1
|
Xing X, Liu X, Li X, Li M, Wu X, Huang X, Xu A, Liu Y, Zhang J. Insights into spinal muscular atrophy from molecular biomarkers. Neural Regen Res 2025; 20:1849-1863. [PMID: 38934395 PMCID: PMC11691461 DOI: 10.4103/nrr.nrr-d-24-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness. It is one of the most common genetic causes of mortality among infants aged less than 2 years. Biomarker research is currently receiving more attention, and new candidate biomarkers are constantly being discovered. This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons. We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy, which are classified as either specific or non-specific biomarkers. This review provides new insights into the pathogenesis of spinal muscular atrophy, the mechanism of biomarkers in response to drug-modified therapies, the selection of biomarker candidates, and would promote the development of future research. Furthermore, the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.
Collapse
Affiliation(s)
- Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xinzhu Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Wu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Antonioni A, Raho EM, Granieri E, Koch G. Frontotemporal dementia. How to deal with its diagnostic complexity? Expert Rev Neurother 2025. [PMID: 39911129 DOI: 10.1080/14737175.2025.2461758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) encompasses a group of heterogeneous neurodegenerative disorders. Aside from genetic cases, its diagnosis is challenging, particularly in the early stages when symptoms are ambiguous, and structural neuroimaging does not reveal characteristic patterns. AREAS COVERED The authors performed a comprehensive literature search through MEDLINE, Scopus, and Web of Science databases to gather evidence to aid the diagnostic process for suspected FTD patients, particularly in early phases, even in sporadic cases, ranging from established to promising tools. Blood-based biomarkers might help identify very early neuropathological stages and guide further evaluations. Subsequently, neurophysiological measures reflecting functional changes in cortical excitatory/inhibitory circuits, along with functional neuroimaging assessing brain network, connectivity, metabolism, and perfusion alterations, could detect specific changes associated to FTD even decades before symptom onset. As the neuropathological process advances, cognitive-behavioral profiles and atrophy patterns emerge, distinguishing specific FTD subtypes. EXPERT OPINION Emerging disease-modifying therapies require early patient enrollment. Therefore, a diagnostic paradigm shift is needed - from relying on typical cognitive and neuroimaging profiles of advanced cases to widely applicable biomarkers, primarily fluid biomarkers, and, subsequently, neurophysiological and functional neuroimaging biomarkers where appropriate. Additionally, exploring subjective complaints and behavioral changes detected by home-based technologies might be crucial for early diagnosis.
Collapse
Affiliation(s)
- Annibale Antonioni
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, FE, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, FE, Italy
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, FE, Italy
- Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Roma, RM, Italy
| |
Collapse
|
3
|
Anitha K, Singh MK, Kohat K, Sri Varshini T, Chenchula S, Padmavathi R, Amerneni LS, Vishnu Vardhan K, Mythili Bai K, Chavan MR, Bhatt S. Recent Insights into the Neurobiology of Alzheimer's Disease and Advanced Treatment Strategies. Mol Neurobiol 2025; 62:2314-2332. [PMID: 39102108 DOI: 10.1007/s12035-024-04384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
In recent years, significant advancements have been made in understanding Alzheimer's disease from both neurobiological and clinical perspectives. Exploring the complex systems underlying AD has unveiled insights that could potentially revolutionize therapeutic approaches. Recent investigations have highlighted intricate interactions among genetic, molecular, and environmental factors in AD. Optimism arises from neurobiological advancements and diverse treatment options, potentially slowing or halting disease progression. Amyloid-beta plaques and tau protein tangles crucially influence AD onset and progression. Emerging treatments involve diverse strategies, such as approaches targeting multiple pathways involved in AD pathogenesis, such as inflammation, oxidative stress, and synaptic dysfunction pathways. Clinical trials using humanized monoclonal antibodies, focusing on immunotherapies eliminating amyloid-beta, have shown promise. Nonpharmacological interventions such as light therapy, electrical stimulation, cognitive training, physical activity, and dietary changes have drawn attention for their potential to slow cognitive aging and enhance brain health. Precision medicine, which involves tailoring therapies to individual genetic and molecular profiles, has gained traction. Ongoing research and interdisciplinary collaboration are expected to yield more effective treatments.
Collapse
Affiliation(s)
- Anitha K
- School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to University, Shirpur, 425405, India
| | | | - Komal Kohat
- All India Institute of Medical Sciences, Madhya Pradesh, Bhopal, 462020, India
| | - Sri Varshini T
- All India Institute of Medical Sciences, Raipur, 462020, India
| | - Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, 462020, India.
| | - Padmavathi R
- SVS Medical College, Hyderabad, Telangana, India
| | | | - Vishnu Vardhan K
- All India Institute of Medical Sciences, Madhya Pradesh, Bhopal, 462020, India
| | | | - Madhav Rao Chavan
- All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, MIT World Peace University, Dr. Vishwanath Karad, Pune, 411038, Maharashtra, India
| |
Collapse
|
4
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2025; 36:53-90. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
5
|
Parul, Singh A, Shukla S. Novel techniques for early diagnosis and monitoring of Alzheimer's disease. Expert Rev Neurother 2025; 25:29-42. [PMID: 39435792 DOI: 10.1080/14737175.2024.2415985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most common neurodegenerative disorder, which is characterized by a progressive loss of cognitive functions. The high prevalence, chronicity, and multimorbidity are very common in AD, which significantly impair the quality of life and functioning of patients. Early detection and accurate diagnosis of Alzheimer's disease (AD) can stop the illness from progressing thereby postponing its symptoms. Therefore, for the early diagnosis and monitoring of AD, more sensitive, noninvasive, straightforward, and affordable screening tools are needed. AREAS COVERED This review summarizes the importance of early detection methods and novel techniques for Alzheimer's disease diagnosis that can be used by healthcare professionals. EXPERT OPINION Early diagnosis assists the patient and caregivers to understand the problem establishing reasonable goals and making future plans together. Early diagnosis techniques not only help in monitoring disease progression but also provide crucial information for the development of novel therapeutic targets. Researchers can plan to potentially alleviate symptoms or slow down the progression of Alzheimer's disease by identifying early molecular changes and targeting altered pathways.
Collapse
Affiliation(s)
- Parul
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Animesh Singh
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Lasica AB, Sheppard J, Yu RC, Livingston G, Ridgway N, Omar R, Schilder AGM, Costafreda SG. Association between adult-onset hearing loss and dementia biomarkers: A systematic review. Ageing Res Rev 2024; 104:102647. [PMID: 39746404 DOI: 10.1016/j.arr.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND AND OBJECTIVE People with adult-onset hearing loss (AoHL) are at increased dementia risk. In this study, we explore potential aetiological mechanisms by synthesising the evidence on the association between AoHL and neuropathological, cerebrospinal fluid (CSF), blood and imaging biomarkers of dementia. METHODS We systematically searched electronic databases from inception to 30 April 2024 for cross-sectional and longitudinal studies, including quantitative data on the association between AoHL and dementia biomarkers. Study quality was assessed with the Mixed Methods Appraisal Tool (MMAT). RESULTS Sixty-six studies reporting 63 cross-sectional and 10 longitudinal analyses were included. Twenty-one studies met all MMAT quality criteria. We report a narrative synthesis due to the heterogeneity of the included studies. In CSF-based or blood-based assays or imaging, five out of six cross-sectional analyses found that AoHL was associated with elevated in vivo tau levels, whilst four out of 17 reported a link with elevated in vivo β-amyloid measures. One longitudinal analysis identified an association between AoHL and a steeper increase of CSF tau, but not Aβ42, levels over time. Twenty-five out of 44 cross-sectional and six out of nine longitudinal analyses identified associations between AoHL and grey matter atrophy of the temporal regions, particularly the medial temporal lobe. Studies using other biomarkers had inconsistent findings. CONCLUSIONS AoHL was usually associated with more temporal regions grey matter atrophy both cross-sectionally and longitudinally, and elevated in vivo tau but not β-amyloid. Increasing atrophy and higher tau, leading to decreased cognitive reserve may be how hearing loss increases dementia risk.
