1
|
Yeap CSY, Nguyen NHA, Busche T, Wibberg D, Riha J, Kruse O, Cernik M, Blifernez-Klassen O, Sevcu A. Transcriptomic analysis and cellular responses to nanoscale zero-valent iron in green microalga Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117194. [PMID: 39454359 DOI: 10.1016/j.ecoenv.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Nanoscale zero valent iron (nZVI) is used to remediate aquifers polluted by organochlorines or heavy metals and was also suggested to eliminate harmful algal blooms. nZVI can therefore affect microorganisms in the vicinity of the application area, including microalgae. However, studies on early transcriptomic effects of microalgae after exposure to nZVI are rare. Here, we described the early physiological and transcriptomic response of the freshwater ecological indicator green microalga, Raphidocelis subcapitata ATCC 22662, to 100 mg/L of reactive nZVI and non-reactive nano-magnetite (nFe3O4). The combined effect of shading and the release of total iron from nZVI posed a short-term inhibition effect leading to 15 % of deformed cells and cytosol leakage, while cells viability increased after 24 h. nZVI triggered a more pronounced transcriptomic response with (7380 differentially expressed genes [DEGs]) compared to nFe3O4 (4601 DEGs) after 1 h. nZVI, but not nFe3O4 increased the expression of genes function in DNA repair and replication, while deactivated carbohydrate-energy metabolisms, mitochondria signaling, and transmembrane ion transport. This study highlights an early fate assessment of algal cells under nZVI and nFe3O4 exposure using next-generation risk assessment methods and will serve as valuable information for safe and sustainable application of nZVI in water remediation.
Collapse
Affiliation(s)
- Cheryl S Y Yeap
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic; Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany; Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Nhung H A Nguyen
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany; Medical School East Westphalia-Lippe, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany; Institute of Bio, and Geosciences - Computational Metagenomics (IBG-5), Forschungszentrum Jülich GmbH - Branch Office Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Jakub Riha
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Miroslav Cernik
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic
| | - Olga Blifernez-Klassen
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany.
| | - Alena Sevcu
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 2, Liberec 46117, Czech Republic.
| |
Collapse
|
2
|
Gonçalves FCDM, Mantoan LPB, Corrêa CV, Parreiras NDS, de Almeida LFR, Ono EO, Rodrigues JD, Prado RDM, Boaro CSF. Effects of Salicylic Acid on Physiological Responses of Pepper Plants Pre-Subjected to Drought under Rehydration Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2805. [PMID: 39409675 PMCID: PMC11479176 DOI: 10.3390/plants13192805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Capsicum annuum L. has worldwide distribution, but drought has limited its production. There is a lack of research to better understand how this species copes with drought stress, whether it is reversible, and the effects of mitigating agents such as salicylic acid (SA). Therefore, this study aimed to understand the mechanisms of action of SA and rehydration on the physiology of pepper plants grown under drought conditions. The factorial scheme adopted was 3 × 4, with three water regimes (irrigation, drought, and rehydration) and four SA concentrations, namely: 0 (control), 0.5, 1, and 1.5 mM. This study evaluated leaf water percentage, water potential of shoots, chlorophylls (a and b), carotenoids, stomatal conductance, chlorophyll a fluorescence, and hydrogen peroxide (H2O2) concentration at different times of day, water conditions (irrigation, drought, and rehydration), and SA applications (without the addition of a regulator (0) and with the addition of SA at concentrations equal to 0.5, 1, and 1.5 mM). In general, exogenous SA application increased stomatal conductance (gs) responses and modified the fluorescence parameters (ΦPSII, qP, ETR, NPQ, D, and E) of sweet pepper plants subjected to drought followed by rehydration. It was found that the use of SA, especially at concentrations of 1 mM in combination with rehydration, modulates gs, which is reflected in a higher electron transport rate. This, along with the production of photosynthetic pigments, suggests that H2O2 did not cause membrane damage, thereby mitigating the water deficit in pepper plants. Plants under drought conditions and rehydration with foliar SA application at concentrations of 1 mM demonstrated protection against damage resulting from water stress. Focusing on sustainable productivity, foliar SA application of 1 mM could be recommended as a technique to overcome the adverse effects of water stress on pepper plants cultivated in arid and semi-arid regions.
Collapse
Affiliation(s)
- Fabrício Custódio de Moura Gonçalves
- Department of Horticulture, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Campus de Botucatu, Avenida Universitária, 3780 Altos do Paraíso, Botucatu 18610-034, Brazil; (C.V.C.); (N.d.S.P.)
| | - Luís Paulo Benetti Mantoan
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - Carla Verônica Corrêa
- Department of Horticulture, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Campus de Botucatu, Avenida Universitária, 3780 Altos do Paraíso, Botucatu 18610-034, Brazil; (C.V.C.); (N.d.S.P.)
| | - Nathália de Souza Parreiras
- Department of Horticulture, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Campus de Botucatu, Avenida Universitária, 3780 Altos do Paraíso, Botucatu 18610-034, Brazil; (C.V.C.); (N.d.S.P.)
| | - Luiz Fernando Rolim de Almeida
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - Elizabeth Orika Ono
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - João Domingos Rodrigues
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - Renato de Mello Prado
- Department of Soils and Fertilizers, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Campus Jaboticabal, Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil;
| | - Carmen Sílvia Fernandes Boaro
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| |
Collapse
|
3
|
Moustaka J, Sperdouli I, İşgören S, Şaş B, Moustakas M. Deciphering the Mechanism of Melatonin-Induced Enhancement of Photosystem II Function in Moderate Drought-Stressed Oregano Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2590. [PMID: 39339565 PMCID: PMC11434670 DOI: 10.3390/plants13182590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Melatonin (MT) is considered as an antistress molecule that plays a constructive role in the acclimation of plants to both biotic and abiotic stress conditions. In the present study, we assessed the impact of 10 and 100 μM MT foliar spray, on chlorophyll content, and photosystem II (PSII) function, under moderate drought stress, on oregano (Origanum vulgare L.) plants. Our aim was to elucidate the molecular mechanism of MT action on the photosynthetic electron transport process. Foliar spray with 100 μM MT was more effective in mitigating the negative impact of moderate drought stress on PSII function, compared to 10 μM MT. MT foliar spray significantly improved the reduced efficiency of the oxygen-evolving complex (OEC), and PSII photoinhibition (Fv/Fm), which were caused by drought stress. Under moderate drought stress, foliar spray with 100 μM MT, compared with the water sprayed (WA) leaves, increased the non-photochemical quenching (NPQ) by 31%, at the growth irradiance (GI, 205 μmol photons m-2 s-1), and by 13% at a high irradiance (HI, 1000 μmol photons m-2 s-1). However, the lower NPQ increase at HI was demonstrated to be more effective in decreasing the singlet-excited oxygen (1O2) production at HI (-38%), in drought-stressed oregano plants sprayed with 100 μM MT, than the corresponding decrease in 1O2 production at the GI (-20%), both compared with the respective WA-sprayed leaves under moderate drought. The reduced 1O2 production resulted in a significant increase in the quantum yield of PSII photochemistry (ΦPSII), and the electron transport rate (ETR), in moderate drought-stressed plants sprayed with 100 μM MT, compared with WA-sprayed plants, but only at the HI (+27%). Our results suggest that the enhancement of PSII functionality, with 100 μM MT under moderate drought stress, was initiated by the NPQ mechanism, which decreased the 1O2 production and increased the fraction of open PSII reaction centers (qp), resulting in an increased ETR.
