1
|
Shahzad A, Hameed S, Qin M, Li H, Zafar S, Siddiqui S, Sattar S, Mahmood Z, Mehwish S. Cadmium (Cd) detoxification and activation of plant defense enzymes activation in Wheat (Triticum aestivum) through the use of endophytic Bacillus thuringiensis and Salix alba root powder. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125147. [PMID: 39447632 DOI: 10.1016/j.envpol.2024.125147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal and a threat to the ecosystem therefore the current investigation was designed to use endophytic bacteria from the Salix alba roots and to investigate its plant growth promoting and Cd detoxification ability with and without Salix alba root powder. In a complete randomized design (CRD), the cadmium sulfate was applied at the rate of 20mg/kg and 40mg/kg soil. The Bacillus thuringiensis (Accession # MW979616) was identified from Salix alba roots. The combination of Bacillus thuringiensis inoculated seeds +0.5gm root powder showed significant increase in wheat shoot dry weight, root fresh weight, catalase, and ascorbate peroxidases by 457%, 223%, 105% and 74%, respectively. The application of Bacillus thuringiensis with Salix alba root powder boosted the plant growth and defense at higher concentrations of Cd. In another treatment with Bacillus thuringiensis inoculated seeds + CdSO4 40mg/kg + 0.5gm root powder significantly increased the shoot fresh weight, root fresh weight, root dry weight, proline, sugar, superoxide dismutase, and peroxidase by 456%, 650%, 115%, 91%, 80%, 350%, and 250%, respectively with 80% reduction in plant Cd accumulation and increased bacterial population. Bacillus thuringiensis and Salix alba root powder can be useful for plant growth, Cd toxicity mitigation, accelerating bacterial activity in Cd-contaminated soil and uplifting the plant defense under heavy metal stress.
Collapse
Affiliation(s)
- Asim Shahzad
- College of Geography and Environmental Sciences, Henan University, Jinming ave, Kaifeng, China; Department of Botany Mohi-Ud-Din Islamic University, AJ&K, Pakistan.
| | - Sofia Hameed
- Department of Botany Mohi-Ud-Din Islamic University, AJ&K, Pakistan.
| | - Mingzhou Qin
- College of Geography and Environmental Sciences, Henan University, Jinming ave, Kaifeng, China.
| | - Haoyang Li
- College of Geography and Environmental Sciences, Henan University, Jinming ave, Kaifeng, China.
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education Lahore, 54770 Punjab, Pakistan.
| | - Samina Siddiqui
- National Centre of Excellence in Geology, University of Peshawar 25120, Pakistan.
| | - Shehla Sattar
- Department of Environmental Sciences, University of Swabi.
| | - Zahid Mahmood
- Crop Sciences institute, National Agriculture Research Center Islamabad.
| | - Shaila Mehwish
- Department of health Biotechnology, Women University Swabi.
| |
Collapse
|
2
|
Posada LF, Arteaga-Figueroa LA, Adarve-Rengifo I, Cadavid M, Zapata S, Álvarez JC. Endophytic microbial diversity associated with commercial cultivar and crop wild relative banana variety could provide clues for microbial community management. Microbiol Res 2024; 287:127862. [PMID: 39121704 DOI: 10.1016/j.micres.2024.127862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Endophytes, microorganisms inhabiting internal plant tissues, play a pivotal role in plant growth and disease resistance. Moreover, previous studies have established that Musa plants derive disease protective functions from their microbiome. Notably, one of the crop wild relatives of banana, the Calcutta 4 variety, exhibits resistance to various phytopathogens such as Pseudocercospora fijiensis (P. fijiensis), while the Williams commercial cultivar (cv.) is highly susceptible. Therefore, this study aims primarily to characterize and compare the endophytic microbiota composition of Calcutta 4 and Williams banana plants when grown sympatrically. Alongside, differences in endophytic microbiome between plant sections (shoot or roots), growth phases (in vitro or greenhouse) and fitness factors such as the addition of plant growth-promoting bacteria Bacillus subtilis EA-CB0575 (T2 treatment) or infection by P. fijiensis (T3 treatment) were examined. Both culture-dependent and -independent techniques were used to evaluate these differences and assess the culturability of banana endophytes under varying conditions. Microbial cultures resulted in 331 isolates distributed across 54 genera when all treatments were evaluated, whereas 16 S sequencing produced 9510 ASVs assigned in 1456 genera. Alpha and beta diversity exhibited significant differences based on plant section, with an increase in phylogenetic diversity observed in plants with pathogen infection (T3) compared to control plants (T1). Additionally, four differentially abundant genera associated with nitrogen metabolism were identified in T3 plants and seven genera showed differential abundance when comparing varieties. When culture-dependent and -independent methods were compared, it was found that isolates represented 3.7 % of the genera detected by culture-independent methods, accounting for 12-41 % of the total data depending on the treatment. These results are crucial for proposing management strategies derived from crop wild relatives to enhance the resilience of susceptible commercial varieties against fitness factors affecting crop development. Additionally, they help to decipher the pathogenic effects of P. fijiensis in banana plants and advance the understanding of how plant domestication influences the endosphere.