Collapse
Affiliation(s)
- Aleksandra B Lasica
- NIHR University College London Hospitals Biomedical Research Centre, London, UK; The Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK; Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK.
| | - Jack Sheppard
- NIHR University College London Hospitals Biomedical Research Centre, London, UK; The Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK; Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK.
| | - Ruan-Ching Yu
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK.
| | - Gill Livingston
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK; North London NHS Foundation Trust, London, 4 St Pancras Way, London NW1 0PE, UK.
| | - Nicola Ridgway
- NIHR University College London Hospitals Biomedical Research Centre, London, UK; The Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK.
| | - Rohani Omar
- NIHR University College London Hospitals Biomedical Research Centre, London, UK; The Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK.
| | - Anne G M Schilder
- NIHR University College London Hospitals Biomedical Research Centre, London, UK; The Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK; Royal National ENT and Eastman Dental Hospital, University College London Hospitals Trust, 47-49 Huntley Street, London WC1E 6DG, UK.
| | - Sergi G Costafreda
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK; North London NHS Foundation Trust, London, 4 St Pancras Way, London NW1 0PE, UK.
| |
Collapse
|
7
|
Rhind SG, Shiu MY, Vartanian O, Allen S, Palmer M, Ramirez J, Gao F, Scott CJM, Homes MF, Gray G, Black SE, Saary J. Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew. Brain Sci 2024; 14:1296. [PMID: 39766495 PMCID: PMC11674576 DOI: 10.3390/brainsci14121296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND/OBJECTIVES Military aviators can be exposed to extreme physiological stressors, including decompression stress, G-forces, as well as intermittent hypoxia and/or hyperoxia, which may contribute to neurobiological dysfunction/damage. This study aimed to investigate the levels of neurological biomarkers in military aviators to assess the potential risk of long-term brain injury and neurodegeneration. METHODS This cross-sectional study involved 48 Canadian Armed Forces (CAF) aviators and 48 non-aviator CAF controls. Plasma samples were analyzed for biomarkers of glial activation (GFAP), axonal damage (NF-L, pNF-H), oxidative stress (PRDX-6), and neurodegeneration (T-tau), along with S100b, NSE, and UCHL-1. The biomarker concentrations were quantified using multiplexed immunoassays. RESULTS The aviators exhibited significantly elevated levels of GFAP, NF-L, PRDX-6, and T-tau compared to the CAF controls (p < 0.001), indicating increased glial activation, axonal injury, and oxidative stress. Trends toward higher levels of S100b, NSE, and UCHL-1 were observed but were not statistically significant. The elevated biomarker levels suggest cumulative brain damage, raising concerns about potential long-term neurological impairments. CONCLUSIONS Military aviators are at increased risk for neurobiological injury, including glial and axonal damage, oxidative stress, and early neurodegeneration. These findings emphasize the importance of proactive monitoring and further research to understand the long-term impacts of high-altitude flight on brain health and to develop strategies for mitigating cognitive decline and neurodegenerative risks in this population.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development–Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); or (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development–Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); or (O.V.)
| | - Oshin Vartanian
- Defence Research and Development–Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (M.Y.S.); or (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Shamus Allen
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
| | - Miriam Palmer
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
| | - Joel Ramirez
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
- Graduate Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Fuqiang Gao
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
| | - Christopher J. M. Scott
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
| | - Meissa F. Homes
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
| | - Gary Gray
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
| | - Sandra E. Black
- The Dr. Sandra Black Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada or (J.R.); (F.G.); (C.J.M.S.); (M.F.H.); (S.E.B.)
- Department of Medicine, Division of Neurology, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Joan Saary
- Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada; (S.A.); (M.P.); (G.G.); or (J.S.)
- Department of Medicine, Division of Occupational Medicine, University of Toronto, Toronto, ON M5T 0A1, Canada
| |
Collapse
|
8
|
van der Thiel MM, van de Sande N, Meeusen A, Drenthen GS, Postma AA, Nuijts RMMA, van der Knaap N, Ramakers IHGB, Webers CAB, Backes WH, Gijs M, Jansen JFA. Linking human cerebral and ocular waste clearance: Insights from tear fluid and ultra-high field MRI. Neurobiol Dis 2024; 203:106730. [PMID: 39521099 DOI: 10.1016/j.nbd.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Impaired cerebral waste clearance (i.e., glymphatics) is evident in aging and neurodegenerative disorders, such as Alzheimer's disease, where an impaired waste clearance system could be related to the accumulation of pathological proteins (e.g., tau). One marker of impaired cerebral clearance is the abundance of enlarged perivascular spaces (PVS). Preclinical studies propose a similar clearance system in the eye, driven by intraocular pressure (IOP). This cross-sectional pilot study explores the link between ocular and cerebral waste clearance by examining the association between MRI-visible PVS, tear fluid total-tau, and IOP. Thirty cognitively healthy participants, all aged over 55 years, underwent 7 Tesla MRI, with PVS visually rated in the centrum semiovale (CSO) and basal ganglia. Tear fluid was collected using paper Schirmer's strips and analyzed for total-tau using enzyme-linked immunosorbent assay. IOP was measured using non-contact tonometry. Partial Spearman's correlation coefficients of eye and brain markers were calculated, adjusted for age, sex, tear fluid-wetting length, and hemispheric region of interest volume. Higher CSO PVS scores in the left and right hemisphere were associated with higher levels of tear fluid total-tau. Higher CSO PVS scores in both hemispheres were related to lower ipsilateral IOP. The exploratory results suggest that higher tear fluid total-tau and a reduced driving force of ocular waste clearance are connected to impaired cerebral waste clearance in cognitive healthy individuals. This study connects the potential ocular glymphatic system to the cerebral waste clearance system. Clarifying waste clearance biology and validating eye biomarkers for cerebral waste clearance could provide treatment targets and diagnostic opportunities for neurological diseases.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Nienke van de Sande
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University Eye Clinic, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Anouk Meeusen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gerhard S Drenthen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Alida A Postma
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rudy M M A Nuijts
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University Eye Clinic, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Noa van der Knaap
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Intensive Care, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Carroll A B Webers
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University Eye Clinic, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Marlies Gijs
- Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University Eye Clinic, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
9
|
El Abiad E, Al-Kuwari A, Al-Aani U, Al Jaidah Y, Chaari A. Navigating the Alzheimer's Biomarker Landscape: A Comprehensive Analysis of Fluid-Based Diagnostics. Cells 2024; 13:1901. [PMID: 39594648 PMCID: PMC11593284 DOI: 10.3390/cells13221901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects a significant portion of the aging population, presenting a serious challenge due to the limited availability of effective therapies during its progression. The disease advances rapidly, underscoring the need for early diagnosis and the application of preventative measures. Current diagnostic methods for AD are often expensive and invasive, restricting access for the general public. One potential solution is the use of biomarkers, which can facilitate early detection and treatment through objective, non-invasive, and cost-effective evaluations of AD. This review critically investigates the function and role of biofluid biomarkers in detecting AD, with a specific focus on cerebrospinal fluid (CSF), blood-based, and saliva biomarkers. RESULTS CSF biomarkers have demonstrated potential for accurate diagnosis and valuable prognostic insights, while blood biomarkers offer a minimally invasive and cost-effective approach for diagnosing cognitive issues. However, while current biomarkers for AD show significant potential, none have yet achieved the precision needed to replace expensive PET scans and CSF assays. The lack of a single accurate biomarker underscores the need for further research to identify novel or combined biomarkers to enhance the clinical efficacy of existing diagnostic tests. In this context, artificial intelligence (AI) and deep-learning (DL) tools present promising avenues for improving biomarker analysis and interpretation, enabling more precise and timely diagnoses. CONCLUSIONS Further research is essential to confirm the utility of all AD biomarkers in clinical settings. Combining biomarker data with AI tools offers a promising path toward revolutionizing the personalized characterization and early diagnosis of AD symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (E.E.A.); (A.A.-K.); (U.A.-A.); (Y.A.J.)
