions. Our results substantiate the importance of epidermal RORα in partially suppressing AD development by maintaining normal keratinocyte differentiation and skin barrier function.
Collapse
Affiliation(s)
- Xiangmei Hua
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Conrad Dean Blosch
- Biomedical Research Model Services, University of Wisconsin, Madison, WI 53705, USA
| | - Hannah Dorsey
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Maria K Ficaro
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Nicole L Wallace
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Richard P Hsung
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jun Dai
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
32
|
Ardizzone A, Repici A, Capra AP, De Gaetano F, Bova V, Casili G, Campolo M, Esposito E. Efficacy of the Radical Scavenger, Tempol, to Reduce Inflammation and Oxidative Stress in a Murine Model of Atopic Dermatitis. Antioxidants (Basel) 2023; 12:1278. [PMID: 37372008 DOI: 10.3390/antiox12061278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is the most common chronically relapsing inflammatory skin disease, predominantly common in children; it is characterized by an eczematous pattern generally referable to skin dryness and itchy papules that become excoriated and lichenified in the more advanced stages of the disease. Although the pathophysiology of AD is not completely understood, numerous studies have demonstrated the complex interaction between genetic, immunological, and environmental factors, which acts to disrupt skin barrier function. Free radicals play a key role by directly damaging skin structure, inducing inflammation and weakening of the skin barrier. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) is a membrane-permeable radical scavenger, known to be a stable nitroxide, which exhibits excellent antioxidant effects in several human disorders, such as osteoarthritis and inflammatory bowel diseases. Considering the few existing studies on dermatological pathologies, this study aimed to evaluate tempol, in a cream formulation, in a murine model of AD. Dermatitis was induced in mice via dorsal skin application of 0.5% Oxazolone, three times a week for two weeks. After induction, mice were treated with tempol-based cream for another two weeks at three different doses of 0.5%, 1% and 2%. Our results demonstrated the ability of tempol, at the highest percentages, to counteract AD by reducing the histological damage, decreasing mast cell infiltration, and improving the skin barrier properties, by restoring the tight junction (TJs) and filaggrin. Moreover, tempol, at 1% and 2%, was able to modulate inflammation by reducing the nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) pathway, as well as tumor necrosis factor (TNF)-α and interleukin (IL)-1β expression. Topical treatment also attenuated oxidative stress by modulating nuclear factor erythroid 2-related factor 2 (Nrf2), manganese superoxide dismutase (MnSOD), and heme oxygenase I (HO-1) expression levels. The obtained results demonstrate the numerous advantages provided by the topical administration of a tempol-based cream formulation, in reducing inflammation and oxidative stress through modulation of the NF-κB/Nrf2 signaling pathways. Therefore, tempol could represent an alternative anti-atopic approach to treating AD, thereby improving skin barrier function.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 98166 Messina, Italy
| |
Collapse
|
33
|
Paul AA, Szulc NA, Kobiela A, Brown SJ, Pokrzywa W, Gutowska-Owsiak D. In silico analysis of the profilaggrin sequence indicates alterations in the stability, degradation route, and intracellular protein fate in filaggrin null mutation carriers. Front Mol Biosci 2023; 10:1105678. [PMID: 37200867 PMCID: PMC10185843 DOI: 10.3389/fmolb.2023.1105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
Background: Loss of function mutation in FLG is the major genetic risk factor for atopic dermatitis (AD) and other allergic manifestations. Presently, little is known about the cellular turnover and stability of profilaggrin, the protein encoded by FLG. Since ubiquitination directly regulates the cellular fate of numerous proteins, their degradation and trafficking, this process could influence the concentration of filaggrin in the skin. Objective: To determine the elements mediating the interaction of profilaggrin with the ubiquitin-proteasome system (i.e., degron motifs and ubiquitination sites), the features responsible for its stability, and the effect of nonsense and frameshift mutations on profilaggrin turnover. Methods: The effect of inhibition of proteasome and deubiquitinases on the level and modifications of profilaggrin and processed products was assessed by immunoblotting. Wild-type profilaggrin sequence and its mutated variants were analysed in silico using the DEGRONOPEDIA and Clustal Omega tool. Results: Inhibition of proteasome and deubiquitinases stabilizes profilaggrin and its high molecular weight of presumably ubiquitinated derivatives. In silico analysis of the sequence determined that profilaggrin contains 18 known degron motifs as well as multiple canonical and non-canonical ubiquitination-prone residues. FLG mutations generate products with increased stability scores, altered usage of the ubiquitination marks, and the frequent appearance of novel degrons, including those promoting C-terminus-mediated degradation routes. Conclusion: The proteasome is involved in the turnover of profilaggrin, which contains multiple degrons and ubiquitination-prone residues. FLG mutations alter those key elements, affecting the degradation routes and the mutated products' stability.