Collapse
Affiliation(s)
- Luisa F Posada
- Grupo de Investigación Zentech. Pontificia Universidad Javeriana. Facultad de Ingeniería. Departamento de Ingeniería Industrial, Carrera 7 # 40-62, Bogotá, Colombia
| | - Luis A Arteaga-Figueroa
- Grupo de Investigación CIBIOP. Universidad EAFIT. Biological Sciences Department, Carrera 49 # 7 sur-50, Medellín, Colombia
| | - Isabel Adarve-Rengifo
- Grupo de Investigación CIBIOP. Universidad EAFIT. Biological Sciences Department, Carrera 49 # 7 sur-50, Medellín, Colombia
| | - Maria Cadavid
- Grupo de Investigación CIBIOP. Universidad EAFIT. Biological Sciences Department, Carrera 49 # 7 sur-50, Medellín, Colombia
| | | | - Javier C Álvarez
- Grupo de Investigación CIBIOP. Universidad EAFIT. Biological Sciences Department, Carrera 49 # 7 sur-50, Medellín, Colombia.
| |
Collapse
|
3
|
Cruz LG, Shen FT, Chen CP, Chen WC. Dose Effect of Polyethylene Microplastics Derived from Commercial Resins on Soil Properties, Bacterial Communities, and Enzymatic Activity. Microorganisms 2024; 12:1790. [PMID: 39338465 PMCID: PMC11434124 DOI: 10.3390/microorganisms12091790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Soils are the largest reservoir of microplastics (MPs) on earth. Since MPs can remain in soils for a very long time, their effects are magnified. In this study, different concentrations of polyethylene (PE) MPs derived from commercial resins (0%, 1%, 7%, and 14%, represented as MP_0, MP_1, MP_7, and MP_14) were added to soils to assess the changes in the soils' chemical properties, enzyme activities, and bacterial communities during a 70-day incubation period. The results show that PE MP treatments with low concentrations differed from other treatments in terms of exchangeable Ca and Mg, whereas at high concentrations, the pH and availability of phosphate ions differed. Fluorescein diacetate (FDA), acid phosphatase (ACP), and N-acetyl-β-d-glucosaminidase (NAG) enzyme activities exhibited a dose-related trend with the addition of the PE MPs; however, the average FDA and ACP activities were significantly affected only by MP_14. Changes in the microbial communities were observed at both the phylum and family levels with all PE MP treatments. It was revealed that even a low dosage of PE MPs in soils can affect the functional microbes, and a greater impact is observed on those that can survive in polluted environments with limited resources.
Collapse
Affiliation(s)
- Lesbia Gicel Cruz
- International Master Program in Agriculture, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Fo-Ting Shen
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 40227, Taiwan
| | - Chiou-Pin Chen
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou County 557004, Taiwan;
| | - Wen-Ching Chen
- International Bachelor Program in Agribusiness, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Baev V, Gecheva G, Apostolova E, Gozmanova M, Yahubyan G. Exploring the Metatranscriptome of Bacterial Communities of Two Moss Species Thriving in Different Environments-Terrestrial and Aquatic. PLANTS (BASEL, SWITZERLAND) 2024; 13:1210. [PMID: 38732425 PMCID: PMC11085137 DOI: 10.3390/plants13091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Mosses host diverse bacterial communities essential for their fitness, nutrient acquisition, stress tolerance, and pathogen defense. Understanding the microbiome's taxonomic composition is the first step, but unraveling their functional capabilities is crucial for grasping their ecological significance. Metagenomics characterizes microbial communities by composition, while metatranscriptomics explores gene expression, providing insights into microbiome functionality beyond the structure. Here, we present for the first time a metatranscriptomic study of two moss species, Hypnum cupressiforme (Hedw.) and Platyhypnidium riparioides (Hedw.) Dixon., renowned as key biomonitors of atmospheric and water pollution. Our investigation extends beyond taxonomic profiling and offers a profound exploration of moss bacterial communities. Pseudomonadota and Actinobacteria are the dominant bacterial phyla in both moss species, but their proportions differ. In H. cupressiforme, Actinobacteria make up 62.45% and Pseudomonadota 32.48%, while in P. riparioides, Actinobacteria account for only 25.67% and Pseudomonadota 69.08%. This phylum-level contrast is reflected in genus-level differences. Our study also shows the expression of most genes related to nitrogen cycling across both microbiomes. Additionally, functional annotation highlights disparities in pathway prevalence, including carbon dioxide fixation, photosynthesis, and fatty acid biosynthesis, among others. These findings hint at potential metabolic distinctions between microbial communities associated with different moss species, influenced by their specific genotypes and habitats. The integration of metatranscriptomic data holds promise for enhancing our understanding of bryophyte-microbe partnerships, opening avenues for novel applications in conservation, bioremediation, and sustainable agriculture.
Collapse
Affiliation(s)
- Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Gana Gecheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria;
| | - Elena Apostolova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Mariyana Gozmanova
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria; (E.A.); (M.G.)
| |
Collapse
|
5
|
Vergine M, Vita F, Casati P, Passera A, Ricciardi L, Pavan S, Aprile A, Sabella E, De Bellis L, Luvisi A. Characterization of the olive endophytic community in genotypes displaying a contrasting response to Xylella fastidiosa. BMC PLANT BIOLOGY 2024; 24:337. [PMID: 38664617 PMCID: PMC11044560 DOI: 10.1186/s12870-024-04980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.