Collapse
Affiliation(s)
- Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece
| | - Sumrunaz İşgören
- Department of Molecular Biology and Genetics, Istanbul Kültür University, Ataköy 7-8-9-10, 34158 Bakırköy, Turkey
| | - Begüm Şaş
- School of Life Sciences, Faculty of Biotechnology, ITMO University, Kronverkskiy Prospekt 49, 197101 Saint-Petersburg, Russia
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Angouti F, Nourafcan H, Saeedi Sar S, Assadi A, Ebrahimi R. Optimizing antidiabetic properties of Galega officinalis extract: Investigating the effects of foliar application of chitosan and salicylic acid. Food Sci Nutr 2024; 12:5844-5857. [PMID: 39139975 PMCID: PMC11317664 DOI: 10.1002/fsn3.4204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/27/2024] [Accepted: 04/24/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetes poses a significant global health burden, demanding safe and effective therapeutic interventions. Medicinal plants offer promising avenues for natural diabetic management. Galega officinalis (goat's rue) has long been recognized for its hypoglycemic potential, but optimizing its phytochemical content and antidiabetic activity remains a key challenge. This study aimed to address this aspect by investigating the impact of foliar application of chitosan and salicylic acid on the physiological and phytochemical properties of G. officinalis, and subsequently evaluating its antidiabetic efficacy compared to that of the established drug metformin. A randomized complete block design with three replications was employed. Laboratory mice were divided into treatment groups receiving G. officinalis extract from plants sprayed with four salicylic acid concentrations (0.5-3 mM/L) and four chitosan concentrations (0-0.8 g/L). Blood glucose levels and various physiological parameters were assessed. Chitosan at 0.4 g/L and salicylic acid at 2 mM significantly enhanced the growth, photosynthetic pigments, and antioxidant activity of G. officinalis. Notably, the extract from plants treated with 3 mM salicylic acid exhibited the highest total alkaloid content, a potential contributor to antidiabetic activity. In a separate study, diabetic mice treated with this optimized G. officinalis extract (50 mg/kg) exhibited significantly greater blood glucose reductions compared to those treated with metformin (500 mg). This study demonstrates the potential of chitosan and salicylic acid in optimizing the beneficial properties of G. officinalis. The extract derived from plants treated with 3 mM salicylic acid displayed superior blood glucose-lowering efficacy compared to metformin, suggesting its promising role as a potential natural antidiabetic therapy. Further research is warranted to elucidate the specific bioactive compounds responsible for this enhanced activity and translate these findings into clinical applications.
Collapse
Affiliation(s)
- Farinaz Angouti
- Department of Horticultural Science and Agronomy, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Hassan Nourafcan
- Department of Horticulture, Medicinal Plants and Organic Products Research Center, Miyaneh BranchIslamic Azad UniversityMiyanehIran
| | - Sakineh Saeedi Sar
- Department of Agricultural ScienceTechnical and Vocational University (TVU)TehranIran
| | - Assad Assadi
- Department of Veterinary Medicine, Miyaneh BranchIslamic Azad UniversityMiyanehIran
| | - Raheleh Ebrahimi
- Department of Horticultural Science and Agronomy, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
5
|
Tryfon P, Sperdouli I, Moustaka J, Adamakis IDS, Giannousi K, Dendrinou-Samara C, Moustakas M. Hormetic Response of Photosystem II Function Induced by Nontoxic Calcium Hydroxide Nanoparticles. Int J Mol Sci 2024; 25:8350. [PMID: 39125918 PMCID: PMC11312163 DOI: 10.3390/ijms25158350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 μmol photons m-2 s-1) and at high irradiance (HI) (1000 μmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | | | - Kleoniki Giannousi
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (P.T.); (K.G.); (C.D.-S.)
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
6
|
El Sharkawy M, AL-Huqail AA, Aljuaid AM, Kamal N, Mahmoud E, Omara AED, El-Kader NA, Li J, Mahmoud NN, El Baroudy AA, Ghoneim AM, Ismail SM. Nano-Bioremediation of Arsenic and Its Effect on the Biological Activity and Growth of Maize Plants Grown in Highly Arsenic-Contaminated Soil. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1164. [PMID: 38998769 PMCID: PMC11242945 DOI: 10.3390/nano14131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Arsenic (As)-contaminated soil reduces soil quality and leads to soil degradation, and traditional remediation strategies are expensive or typically produce hazardous by-products that have negative impacts on ecosystems. Therefore, this investigation attempts to assess the impact of As-tolerant bacterial isolates via a bacterial Rhizobim nepotum strain (B1), a bacterial Glutamicibacter halophytocola strain (B2), and MgO-NPs (N) and their combinations on the arsenic content, biological activity, and growth characteristics of maize plants cultivated in highly As-contaminated soil (300 mg As Kg-1). The results indicated that the spectroscopic characterization of MgO-NPs contained functional groups (e.g., Mg-O, OH, and Si-O-Si) and possessed a large surface area. Under As stress, its addition boosted the growth of plants, biomass, and chlorophyll levels while decreasing As uptake. Co-inoculation of R. nepotum and G. halophytocola had the highest significant values for chlorophyll content, soil organic matter (SOM), microbial biomass (MBC), dehydrogenase activity (DHA), and total number of bacteria compared to other treatments, which played an essential role in increasing maize growth. The addition of R. nepotum and G. halophytocola alone or in combination with MgO-NPs significantly decreased As uptake and increased the biological activity and growth characteristics of maize plants cultivated in highly arsenic-contaminated soil. Considering the results of this investigation, the combination of G. halophytocola with MgO-NPs can be used as a nanobioremediation strategy for remediating severely arsenic-contaminated soil and also improving the biological activity and growth parameters of maize plants.