| |
Collapse
|
10
|
Zhang Z, Li R, Zhou Y, Huang S, Hou Y, Pei G. Dietary Flavonoid Chrysin Functions as a Dual Modulator to Attenuate Amyloid-β and Tau Pathology in the Models of Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04557-y. [PMID: 39432184 DOI: 10.1007/s12035-024-04557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Growing evidence indicates that healthy diets are associated with a slower progression of Alzheimer's disease (AD). Flavonoids are among the most abundant natural products in diets beneficial to AD, such as the Mediterranean diet. However, the effect and mechanism of these dietary flavonoids on AD remains incompletely understood. Here, we found that a representative dietary natural flavonoid, chrysin (Chr), significantly ameliorated cognitive impairment and AD pathology in APP/PS1 mice. Furthermore, mechanistic studies showed that Chr significantly reduced the levels of amyloid-β (Aβ) and phosphorylated tau (p-tau), along with dual inhibitory activity against β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and glycogen synthase kinase 3β (GSK3β). Moreover, the effect of Chr was further confirmed by EW233, a structural analog of Chr that exhibited an improved pharmacokinetic profile. To further verify the role of Chr and EW233, we utilized our previously established chimeric human cerebral organoid (chCO) model for AD, in which astrogenesis was promoted to mimic the neuron-astrocyte ratio in human brain tissue, and similar dual inhibition of Aβ and p-tau was also observed. Altogether, our study not only reveals the molecular mechanisms through which dietary flavonoids, such as Chr, mitigate AD pathology, but also suggests that identifying a specific constituent that mimics some of the benefits of these healthy diets could serve as a promising approach to discover new treatments for AD.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rongyao Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yujun Hou
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Knudtzon SL, Nordengen K, Grøntvedt GR, Jarholm J, Eliassen IV, Selnes P, Pålhaugen L, Espenes J, Gísladóttir B, Waterloo K, Fladby T, Kirsebom BE. Age-adjusted CSF t-tau and NfL do not improve diagnostic accuracy for prodromal Alzheimer's disease. Neurobiol Aging 2024; 141:74-84. [PMID: 38838442 DOI: 10.1016/j.neurobiolaging.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/01/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Cerebrospinal fluid total-tau (t-tau) and neurofilament light chain (NfL) are biomarkers of neurodegeneration and are increased in Alzheimer's disease (AD). In order to adjust for age-related increases in t-tau and NfL, cross-sectional age-adjusted norms were developed based on amyloid negative cognitively normal (CN) adults aged 41-78 years (CN, n = 137). The age-adjusted norms for t-tau and NfL did not improve receiver operating curve based diagnostic accuracies in individuals with mild cognitive impairment (MCI) due to AD (AD-MCI, n = 144). Furthermore, while NfL was correlated with higher age in AD-MCI, no significant correlation was found for t-tau. The cox proportional hazard models, applied in 429 participants with baseline t-tau and NfL, showed higher hazard ratio of progression to MCI or dementia without age-adjustments (HR = 3.39 for t-tau and HR = 3.17 for NfL), as compared to using our norms (HR = 2.29 for t-tau and HR = 1.89 for NfL). Our results indicate that utilizing normative reference data could obscure significant age-related increases in these markers associated with neurodegeneration and AD leading to a potential loss of overall diagnostic accuracy.
Collapse
Affiliation(s)
- Stephanie Lindgård Knudtzon
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Kaja Nordengen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Jonas Jarholm
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Vøllo Eliassen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jacob Espenes
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Knut Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway; Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Sun Y, Islam S, Gao Y, Nakamura T, Tomita T, Michikawa M, Zou K. Presenilin deficiency enhances tau phosphorylation and its secretion. J Neurochem 2024; 168:2956-2973. [PMID: 38946496 DOI: 10.1111/jnc.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of abnormally folded amyloid β-protein (Aβ) in the brain parenchyma and phosphorylated tau in neurons. Presenilin (PS, PSEN) 1 and PS2 are essential components of γ-secretase, which is responsible for the cleavage of amyloid precursor protein (APP) to generate Aβ. PSEN mutations are associated with tau aggregation in frontotemporal dementia, regardless of the presence or absence of Aβ pathology. However, the mechanism by which PS regulates tau aggregation is still unknown. Here, we found that tau phosphorylation and secretion were significantly increased in PS double-knock-out (PS1/2-/-) fibroblasts compared with wild-type fibroblasts. Tau-positive vesicles in the cytoplasm were significantly increased in PS1/2-/- fibroblasts. Active GSK-3β was increased in PS1/2-/- fibroblasts, and inhibiting GSK3β activity in PS1/2-/- fibroblasts resulted in decreased tau phosphorylation and secretion. Transfection of WT human PS1 and PS2 reduced the secretion of phosphorylated tau and active GSK-3β in PS1/2-/- fibroblasts. However, PS1D257A without γ-secretase activity did not decrease the secretion of phosphorylated tau. Furthermore, nicastrin deficiency also increased tau phosphorylation and secretion. These results suggest that deficient PS complex maturation may increase tau phosphorylation and secretion. Thus, our studies discover a new pathway by which PS regulates tau phosphorylation/secretion and pathology independent of Aβ and suggest that PS serves as a potential therapeutic target for treating neurodegenerative diseases involving tau aggregation.
Collapse
Affiliation(s)
- Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuan Gao
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomohisa Nakamura
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Faculty of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Makoto Michikawa
- Department of Geriatric Medicine, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
13
|
Singh R, Rai S, Bharti PS, Zehra S, Gorai PK, Modi GP, Rani N, Dev K, Inampudi KK, Y VV, Chatterjee P, Nikolajeff F, Kumar S. Circulating small extracellular vesicles in Alzheimer's disease: a case-control study of neuro-inflammation and synaptic dysfunction. BMC Med 2024; 22:254. [PMID: 38902659 PMCID: PMC11188177 DOI: 10.1186/s12916-024-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-β and tau pathologies, and their correlation with AD progression. METHODS A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1β, and GFAP antibodies. AD-specific markers, amyloid-β (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-β (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-β (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1β, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS Elevated PsEVs, upregulated amyloid-β (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Vishnu V Y
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden.
| |
Collapse
|
14
|
Park Y, KC N, Paneque A, Cole PD. Tau, Glial Fibrillary Acidic Protein, and Neurofilament Light Chain as Brain Protein Biomarkers in Cerebrospinal Fluid and Blood for Diagnosis of Neurobiological Diseases. Int J Mol Sci 2024; 25:6295. [PMID: 38928000 PMCID: PMC11204270 DOI: 10.3390/ijms25126295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Neurological damage is the pathological substrate of permanent disability in various neurodegenerative disorders. Early detection of this damage, including its identification and quantification, is critical to preventing the disease's progression in the brain. Tau, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL), as brain protein biomarkers, have the potential to improve diagnostic accuracy, disease monitoring, prognostic assessment, and treatment efficacy. These biomarkers are released into the cerebrospinal fluid (CSF) and blood proportionally to the degree of neuron and astrocyte damage in different neurological disorders, including stroke, traumatic brain injury, multiple sclerosis, neurodegenerative dementia, and Parkinson's disease. Here, we review how Tau, GFAP, and NfL biomarkers are detected in CSF and blood as crucial diagnostic tools, as well as the levels of these biomarkers used for differentiating a range of neurological diseases and monitoring disease progression. We also discuss a biosensor approach that allows for the real-time detection of multiple biomarkers in various neurodegenerative diseases. This combined detection system of brain protein biomarkers holds significant promise for developing more specific and accurate clinical tools that can identify the type and stage of human neurological diseases with greater precision.