Collapse
Affiliation(s)
- Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.
| | - Paola Casati
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milano, Italy
| | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Alessio Aprile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
6
|
Cao K, Chen J, Li Q, Gu P, Li L, Huang R. Bacteria from nodules of Abrus mollis Hance: genetic diversity and screening of highly efficient growth-promoting strains. Front Microbiol 2024; 15:1345000. [PMID: 38680912 PMCID: PMC11045970 DOI: 10.3389/fmicb.2024.1345000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Abrus mollis Hance. (AM) is an important species used in southern Chinese medicine. It is mainly found in Guangdong and Guangxi provinces in China, and it is effective in the treatment of hepatitis. Endophytic bacteria are known to affect the growth and quality of medicinal plants. However, there are limited reports describing endophytic bacteria related to AM. Methods In the present study, Illumina-based 16S rRNA gene sequencing was used to investigate the endophytic bacterial communities of root nodules of AM at five sampling sites in Guangxi. In addition, 179 strains of endophytic bacteria were isolated and categorized into 13 haplotypes based on recA sequence analysis. Results The phylogeny of the 16S rRNA gene sequences revealed a predominance of nonrhizobial endophytes. Microbial diversity analysis showed that Proteobacteria was the dominant phylum in all samples, while Bradyrhizobium was the dominant genus in different samples. An efficient strain, Rhizobium tropici FM-19, was screened and obtained through greenhouse experiments. The AM plants inoculated with this strain showed the best growth performance and high nitrogen fixation and nodulation capacity. Notably, total phenols and total flavonoids, important active components in AM, increased by 30.9 and 42.7%, respectively, after inoculation with Rhizobium tropici FM-19. Discussion This study provides insights into the complex microbial diversity of AM nodules and provides strain information for the efficient cultivation of AM.
Collapse
Affiliation(s)
- Kexin Cao
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiuling Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Peng Gu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Rongshao Huang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Singh P, Singh RK, Li HB, Guo DJ, Sharma A, Verma KK, Solanki MK, Upadhyay SK, Lakshmanan P, Yang LT, Li YR. Nitrogen fixation and phytohormone stimulation of sugarcane plant through plant growth promoting diazotrophic Pseudomonas. Biotechnol Genet Eng Rev 2024; 40:15-35. [PMID: 36814143 DOI: 10.1080/02648725.2023.2177814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Diazotrophic microorganisms are free-living groups of organisms that can convert atmospheric nitrogen (N) into bioavailable nitrogen for plants, which increases crop development and production. The purpose of the current study was to ascertain how diazotrophic plant growth promoting (PGP) Pseudomonas strains (P. koreensis CY4 and P. entomophila CN11) enhanced nitrogen fixation, defense activity, and PGP attributes of sugarcane varieties; GT11 and G×B9. A 15N isotope-dilution study was conducted to confirm the sugarcane strains' capacity to fix nitrogen, and the results indicated that between 21 to 35% of plant, nitrogen is fixed biologically by selected rhizobacteria. In comparison to the control, after 30, 60, and 90 days, both CY4 and CN11 strains significantly increased defense-related enzymes (catalase, peroxidase, phenylalanine ammonia-lyase, superoxide dismutase, glucanase, and chitinase) and phytohormones (abscisic acid, ABA, cytokinin, etc.) in GT11 and GXB. Additionally, the expression of SuCHI, SuGLU, SuCAT, SuSOD, and SuPAL genes was found to be elevated in Pseudomonas strains inoculated plants using real-time quantitative polymerase chain reaction (RT-qPCR). Both bacterial strains increased all physiological parameters and chlorophyll content in sugarcane plants more than their control. The effects of P. koreensis CY4 and P. entomophila CN11 strains on sugarcane growth promotion and nitrogen fixation under greenhouse conditions are described here for the first time systematically. The results of confirmation studies demonstrated that P. koreensis CY4 and P. entomophila are PGP bacterial strains with the potential to be employed as a biofertilizer for sugarcane growth, nitrogen nutrient absorption, and reduced application of chemical nitrogenous fertilizers in agricultural fields. .
Collapse
Affiliation(s)
- Pratiksha Singh
- School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Rajesh Kumar Singh
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hai-Bi Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Anjney Sharma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Li-Tao Yang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
8
|
Chauhan PK, Upadhyay SK, Rajput VD, Dwivedi P, Minkina T, Wong MH. Fostering plant growth performance under drought stress using rhizospheric microbes, their gene editing, and biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:41. [PMID: 38227068 DOI: 10.1007/s10653-023-01823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Stress due to drought lowers crop yield and frequently leads to a rise in food scarcity. Plants' intricate metabolic systems enable them to tolerate drought stress, but they are unable to handle it well. Adding some external, environmentally friendly supplements can boost plant growth and productivity when it comes to drought-stressed plants. In order to prevent the detrimental effects of drought in agricultural regions, environmentally friendly practices must be upheld. Plant growth-promoting rhizobacteria (PGPR) can exhibit beneficial phytostimulation, mineralization, and biocontrol activities under drought stress. The significant impact of the PGPR previously reported has not been accepted as an effective treatment to lessen drought stress. Recent studies have successfully shown that manipulating microbes can be a better option to reduce the severity of drought in plants. In this review, we demonstrate how modifying agents such as biochar, PGPR consortia, PGPR, and mycorrhizal fungi can help overcome drought stress responses in crop plants. This article also discusses CRISPR/Cas9-modifiable genes, increase plant's effectiveness in drought conditions, and increase plant resistance to drought stress. With an eco-friendly approach in mind, there is a need for practical management techniques having potential prospects based on an integrated strategy mediated by CRISPR-Cas9 editing, PGPR, which may alleviate the effects of drought stress in crops and aid in achieving the United Nation Sustainable Development Goals (UN-SDGs-2030).