Collapse
Affiliation(s)
- Mahmoud El Sharkawy
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China (J.L.)
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Arwa A. AL-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Alya M. Aljuaid
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 15571, Saudi Arabia
| | - Nourhan Kamal
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Esawy Mahmoud
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Alaa El-Dein Omara
- Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt;
| | - Nasser Abd El-Kader
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Jian Li
- School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China (J.L.)
| | - Nashaat N. Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Ahmed A. El Baroudy
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt; (N.K.); (A.A.E.B.)
| | - Adel M. Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Cairo 12619, Egypt
| | - Sahar Mohamed Ismail
- Soil Physics and Chemistry Department, Desert Research Center, Cairo 11753, Egypt;
| |
Collapse
|
7
|
Moustakas M, Panteris E, Moustaka J, Aydın T, Bayçu G, Sperdouli I. Modulation of Photosystem II Function in Celery via Foliar-Applied Salicylic Acid during Gradual Water Deficit Stress. Int J Mol Sci 2024; 25:6721. [PMID: 38928427 PMCID: PMC11203862 DOI: 10.3390/ijms25126721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Water deficit is the major stress factor magnified by climate change that causes the most reductions in plant productivity. Knowledge of photosystem II (PSII) response mechanisms underlying crop vulnerability to drought is critical to better understanding the consequences of climate change on crop plants. Salicylic acid (SA) application under drought stress may stimulate PSII function, although the exact mechanism remains essentially unclear. To reveal the PSII response mechanism of celery plants sprayed with water (WA) or SA, we employed chlorophyll fluorescence imaging analysis at 48 h, 96 h, and 192 h after watering. The results showed that up to 96 h after watering, the stroma lamellae of SA-sprayed leaves appeared dilated, and the efficiency of PSII declined, compared to WA-sprayed plants, which displayed a better PSII function. However, 192 h after watering, the stroma lamellae of SA-sprayed leaves was restored, while SA boosted chlorophyll synthesis, and by ameliorating the osmotic potential of celery plants, it resulted in higher relative leaf water content compared to WA-sprayed plants. SA, by acting as an antioxidant under drought stress, suppressed phototoxicity, thereby offering PSII photoprotection, together with enhanced effective quantum yield of PSII photochemistry (ΦPSII) and decreased quantity of singlet oxygen (1O2) generation compared to WA-sprayed plants. The PSII photoprotection mechanism induced by SA under drought stress was triggered by non-photochemical quenching (NPQ), which is a strategy to protect the chloroplast from photo-oxidative damage by dissipating the excess light energy as heat. This photoprotective mechanism, triggered by NPQ under drought stress, was adequate in keeping, especially in high-light conditions, an equal fraction of open PSII reaction centers (qp) as of non-stress conditions. Thus, under water deficit stress, SA activates a regulatory network of stress and light energy partitioning signaling that can mitigate, to an extent, the water deficit stress on PSII functioning.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (E.P.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (E.P.)
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Tuğba Aydın
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Dimitra), 57001 Thermi, Greece
| |
Collapse
|
8
|
Kalairaj A, Rajendran S, Panda RC, Senthilvelan T. A study on waterlogging tolerance in sugarcane: a comprehensive review. Mol Biol Rep 2024; 51:747. [PMID: 38874798 DOI: 10.1007/s11033-024-09679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Sugarcane (Saccharum officinarum) is an important crop, native to tropical and subtropical regions and it is a major source of sugar and Bioenergy in the world. Abiotic stress is defined as environmental conditions that reduce growth and yield below the optimum level. To tolerate these abiotic stresses, plants initiate several molecular, cellular, and physiological changes. These responses to abiotic stresses are dynamic and complex; they may be reversible or irreversible. Waterlogging is an abiotic stress phenomenon that drastically reduces the growth and survival of sugarcane, which leads to a 15-45% reduction in cane's yield. The extent of damage due to waterlogging depends on genotypes, environmental conditions, stage of development and duration of stress. An improved understanding of the physiological, biochemical, and molecular responses of sugarcane to waterlogging stress could help to develop new breeding strategies to sustain high yields against this situation. The present review offers a summary of recent findings on the adaptation of sugarcane to waterlogging stress in terms of growth and development, yield and quality, as well as biochemical and adaptive-molecular processes that may contribute to flooding tolerance.
Collapse
Affiliation(s)
- Ashmitha Kalairaj
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamilnadu, 602 105, India
| | - Swethashree Rajendran
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamilnadu, 602 105, India
| | - Rames C Panda
- Chemical Engineering Division, RajaLakshmi Engineering College, Thandalam, Chennai, Tamilnadu, 602 105, India
| | - T Senthilvelan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamilnadu, 602 105, India.
