1
|
Zhang W, Huang C, Yao H, Yang S, Jiapaer Z, Song J, Wang X. Retrotransposon: an insight into neurological disorders from perspectives of neurodevelopment and aging. Transl Neurodegener 2025; 14:14. [PMID: 40128823 PMCID: PMC11934714 DOI: 10.1186/s40035-025-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neurological disorders present considerable challenges in diagnosis and treatment due to their complex and diverse etiology. Retrotransposons are a type of mobile genetic element that are increasingly revealed to play a role in these diseases. This review provides a detailed overview of recent developments in the study of retrotransposons in neurodevelopment, neuroaging, and neurological diseases. Retrotransposons, including long interspersed nuclear elements-1, Alu, SINE-VNTR-Alu, and endogenous retrovirus, play important regulatory roles in the development and aging of the nervous system. They have also been implicated in the pathological processes of several neurological diseases, including Alzheimer's disease, X-linked dystonia-parkinsonism, amyotrophic lateral sclerosis, autism spectrum disorder, and schizophrenia. Retrotransposons provide a new perspective for understanding the molecular mechanisms underlying neurological diseases and provide insights into diagnostic and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Wenchuan Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, China.
| | - Juan Song
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Herrero F, Heeb C, Meier M, Lin HY, Mueller FS, Schalbetter SM, Gruchot J, Weber-Stadlbauer U, Notter T, Perron H, Küry P, Meyer U. Recapitulation and reversal of neuropsychiatric phenotypes in a mouse model of human endogenous retrovirus type W expression. Mol Psychiatry 2025:10.1038/s41380-025-02955-9. [PMID: 40102613 DOI: 10.1038/s41380-025-02955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
Human endogenous retroviruses (HERVs) are inherited genetic elements derived from exogenous retroviral infections occurring throughout evolution. Accumulating evidence implicates increased expression of HERV type W envelope (HERV-W ENV) in psychiatric and neurodevelopmental disorders. To gain more mechanistic insights into the neurobiological disease pathways affected by HERV-W ENV expression, we took advantage of a mouse model that recapitulates the expression of the human-specific HERV-W ENV protein. Behavioral and cognitive phenotyping of transgenic (TG) mice expressing HERV-W ENV and wild-type (WT) controls showed that expression of this retroviral envelope caused deficits in numerous functional domains, including repetitive behavior, social and object recognition memory, and sensorimotor gating. Genome-wide RNA sequencing of hippocampal tissue demonstrated that transgenic expression of HERV-W ENV led to transcriptomic alterations that are highly relevant for psychiatric and neurodevelopmental disorders, cognitive functions, and synaptic development. Differential gene expression in TG mice encompassed a downregulation of several genes associated with schizophrenia and autism spectrum disorder, including Setd1a, Cacna1g, Ank3, and Shank3, as well as a downregulation of histone methyltransferase genes that belong to the Set1-like histone H3 lysine 4 (H3K4) methyltransferase family (Kmt2a, Kmt2b and Kmt2d). Concomitant to the latter, HERV-W ENV mice displayed increased enzymatic activity of lysine-specific demethylase-1 (LSD1), increased H3K4 mono-methylation, and decreased H3K4 di- and tri-methylation in the hippocampus. Importantly, pharmacological inhibition of LSD1 through oral ORY-1001 treatment normalized abnormal H3K4 methylation and rescued the behavioral and cognitive deficits in HERV-W ENV mice. In conclusion, our study suggests that the expression of HERV-W ENV has the capacity to disrupt various behavioral and cognitive functions and to alter the brain transcriptome in a manner that is highly relevant to neurodevelopmental and psychiatric disorders. Moreover, our study identified epigenetic pathways that may offer avenues for pharmacological interventions against behavioral and cognitive deficits induced by increased HERW-W expression.