Collapse
Affiliation(s)
- Yongkyu Park
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
| | - Nirajan KC
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
| | - Alysta Paneque
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Peter D. Cole
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Hsieh CH, Ko CA, Liang CS, Yeh PK, Tsai CK, Tsai CL, Lin GY, Lin YK, Tsai MC, Yang FC. Longitudinal assessment of plasma biomarkers for early detection of cognitive changes in subjective cognitive decline. Front Aging Neurosci 2024; 16:1389595. [PMID: 38828389 PMCID: PMC11140011 DOI: 10.3389/fnagi.2024.1389595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Background Individuals experiencing subjective cognitive decline (SCD) are at an increased risk of developing mild cognitive impairment and dementia. Early identification of SCD and neurodegenerative diseases using biomarkers may help clinical decision-making and improve prognosis. However, few cross-sectional and longitudinal studies have explored plasma biomarkers in individuals with SCD using immunomagnetic reduction. Objective To identify plasma biomarkers for SCD. Methods Fifty-two participants [38 with SCD, 14 healthy controls (HCs)] underwent baseline assessments, including measurements of plasma Aβ42, Aβ40, t-tau, p-tau, and α-synuclein using immunomagnetic reduction (IMR) assays, cognitive tests and the Mini-Mental State Examination (MMSE). Following initial cross-sectional analysis, 39 individuals (29 with SCD, 10 HCs) entered a longitudinal phase for reassessment of these biomarkers and the MMSE. Biomarker outcomes across different individual categories were primarily assessed using the area under the receiver operating characteristic (ROC) curve. The SCD subgroup with an MMSE decline over one point was compared to those without such a decline. Results Higher baseline plasma Aβ1-42 levels significantly discriminated participants with SCD from HCs, with an acceptable area under the ROC curve (AUC) of 67.5% [95% confidence interval (CI), 52.7-80.0%]. However, follow-up and changes in MMSE and IMR data did not significantly differ between the SCD and HC groups (p > 0.05). Furthermore, lower baseline plasma Aβ1-42 levels were able to discriminate SCD subgroups with and without cognitive decline with a satisfied performance (AUC, 75.0%; 95% CI, 55.6-89.1%). At last, the changes in t-tau and Aβ42 × t-tau could differentiate between the two SCD subgroups (p < 0.05). Conclusion Baseline plasma Aβ42 may help identify people with SCD and predict SCD progression. The role of plasma Aβ42 levels as well as their upward trends from baseline in cases of SCD that progress to mild cognitive impairment and Alzheimer's disease require further investigation.
Collapse
Affiliation(s)
- Cheng-Hao Hsieh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-An Ko
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Kuan Yeh
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurology, Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Chen Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
16
|
Chen TY, Lin SP, Huang DF, Huang HS, Tsai FC, Lee LJ, Lin HY, Huang HP. Mature neurons from iPSCs unveil neurodegeneration-related pathways in mucopolysaccharidosis type II: GSK-3β inhibition for therapeutic potential. Cell Death Dis 2024; 15:302. [PMID: 38684682 PMCID: PMC11058230 DOI: 10.1038/s41419-024-06692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Mucopolysaccharidosis (MPS) type II is caused by a deficiency of iduronate-2-sulfatase and is characterized by the accumulation of glycosaminoglycans (GAGs). Without effective therapy, the severe form of MPS II causes progressive neurodegeneration and death. This study generated multiple clones of induced pluripotent stem cells (iPSCs) and their isogenic controls (ISO) from four patients with MPS II neurodegeneration. MPS II-iPSCs were successfully differentiated into cortical neurons with characteristic biochemical and cellular phenotypes, including axonal beadings positive for phosphorylated tau, and unique electrophysiological abnormalities, which were mostly rescued in ISO-iPSC-derived neurons. RNA sequencing analysis uncovered dysregulation in three major signaling pathways, including Wnt/β-catenin, p38 MAP kinase, and calcium pathways, in mature MPS II neurons. Further mechanistic characterization indicated that the dysregulation in calcium signaling led to an elevated intracellular calcium level, which might be linked to compromised survival of neurons. Based on these dysregulated pathways, several related chemicals and drugs were tested using this mature MPS II neuron-based platform and a small-molecule glycogen synthase kinase-3β inhibitor was found to significantly rescue neuronal survival, neurite morphology, and electrophysiological abnormalities in MPS II neurons. Our results underscore that the MPS II-iPSC-based platform significantly contributes to unraveling the mechanisms underlying the degeneration and death of MPS II neurons and assessing potential drug candidates. Furthermore, the study revealed that targeting the specific dysregulation of signaling pathways downstream of GAG accumulation in MPS II neurons with a well-characterized drug could potentially ameliorate neuronal degeneration.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuan-Pei Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - De-Fong Huang
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
17
|
Šimić G, Vukić V, Babić M, Banović M, Berečić I, Španić E, Zubčić K, Golubić AT, Barišić Kutija M, Merkler Šorgić A, Vogrinc Ž, Lehman I, Hof PR, Sertić J, Barišić N. Total tau in cerebrospinal fluid detects treatment responders among spinal muscular atrophy types 1-3 patients treated with nusinersen. CNS Neurosci Ther 2024; 30:e14051. [PMID: 36513962 PMCID: PMC10915981 DOI: 10.1111/cns.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Considering the substantial variability in treatment response across patients with spinal muscular atrophy (SMA), reliable markers for monitoring response to therapy and predicting treatment responders need to be identified. The study aimed to determine if measured concentrations of disease biomarkers (total tau protein, neurofilament light chain, and S100B protein) correlate with the duration of nusinersen treatment and with scores obtained using functional scales for the assessment of motor abilities. METHODS A total of 30 subjects with SMA treated with nusinersen between 2017 and 2021 at the Department of Pediatrics, University Hospital Centre Zagreb, Croatia, were included in this study. Cerebrospinal fluid (CSF) samples were collected by lumbar puncture prior to intrathecal application of nusinersen. Protein concentrations in CSF samples were determined by enzyme-linked immunosorbent assay in 26 subjects. The motor functions were assessed using functional motor scales. RESULTS The main finding was significantly decreased total tau correlating with the number of nusinersen doses and motor improvement in the first 18-24 months of treatment (in all SMA patients and SMA type 1 patients). Neurofilament light chain and S100B were not significantly changed after administration of nusinersen. CONCLUSIONS The measurement of total tau concentration in CSF is a reliable index for monitoring the biomarker and clinical response to nusinersen therapy in patients with SMA.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Vana Vukić
- Department of PediatricsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Marija Babić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Maria Banović
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Ivana Berečić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Anja Tea Golubić
- Department of Nuclear Medicine and Radiation ProtectionUniversity Hospital Centre ZagrebZagrebCroatia
| | | | - Ana Merkler Šorgić
- Department of Laboratory Diagnostics, Laboratory for Molecular DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Željka Vogrinc
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Ivan Lehman
- Department of PediatricsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jadranka Sertić
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
- Department of Medical Chemistry and BiochemistryUniversity of Zagreb School of MedicineZagrebCroatia
| | - Nina Barišić
- Department of PediatricsUniversity Hospital Centre ZagrebZagrebCroatia
| |
Collapse
|
18
|
Rizzi L, Grinberg LT. Exploring the significance of caspase-cleaved tau in tauopathies and as a complementary pathology to phospho-tau in Alzheimer's disease: implications for biomarker development and therapeutic targeting. Acta Neuropathol Commun 2024; 12:36. [PMID: 38419122 PMCID: PMC10900669 DOI: 10.1186/s40478-024-01744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Tauopathies are neurodegenerative diseases that typically require postmortem examination for a definitive diagnosis. Detecting neurotoxic tau fragments in cerebrospinal fluid (CSF) and serum provides an opportunity for in vivo diagnosis and disease monitoring. Current assays primarily focus on total tau or phospho-tau, overlooking other post-translational modifications (PTMs). Caspase-cleaved tau is a significant component of AD neuropathological lesions, and experimental studies confirm the high neurotoxicity of these tau species. Recent evidence indicates that certain caspase-cleaved tau species, such as D13 and D402, are abundant in AD brain neurons and only show a modest degree of co-occurrence with phospho-tau, meaning caspase-truncated tau pathology is partially distinct and complementary to phospho-tau pathology. Furthermore, these caspase-cleaved tau species are nearly absent in 4-repeat tauopathies. In this review, we will discuss the significance of caspase-cleaved tau in the development of tauopathies, specifically emphasizing its role in AD. In addition, we will explore the potential of caspase-cleaved tau as a biomarker and the advantages for drug development targeting caspase-6. Developing specific and sensitive assays for caspase-cleaved tau in biofluids holds promise for improving the diagnosis and monitoring of tauopathies, providing valuable insights into disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Liara Rizzi
- Memory and Aging Center, Department of Neurology, Sandler Neurosciences Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