| |
Collapse
|
9
|
Sperdouli I, Panteris E, Moustaka J, Aydın T, Bayçu G, Moustakas M. Mechanistic Insights on Salicylic Acid-Induced Enhancement of Photosystem II Function in Basil Plants under Non-Stress or Mild Drought Stress. Int J Mol Sci 2024; 25:5728. [PMID: 38891916 PMCID: PMC11171592 DOI: 10.3390/ijms25115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 μmol photons m-2 s-1) and high light (HL, 900 μmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Dimitra), 57001 Thermi, Greece;
| | - Emmanuel Panteris
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Julietta Moustaka
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark;
| | - Tuğba Aydın
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (T.A.); (G.B.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
10
|
Hanif S, Mahmood A, Javed T, Bibi S, Zia MA, Asghar S, Naeem Z, Ercisli S, Rahimi M, Ali B. Exogenous application of salicylic acid ameliorates salinity stress in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:270. [PMID: 38605311 PMCID: PMC11008038 DOI: 10.1186/s12870-024-04968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Barley (Hordeum vulgare L.) is a significant cereal crop belonging to Poaceae that is essential for human food and animal feeding. The production of barley grains was around 142.37 million tons in 2017/2018. However, the growth of barley was influenced by salinity which was enhanced by applying a foliar spray of salicylic acid. The current study investigated to evaluated the potential effect of SA on the barley (Hordeum vulgare L.) plants under salinity stress and its possible effects on physiological, biochemical, and growth responses. The experiment was conducted at Postgraduate Research Station (PARS), University of Agriculture; Faisalabad to assess the influence of salicylic acid on barley (Hordeum vulgare L.) under highly saline conditions. The experiment was conducted in a Completely Randomized Design (CRD) with 3 replicates. In plastic pots containing 8 kg of properly cleaned sand, two different types of barley (Sultan and Jau-17) were planted. The plants were then watered with a half-strength solution of Hoagland's nutritional solution. After the establishment of seedlings, two salt treatments (0 mM and 120 mM NaCl) were applied in combining three levels of exogenously applied salicylic acid (SA) (0, 0.5, and 1 mg L-1). Data about morphological, physiological, and biochemical attributes was recorded using standard procedure after three weeks of treatment. The morpho-physiological fresh weight of the shoot and root (48%), the dry mass of the shoot and root (66%), the plant height (18%), the chlorophyll a (30%), the chlorophyll b (22%), and the carotenoids (22%), all showed significant decreases. Salinity also decreased yield parameters and the chl. ratio (both at 29% and 26% of the total chl. leaf area index). Compared to the control parameters, the following data was recorded under salt stress: spike length, number of spikes, number of spikelets, number of tillers, biological yield, and harvest index. Salicylic acid was used as a foliar spray to lessen the effects of salinity stress, and 1 mg L-1 of salicylic acid proved more effective than 0.5 mg L-1. Both varieties show better growth by applying salicylic acid (0 mg L-1) as a control, showing normal growth. By increasing its level to (0.5 mg L-1), it shows better growth but maximized growth occurred at a higher level (1 mg L-1). Barley sultan (Hordeum vulgare L.) is the best variety as compared to Jau-17 performs more growth to mitigate salt stress (0mM and 120mM NaCl) by improving morpho-physiological parameters by enhancing plan height, Root and shoot fresh and dry weights, as well as root and shoot lengths, photosynthetic pigments, area of the leaves and their index, and yield attributes and reduce sodium ions.
Collapse
Affiliation(s)
- Shazia Hanif
- Department of Botany, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Talha Javed
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Safura Bibi
- Department of Botany, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Saima Asghar
- Department of Botany, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zunaira Naeem
- Department of Botany, Faculty of Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, 25240, Türkiye
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
11
|
Kaya C, Uğurlar F, Ashraf M, Alyemeni MN, Dewil R, Ahmad P. Mitigating salt toxicity and overcoming phosphate deficiency alone and in combination in pepper (Capsicum annuum L.) plants through supplementation of hydrogen sulfide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119759. [PMID: 38091729 DOI: 10.1016/j.jenvman.2023.119759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024]
Abstract
While it is widely recognized that hydrogen sulfide (H2S) promotes plant stress tolerance, the precise processes through which H2S modulates this process remains unclear. The processes by which H2S promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application. Malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) levels in plant leaves were higher in plants exposed to joint stresses than in plants grown under an individual stress. When plants were exposed to a single stress as opposed to both stressors, sodium hydrosulfide (NaHS) treatment more efficiently decreased EL, MDA, and H2O2 concentrations. Superoxide dismutase, peroxidase, glutathione reductase and ascorbate peroxidase activities were increased by SS alone or in conjunction with PD, whereas catalase activity decreased significantly. The favorable impact of NaHS on all the evaluated attributes was reversed by supplementation with 0.2 mM hypotaurine (HT), a H2S scavenger. Overall, the unfavorable effects caused to NaHS-supplied plants by a single stress were less severe compared with those caused by the combined administration of both stressors.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Belgium; Department of Engineering Science, University of Oxford, United Kingdom
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
12
|
Torun H, Cetin B, Stojnic S, Petrík P. Salicylic acid alleviates the effects of cadmium and drought stress by regulating water status, ions, and antioxidant defense in Pterocarya fraxinifolia. FRONTIERS IN PLANT SCIENCE 2024; 14:1339201. [PMID: 38283971 PMCID: PMC10811004 DOI: 10.3389/fpls.2023.1339201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Introduction Pterocarya fraxinifolia (Poiret) Spach (Caucasian wingnut, Juglandaceae) is a relict tree species, and little is known about its tolerance to abiotic stress factors, including drought stress and heavy metal toxicity. In addition, salicylic acid (SA) has been shown to have a pivotal role in plant responses to biotic and abiotic stresses. Methods The current study is focused on evaluating the impact of foliar application of SA in mediating Caucasian wingnut physiological and biochemical responses, including growth, relative water content (RWC), osmotic potential (Ψs), quantum yield (Fv/Fm), electrolyte leakage, lipid peroxidation, hydrogen peroxide, and antioxidant enzymes, to cadmium (Cd; 100 µM) and drought stress, as well as their interaction. Moreover, the antioxidant activity (e.g., ascorbate peroxidase, catalase, glutathione reductase, peroxidase, and superoxide dismutase activities) of the stressed trees was investigated. The study was conducted on 6-month-old seedlings under controlled environmental conditions in a greenhouse for 3 weeks. Results and discussion Leaf length, RWC, Ψs, and Fv/Fm were decreased under all treatments, although the effect of drought stress was the most pronounced. An efficient antioxidant defense mechanism was detected in Caucasian wingnut. Moreover, SA-treated Caucasian wingnut plants had lower lipid peroxidation, as one of the indicators of oxidative stress, when compared to non-SA-treated groups, suggesting the tolerance of this plant to Cd stress, drought stress, and their combination. Cadmium and drought stress also changed the ion concentrations in Caucasian wingnut, causing excessive accumulation of Cd in leaves. These results highlight the beneficial function of SA in reducing the negative effects of Cd and drought stress on Caucasian wingnut plants.