Collapse
Affiliation(s)
- Argho Aninda Paul
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian Kobiela
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
34
|
van den Bogaard EH, Elias PM, Goleva E, Berdyshev E, Smits JPH, Danby SG, Cork MJ, Leung DYM. Targeting Skin Barrier Function in Atopic Dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1335-1346. [PMID: 36805053 PMCID: PMC11346348 DOI: 10.1016/j.jaip.2023.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the general population. Skin barrier dysfunction is the central abnormality leading to AD. The cause of skin barrier dysfunction is complex and rooted in genetic mutations, interactions between the immune pathway activation and epithelial cells, altered host defense mechanisms, as well as environmental influences that cause epithelial cell activation and release of alarmins (such as thymic stromal lymphopoietin) that can activate the type 2 immune pathway, including generation of interleukins 4 and 13, which induces defects in the skin barrier and increased allergic inflammation. These inflammatory pathways are further influenced by environmental factors including the microbiome (especially Staphylococcus aureus), air pollution, stress, and other factors. As such, AD is a syndrome involving multiple phenotypes, all of which have in common skin barrier dysfunction as a key contributing factor. Understanding mechanisms leading to skin barrier dysfunction in AD is pointing to the development of new topical and systemic treatments in AD that helps keep skin borders secure and effectively treat the disease.
Collapse
Affiliation(s)
- Ellen H van den Bogaard
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M Elias
- Department of Dermatology, University of California San Francisco and VA Medical Center, San Francisco, Calif
| | - Elena Goleva
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo
| | - Evgeny Berdyshev
- Department of Pulmonology, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colo
| | - Jos P H Smits
- Department of Dermatology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon G Danby
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Michael J Cork
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School at The University of Sheffield, Beech Hill Road, Sheffield, UK
| | - Donald Y M Leung
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, National Jewish Health, Denver, Colo.
| |
Collapse
|
35
|
Jung WH. Alteration in skin mycobiome due to atopic dermatitis and seborrheic dermatitis. BIOPHYSICS REVIEWS 2023; 4:011309. [PMID: 38505818 PMCID: PMC10903429 DOI: 10.1063/5.0136543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/22/2023] [Indexed: 03/21/2024]
Abstract
A microbiome consists of viruses, bacteria, archaea, fungi, and other microeukaryotes. It influences host immune systems and contributes to the development of various diseases, such as obesity, diabetes, asthma, and skin diseases, including atopic dermatitis and seborrheic dermatitis. The skin is the largest organ in the human body and has various microorganisms on its surface. Several studies on skin microbiomes have illustrated the effects of their composition, metabolites, and interactions with host cells on diseases. However, most studies have focused on the bacterial microbiome rather than the fungal microbiome, namely, mycobiome, although emerging evidence indicates that fungi also play a critical role in skin microbiomes through interactions with the host cells. I briefly summarize the current progress in the analysis of mycobiomes on human skin. I focused on alteration of the skin mycobiome caused by atopic and seborrheic dermatitis, with an emphasis on the Malassezia genus, which are the most dominant fungi residing here.