Collapse
Affiliation(s)
- Felisa Herrero
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Celine Heeb
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michelle Meier
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Han-Yu Lin
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sina M Schalbetter
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Tina Notter
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Hervé Perron
- GeNeuro, 18, chemin des Aulx, Plan-les-Ouates, 1228, Geneva, Switzerland
- Université de Lyon-UCBL, Lyon, France
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Urs Meyer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Cipriani C, Camaioni A, Tartaglione AM, Giudice M, Conti A, Petrone V, Miele MT, Matteucci C, Garaci E, Calamandrei G, Toschi N, Sinibaldi-Vallebona P, Ricceri L, Balestrieri E. Activation of endogenous retroviruses characterizes the maternal-fetal interface in the BTBR mouse model of autism spectrum disorder. Sci Rep 2025; 15:8271. [PMID: 40065061 PMCID: PMC11894120 DOI: 10.1038/s41598-025-91541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Endogenous retroviruses (ERVs) are genetic elements derived from a process of germline infection by exogenous retroviruses. Some ERVs have been co-opted for physiological functions, and their activation has been associated with complex diseases, including Autism Spectrum Disorder (ASD). We have already demonstrated an abnormal expression of ERVs in the BTBR T + tf/J (BTBR) mouse model of ASD during intrauterine life till adulthood. Thus, starting from the assumptions that ERVs may contribute to the derailment of neurodevelopment and that ASD has fetal origins as a consequence of adverse intrauterine conditions, the present study aims to characterize the transcriptional activity of selected ERVs (MusD, IAP, Syn-A, Syn-B, ARC and GLN), LINE-1, inflammatory mediators (IL-6, IL-10, IL-11 CXCL-1) at the maternal-fetal interface and in dissected embryos from BTBR mice. Our results highlight the deregulation of ERVs and inflammatory mediators at the maternal-fetal interface, and in cephalic and non-cephalic embryonic tissues from BTBR compared to C57BL/6 J. Several correlations among ERV expression levels emerged in different tissues from C57BL/6 J mice while, in BTBR mice, no correlations were found, suggesting that in this model, the acquisition of autistic-like traits might be linked to the dysregulation of ERV activity occurring during intra-uterine life.
Collapse
Affiliation(s)
- Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy.
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Anna Maria Tartaglione
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Martina Giudice
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Gemma Calamandrei
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Paola Sinibaldi-Vallebona
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Laura Ricceri
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| |
Collapse
|
4
|
Bo M, Carta A, Cipriani C, Cavassa V, Simula ER, Huyen NT, Phan GTH, Noli M, Matteucci C, Sotgiu S, Balestrieri E, Sechi LA. HERVs Endophenotype in Autism Spectrum Disorder: Human Endogenous Retroviruses, Specific Immunoreactivity, and Disease Association in Different Family Members. Microorganisms 2024; 13:9. [PMID: 39858776 PMCID: PMC11767913 DOI: 10.3390/microorganisms13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Increasing evidence indicates that human endogenous retroviruses (HERVs) are important to human health and are an underexplored component of many diseases. Certain HERV families show unique expression patterns and immune responses in autism spectrum disorder (ASD) patients compared to healthy controls, suggesting their potential as biomarkers. Despite these interesting findings, the role of HERVs in ASD needs to be further investigated. In this review, we discuss recent advances in genetic research on ASD, with a particular emphasis on the implications of HERVs on neurodevelopment and future genomic initiatives aimed at discovering ASD-related genes through Artificial Intelligence. Given their pro-inflammatory and autoimmune characteristics, the existing literature suggests that HERVs may contribute to the onset or worsening of ASD in individuals with a genetic predisposition. Therefore, we propose that investigating their fundamental properties could not only improve existing therapies but also pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Chiara Cipriani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Vanna Cavassa
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Elena Rita Simula
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
| | - Nguyen Thi Huyen
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue City 53000, Vietnam; (N.T.H.); (G.T.H.P.)
| | - Giang Thi Hang Phan
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue City 53000, Vietnam; (N.T.H.); (G.T.H.P.)
| | - Marta Noli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.)
| | - Emanuela Balestrieri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (C.C.); (C.M.)
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.B.); (E.R.S.); (M.N.); (L.A.S.)