Collapse
Affiliation(s)
- Hülya Torun
- Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Bilal Cetin
- Faculty of Forestry, Düzce University, Düzce, Türkiye
| | - Srdjan Stojnic
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Peter Petrík
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| |
Collapse
|
13
|
Tryfon P, Sperdouli I, Adamakis IDS, Mourdikoudis S, Dendrinou-Samara C, Moustakas M. Modification of Tomato Photosystem II Photochemistry with Engineered Zinc Oxide Nanorods. PLANTS (BASEL, SWITZERLAND) 2023; 12:3502. [PMID: 37836242 PMCID: PMC10575289 DOI: 10.3390/plants12193502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
We recently proposed the use of engineered irregularly shaped zinc oxide nanoparticles (ZnO NPs) coated with oleylamine (OAm), as photosynthetic biostimulants, to enhance crop yield. In the current research, we tested newly engineered rod-shaped ZnO nanorods (NRs) coated with oleylamine (ZnO@OAm NRs) regarding their in vivo behavior related to photosynthetic function and reactive oxygen species (ROS) generation in tomato (Lycopersicon esculentum Mill.) plants. ZnO@OAm NRs were produced via solvothermal synthesis. Their physicochemical assessment revealed a crystallite size of 15 nm, an organic coating of 8.7% w/w, a hydrodynamic diameter of 122 nm, and a ζ-potential of -4.8 mV. The chlorophyll content of tomato leaflets after a foliar spray with 15 mg L-1 ZnO@OAm NRs presented a hormetic response, with an increased content 30 min after the spray, which dropped to control levels 90 min after the spray. Simultaneously, 90 min after the spray, the efficiency of the oxygen-evolving complex (OEC) decreased significantly (p < 0.05) compared to control values, with a concomitant increase in ROS generation, a decrease in the maximum efficiency of PSII photochemistry (Fv/Fm), a decrease in the electron transport rate (ETR), and a decrease in the effective quantum yield of PSII photochemistry (ΦPSII), indicating reduced PSII efficiency. The decreased ETR and ΦPSII were due to the reduced efficiency of PSII reaction centers (Fv'/Fm'). There were no alterations in the excess excitation energy at PSII or the fraction of open PSII reaction centers (qp). We discovered that rod-shaped ZnO@OAm NRs reduced PSII photochemistry, in contrast to irregularly shaped ZnO@OAm NPs, which enhanced PSII efficiency. Thus, the shape and organic coating of the nanoparticles play a critical role in the mechanism of their action and their impact on crop yield when they are used in agriculture.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece;
| | | | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
14
|
Arikan B, Yildiztugay E, Ozfidan-Konakci C. Responses of salicylic acid encapsulation on growth, photosynthetic attributes and ROS scavenging system in Lactuca sativa exposed to polycyclic aromatic hydrocarbon pollution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108026. [PMID: 37708710 DOI: 10.1016/j.plaphy.2023.108026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Salicylic acid (SA) is a phytohormone that plays a key role in the regulation of the defense response against environmental variables in plants, and it provides increased yield and stress tolerance when exogenously applied to plants as a growth regulator. The role of SA-mediated signals in abiotic stress tolerance varies according to the species, stressor, application method, and dose. This study investigated the effects of salicylic acid (SA, 0.1 mg ml-1) or β-cyclodextrin encapsulated salicylic acid (e-SA, 0.1 mg ml-1) treatments on growth parameters, gas exchange, photosynthesis efficiency, and antioxidant capacity in lettuce seedlings exposed to polycyclic aromatic hydrocarbon pollution. Fluorene (FLN, 100 mg L-1) contamination resulted in a 27% growth rate and a 14% water content reduction in lettuce leaves. Significant suppressions of stomatal conductance, carbon assimilation, and PSII photochemistry were detected in plants under stress. FLN + SA and FLN + e-SA treatments regulated plant-water relations by stimulating proline accumulation and relieving stomatal limitations. As indicated by the high Fv/Fm ratio, photosynthesis efficiency was recovered in FLN + SA and FLN + e-SA group plants. FLN stress caused high oxidative stress in lettuce leaves and increased lipid peroxidation level by 40%. However, especially e-SA application to plants under stress, increased SOD activity by 3-fold and CAT activity by 80% and was successful in preventing H2O2 accumulation and lipid peroxidation. Both SA and e-SA treatments partially activated the AsA-GSH cycle. As a result, direct SA application was effective in mitigating stress-induced physiological limitations with high SA accumulation in the tissues, while encapsulated SA treatment was more effective in regulating photosynthetic and biochemical reactions, alleviating oxidative damage by activating the antioxidant defense, and promoting growth under stress with moderate SA accumulation.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| |
Collapse
|
15
|
Sun Z, Bai C, Liu Y, Ma M, Zhang S, Liu H, Bai R, Han X, Yong JWH. Resilient and sustainable production of peanut (Arachis hypogaea) in phosphorus-limited environment by using exogenous gamma-aminobutyric acid to sustain photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115388. [PMID: 37611478 DOI: 10.1016/j.ecoenv.2023.115388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Globally, many low to medium yielding peanut fields have the potential for further yield improvement. Low phosphorus (P) limitation is one of the significant factors curtailing Arachis hypogaea productivity in many regions. In order to demonstrate the effects of gamma-aminobutyric acid (GABA) on peanuts growing under P deficiency, we used a pot-based experiment to examine the effects of exogenous GABA on alleviating P deficiency-induced physiological changes and growth inhibition in peanuts. The key physiological parameters examined were foliar gas exchange, photochemical efficiency, proton motive force, reactive oxygen species (ROS), and adenosine triphosphate (ATP) synthase activity of peanuts under cultivation with low P (LP, 0.5 mM P) and control conditions. During low P, the cyclic electron flow (CEF) maintained the high proton gradient (∆pH) induced by low ATP synthetic activity. Applying GABA during low P conditions stimulated CEF and reduced the concomitant ROS generation and thereby protecting the foliar photosystem II (PSII) from photoinhibition. Specifically, GABA enhanced the rate of electronic transmission of PSII (ETRII) by pausing the photoprotection mechanisms including non-photochemical quenching (NPQ) and ∆pH regulation. Thus, GABA was shown to be effective in restoring peanut growth when encountering P deficiency. Exogenous GABA alleviated two symptoms (increased root-shoot ratio and photoinhibition) of P-deficient peanuts. This is possibly the first report of using exogenous GABA to restore photosynthesis and growth under low P availability. Therefore, foliar applications of GABA could be a simple, safe and effective approach to overcome low yield imposed by limited P resources (low P in soils or P-fertilizers are unavailable) for sustainable peanut cultivation and especially in low to medium yielding fields.