Collapse
Affiliation(s)
- Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, South Korea
| |
Collapse
|
36
|
Epicutaneous Sensitization and Food Allergy: Preventive Strategies Targeting Skin Barrier Repair-Facts and Challenges. Nutrients 2023; 15:nu15051070. [PMID: 36904070 PMCID: PMC10005101 DOI: 10.3390/nu15051070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Food allergy represents a growing public health and socio-economic problem with an increasing prevalence over the last two decades. Despite its substantial impact on the quality of life, current treatment options for food allergy are limited to strict allergen avoidance and emergency management, creating an urgent need for effective preventive strategies. Advances in the understanding of the food allergy pathogenesis allow to develop more precise approaches targeting specific pathophysiological pathways. Recently, the skin has become an important target for food allergy prevention strategies, as it has been hypothesized that allergen exposure through the impaired skin barrier might induce an immune response resulting in subsequent development of food allergy. This review aims to discuss current evidence supporting this complex interplay between the skin barrier dysfunction and food allergy by highlighting the crucial role of epicutaneous sensitization in the causality pathway leading to food allergen sensitization and progression to clinical food allergy. We also summarize recently studied prophylactic and therapeutic interventions targeting the skin barrier repair as an emerging food allergy prevention strategy and discuss current evidence controversies and future challenges. Further studies are needed before these promising strategies can be routinely implemented as prevention advice for the general population.
Collapse
|
37
|
Rønnstad ATM, Bay L, Ruge IF, Halling AS, Fritz BG, Jakaša I, Luiten R, Kezic S, Thomsen SF, Bjarnsholt T, Thyssen JP. Defining the temporal relationship between the skin microbiome, immune response and skin barrier function during flare and resolution of atopic dermatitis: protocol of a Danish intervention study. BMJ Open 2023; 13:e068395. [PMID: 36806068 PMCID: PMC9944644 DOI: 10.1136/bmjopen-2022-068395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
INTRODUCTION Lesional skin of atopic dermatitis (AD) is often colonised by Staphylococcus aureus and the bacterial abundance increases during a flare. However, the role of S. aureus and the skin microbiome in the pathogenesis of AD, including its influence on the dysfunctional skin barrier and immune response, remains to be elucidated. In this study, the temporal relationship between alterations in the skin barrier function, inflammation and microbiome is examined in adults with AD. METHODS AND ANALYSIS This clinical study consists of 81 adult patients with AD, as defined by the Hanifin and Rajka criteria, and 41 age and sex-matched controls. The objectives are to examine alterations in the skin microbiome, skin barrier and immune response during (1) an untreated AD flare, (2) an AD flare treated with topical corticosteroids (TCS), (3) an AD flare treated with systemic dicloxacillin/placebo and TCS or (4) cutaneous exposure to either autologous S. aureus, staphylococcal enterotoxin B or a vehicle. Skin biopsies, tape strips, skin and nasal swabs are collected and analysed using RNA sequencing, multiplex immunoassays, liquid chromatography-mass spectrometry and 16S rDNA. Blood samples are analysed for filaggrin gene mutations and leucocyte gene expression. ETHICS AND DISSEMINATION The scientific Ethical Committee of the Capital Region in Denmark (phases I and II: H-20011047, phases III and IV: H-21079287), the local data protection agency (phases I and II: P-2020-165, phases III and IV: P-2022-250) and the Danish Medicines Agency (phases III and IV: EudraCT 2021-006883-25, ClinicalTrials.gov: NCT05578482) have approved the studies. Participants will give written informed consent prior to study initiation. The study is conducted in accordance with the Helsinki Declaration. Outcomes will be presented at national and international conferences and in international peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT05578482, EudraCT 2021-006883-2.