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| |
Collapse
|
5
|
Tang J, Chen Q, Xiang L, Tu T, Zhang Y, Ou C. TRIM28 Fosters Microglia Ferroptosis via Autophagy Modulation to Enhance Neuropathic Pain and Neuroinflammation. Mol Neurobiol 2024; 61:9459-9477. [PMID: 38647647 DOI: 10.1007/s12035-024-04133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Abstract
This study explores the molecular underpinnings of neuropathic pain (NPP) and neuroinflammation, focusing on the role of TRIM28 in the regulation of autophagy and microglia ferroptosis. Leveraging transcriptomic data associated with NPP, we identified TRIM28 as a critical regulator of ferroptosis. Through comprehensive analysis, including Gene Ontology enrichment and protein-protein interaction network assessments, we unveiled GSK3B as a downstream target of TRIM28. Experimental validation confirmed the capacity of TRIM28 to suppress GSK3B expression and attenuate autophagic processes in microglia. We probed the consequences of autophagy and ferroptosis on microglia physiology, iron homeostasis, oxidative stress, and the release of proinflammatory cytokines. In a murine model, we validated the pivotal role of TRIM28 in NPP and neuroinflammation. Our analysis identified 20 ferroptosis regulatory factors associated with NPP, with TRIM28 emerging as a central orchestrator. Experimental evidence affirmed that TRIM28 governs microglial iron homeostasis and cell fate by downregulating GSK3B expression and modulating autophagy. Notably, autophagy was found to influence oxidative stress and proinflammatory cytokine release through the iron metabolism pathway, ultimately fueling neuroinflammation. In vivo experiments provided conclusive evidence of TRIM28-mediated pathways contributing to heightened pain sensitivity in neuroinflammatory states. The effect of TRIM28 on autophagy and microglia ferroptosis drives NPP and neuroinflammation. These findings offer promising avenues for identifying novel therapeutic targets to manage NPP and neuroinflammation.
Collapse
Affiliation(s)
- Jian Tang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Qi Chen
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Li Xiang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Ting Tu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan, 646000, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital, Southwest Medical University, No.25 Taiping Street, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
6
|
Bo M, Manetti R, Biggio ML, Sechi LA. The Humoral Immune Response against Human Endogenous Retroviruses in Celiac Disease: A Case-Control Study. Biomedicines 2024; 12:1811. [PMID: 39200275 PMCID: PMC11351412 DOI: 10.3390/biomedicines12081811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Celiac disease (CD) is an immune-mediated disease characterized by disruptions of the small intestine. Factors such as viral and bacterial infections can trigger CD. Recently, the reactivation of Human Endogenous Retroviruses (HERVs) has also been implicated, but little is known about their specific role in patients with celiac disease. METHODS The purpose of this study is to explore the humoral immune response mounted against epitopes derived from the envelope portion of three families of HERVs (HERV-K, HERV-H, and HERV-W) in CD patients. Reactivity against the HERV-K, HERV-H, and HERV-W env-su peptides was tested by indirect ELISAs in plasma of 40 patients with celiac disease and 41 age-matched healthy subjects (HCs). RESULTS HERV-K, HERV-H, and HERV-W env-su peptides triggered different antibody responses in CD patients compared to HCs, with a stronger reactivity (p = 0.0001). CONCLUSIONS Present results show, for the first time, that epitopes of HERV-K, HERV-H, and HERV-W are more recognized in patients with CD. Taking into consideration their proinflammatory and autoimmune features, this might suggest that HERVs may contribute to the development of CD or its exacerbation in genetically predisposed subjects. Finally, to elucidate the interplay between gut inflammation and HERVs during the inflammatory process, further studies are required. Those investigations should focus on the expression levels of HERVs and their relationship with the immune response, specifically examining anti-transglutaminase 2 (TG2) antibody levels under both gluten-free and gluten-containing dietary conditions.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Roberto Manetti
- Department of Medicine, Surgery and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.)
| | - Maria Luigia Biggio
- Department of Medicine, Surgery and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Lin CW, Ellegood J, Tamada K, Miura I, Konda M, Takeshita K, Atarashi K, Lerch JP, Wakana S, McHugh TJ, Takumi T. An old model with new insights: endogenous retroviruses drive the evolvement toward ASD susceptibility and hijack transcription machinery during development. Mol Psychiatry 2023; 28:1932-1945. [PMID: 36882500 PMCID: PMC10575786 DOI: 10.1038/s41380-023-01999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The BTBR T+Itpr3tf/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.
Collapse
Affiliation(s)
- Chia-Wen Lin
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Kota Tamada
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Mikiko Konda
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Kozue Takeshita
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku, 160-8582, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi, 230-0045, Yokohama, Japan
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, Oxfordshire, OX39DU, UK
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako, 351-0198, Saitama, Japan
| | - Toru Takumi
- Laboratory for Mental Biology, RIKEN Brain Science Institute, Wako, 351-0198, Saitama, Japan.