Collapse
Affiliation(s)
- Zhiyu Sun
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia.
| | - Mingzhu Ma
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Huan Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
16
|
Tryfon P, Sperdouli I, Adamakis IDS, Mourdikoudis S, Moustakas M, Dendrinou-Samara C. Impact of Coated Zinc Oxide Nanoparticles on Photosystem II of Tomato Plants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5846. [PMID: 37687539 PMCID: PMC10488754 DOI: 10.3390/ma16175846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have emerged as a prominent tool in agriculture. Since photosynthetic function is a significant measurement of phytotoxicity and an assessment tool prior to large-scale agricultural applications, the impact of engineered irregular-shaped ZnO NPs coated with oleylamine (ZnO@OAm NPs) were tested. The ZnO@OAm NPs (crystalline size 19 nm) were solvothermally prepared in the sole presence of oleylamine (OAm) and evaluated on tomato (Lycopersicon esculentum Mill.) photosystem II (PSII) photochemistry. Foliar-sprayed 15 mg L-1 ZnO@OAm NPs on tomato leaflets increased chlorophyll content that initiated a higher amount of light energy capture, which resulted in about a 20% increased electron transport rate (ETR) and a quantum yield of PSII photochemistry (ΦPSII) at the growth light (GL, 600 μmol photons m-2 s-1). However, the ZnO@OAm NPs caused a malfunction in the oxygen-evolving complex (OEC) of PSII, which resulted in photoinhibition and increased ROS accumulation. The ROS accumulation was due to the decreased photoprotective mechanism of non-photochemical quenching (NPQ) and to the donor-side photoinhibition. Despite ROS accumulation, ZnO@OAm NPs decreased the excess excitation energy of the PSII, indicating improved PSII efficiency. Therefore, synthesized ZnO@OAm NPs can potentially be used as photosynthetic biostimulants for enhancing crop yields after being tested on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece;
| | | | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
17
|
Moustaka J, Moustakas M. Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. BIOSENSORS 2023; 13:796. [PMID: 37622882 PMCID: PMC10452221 DOI: 10.3390/bios13080796] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Most agricultural land, as a result of climate change, experiences severe stress that significantly reduces agricultural yields. Crop sensing by imaging techniques allows early-stage detection of biotic or abiotic stress to avoid damage and significant yield losses. Among the top certified imaging techniques for plant stress detection is chlorophyll a fluorescence imaging, which can evaluate spatiotemporal leaf changes, permitting the pre-symptomatic monitoring of plant physiological status long before any visible symptoms develop, allowing for high-throughput assessment. Here, we review different examples of how chlorophyll a fluorescence imaging analysis can be used to evaluate biotic and abiotic stress. Chlorophyll a is able to detect biotic stress as early as 15 min after Spodoptera exigua feeding, or 30 min after Botrytis cinerea application on tomato plants, or on the onset of water-deficit stress, and thus has potential for early stress detection. Chlorophyll fluorescence (ChlF) analysis is a rapid, non-invasive, easy to perform, low-cost, and highly sensitive method that can estimate photosynthetic performance and detect the influence of diverse stresses on plants. In terms of ChlF parameters, the fraction of open photosystem II (PSII) reaction centers (qp) can be used for early stress detection, since it has been found in many recent studies to be the most accurate and appropriate indicator for ChlF-based screening of the impact of environmental stress on plants.
Collapse
Affiliation(s)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
18
|
Sperdouli I, Ouzounidou G, Moustakas M. Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. Int J Mol Sci 2023; 24:ijms24119573. [PMID: 37298524 DOI: 10.3390/ijms24119573] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Since drought stress is one of the key risks for the future of agriculture, exploring the molecular mechanisms of photosynthetic responses to water deficit stress is, therefore, fundamental. By using chlorophyll fluorescence imaging analysis, we evaluated the responses of photosystem II (PSII) photochemistry in young and mature leaves of Arabidopsis thaliana Col-0 (cv Columbia-0) at the onset of water deficit stress (OnWDS) and under mild water deficit stress (MiWDS) and moderate water deficit stress (MoWDS). Moreover, we tried to illuminate the underlying mechanisms in the differential response of PSII in young and mature leaves to water deficit stress in the model plant A. thaliana. Water deficit stress induced a hormetic dose response of PSII function in both leaf types. A U-shaped biphasic response curve of the effective quantum yield of PSII photochemistry (ΦPSII) in A. thaliana young and mature leaves was observed, with an inhibition at MiWDS that was followed by an increase in ΦPSII at MoWDS. Young leaves exhibited lower oxidative stress, evaluated by malondialdehyde (MDA), and higher levels of anthocyanin content compared to mature leaves under both MiWDS (+16%) and MoWDS (+20%). The higher ΦPSII of young leaves resulted in a decreased quantum yield of non-regulated energy loss in PSII (ΦNO), under both MiWDS (-13%) and MoWDS (-19%), compared to mature leaves. Since ΦNO represents singlet-excited oxygen (1O2) generation, this decrease resulted in lower excess excitation energy at PSII, in young leaves under both MiWDS (-10%) and MoWDS (-23%), compared to mature leaves. The hormetic response of PSII function in both young and mature leaves is suggested to be triggered, under MiWDS, by the intensified reactive oxygen species (ROS) generation, which is considered to be beneficial for activating stress defense responses. This stress defense response that was induced at MiWDS triggered an acclimation response in A. thaliana young leaves and provided tolerance to PSII when water deficit stress became more severe (MoWDS). We concluded that the hormesis responses of PSII in A. thaliana under water deficit stress are regulated by the leaf developmental stage that modulates anthocyanin accumulation in a stress-dependent dose.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, GR-57001 Thessaloniki, Greece
| | - Georgia Ouzounidou
- Institute of Food Technology, Hellenic Agricultural Organization-Dimitra, GR-14123 Lycovrissi, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
19
|