Collapse
Affiliation(s)
| | - Lene Bay
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Iben Frier Ruge
- Department of Dermatology and Venerology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Halling
- Department of Dermatology and Venerology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Blaine Gabriel Fritz
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Ivone Jakaša
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Rosalie Luiten
- Laboratory of Experimental Dermatology, Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Simon Francis Thomsen
- Department of Dermatology and Venerology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Venerology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Douladiris N, Vakirlis E, Vassilopoulou E. Atopic Dermatitis and Water: Is There an Optimum Water Intake Level for Improving Atopic Skin? CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020273. [PMID: 36832402 PMCID: PMC9954916 DOI: 10.3390/children10020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Water is a vital nutrient with innumerable functions for every living cell. The functions of human skin include protection against dehydration of the body. Atopic dermatitis (AD) is a chronic pruritic inflammatory skin disease that presents with dry skin, erythematous and eczematous lesions, and lichenification. This paper discusses the question of whether extra water intake in children with AD affects skin hydration and the skin barrier function. Among the methods used to treat dry skin, topical leave-on products are the first-line treatment, intended to improve hydration and the skin barrier function. The effectiveness of adequate water intake as a measure to treat dry skin is still under debate. Normal skin hydration increases with dietary water intake, particularly in those with prior lower water consumption. Skin dryness in AD is instrumental to the itch and inflammation cycle, contributing to barrier impairment and aggravating disease severity and flares. Certain emollients provide significant hydration to AD skin, with relief of dryness and reduction in barrier impairment, disease severity, and flares. Further investigations are needed to evaluate the optimum water intake levels in children with AD, as important questions remain unanswered, namely, does oral hydration provide relief of skin dryness and reduce barrier impairment, disease severity, and flares; is there any additional benefit from using mineral or thermal spring water; or is there a need to specifically study the fluid/water intake in children with AD and food allergy (FA) restrictions?
Collapse
Affiliation(s)
- Nikolaos Douladiris
- Allergy Unit, 2nd Pediatric Clinic, University of Athens, 11527 Athens, Greece
- Correspondence:
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
39
|
Aubert A, Lane M, Jung K, Granville DJ. Granzyme B as a therapeutic target: an update in 2022. Expert Opin Ther Targets 2022; 26:979-993. [PMID: 36542784 DOI: 10.1080/14728222.2022.2161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Granzyme B is a serine protease extensively studied for its implication in cytotoxic lymphocyte-mediated apoptosis. In recent years, the paradigm that the role of granzyme B is restricted to immune cell-mediated killing has been challenged as extracellular roles for the protease have emerged. While mostly absent from healthy tissues, granzyme B levels are elevated in several autoimmune and/or chronic inflammatory conditions. In the skin, its accumulation significantly impairs proper wound healing. AREAS COVERED After an overview of the current knowledge on granzyme B, a description of newly identified functions will be presented, focussing on granzyme B ability to promote cell-cell and dermal-epidermal junction disruption, extracellular matrix degradation, vascular permeabilization, and epithelial barrier dysfunction. Progress in granzyme B inhibition, as well as the use of granzyme B inhibitors for the treatment of tissue damage, will be discussed. EXPERT OPINION The absence of endogenous extracellular inhibitors renders extracellular granzyme B accumulation deleterious for the proper healing of chronic wounds due to sustained proteolytic activity. Consequently, specific granzyme B inhibitors have been developed as new therapeutic approaches. Beyond applications in wound healing, other autoimmune and/or chronic inflammatory conditions related to exacerbated granzyme B activity may also benefit from the development of these inhibitors.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| |
Collapse
|
40
|
Bratkovskaya AV, Snarskaya ES. Novel filagrinol-containing emollient. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABSTRACT:In the last decade, there has been a significant increase in interest in the study of the role of epidermal barrier structural integrity in order to determine the prospects for its pathogenetic correction. It is now known that patients with filaggrin gene mutations have increased risk of developing atopic dermatitis, xerosis, ichthyosis, eczema. Filaggrin participates in the formation of a full-fledged stratum corneum, provides formation of a natural moisturizing factor, stabilizing the water balance of the stratum corneum. In Russia, the innovative filaggrin-containing "Admera" has been registered, which opens up prospects in the management impaired skin barrier function diseases.