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, 650-0017, Kobe, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, 650-0047, Kobe, Japan.
| |
Collapse
|
8
|
Johnson E, Salari K, Yang S. SETDB1: A perspective into immune cell function and cancer immunotherapy. Immunology 2023; 169:3-12. [PMID: 36524435 PMCID: PMC10121739 DOI: 10.1111/imm.13619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Oncogene SET Domain Bifurcated 1 (SETDB1)/ESET, an H3K9 methyltransferase, was originally discovered over two decades ago; however, its function in the immune response was not first reported until 2011. SETDB1 immune functions include B cell maturation, T cell activity regulation, and immune escape in cancer cells. In B lymphocytes, SETDB1 mediates the transition from pro-B to pre-B cells and represses endogenous retroviruses (ERV) to encourage B cell lineage differentiation and maturation. SETDB1 alters T cell function by methylating IL-2 and IL-17 promoters and mediating T cell lineage commitment and development. In addition, SETDB1 plays a critical role in ERV silencing within a variety of immune cells, which can indirectly weaken the immune response. Although SETDB1 is critical for normal immune cell function, overexpression in cancer cells negatively impacts immune cell fights against cancer through decreased tumour immunogenicity. Within cancer cells, SETDB1 overexpression represses production and infiltration of antitumour immune cells, mediates immune escape through TE and ERV silencing, represses the type I interferon pathway, and interferes in immune checkpoint blockade (ICB) outcomes by regulation of PD-L1 expression and IFN signalling. In this review, we further discuss the immunological mechanisms of SETDB1 in normal and cancerous cells and its implications in cancer immunotherapy.
Collapse
Affiliation(s)
- Eleanor Johnson
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kiarash Salari
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
9
|
Tovo PA, Marozio L, Abbona G, Calvi C, Frezet F, Gambarino S, Dini M, Benedetto C, Galliano I, Bergallo M. Pregnancy Is Associated with Impaired Transcription of Human Endogenous Retroviruses and of TRIM28 and SETDB1, Particularly in Mothers Affected by Multiple Sclerosis. Viruses 2023; 15:v15030710. [PMID: 36992419 PMCID: PMC10051116 DOI: 10.3390/v15030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Accumulating evidence highlights the pathogenetic role of human endogenous retroviruses (HERVs) in eliciting and maintaining multiple sclerosis (MS). Epigenetic mechanisms, such as those regulated by TRIM 28 and SETDB1, are implicated in HERV activation and in neuroinflammatory disorders, including MS. Pregnancy markedly improves the course of MS, but no study explored the expressions of HERVs and of TRIM28 and SETDB1 during gestation. Using a polymerase chain reaction real-time Taqman amplification assay, we assessed and compared the transcriptional levels of pol genes of HERV-H, HERV-K, HERV-W; of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis associated retrovirus (MSRV); and of TRIM28 and SETDB1 in peripheral blood and placenta from 20 mothers affected by MS; from 27 healthy mothers, in cord blood from their neonates; and in blood from healthy women of child-bearing age. The HERV mRNA levels were significantly lower in pregnant than in nonpregnant women. Expressions of all HERVs were downregulated in the chorion and in the decidua basalis of MS mothers compared to healthy mothers. The former also showed lower mRNA levels of HERV-K-pol and of SYN1, SYN2, and MSRV in peripheral blood. Significantly lower expressions of TRIM28 and SETDB1 also emerged in pregnant vs. nonpregnant women and in blood, chorion, and decidua of mothers with MS vs. healthy mothers. In contrast, HERV and TRIM28/SETDB1 expressions were comparable between their neonates. These results show that gestation is characterized by impaired expressions of HERVs and TRIM28/SETDB1, particularly in mothers with MS. Given the beneficial effects of pregnancy on MS and the wealth of data suggesting the putative contribution of HERVs and epigenetic processes in the pathogenesis of the disease, our findings may further support innovative therapeutic interventions to block HERV activation and to control aberrant epigenetic pathways in MS-affected patients.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| | - Luca Marozio
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Giancarlo Abbona
- Pathology Unit, Department Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Federica Frezet
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Stefano Gambarino
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Maddalena Dini
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Benedetto
- Department of Surgical Sciences, Obstetrics and Gynecology 1, University of Turin, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Pediatric Laboratory, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
10
|