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, 999077, China
| |
Collapse
|
9
|
Upadhyay SK, Rajput VD, Kumari A, Espinosa-Saiz D, Menendez E, Minkina T, Dwivedi P, Mandzhieva S. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9321-9344. [PMID: 36413266 DOI: 10.1007/s10653-022-01433-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090.
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Daniel Espinosa-Saiz
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
| | - Esther Menendez
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| |
Collapse
|
10
|
Kan Y, Zhang L, Wang Y, Ma Q, Zhou Y, Jiang X, Zhang W, Ruan Z. Endophytic Bacterium Flexivirga meconopsidis sp. nov. with Plant Growth-Promoting Function, Isolated from the Seeds of Meconopsis integrifolia. Microorganisms 2023; 11:2899. [PMID: 38138043 PMCID: PMC10745605 DOI: 10.3390/microorganisms11122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Strain Q11T of an irregular coccoid Gram-positive bacterium, aerobic and non-motile, was isolated from Meconopsis integrifolia seeds. Strain Q11T grew optimally in 1% (w/v) NaCl, pH 7, at 30 °C. Strain Q11T is most closely related to Flexivirga, as evidenced by 16S rRNA gene analysis, and shares the highest similarity with Flexivirga aerilata ID2601ST (99.24%). Based on genome sequence analysis, the average nucleotide identity and digital DNA-DNA hybridization values of strains Q11T and D2601ST were 88.82% and 36.20%, respectively. Additionally, strain Q11T showed the abilities of nitrogen fixation and indole acetic acid production and was shown to promote maize growth under laboratory conditions. Its genome contains antibiotic resistance genes (the vanY gene in the vanB cluster and the vanW gene in the vanI cluster) and extreme environment tolerance genes (ectoine biosynthetic gene cluster). Shotgun proteomics also detected antibiotic resistance proteins (class A beta-lactamases, D-alanine ligase family proteins) and proteins that improve plant cold tolerance (multispecies cold shock proteins). Strain Q11T was determined to be a novel species of the genus Flexivirga, for which the name Flexivirga meconopsidis sp. nov. is proposed. The strain type is Q11T (GDMCC 1.3002T = JCM 36020 T).
Collapse
Affiliation(s)
- Yongtao Kan
- College of Life Sciences, Xinjiang Normal University, Urumqi 830017, China;
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (Q.M.); (Y.Z.); (X.J.)
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yan Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (Q.M.); (Y.Z.); (X.J.)
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Resources and Environment, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Qingyun Ma
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (Q.M.); (Y.Z.); (X.J.)
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiqing Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (Q.M.); (Y.Z.); (X.J.)
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Jiang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (Q.M.); (Y.Z.); (X.J.)
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- College of Life Sciences, Xinjiang Normal University, Urumqi 830017, China;
| | - Zhiyong Ruan
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (Q.M.); (Y.Z.); (X.J.)
- CAAS-CIAT Joint Laboratory in Advanced Technologies for Sustainable Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Sharma A, Singh RN, Song XP, Singh RK, Guo DJ, Singh P, Verma KK, Li YR. Genome analysis of a halophilic Virgibacillus halodenitrificans ASH15 revealed salt adaptation, plant growth promotion, and isoprenoid biosynthetic machinery. Front Microbiol 2023; 14:1229955. [PMID: 37808307 PMCID: PMC10556750 DOI: 10.3389/fmicb.2023.1229955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Globally, due to widespread dispersion, intraspecific diversity, and crucial ecological components of halophilic ecosystems, halophilic bacteria is considered one of the key models for ecological, adaptative, and biotechnological applications research in saline environments. With this aim, the present study was to enlighten the plant growth-promoting features and investigate the systematic genome of a halophilic bacteria, Virgibacillus halodenitrificans ASH15, through single-molecule real-time (SMRT) sequencing technology. Results showed that strain ASH15 could survive in high salinity up to 25% (w/v) NaCl concentration and express plant growth-promoting traits such as nitrogen fixation, plant growth hormones, and hydrolytic enzymes, which sustain salt stress. The results of pot experiment revealed that strain ASH15 significantly enhanced sugarcane plant growth (root shoot length and weight) under salt stress conditions. Moreover, the sequencing analysis of the strain ASH15 genome exhibited that this strain contained a circular chromosome of 3,832,903 bp with an average G+C content of 37.54%: 3721 predicted protein-coding sequences (CDSs), 24 rRNA genes, and 62 tRNA genes. Genome analysis revealed that the genes related to the synthesis and transport of compatible solutes (glycine, betaine, ectoine, hydroxyectoine, and glutamate) confirm salt stress as well as heavy metal resistance. Furthermore, functional annotation showed that the strain ASH15 encodes genes for root colonization, biofilm formation, phytohormone IAA production, nitrogen fixation, phosphate metabolism, and siderophore production, which are beneficial for plant growth promotion. Strain ASH15 also has a gene resistance to antibiotics and pathogens. In addition, analysis also revealed that the genome strain ASH15 has insertion sequences and CRISPRs, which suggest its ability to acquire new genes through horizontal gene transfer and acquire immunity to the attack of viruses. This work provides knowledge of the mechanism through which V. halodenitrificans ASH15 tolerates salt stress. Deep genome analysis, identified MVA pathway involved in biosynthesis of isoprenoids, more precisely "Squalene." Squalene has various applications, such as an antioxidant, anti-cancer agent, anti-aging agent, hemopreventive agent, anti-bacterial agent, adjuvant for vaccines and drug carriers, and detoxifier. Our findings indicated that strain ASH15 has enormous potential in industries such as in agriculture, pharmaceuticals, cosmetics, and food.