Santin M, Zeni V, Grassi A, Ricciardi R, Pieracci Y, Di Giovanni F, Panzani S, Frasconi C, Agnolucci M, Avio L, Turrini A, Giovannetti M, Ruffini Castiglione M, Ranieri A, Canale A, Lucchi A, Agathokleous E, Benelli G. Do changes in Lactuca sativa metabolic performance, induced by mycorrhizal symbionts and leaf UV-B irradiation, play a role towards tolerance to a polyphagous insect pest? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56207-56223. [PMID: 36917375 PMCID: PMC10121541 DOI: 10.1007/s11356-023-26218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The increased ultraviolet radiation (UV) due to the altered stratospheric ozone leads to multiple plant physiological and biochemical adaptations, likely affecting their interaction with other organisms, such as pests and pathogens. Arbuscular mycorrhizal fungi (AMF) and UV-B treatment can be used as eco-friendly techniques to protect crops from pests by activating plant mechanisms of resistance. In this study, we investigated plant (Lactuca sativa) response to UV-B exposure and Funneliformis mosseae (IMA1) inoculation as well as the role of a major insect pest, Spodoptera littoralis. Lettuce plants exposed to UV-B were heavier and taller than non-irradiated ones. A considerable enrichment in phenolic, flavonoid, anthocyanin, and carotenoid contents and antioxidant capacity, along with redder and more homogenous leaf color, were also observed in UV-B-treated but not in AMF-inoculated plants. Biometric and biochemical data did not differ between AMF and non-AMF plants. AMF-inoculated plants showed hyphae, arbuscules, vesicles, and spores in their roots. AMF colonization levels were not affected by UV-B irradiation. No changes in S. littoralis-feeding behavior towards treated and untreated plants were observed, suggesting the ability of this generalist herbivore to overcome the plant chemical defenses boosted by UV-B exposure. The results of this multi-factorial study shed light on how polyphagous insect pests can cope with multiple plant physiological and biochemical adaptations following biotic and abiotic preconditioning.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Arianna Grassi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Filippo Di Giovanni
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena, Italy
| | - Sofia Panzani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Christian Frasconi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Monica Ruffini Castiglione
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
- Department of Biology, University of Pisa, Via L. Ghini 13, 56126, Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Science & Technology (NUIST), Nanjing University of Information, Nanjing, 210044, China
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
20
|
Gao Y, Zhang J, Wang C, Han K, Hu L, Niu T, Yang Y, Chang Y, Xie J. Exogenous Proline Enhances Systemic Defense against Salt Stress in Celery by Regulating Photosystem, Phenolic Compounds, and Antioxidant System. PLANTS (BASEL, SWITZERLAND) 2023; 12:928. [PMID: 36840277 PMCID: PMC9963348 DOI: 10.3390/plants12040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore how exogenous proline induces salinity tolerance in celery. We analyzed the effects of foliar spraying with 0.3 mM proline on celery growth, photosystem, phenolic compounds, and antioxidant system under salt stress (100 mM NaCl), using no salt stress and no proline spraying as control. The results showed that proline-treated plants exhibited a significant increase in plant biomass due to improved growth physiology, supported by gas exchange parameters, chlorophyll fluorescence, and Calvin cycle enzyme activity (Ketosasaccharide-1,5-diphosphate carboxylase and Fructose-1,6-diphosphate aldolase) results. Also, proline spraying significantly suppressed the increase in relative conductivity and malondialdehyde content caused by salt stress, suggesting a reduction in biological membrane damage. Moreover, salt stress resulted in hydrogen peroxide, superoxide anions and 4-coumaric acid accumulation in celery, and their contents were reduced after foliar spraying of proline. Furthermore, proline increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the content of non-enzymatic antioxidants (reduced ascorbic acid, glutathione, caffeic acid, chlorogenic acid, total phenolic acids, and total flavonoids). Additionally, proline increased the activity of key enzymes (ascorbate oxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase) in the ascorbic acid-glutathione cycle, activating it to counteract salt stress. In summary, exogenous proline promoted celery growth under salt stress, enhanced photosynthesis, increased total phenolic acid and flavonoid contents, and improved antioxidant capacity, thereby improving salt tolerance in celery.
Collapse
|
21
|
Moustakas M, Sperdouli I, Moustaka J, Şaş B, İşgören S, Morales F. Mechanistic Insights on Salicylic Acid Mediated Enhancement of Photosystem II Function in Oregano Seedlings Subjected to Moderate Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030518. [PMID: 36771603 PMCID: PMC9919124 DOI: 10.3390/plants12030518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/12/2023]
Abstract
Dramatic climate change has led to an increase in the intensity and frequency of drought episodes and, together with the high light conditions of the Mediterranean area, detrimentally influences crop production. Salicylic acid (SA) has been shown to supress phototoxicity, offering photosystem II (PSII) photoprotection. In the current study, we attempted to reveal the mechanism by which SA is improving PSII efficiency in oregano seedlings under moderate drought stress (MoDS). Foliar application of SA decreased chlorophyll content under normal growth conditions, but under MoDS increased chlorophyll content, compared to H2O-sprayed oregano seedlings. SA improved the PSII efficiency of oregano seedlings under normal growth conditions at high light (HL), and under MoDS, at both low light (LL) and HL. The mechanism by which, under normal growth conditions and HL, SA sprayed oregano seedlings compared to H2O-sprayed exhibited a more efficient PSII photochemistry, was the increased (17%) fraction of open PSII reaction centers (qp), and the increased (7%) efficiency of these open reaction centers (Fv'/Fm'), which resulted in an enhanced (24%) electron transport rate (ETR). SA application under MoDS, by modulating chlorophyll content, resulted in optimized antenna size and enhanced effective quantum yield of PSII photochemistry (ΦPSII) under both LL (7%) and HL (25%), compared to non-SA-sprayed oregano seedlings. This increased effective quantum yield of PSII photochemistry (ΦPSII) was due to the enhanced efficiency of the oxygen evolving complex (OEC), and the increased fraction of open PSII reaction centers (qp), which resulted in an increased electron transport rate (ETR) and a lower amount of singlet oxygen (1O2) production with less excess excitation energy (EXC).