Tovo PA, Garazzino S, Savino F, Daprà V, Pruccoli G, Dini M, Filisetti G, Funiciello E, Galliano I, Bergallo M. Expressions of Type I and III Interferons, Endogenous Retroviruses, TRIM28, and SETDB1 in Children with Respiratory Syncytial Virus Bronchiolitis. Curr Issues Mol Biol 2023; 45:1197-1217. [PMID: 36826024 PMCID: PMC9954910 DOI: 10.3390/cimb45020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Interferons (IFNs) and IFN-stimulated genes (ISGs) play essential roles for the control of viral infections. Their expression in infants with respiratory syncytial virus (RSV) bronchiolitis is poorly defined. Human endogenous retroviruses (HERVs) represent 8% of our genome and modulate inflammatory and immune reactions. TRIM28 and SETDB1 participate in the epigenetic regulation of genes involved in the immune response, including IFNs and HERVs. No study has explored the expression of HERVs, TRIM28, and SETDB1 during RSV bronchiolitis. We assessed, through a PCR real-time Taqman amplification assay, the transcription levels of six IFN-I ISGs, four IFNλs, the pol genes of HERV-H, -K, and -W families, the env genes of Syncytin (SYN)1 and SYN2, and of TRIM28/SETDB1 in whole blood from 37 children hospitalized for severe RSV bronchiolitis and in healthy children (HC). The expression of most IFN-I ISGs was significantly higher in RSV+ patients than in age-matched HC, but it was inhibited by steroid therapy. The mRNA concentrations of IFN-λs were comparable between patients and age-matched HC. This lack of RSV-driven IFN-III activation may result in the defective protection of the airway mucosal surface leading to severe bronchiolitis. The expression of IFN-III showed a positive correlation with age in HC, that could account for the high susceptibility of young children to viral respiratory tract infections. The transcription levels of every HERV gene were significantly lower in RSV+ patients than in HC, while the expressions of TRIM28/SETDB1 were overlapping. Given the negative impact of HERVs and the positive effects of TRIM28/SETDB1 on innate and adaptive immune responses, the downregulation of the former and the normal expression of the latter may contribute to preserving immune functions against infection.
Collapse
Affiliation(s)
- Pier-Angelo Tovo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| | - Silvia Garazzino
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Francesco Savino
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Valentina Daprà
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giulia Pruccoli
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Maddalena Dini
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Giacomo Filisetti
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Early Infancy Special Care Unit, Department of Pediatric Care, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Elisa Funiciello
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, Piazza Polonia 94, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Pediatric Laboratory, Department of Pediatric Sciences and Public Health, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
- Correspondence: Correspondence: (P.-A.T.); (M.B.)
| |
Collapse
|
11
|
Herrero F, Mueller FS, Gruchot J, Küry P, Weber-Stadlbauer U, Meyer U. Susceptibility and resilience to maternal immune activation are associated with differential expression of endogenous retroviral elements. Brain Behav Immun 2023; 107:201-214. [PMID: 36243285 DOI: 10.1016/j.bbi.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 12/05/2022] Open
Abstract
Endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into the mammalian genome through germline infections and insertions during evolution. While increased ERV expression has been repeatedly implicated in psychiatric and neurodevelopmental disorders, recent evidence suggests that aberrant endogenous retroviral activity may contribute to biologically defined subgroups of psychotic disorders with persisting immunological dysfunctions. Here, we explored whether ERV expression is altered in a mouse model of maternal immune activation (MIA), a transdiagnostic environmental risk factor of psychiatric and neurodevelopmental disorders. MIA was induced by maternal administration of poly(I:C) on gestation day 12 in C57BL/6N mice. Murine ERV transcripts were quantified in the placentae and fetal brains shortly after poly(I:C)-induced MIA, as well as in adult offspring that were stratified according to their behavioral profiles. We found that MIA increased and reduced levels of class II ERVs and syncytins, respectively, in placentae and fetal brain tissue. We also revealed abnormal ERV expression in MIA-exposed offspring depending on whether they displayed overt behavioral anomalies or not. Taken together, our findings provide a proof of concept that an inflammatory stimulus, even when initiated in prenatal life, has the potential of altering ERV expression across fetal to adult stages of development. Moreover, our data highlight that susceptibility and resilience to MIA are associated with differential ERV expression, suggesting that early-life exposure to inflammatory factors may play a role in determining disease susceptibility by inducing persistent alterations in the expression of endogenous retroviral elements.
Collapse
Affiliation(s)
- Felisa Herrero
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Flavia S Mueller
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|