Collapse
Affiliation(s)
- Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- State Key Laboratory of Conservation and Utilization of Subtropical, College of Agriculture, Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- State Key Laboratory of Conservation and Utilization of Subtropical, College of Agriculture, Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
12
|
Huang D, Ren J, Chen X, Akhtar K, Liang Q, Ye C, Xiong C, He H, He B. Whole-genome assembly of A02 bacteria involved in nitrogen fixation within cassava leaves. PLANT PHYSIOLOGY 2023; 193:1479-1490. [PMID: 37307568 DOI: 10.1093/plphys/kiad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
The endophytic nitrogen (N)-fixing bacterium A02 belongs to the genus Curtobacterium (Curtobacterium sp.) and is crucial for the N metabolism of cassava ( Manihot esculenta Crantz). We isolated the A02 strain from cassava cultivar SC205 and used the 15N isotope dilution method to study the impacts of A02 on growth and accumulation of N in cassava seedlings. Furthermore, the whole genome was sequenced to determine the N-fixation mechanism of A02. Compared with low N control (T1), inoculation with the A02 strain (T2) showed the highest increase in leaf and root dry weight of cassava seedlings, and 120.3 nmol/(mL·h) was the highest nitrogenase activity recorded in leaves, which were considered the main site for colonization and N-fixation. The genome of A02 was 3,555,568 bp in size and contained a circular chromosome and a plasmid. Comparison with the genomes of other short bacilli revealed that strain A02 showed evolutionary proximity to the endophytic bacterium NS330 (Curtobacterium citreum) isolated from rice (Oryza sativa) in India. The genome of A02 contained 13 nitrogen fixation (nif) genes, including 4 nifB, 1 nifR3, 2 nifH, 1 nifU, 1 nifD, 1 nifK, 1 nifE, 1 nifN, and 1 nifC, and formed a relatively complete N fixation gene cluster 8-kb long that accounted for 0.22% of the whole genome length. The nifHDK of strain A02 (Curtobacterium sp.) is identical to the Frankia alignment. Function prediction showed high copy number of the nifB gene was related to the oxygen protection mechanism. Our findings provide exciting information about the bacterial genome in relation to N support for transcriptomic and functional studies for increasing N use efficiency in cassava.
Collapse
Affiliation(s)
- Danping Huang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, P. R. China
| | - Jie Ren
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, P. R. China
- Department of Agricultural Engineering, GuiZhou Vocational College of Agriculture, Qingzhen 550000, P. R. China
| | - Xi Chen
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, P. R. China
- Hunan Linji Ecological Technology Co. LtD., Hunan Province, Changsha 410000, P. R. China
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Qiongyue Liang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, P. R. China
| | - Congyu Ye
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, P. R. China
| | - Caiyi Xiong
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, P. R. China
| | - Huahong He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, P. R. China
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
13
|
Li J, Huang C, Lai L, Wang L, Li M, Tan Y, Zhang T. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5515-5529. [PMID: 37355493 DOI: 10.1007/s10653-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 06/26/2023]
Abstract
Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.
Collapse
Affiliation(s)
- Jiao Li
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuying Huang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Lin Lai
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li Wang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi, 445000, Hubei, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Tao Zhang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Liu Q, Li L, Chen Y, Wang S, Xue L, Meng W, Jiang J, Cao X. Diversity of Endophytic Microbes in Taxus yunnanensis and Their Potential for Plant Growth Promotion and Taxane Accumulation. Microorganisms 2023; 11:1645. [PMID: 37512818 PMCID: PMC10383522 DOI: 10.3390/microorganisms11071645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Taxus spp. are ancient tree species that have survived from the Quaternary glacier period, and their metabolites, such as taxol, have been used as anticancer drugs globally. Plant-endophytic microbial interaction plays a crucial role in exerting a profound impact on host growth and secondary metabolite synthesis. In this study, high-throughput sequencing was employed to explore endophytic microbial diversity in the roots, stems, and leaves of the Taxus yunnanensis (T. yunnanensis). The analysis revealed some dominant genera of endophytic bacteria, such as Pseudomonas, Neorhizobium, Acidovorax, and Flavobacterium, with Cladosporium, Phyllosticta, Fusarium, and Codinaeopsis as prominent endophytic fungi genera. We isolated 108 endophytic bacteria and 27 endophytic fungi from roots, stems, and leaves. In vitro assays were utilized to screen for endophytic bacteria with growth-promoting capabilities, including IAA production, cellulase, siderophore production, protease and ACC deaminase activity, inorganic phosphate solubilization, and nitrogen fixation. Three promising strains, Kocuria sp. TRI2-1, Micromonospora sp. TSI4-1, and Sphingomonas sp. MG-2, were selected based on their superior growth-promotion characteristics. These strains exhibited preferable plant growth promotion when applied to Arabidopsis thaliana growth. Fermentation broths of these three strains were also found to significantly promote the accumulation of taxanes in T. yunnanensis stem cells, among which strain TSI4-1 demonstrated outstanding increase potentials, with an effective induction of taxol, baccatin III, and 10-DAB contents. After six days of treatment, the contents of these metabolites were 3.28 times, 2.23 times, and 2.17 times the initial amounts, reaching 8720, 331, and 371 ng/g of dry weight of stem cells, respectively. These findings present new insight into the industrialization of taxol production through Taxus stem cell fermentation, thereby promoting the conservation of wild Taxus resources by maximizing their potential economic benefits.