- Department of Neurology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, Sandler Neurosciences Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, SP, Brazil.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Foley KE, Winder Z, Sudduth TL, Martin BJ, Nelson PT, Jicha GA, Harp JP, Weekman EM, Wilcock DM. Alzheimer's disease and inflammatory biomarkers positively correlate in plasma in the UK-ADRC cohort. Alzheimers Dement 2024; 20:1374-1386. [PMID: 38011580 PMCID: PMC10917006 DOI: 10.1002/alz.13485] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Protein-based plasma assays provide hope for improving accessibility and specificity of molecular diagnostics to diagnose dementia. METHODS Plasma was obtained from participants (N = 837) in our community-based University of Kentucky Alzheimer's Disease Research Center cohort. We evaluated six Alzheimer's disease (AD)- and neurodegeneration-related (Aβ40, Aβ42, Aβ42/40, p-tau181, total tau, and NfLight) and five inflammatory biomarkers (TNF𝛼, IL6, IL8, IL10, and GFAP) using the SIMOA-based protein assay platform. Statistics were performed to assess correlations. RESULTS Our large cohort reflects previous plasma biomarker findings. Relationships between biomarkers to understand AD-inflammatory biomarker correlations showed significant associations between AD and inflammatory biomarkers suggesting peripheral inflammatory interactions with increasing AD pathology. Biomarker associations parsed out by clinical diagnosis (normal, MCI, and dementia) reveal changes in strength of the correlations across the cognitive continuum. DISCUSSION Unique AD-inflammatory biomarker correlations in a community-based cohort reveal a new avenue for utilizing plasma-based biomarkers in the assessment of AD and related dementias. HIGHLIGHTS Large community cohorts studying sex, age, and APOE genotype effects on biomarkers are few. It is unknown how biomarker-biomarker associations vary through aging and dementia. Six AD (Aβ40, Aβ42, Aβ42/40, p-tau181, total tau, and NfLight) and five inflammatory biomarkers (TNFα, IL6, IL8, IL10, and GFAP) were used to examine associations between biomarkers. Plasma biomarkers suggesting increasing cerebral AD pathology corresponded to increases in peripheral inflammatory markers, both pro-inflammatory and anti-inflammatory. Strength of correlations, between pairs of classic AD and inflammatory plasma biomarker, changes throughout cognitive progression to dementia.
Collapse
Affiliation(s)
- Kate E. Foley
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Zachary Winder
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
- College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Tiffany L. Sudduth
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Barbara J. Martin
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Peter T. Nelson
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Pathology and Laboratory MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Gregory A. Jicha
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Neurology, College of Public HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Jordan P. Harp
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Neurology, College of Public HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Erica M. Weekman
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Donna M. Wilcock
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PhysiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
20
|
Chen Z, Shan G, Wang X, Zuo Y, Song X, Ma Y, Zhao X, Jin Y. Top 100 most-cited articles on tau protein: a bibliometric analysis and evidence mapping. Front Neurosci 2024; 18:1345225. [PMID: 38356652 PMCID: PMC10864446 DOI: 10.3389/fnins.2024.1345225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Background Tau, a microtubule-associated protein extensively distributed within the central nervous system (CNS), exhibits close associations with various neurodegenerative disorders. Here, we aimed to conduct a qualitative and quantitative bibliometric study of the top 100 most-cited publications on tau protein and reveal the current research hotspots and future perspectives. Methods The relevant literature was retrieved from the Web of Science Core Collection. CiteSpace (v6.2.R4) and VOSviewer (1.6.19) were adopted for bibliometric analysis with statistical and visual analysis. Results Citations per article ranged from 615 to 3,123, with a median number of 765.5 times. "Neuroscience" emerged as the most extensively researched subject in this field. The USA has emerged as the leading country, with a publication record (n = 65), total citations (n = 66,543), strong centrality (0.29), and extensive international collaborations. Harvard University (n = 11) and the University of California, San Francisco (n = 11) were the top two institutions in terms of publications. Neuron dominated with 13 articles in the 37 high-quality journals. M. Goedert from the MRC Laboratory of Molecular Biology was the most productive (n = 9) and top co-cited (n = 179) author. The most frequently studied keywords were Alzheimer's disease (n = 38). Future research is anticipated to intensify its focus on the pathogenesis of various tau-related diseases, emphasizing the phosphorylation and structural alterations of tau protein, particularly in Alzheimer's disease. Conclusion The pathogenesis of various tau-related diseases, including the phosphorylation and structural alterations of the tau protein, will be the primary focus of future research, with particular emphasis on Alzheimer's disease as a central area of investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Zhao
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanwu Jin
- Department of Anesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
21
|
Bhalala OG, Watson R, Yassi N. Multi-Omic Blood Biomarkers as Dynamic Risk Predictors in Late-Onset Alzheimer's Disease. Int J Mol Sci 2024; 25:1231. [PMID: 38279230 PMCID: PMC10816901 DOI: 10.3390/ijms25021231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Late-onset Alzheimer's disease is the leading cause of dementia worldwide, accounting for a growing burden of morbidity and mortality. Diagnosing Alzheimer's disease before symptoms are established is clinically challenging, but would provide therapeutic windows for disease-modifying interventions. Blood biomarkers, including genetics, proteins and metabolites, are emerging as powerful predictors of Alzheimer's disease at various timepoints within the disease course, including at the preclinical stage. In this review, we discuss recent advances in such blood biomarkers for determining disease risk. We highlight how leveraging polygenic risk scores, based on genome-wide association studies, can help stratify individuals along their risk profile. We summarize studies analyzing protein biomarkers, as well as report on recent proteomic- and metabolomic-based prediction models. Finally, we discuss how a combination of multi-omic blood biomarkers can potentially be used in memory clinics for diagnosis and to assess the dynamic risk an individual has for developing Alzheimer's disease dementia.
Collapse
Affiliation(s)
- Oneil G. Bhalala
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| | - Rosie Watson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| | - Nawaf Yassi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia; (R.W.); (N.Y.)
- Department of Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3050, Australia
| |
Collapse
|
22
|
Vlasakova K, Tsuchiya T, Garfinkel IN, Ruth MP, Tyszkiewicz C, Detwiler TJ, Somps CJ, Di Cesare Mannelli L, Glaab WE. Performance of biomarkers NF-L, NSE, Tau and GFAP in blood and cerebrospinal fluid in rat for the detection of nervous system injury. Front Neurosci 2024; 17:1285359. [PMID: 38292901 PMCID: PMC10824906 DOI: 10.3389/fnins.2023.1285359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Background Target organ toxicity is often a reason for attritions in nonclinical and clinical drug development. Leveraging emerging safety biomarkers in nonclinical studies provides an opportunity to monitor such toxicities early and efficiently, potentially translating to early clinical trials. As a part of the European Union's Innovative Medicines Initiative (IMI), two projects have focused on evaluating safety biomarkers of nervous system (NS) toxicity: Translational Safety Biomarker Pipeline (TransBioLine) and Neurotoxicity De-Risking in Preclinical Drug Discovery (NeuroDeRisk). Methods Performance of fluid-based NS injury biomarker candidates neurofilament light chain (NF-L), glial fibrillary acidic protein (GFAP), neuron specific enolase (NSE) and total Tau in plasma and cerebrospinal fluid (CSF) was evaluated in 15 rat in vivo studies. Model nervous system toxicants as well as other compounds were used to evaluate sensitivity and specificity. Histopathologic assessments of nervous tissues and behavioral observations were conducted to detect and characterize NS injuries. Receiver operator characteristic (ROC) curves were generated to compare the relative performance of the biomarkers in their ability to detect NS injury. Results NF-L was the best performer in detecting both peripheral nervous system (PNS) and CNS injury in plasma, (AUC of 0.97-0.99; respectively). In CSF, Tau correlated the best with CNS (AUC 0.97), but not PNS injury. NSE and GFAP were suitable for monitoring CNS injury, but with lesser sensitivity. In summary, NF-L is a sensitive and specific biomarker in rats for detecting compound-induced central and peripheral NS injuries. While NF-L measurement alone cannot inform the site of the injury, addition of biomarkers like Tau and NSE and analysis in both blood and CSF can provide additional information about the origin of the NS injury. Conclusion These results demonstrate the utility of emerging safety biomarkers of drug-induced NS injury in rats and provide additional supporting evidence for biomarker translation across species and potential use in clinical settings to monitor drug-induced NS injury in patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | |
Collapse
|
23
|
Krishna G, Thangaraju Sivakumar P, Dahale AB, Subramanian S. Potential Utility of Plasma Biomarker Panels in Differential Diagnosis of Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1-7. [PMID: 38229828 PMCID: PMC10789288 DOI: 10.3233/adr-230156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Blood tests are in need, in the clinical diagnosis of Alzheimer's disease (AD) as minimally invasive and less expensive alternatives to cerebrospinal fluid and neuroimaging methods. On these lines, single molecule array (Simoa) analysis of amyloid-β (Aβ42), total tau (t-tau), phospho-tau (p-tau 181), and neurofilament L (NfL) in the plasma samples of AD subjects, healthy controls (HC), and non-AD subjects was conducted. Findings from this study suggest that a panel of multiple plasma biomarkers (NfL, Aβ42, t-tau, and p-tau 181) combined with the clinical assessments could support differential diagnosis of AD and other dementias from healthy controls.