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Demeter), 57001 Thessaloniki, Greece
| | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Begüm Şaş
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sumrunaz İşgören
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avda. de Pamplona 123, 31192 Navarra, Spain
| |
Collapse
|
22
|
Kaya C, Ugurlar F, Ashraf M, Alyemeni MN, Moustakas M, Ahmad P. 5-Aminolevulinic Acid Induces Chromium [Cr(VI)] Tolerance in Tomatoes by Alleviating Oxidative Damage and Protecting Photosystem II: A Mechanistic Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:502. [PMID: 36771587 PMCID: PMC9920640 DOI: 10.3390/plants12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 05/13/2023]
Abstract
Chromium [Cr(VI)] pollution is a major environmental risk, reducing crop yields. 5-Aminolevunic acid (5-ALA) considerably improves plant abiotic stress tolerance by inducing hydrogen peroxide (H2O2) and nitric oxide (NO) signalling. Our investigation aimed to uncover the mechanism of tomato tolerance to Cr(VI) toxicity through the foliar application of 5-ALA for three days, fifteen days before Cr treatment. Chromium alone decreased plant biomass and photosynthetic pigments, but increased oxidative stress markers, i.e., H2O2 and lipid peroxidation (as MDA equivalent). Electrolyte leakage (EL), NO, nitrate reductase (NR), phytochelatins (PCs), glutathione (GSH), and enzymatic and non-enzymatic antioxidants were also increased. Foliar application of 5-ALA before Cr treatment improved plant growth and photosynthetic pigments, diminished H2O2, MDA content, and EL, and resulted in additional enhancements of enzymatic and non-enzymatic antioxidants, NR activity, and NO synthesis. In Cr-treated tomato seedlings, 5-ALA enhanced GSH and PCs, which modulated Cr sequestration to make it nontoxic. 5-ALA-induced Cr tolerance was further enhanced by sodium nitroprusside (SNP), a NO donor. When sodium tungstate (ST), a NR inhibitor, was supplied together with 5-ALA to Cr-treated plants, it eliminated the beneficial effects of 5-ALA by decreasing NR activity and NO synthesis, while the addition of SNP inverted the adverse effects of ST. We conclude that the mechanism by which 5-ALA induced Cr tolerance in tomato seedlings is mediated by NR-generated NO. Thus, NR and NO are twin players, reducing Cr toxicity in tomato plants via antioxidant signalling cascades.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, 63200 Sanliurfa, Turkey
| | - Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, 63200 Sanliurfa, Turkey
| | - Muhammed Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54600, Pakistan
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Parvaiz Ahmad
- Department of Botany, GDC, Jammu and Kashmir, Pulwama 192301, India
| |
Collapse
|
23
|
Moustakas M, Guidi L, Calatayud A. Editorial: Chlorophyll fluorescence analysis in biotic and abiotic stress, volume II. FRONTIERS IN PLANT SCIENCE 2022; 13:1066865. [PMID: 36452095 PMCID: PMC9703056 DOI: 10.3389/fpls.2022.1066865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angeles Calatayud
- Instituto Valenciano de Investigaciones Agrarias, Centro de Citricultura y Producción Vegetal, Departamento de Horticultura, Valencia, Spain
| |
Collapse
|
24
|
Zhu XG, Hasanuzzaman M, Jajoo A, Lawson T, Lin R, Liu CM, Liu LN, Liu Z, Lu C, Moustakas M, Roach T, Song Q, Yin X, Zhang W. Improving photosynthesis through multidisciplinary efforts: The next frontier of photosynthesis research. FRONTIERS IN PLANT SCIENCE 2022; 13:967203. [PMID: 36247611 PMCID: PMC9563237 DOI: 10.3389/fpls.2022.967203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/18/2022] [Indexed: 06/07/2023]
Affiliation(s)
- Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Anjana Jajoo
- School of Biotechnology, Devi Ahilya University, Indore, India
| | - Tracy Lawson
- School of Life Science, University of Essex, Colchester, United Kingdom
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chun-Ming Liu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Congming Lu
- School of Life Sciences, Shandong Agricultural University, Taian, China
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Qingfeng Song
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, Netherlands
| | - Wangfeng Zhang
- Department of Agronomy, Shihezi University, Shihezi, China
| |
Collapse
|
25
|
Moustakas M, Dobrikova A, Sperdouli I, Hanć A, Adamakis IDS, Moustaka J, Apostolova E. A Hormetic Spatiotemporal Photosystem II Response Mechanism of Salvia to Excess Zinc Exposure. Int J Mol Sci 2022; 23:11232. [PMID: 36232535 PMCID: PMC9569477 DOI: 10.3390/ijms231911232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Exposure of Salvia sclarea plants to excess Zn for 8 days resulted in increased Ca, Fe, Mn, and Zn concentrations, but decreased Mg, in the aboveground tissues. The significant increase in the aboveground tissues of Mn, which is vital in the oxygen-evolving complex (OEC) of photosystem II (PSII), contributed to the higher efficiency of the OEC, and together with the increased Fe, which has a fundamental role as a component of the enzymes involved in the electron transport process, resulted in an increased electron transport rate (ETR). The decreased Mg content in the aboveground tissues contributed to decreased chlorophyll content that reduced excess absorption of sunlight and operated to improve PSII photochemistry (ΦPSII), decreasing excess energy at PSII and lowering the degree of photoinhibition, as judged from the increased maximum efficiency of PSII photochemistry (Fv/Fm). The molecular mechanism by which Zn-treated leaves displayed an improved PSII photochemistry was the increased fraction of open PSII reaction centers (qp) and, mainly, the increased efficiency of the reaction centers (Fv'/Fm') that enhanced ETR. Elemental bioimaging of Zn and Ca by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed their co-localization in the mid-leaf veins. The high Zn concentration was located in the mid-leaf-vein area, while mesophyll cells accumulated small amounts of Zn, thus resembling a spatiotemporal heterogenous response and suggesting an adaptive strategy. These findings contribute to our understanding of how exposure to excess Zn triggered a hormetic response of PSII photochemistry. Exposure of aromatic and medicinal plants to excess Zn in hydroponics can be regarded as an economical approach to ameliorate the deficiency of Fe and Zn, which are essential micronutrients for human health.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anelia Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation-Demeter (ELGO-Demeter), 57001 Thermi, Greece
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61614 Poznań, Poland
| | | | - Julietta Moustaka
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Emilia Apostolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
26
|
Lin S, Song XF, Mao HT, Li SQ, Gan JY, Yuan M, Zhang ZW, Yuan S, Zhang HY, Su YQ, Chen YE. Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:966181. [PMID: 35982696 PMCID: PMC9380962 DOI: 10.3389/fpls.2022.966181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
It has been well demonstrated that melatonin plays an important protective role in photosynthesis of plants under various environmental stresses, while the detailed mechanisms by which melatonin protects photosystem II (PSII) under environmental stress are still unclear. In the study, the effects of melatonin on photosynthetic efficiency, energy dissipation, PSII protein composition, and reversible phosphorylation of thylakoid proteins were investigated in wheat plants under osmotic stress. The results showed that osmotic stress significantly reduced pigment content, photochemical efficiency of PSII, oxygen-evolving activity, and dissipation of excess excitation energy, while 25 μM melatonin applications greatly alleviated their decline under osmotic stress. Western blot data of PSII proteins revealed that melatonin upregulated the levels of D1, Lhcb5, Lhcb6, PsbQ, and PsbS proteins in wheat exposed to osmotic stress. In addition, thylakoid membrane proteins were strongly phosphorylated in wheat under osmotic stress with or without melatonin. Furthermore, the results from PSII protein dephosphorylation showed that exogenous melatonin promoted the dephosphorylation of LCHII, CP43, and D1 under osmotic stress. Therefore, our findings suggest that melatonin can provide an effective protection for the photosynthetic apparatus by the regulation of PSII proteins and the reversible phosphorylation of thylakoid proteins under drought stress.
Collapse
Affiliation(s)
- Shuai Lin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Xiao-Fang Song
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Hao-Tian Mao
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Shuang-Qing Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Jie-Ying Gan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Huai-Yu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan-Qiu Su
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|