Collapse
Affiliation(s)
- Qiao Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Ludan Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yujie Chen
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Sai Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lina Xue
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Weiying Meng
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaoying Cao
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
15
|
Shen T, Jin R, Yan J, Cheng X, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Penttinen P, Ma M, Li S, Zou T, Yu X. Study on diversity, nitrogen-fixing capacity, and heavy metal tolerance of culturable Pongamia pinnata rhizobia in the vanadium-titanium magnetite tailings. Front Microbiol 2023; 14:1078333. [PMID: 37405163 PMCID: PMC10315665 DOI: 10.3389/fmicb.2023.1078333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The diversity, nitrogen-fixing capacity and heavy metal tolerance of culturable rhizobia in symbiotic relationship with Pongamia pinnata surviving in vanadium (V) - titanium (Ti) magnetite (VTM) tailings is still unknown, and the rhizobia isolates from the extreme barren VTM tailings contaminated with a variety of metals would provide available rhizobia resources for bioremediation. Methods P. pinnata plants were cultivated in pots containing the VTM tailings until root nodules formed, and then culturable rhizobia were isolated from root nodules. The diversity, nitrogen-fixing capacity and heavy metal tolerance of rhizobia were performed. Results Among 57 rhizobia isolated from these nodules, only twenty strains showed different levels of tolerance to copper (Cu), nickel (Ni), manganese (Mn) and zinc (Zn), especially strains PP1 and PP76 showing high tolerance against these four heavy metals. Based on the phylogenetic analysis of 16S rRNA and four house-keeping genes (atpD, recA, rpoB, glnII), twelve isolates were identified as Bradyrhizobium pachyrhizi, four as Ochrobactrum anthropic, three as Rhizobium selenitireducens and one as Rhizobium pisi. Some rhizobia isolates showed a high nitrogen-fixing capacity and promoted P. pinnata growth by increasing nitrogen content by 10%-145% in aboveground plant part and 13%-79% in the root. R. pachyrhizi PP1 showed the strongest capacity of nitrogen fixation, plant growth promotion and resistance to heavy metals, which provided effective rhizobia strains for bioremediation of VTM tailings or other contaminated soils. This study demonstrated that there are at least three genera of culturable rhizobia in symbiosis with P. pinnata in VTM tailings. Discussion Abundant culturable rhizobia with the capacity of nitrogen fixation, plant growth promotion and resistance to heavy metals survived in VTM tailings, indicating more valuable functional microbes could be isolated from extreme soil environments such as VTM tailings.
Collapse
Affiliation(s)
- Tian Shen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ruimin Jin
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jing Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiran Cheng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ting Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| |
Collapse
|
16
|
Zhang C, Shi X, Zhang J, Zhang Y, Wang W. Dynamics of soil microbiome throughout the cultivation life cycle of morel ( Morchella sextelata). Front Microbiol 2023; 14:979835. [PMID: 36910237 PMCID: PMC9992412 DOI: 10.3389/fmicb.2023.979835] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Although Morchella sextelata (morel) is a well-known, edible, and medicinal fungus widely cultivated in China, the dynamics and roles of its soil microbiome during cultivation are unclear. Using rhizosphere soil samples collected throughout the M. sextelata cultivation life cycle, we conducted a high-throughput metagenomic sequencing analysis, with an emphasis on variations in soil microbial composition, characteristic biomarkers, and ecological functions. We found that microbial relative abundance, alpha diversity, and structure varied significantly among fungal growth stages. A total of 47 stage-associated biomarkers were identified through a linear discriminant analysis of effect size. In addition, horizontal comparison of soil microbiomes exhibiting successful and failed primordium formation further confirmed primordium-associated microbes with possible key roles in primordium formation. A microbial function analysis revealed that nutrient metabolism-related pathways were enriched during mycelium and fruiting body stages, whereas the signal transduction pathway was enriched during the primordium stage. This result indicates that diverse microbes are required at different growth stages of M. sextelata. Our research has revealed the dynamic scenario of the soil microbiome throughout the cultivation life cycle of M. sextelata. The high-resolution microbial profiles uncovered in the present study provide novel insights that should contribute to the improvement of morel cultivation using microbial inoculants.