Collapse
Affiliation(s)
- Geethu Krishna
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | | | - Ajit B. Dahale
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bengaluru, India
| | - Sarada Subramanian
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Bengaluru, India
| |
Collapse
|
24
|
Xue Y, Tran M, Diep YN, Shin S, Lee J, Cho H, Kang YJ. Environmental aluminum oxide inducing neurodegeneration in human neurovascular unit with immunity. Sci Rep 2024; 14:744. [PMID: 38185738 PMCID: PMC10772095 DOI: 10.1038/s41598-024-51206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024] Open
Abstract
Aluminum oxide nanoparticle (AlNP), a ubiquitous neurotoxin highly enriched in air pollution, is often produced as an inevitable byproduct in the manufacturing of industrial products such as cosmetics and metal materials. Meanwhile, ALNP has emerged as a significant public health concern due to its potential association with neurological diseases. However, the studies about the neurotoxic effects of AlNP are limited, partially due to the lack of physiologically relevant human neurovascular unit with innate immunity (hNVUI). Here, we employed our AlNP-treated hNVUI model to investigate the underlying mechanism of AlNP-driven neurodegeneration. First, we validated the penetration of AlNP across a blood-brain barrier (BBB) compartment and found AlNP-derived endothelial cellular senescence through the p16 and p53/p21 pathways. Our study showed that BBB-penetrating AlNP promoted reactive astrocytes, which produced a significant level of reactive oxygen species (ROS). The astrocytic neurotoxic factors caused neuronal damage, including the synaptic impairment, the accumulation of phosphoric-tau proteins, and even neuronal death. Our study suggests that AlNP could be a potential environmental risk factor of neurological disorders mediated by neuroinflammation.
Collapse
Affiliation(s)
- Yingqi Xue
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yen N Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seonghun Shin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jinkee Lee
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| | - You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
25
|
Gillespie NA, Elman JA, McKenzie RE, Tu XM, Xian H, Reynolds CA, Panizzon MS, Lyons MJ, Eglit GML, Neale MC, Rissman RA, Franz C, Kremen WS. The heritability of blood-based biomarkers related to risk of Alzheimer's disease in a population-based sample of early old-age men. Alzheimers Dement 2024; 20:356-365. [PMID: 37622539 PMCID: PMC10843753 DOI: 10.1002/alz.13407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Despite their increased application, the heritability of Alzheimer's disease (AD)-related blood-based biomarkers remains unexplored. METHODS Plasma amyloid beta 40 (Aβ40), Aβ42, the Aβ42/40 ratio, total tau (t-tau), and neurofilament light (NfL) data came from 1035 men 60 to 73 years of age (μ = 67.0, SD = 2.6). Twin models were used to calculate heritability and the genetic and environmental correlations between them. RESULTS Additive genetics explained 44% to 52% of Aβ42, Aβ40, t-tau, and NfL. The Aβ42/40 ratio was not heritable. Aβ40 and Aβ42 were genetically near identical (rg = 0.94). Both Aβ40 and Aβ42 were genetically correlated with NfL (rg = 0.35 to 0.38), but genetically unrelated to t-tau. DISCUSSION Except for Aβ42/40, plasma biomarkers are heritable. Aβ40 and Aβ42 share mostly the same genetic influences, whereas genetic influences on plasma t-tau and NfL are largely unique in early old-age men. The absence of genetic associations between the Aβs and t-tau is not consistent with the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Nathan A. Gillespie
- Virginia Institute for Psychiatric and Behaviour GeneticsDepartment of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Jeremy A. Elman
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Ruth E. McKenzie
- Department of PsychologyBoston UniversityBostonMassachusettsUSA
- School of Education and Social PolicyMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Xin M. Tu
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Family Medicine and Public HealthUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Hong Xian
- Department of Epidemiology and BiostatisticsSaint. Louis UniversitySt. LouisMissouriUSA
- Research Service, VA St. Louis Healthcare SystemSt. LouisMissouriUSA
| | | | - Matthew S. Panizzon
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Michael J. Lyons
- Department of Psychological and Brain SciencesBoston UniversityBostonMassachusettsUSA
| | - Graham M. L. Eglit
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Sam and Rose Stein Institute for Research on AgingUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behaviour GeneticsDepartment of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Robert A. Rissman
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Carol Franz
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - William S. Kremen
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
26
|
Novobilský R, Bartova P, Lichá K, Bar M, Stejskal D, Kusnierova P. Serum neurofilament light chain levels in patients with cognitive deficits and movement disorders: comparison of cerebrospinal and serum neurofilament light chain levels with other biomarkers. Front Hum Neurosci 2023; 17:1284416. [PMID: 38164192 PMCID: PMC10757912 DOI: 10.3389/fnhum.2023.1284416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Background Serum neurofilament light chain (S NfL) is a non-specific marker of neuronal damage, including Alzheimer's disease (AD). We aimed to verify the reference interval (RI) of serum NfL using a highly sensitive ELISA, and to estimate the optimal cut-off value for neuronal damage. Our second objective was to compare NfL in cerebrospinal fluid (CSF) and serum (S) with the routine neurodegeneration biomarkers used in AD, and to assess their concentrations relative to the degree of cognitive deficit. Methods Samples from 124 healthy volunteers were used to estimate the S NfL RI. For the comparison study, we used CSF and S samples from 112 patients with cognitive disorders. Cognitive functions were assessed using the mini-mental state examination. ELISA assays were used to determine the CSF and S NfL levels, CSF β-amyloid peptide42 (Aβ42), CSF β-amyloid peptide40 (Aβ40), CSF total tau protein (tTau), CSF phosphorylated tau protein (pTau), and CSF alpha-synuclein (αS). Results The estimated RI of S NfL were 2.25-9.19 ng.L-1. The cut-off value of S NfL for assessing the degree of neuronal impairment was 10.5 ng.L-1. We found a moderate statistically significant correlation between S NfL and CSF Aβ42 in the group with movement disorders, without dementia (rs = 0.631; p = 0.016); between S NfL and CSF Aβ40 in the group with movement disorder plus dementia (rs = -0.750; p = 0.052); between S NfL and CSF tTau in the control group (rs = 0.689; p = 0.009); and between S NfL and CSF pTau in the control group (rs = 0.749; p = 0.003). The non-parametric Kruskal-Wallis test revealed statistically significant differences between S NfL, CSF NfL, CSF Aβ42, CSF tTau, and CSF pTau and diagnosis within groups. The highest kappa coefficients were found between the concentrations of S NfL and CSF NfL (κ = 0.480) and between CSF NfL and CSF tTau (κ = 0.351). Conclusion Our results suggested that NfL and tTau in CSF of patients with cognitive decline could be replaced by the less-invasive determination of S NfL using a highly sensitive ELISA method. S NfL reflected the severity of cognitive deficits assessed by mini-mental state examination (MMSE). However, S NfL is not specific to AD and does not appear to be a suitable biomarker for early diagnosis of AD.