Aims:efficacy and safety of "Admera" emollient in patients with primary and secondary xerosis.
Methods:A single-center prospective interventional study December 2021 - March 2022 at the Department of Skin and Venereal Diseases of the Sechenov University. The study included 32 patients (22 - main group, 10 - control group) aged 18 to 60 years (29 9.78), 14 men and 18 women diagnosed with skin xerosis. Patients applied moisturizers 3 times a day for 21 days. Performance was evaluated using vIGA-AD, POEM, EASI, 5D Elman scale, SKINDEX-29, HADS, on Capricorn AI, ANTERA 3D machines.
Results:A steady regression of clinical symptoms of xerosis was noted during the study by the dynamics of the study scales. The mean EASI score decreased by 67% from 25.25 18.78 - screening to 7.8 4.41 - control visit (p 0.001). Assessment of POEM index dynamics showed a significant decrease in total score from 18.65 to 6.6 (p 0.001). There was good tolerability of the drug and absence of adverse events.
Conclusion:The filagrinol-containing emollient "Admera" demonstrated high efficacy and safety in all patients. This emollient can be recommended as a basic care product for treatment and prevention of primary, secondary xerosis, relapses of atopic dermatitis.
Collapse
|
41
|
Genetic Variants in Epidermal Differentiation Complex Genes as Predictive Biomarkers for Atopic Eczema, Allergic Sensitization, and Eczema-Associated Asthma in a 6-Year Follow-Up Case-Control Study in Children. J Clin Med 2022; 11:jcm11164865. [PMID: 36013110 PMCID: PMC9410399 DOI: 10.3390/jcm11164865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Atopic eczema is the most common chronic inflammatory skin disease of early childhood and is often the first manifestation of atopic march. Therefore, one challenge is to identify the risk factors associated with atopic eczema that may also be predictors of atopic disease progression. The aim of this study was to investigate the association of SNPs in hornerin (HRNR) and filaggrin-2 (FLG2) genes with childhood atopic eczema, as well as other atopic phenotypes. Genotyping for HRNR and FLG2 was performed in 188 children younger than 2 years of age, previously screened for the FLG null mutations, and followed at yearly intervals until the age of 6. We demonstrated that risk variants of HRNR rs877776[C] and FLG2 rs12568784[T] were associated with atopic eczema, allergic sensitization, and susceptibility to the complex phenotype—asthma plus eczema. These effects seem to be supplementary to the well-known associations for FLG mutations and may be modulated by gene–gene interactions. Additionally, in children with eczema, these genetic variants may also be considered, along with FLG mutations, as predictive biomarkers for eczema-associated asthma. In conclusion, our results indicate that genetic variants in the epidermal differentiation complex gene could contribute to the pathogenesis of atopic eczema and progression to subsequent allergic disease.
Collapse
|
42
|
Sanjel B, Shim WS. The contribution of mouse models to understanding atopic dermatitis. Biochem Pharmacol 2022; 203:115177. [PMID: 35843300 DOI: 10.1016/j.bcp.2022.115177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/28/2022]
Abstract
Atopic dermatitis (AD) is a dermatological disease accompanied by dry and cracked skin with severe pruritus. Although various therapeutic strategies have been introduced to alleviate AD, it remains challenging to cure the disorder. To achieve such a goal, understanding the pathophysiological mechanisms of AD is a prerequisite, requiring mouse models that properly reflect the AD phenotypes. Currently, numerous AD mouse models have been established, but each model has its own advantages and weaknesses. In this review, we categorized and summarized mouse models of AD and described their characteristics from a researcher's perspective.
Collapse
Affiliation(s)
- Babina Sanjel
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Sciences, Hambangmoero 191, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|