Collapse
Affiliation(s)
- Chen Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jiexiong Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yesheng Zhang
- Shandong Junsheng Biotechnologies Co., Ltd., Liaocheng, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
17
|
Liu H, Tang H, Ni X, Zhang J, Zhang X. Epichloë endophyte interacts with saline-alkali stress to alter root phosphorus-solubilizing fungal and bacterial communities in tall fescue. Front Microbiol 2022; 13:1027428. [PMID: 36620058 PMCID: PMC9815497 DOI: 10.3389/fmicb.2022.1027428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Epichloë endophytes, present in aboveground tissues, modify belowground microbial community. This study was conducted to investigate endophyte (Epichloë coenophialum) associated with tall fescue (Lolium arundinaceum) interacted with an altered saline-alkali stress (0, 200 and 400 mmol/l) to affect the belowground phosphorus solubilizing microorganisms including phosphorus solubilizing fungi (PSF) and bacteria (PSB). We found that a significant interaction between E. coenophialum and saline-alkali stress occurred in the diversity and composition of PSF in tall fescue roots. Under saline-alkali stress conditions (200 and 400 mmol/l), E. coenophialum significantly increased the PSF diversity and altered its composition in the roots, decreasing the relative abundance of dominant Cladosporium and increasing the relative abundance of Fusarium. However, there was no significant interaction between E. coenophialum and saline-alkali stress on the PSB diversity in tall fescue roots. E. coenophialum significantly reduced the diversity of PSB in the roots, and E. coenophialum effects did not depend on the saline-alkali stress treatment. Structural equation modeling (SEM) showed that E. coenophialum presence increased soil available phosphorus concentration under saline-alkali stress primarily by affecting PSF diversity instead of the diversity and composition of PSB.
Collapse
|
18
|
Rani N, Kaur G, Kaur S, Mutreja V, Upadhyay SK, Tripathi M. Comparison of diversity and zinc solubilizing efficiency of rhizobacteria obtained from solanaceous crops under polyhouse and open field conditions. Biotechnol Genet Eng Rev 2022:1-22. [PMID: 36544391 DOI: 10.1080/02648725.2022.2157949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Zinc-solubilizing bacteria (Zn-SB) play a crucial role in regulating soil fertility and plant health by maintaining Zn availability in the rhizosphere. It is uncertain how the Zn-SB population fluctuates across various cultivation systems since varied land-use patterns for agricultural aims may affect microbial activity and plant development effectiveness. The current study aims to examine the Zn-SB potential of various farming systems using Solanum lycopersicum, Solanum melongena, and Capsicum annuum grown in polyhouse soil (PS) and open fields (OF). Only twenty rhizobacterial isolates from PS and two isolates from OF out of 80 showed a strong ability to solubilize Zn, which was evaluated using Atomic Absorption Spectroscopy. Bacterial strain-PS4 solubilized 253.06 ppm of ZnO and produced a high quantity of lactic acid (168.62 g/ml) and acetic acid (470.5 g/ml), whereas bacterial strain OF1 solubilized 16.02 ppm of ZnO by releasing glycolic acid (42.89 g/ml), lactic acid (22.30 g/ml), formic acid (106.03 g/ml), and acetic acid (48.5 µg/ml). Further, in vitro studies demonstrated higher production of auxin, gibberellic acid and siderophore by PS1 as compared to OF1 strain. A large diversity of Zn-SB in the soil was indicated by biochemical analysis, which revealed that isolates belonged to the families Enterobacteriaceae, Bacillaceae, Burkholderiaceae, Streptococcaceae, Paenibacillaceae, Micrococcaceae, Morganellaceae, and Dietziaceae. The isolates PS4 and OF1 were identified as Bacillus cereus and Enterobacter hormaechei, respectively, using 16S rRNA sequencing. The findings show that soil from polyhouses has a greater diversity of Zn-solubilization rhizobacteria than soil from open areas. The findings suggested a potential land-use method for enhancing crop yields by employing microorganisms and polyhouse technology, which could be useful in the future study.