Collapse
Affiliation(s)
- Richard Novobilský
- Department of Neurology, University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical Neurosciences, University of Ostrava, Ostrava, Czechia
| | - Petra Bartova
- Department of Neurology, University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical Neurosciences, University of Ostrava, Ostrava, Czechia
| | - Karin Lichá
- Department of Clinical Biochemistry, Institute of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czechia
| | - Michal Bar
- Department of Neurology, University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical Neurosciences, University of Ostrava, Ostrava, Czechia
| | - David Stejskal
- Department of Clinical Biochemistry, Institute of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czechia
- Institute of Laboratory Medicine, University of Ostrava, Ostrava, Czechia
| | - Pavlína Kusnierova
- Department of Clinical Biochemistry, Institute of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czechia
- Institute of Laboratory Medicine, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
27
|
Munteanu C, Iordan DA, Hoteteu M, Popescu C, Postoiu R, Onu I, Onose G. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review. Int J Mol Sci 2023; 24:15481. [PMID: 37895161 PMCID: PMC10607039 DOI: 10.3390/ijms242015481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
In the rapidly evolving field of Alzheimer's Disease (AD) research, the intricate role of Hydrogen Sulfide (H2S) has garnered critical attention for its diverse involvement in both pathological substrates and prospective therapeutic paradigms. While conventional pathophysiological models of AD have primarily emphasized the significance of amyloid-beta (Aβ) deposition and tau protein hyperphosphorylation, this targeted systematic review meticulously aggregates and rigorously appraises seminal contributions from the past year elucidating the complex mechanisms of H2S in AD pathogenesis. Current scholarly literature accentuates H2S's dual role, delineating its regulatory functions in critical cellular processes-such as neurotransmission, inflammation, and oxidative stress homeostasis-while concurrently highlighting its disruptive impact on quintessential AD biomarkers. Moreover, this review illuminates the nuanced mechanistic intimate interactions of H2S in cerebrovascular and cardiovascular pathology associated with AD, thereby exploring avant-garde therapeutic modalities, including sulfurous mineral water inhalations and mud therapy. By emphasizing the potential for therapeutic modulation of H2S via both donors and inhibitors, this review accentuates the imperative for future research endeavors to deepen our understanding, thereby potentially advancing novel diagnostic and therapeutic strategies in AD.
Collapse
Affiliation(s)
- Constantin Munteanu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, ‘Dunarea de Jos’ University of Galati, 800008 Galati, Romania;
| | - Mihail Hoteteu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
| | - Cristina Popescu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ruxandra Postoiu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| | - Ilie Onu
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iași, Romania;
| | - Gelu Onose
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania; (M.H.); (R.P.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
| |
Collapse
|
28
|
Cummings JL, Gonzalez MI, Pritchard MC, May PC, Toledo-Sherman LM, Harris GA. The therapeutic landscape of tauopathies: challenges and prospects. Alzheimers Res Ther 2023; 15:168. [PMID: 37803386 PMCID: PMC10557207 DOI: 10.1186/s13195-023-01321-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Tauopathies are a group of neurodegenerative disorders characterized by the aggregation of the microtubule-associated protein tau. Aggregates of misfolded tau protein are believed to be implicated in neuronal death, which leads to a range of symptoms including cognitive decline, behavioral change, dementia, and motor deficits. Currently, there are no effective treatments for tauopathies. There are four clinical candidates in phase III trials and 16 in phase II trials. While no effective treatments are currently approved, there is increasing evidence to suggest that various therapeutic approaches may slow the progression of tauopathies or improve symptoms. This review outlines the landscape of therapeutic drugs (indexed through February 28, 2023) that target tau pathology and describes drug candidates in clinical development as well as those in the discovery and preclinical phases. The review also contains information on notable therapeutic programs that are inactive or that have been discontinued from development.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas (UNLV), Henderson, NV, USA
| | | | | | - Patrick C May
- ADvantage Neuroscience Consulting LLC, Fort Wayne, IN, USA
| | | | - Glenn A Harris
- Rainwater Charitable Foundation, 777 Main Street, Suite 2250, Fort Worth, TX, 76102, USA.
| |
Collapse
|
29
|
Du F, Yu Q, Swerdlow RH, Waites CL. Glucocorticoid-driven mitochondrial damage stimulates Tau pathology. Brain 2023; 146:4378-4394. [PMID: 37070763 PMCID: PMC10545530 DOI: 10.1093/brain/awad127] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Prolonged exposure to glucocorticoids, the main stress hormones, damages the brain and is a risk factor for depression and Alzheimer's disease. Two major drivers of glucocorticoid-related neurotoxicity are mitochondrial dysfunction and Tau pathology; however, the molecular/cellular mechanisms precipitating these events, and their causal relationship, remain unclear. Using cultured murine hippocampal neurons and 4-5-month-old mice treated with the synthetic glucocorticoid dexamethasone, we investigate the mechanisms underlying glucocorticoid-induced mitochondrial damage and Tau pathology. We find that glucocorticoids stimulate opening of the mitochondrial permeability transition pore via transcriptional upregulation of its activating component, cyclophilin D. Inhibition of cyclophilin D is protective against glucocorticoid-induced mitochondrial damage as well as Tau phosphorylation and oligomerization in cultured neurons. We further identify the mitochondrially-targeted compound mito-apocynin as an inhibitor of glucocorticoid-induced permeability transition pore opening, and show that this compound protects against mitochondrial dysfunction, Tau pathology, synaptic loss, and behavioural deficits induced by glucocorticoids in vivo. Finally, we demonstrate that mito-apocynin and the glucocorticoid receptor antagonist mifepristone rescue Tau pathology in cytoplasmic hybrid cells, an ex vivo Alzheimer's disease model wherein endogenous mitochondria are replaced with mitochondria from Alzheimer's subjects. These findings show that mitochondrial permeability transition pore opening is a precipitating factor in glucocorticoid-induced mitochondrial dysfunction, and that this event stimulates Tau pathogenesis. Our data also link glucocorticoids to mitochondrial dysfunction and Tau pathology in the context of Alzheimer's disease and suggest that mitochondria are promising therapeutic targets for mitigating stress- and Tau-related brain damage.
Collapse
Affiliation(s)
- Fang Du
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Qing Yu
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas School of Medicine, Landon Center on Aging, Kansas City, KS 66103, USA
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| |
Collapse
|
30
|
Yu F, Iacono D, Perl DP, Lai C, Gill J, Le TQ, Lee P, Sukumar G, Armstrong RC. Neuronal tau pathology worsens late-phase white matter degeneration after traumatic brain injury in transgenic mice. Acta Neuropathol 2023; 146:585-610. [PMID: 37578550 PMCID: PMC10499978 DOI: 10.1007/s00401-023-02622-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Traumatic brain injury (TBI) causes diffuse axonal injury which can produce chronic white matter pathology and subsequent post-traumatic neurodegeneration with poor patient outcomes. Tau modulates axon cytoskeletal functions and undergoes phosphorylation and mis-localization in neurodegenerative disorders. The effects of tau pathology on neurodegeneration after TBI are unclear. We used mice with neuronal expression of human mutant tau to examine effects of pathological tau on white matter pathology after TBI. Adult male and female hTau.P301S (Tg2541) transgenic and wild-type (Wt) mice received either moderate single TBI (s-TBI) or repetitive mild TBI (r-mTBI; once daily × 5), or sham procedures. Acutely, s-TBI produced more extensive axon damage in the corpus callosum (CC) as compared to r-mTBI. After s-TBI, significant CC thinning was present at 6 weeks and 4 months post-injury in Wt and transgenic mice, with homozygous tau expression producing additional pathology of late demyelination. In contrast, r-mTBI did not produce significant CC thinning except at the chronic time point of 4 months in homozygous mice, which exhibited significant CC atrophy (- 29.7%) with increased microgliosis. Serum neurofilament light quantification detected traumatic axonal injury at 1 day post-TBI in Wt and homozygous mice. At 4 months, high tau and neurofilament in homozygous mice implicated tau in chronic axon pathology. These findings did not have sex differences detected. Conclusions: Neuronal tau pathology differentially exacerbated CC pathology based on injury severity and chronicity. Ongoing CC atrophy from s-TBI became accompanied by late demyelination. Pathological tau significantly worsened CC atrophy during the chronic phase after r-mTBI.