Collapse
Affiliation(s)
- Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Gurparteek Kaur
- Department of Agricultural Sciences, Chandigarh University, Mohali, Punjab, India
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vishal Mutreja
- Department of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
19
|
Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol Genet Eng Rev 2022:1-37. [PMID: 36254096 DOI: 10.1080/02648725.2022.2131958] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. RamManohar Lohia Avadh University, Ayodhya, India
| | - Rajesh Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Deeksha Krishna
- College of agriculture, Fisheries and Forestry, Fiji National University, Fiji
| | - Sushil K Singh
- Department of Agri-Business, V.B.S. Purvanchal University, Jaunpur, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
20
|
Khan MY, Nadeem SM, Sohaib M, Waqas MR, Alotaibi F, Ali L, Zahir ZA, Al-Barakah FNI. Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Front Microbiol 2022; 13:958522. [PMID: 36246246 PMCID: PMC9557047 DOI: 10.3389/fmicb.2022.958522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Owing to inconsistent results of a single bacterial strain, co-inoculation of more than one strain under salinity stress could be a more effective strategy to induce salt tolerance. Co-inoculation of more than one bacterial strain could be more effective due to the presence of several growths promoting traits. This study was conducted to evaluate the effectiveness of multi-strains bacterial consortium to promote wheat growth under salinity stress. Several plant growth promoting rhizobacteria (PGPR) had been isolated and tested for their ability to grow in increasing concentrations of sodium chloride (NaCl). Those rhizobacterial strains having tolerance against salinity were screened to evaluate their ability to promote wheat growth in the presence of salinity by conducting jar trials under axenic conditions. The rhizobacteria with promising results were tested for their compatibility with each other before developing multi-strain inoculum of PGPR. The compatible PGPR strains were characterized, and multi-strain inoculum was then evaluated for promoting wheat growth under axenic conditions at different salinity levels, i.e., 2.1 (normal soil), 6, 12, and 18 dS m–1. The most promising combination was further evaluated by conducting a pot trial in the greenhouse. The results showed that compared to a single rhizobacterial strain, better growth-promoting effect was observed when rhizobacterial strains were co-inoculated. The multi-strain consortium of PGPR caused a significant positive impact on shoot length, root length, shoot fresh weight, and root fresh weight of wheat at the highest salinity level in the jar as well as in the pot trial. Results showed that the multi-strain consortium of PGPR caused significant positive effects on the biochemical traits of wheat by decreasing electrolyte leakage and increasing chlorophyll contents, relative water contents (RWC), and K/Na ratio. It can be concluded that a multi-strain consortium of PGPR (Ensifer adhaerens strain BK-30, Pseudomonas fluorescens strain SN5, and Bacillus megaterium strain SN15) could be more effective to combat the salinity stress owing to the presence of a variety of growth-promoting traits. However, further work is going on to evaluate the efficacy of multi-strain inoculum of PGPR under salt-affected field conditions.
Collapse
Affiliation(s)
| | - Sajid Mahmood Nadeem
- Sub-Campus Burewala-Vehari, University of Agriculture, Faisalabad, Pakistan
- *Correspondence: Sajid Mahmood Nadeem,
| | - Muhammad Sohaib
- Department of Soil Sciences, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- Muhammad Sohaib,
| | | | - Fahad Alotaibi
- Department of Soil Sciences, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Liaqat Ali
- Sub-Campus Burewala-Vehari, University of Agriculture, Faisalabad, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fahad N. I. Al-Barakah
- Department of Soil Sciences, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Thiebaut F, Urquiaga MCDO, Rosman AC, da Silva ML, Hemerly AS. The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops. Int J Mol Sci 2022; 23:ijms231911301. [PMID: 36232602 PMCID: PMC9569789 DOI: 10.3390/ijms231911301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Agriculture is facing increasing challenges with regard to achieving sustainable growth in productivity without negatively impacting the environment. The use of bioinoculants is emerging as a sustainable solution for agriculture, especially bioinoculants based on diazotrophic bacteria. Brazil is at the forefront of studies intended to identify beneficial diazotrophic bacteria, as well as in the molecular characterization of this association on both the bacterial and plant sides. Here we highlight the main advances in molecular studies to understand the benefits brought to plants by diazotrophic bacteria. Different molecular pathways in plants are regulated both genetically and epigenetically, providing better plant performance. Among them, we discuss the involvement of genes related to nitrogen metabolism, cell wall formation, antioxidant metabolism, and regulation of phytohormones that can coordinate plant responses to environmental factors. Another important aspect in this regard is how the plant recognizes the microorganism as beneficial. A better understanding of plant–bacteria–environment interactions can assist in the future formulation of more efficient bioinoculants, which could in turn contribute to more sustainable agriculture practices.
Collapse
|
22
|
Upadhyay SK, Srivastava AK, Rajput VD, Chauhan PK, Bhojiya AA, Jain D, Chaubey G, Dwivedi P, Sharma B, Minkina T. Root Exudates: Mechanistic Insight of Plant Growth Promoting Rhizobacteria for Sustainable Crop Production. Front Microbiol 2022; 13:916488. [PMID: 35910633 PMCID: PMC9329127 DOI: 10.3389/fmicb.2022.916488] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
The breaking silence between the plant roots and microorganisms in the rhizosphere affects plant growth and physiology by impacting biochemical, molecular, nutritional, and edaphic factors. The components of the root exudates are associated with the microbial population, notably, plant growth-promoting rhizobacteria (PGPR). The information accessible to date demonstrates that PGPR is specific to the plant's roots. However, inadequate information is accessible for developing bio-inoculation/bio-fertilizers for the crop in concern, with satisfactory results at the field level. There is a need to explore the perfect candidate PGPR to meet the need for plant growth and yield. The functions of PGPR and their chemotaxis mobility toward the plant root are triggered by the cluster of genes induced by the components of root exudates. Some reports have indicated the benefit of root exudates in plant growth and productivity, yet a methodical examination of rhizosecretion and its consequences in phytoremediation have not been made. In the light of the afore-mentioned facts, in the present review, the mechanistic insight and recent updates on the specific PGPR recruitment to improve crop production at the field level are methodically addressed.
Collapse
Affiliation(s)
- Sudhir K. Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | | | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Prabhat K. Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Ali Asger Bhojiya
- Department of Agriculture and Veterinary Sciences, Mewar University, Chittorgarh, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|