Collapse
Affiliation(s)
- Fengshan Yu
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Diego Iacono
- Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Daniel P Perl
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chen Lai
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Tuan Q Le
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Patricia Lee
- Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Defense-Uniformed Services University Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, 20814, USA.
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
31
|
Murakami H, Tokuda T, El-Agnaf OMA, Ohmichi T, Mori Y, Asano M, Kanemoto M, Baba Y, Tsukie T, Ikeuchi T, Ono K. IgG index of cerebrospinal fluid can reflect pathophysiology associated with Lewy bodies in Parkinson's disease. J Neurol Sci 2023; 452:120760. [PMID: 37544209 DOI: 10.1016/j.jns.2023.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/04/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Neuroinflammation is one of the pathophysiologies of Parkinson's disease (PD). Lewy bodies, the pathological hallmark of PD, emerge as a consequence of α-synuclein aggregation, and neuroinflammation is induced concurrently with this aggregation. Imaging and cerebrospinal fluid (CSF) biomarkers that reflect PD pathophysiology have been developed or are under investigation. The IgG index of CSF is a marker of inflammation, and may also reflect the pathophysiology of PD. AIM We examined if the IgG index reflects the pathophysiology of PD in drug-naïve PD patients. METHOD The subjects were 20 consecutive PD patients who underwent 123I-MIBG scintigraphy for assessment of the heart to mediastinum (H/M) ratio and wash out rate, 123I-Ioflupane SPECT for examination of the specific binding ratio in the striatum, and lumbar puncture before treatment. The CSF IgG index and levels of pathogenic proteins (total α-synuclein, oligomeric α-synuclein, total tau, phosphorylated tau and amyloid Aβ1-42) were determined. The IgG index was compared with the other parameters using Spearman correlation analysis. RESULTS The IgG index showed a significant correlation with the H/M ratio in early (r = -0.563, p = 0.010) and delayed (r = -0.466, p = 0.038) images in 123I-MIBG scintigraphy and with the CSF total tau level (r = -0.513, p = 0.021). CONCLUSION Neuroinflammation is involved in PD pathophysiology in some patients, and a higher IgG index indicates the presence of neuroinflammation accompanied by emergence of Lewy bodies.
Collapse
Affiliation(s)
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Japan
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar
| | - Takuma Ohmichi
- Department of Neurology, Kyoto Prefectural University of Medicine, Japan
| | - Yukiko Mori
- Department of Neurology, Showa University School of Medicine, Japan
| | - Miki Asano
- Department of Neurology, Showa University School of Medicine, Japan
| | - Mizuki Kanemoto
- Department of Neurology, Showa University School of Medicine, Japan
| | - Yasuhiko Baba
- Department of Neurology, Showa University Fujigaoka Hospital, Japan
| | - Tamao Tsukie
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Japan
| | - Kenjiro Ono
- Department of Neurology, Graduate School of Medical Sciences, Kanazawa University, Japan.
| |
Collapse
|
32
|
Le Guen Y, Luo G, Ambati A, Damotte V, Jansen I, Yu E, Nicolas A, de Rojas I, Peixoto Leal T, Miyashita A, Bellenguez C, Lian MM, Parveen K, Morizono T, Park H, Grenier-Boley B, Naito T, Küçükali F, Talyansky SD, Yogeshwar SM, Sempere V, Satake W, Alvarez V, Arosio B, Belloy ME, Benussi L, Boland A, Borroni B, Bullido MJ, Caffarra P, Clarimon J, Daniele A, Darling D, Debette S, Deleuze JF, Dichgans M, Dufouil C, During E, Düzel E, Galimberti D, Garcia-Ribas G, García-Alberca JM, García-González P, Giedraitis V, Goldhardt O, Graff C, Grünblatt E, Hanon O, Hausner L, Heilmann-Heimbach S, Holstege H, Hort J, Jung YJ, Jürgen D, Kern S, Kuulasmaa T, Lee KH, Lin L, Masullo C, Mecocci P, Mehrabian S, de Mendonça A, Boada M, Mir P, Moebus S, Moreno F, Nacmias B, Nicolas G, Niida S, Nordestgaard BG, Papenberg G, Papma J, Parnetti L, Pasquier F, Pastor P, Peters O, Pijnenburg YAL, Piñol-Ripoll G, Popp J, Porcel LM, Puerta R, Pérez-Tur J, Rainero I, Ramakers I, Real LM, Riedel-Heller S, Rodriguez-Rodriguez E, Ross OA, Luís Royo J, Rujescu D, Scarmeas N, Scheltens P, Scherbaum N, Schneider A, Seripa D, Skoog I, Solfrizzi V, Spalletta G, Squassina A, van Swieten J, Sánchez-Valle R, Tan EK, Tegos T, Teunissen C, Thomassen JQ, Tremolizzo L, Vyhnalek M, Verhey F, Waern M, Wiltfang J, Zhang J, Zetterberg H, Blennow K, He Z, Williams J, Amouyel P, Jessen F, Kehoe PG, Andreassen OA, Van Duin C, Tsolaki M, Sánchez-Juan P, Frikke-Schmidt R, Sleegers K, Toda T, Zettergren A, Ingelsson M, Okada Y, Rossi G, Hiltunen M, Gim J, Ozaki K, Sims R, Foo JN, van der Flier W, Ikeuchi T, Ramirez A, Mata I, Ruiz A, Gan-Or Z, Lambert JC, Greicius MD, Mignot E. Multiancestry analysis of the HLA locus in Alzheimer's and Parkinson's diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes. Proc Natl Acad Sci U S A 2023; 120:e2302720120. [PMID: 37643212 PMCID: PMC10483635 DOI: 10.1073/pnas.2302720120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 08/31/2023] Open
Abstract
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.
Collapse
Affiliation(s)
- Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
- Institut du Cerveau–Paris Brain Institute–ICM, Paris75013, France
| | - Guo Luo
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Aditya Ambati
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Vincent Damotte
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Iris Jansen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, 1081 HVAmsterdam, The Netherlands
| | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, QuebecH3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal, QuebecH3A 0G4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QuebecH3A 0G4, Canada
| | - Aude Nicolas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Itziar de Rojas
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
| | - Thiago Peixoto Leal
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland44196, OH
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata950-218, Japan
| | - Céline Bellenguez
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore308232, Singapore
- Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore138672, Singapore
| | - Kayenat Parveen
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne50937, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn53127, Germany
| | - Takashi Morizono
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu474-8511, Japan
| | - Hyeonseul Park
- Department of Biomedical Science, Chosun University, Gwangju61452, Korea
| | - Benjamin Grenier-Boley
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita565-0871, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo192-0982, Japan
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp2610, Belgium
- Laboratory of Neurogenetics, Institute Born–Bunge, Antwerp2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp2000, Belgium
| | - Seth D. Talyansky
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
| | - Selina Maria Yogeshwar
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
- Department of Neurology, Charité–Universitätsmedizin, Berlin10117, Germany
- Charité–Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin10117, Germany
| | - Vicente Sempere
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Wataru Satake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo192-0982, Japan
| | - Victoria Alvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo33011, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo33011, Spain
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan20122, Italy
| | - Michael E. Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia25125, Italy
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry91057, France
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Centre for Neurodegenerative Disorders, Neurology Unit, University of Brescia, Brescia25123, Italy
| | - María J. Bullido
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid28049, Spain
- Instituto de Investigacion Sanitaria "Hospital la Paz" (IdIPaz), Madrid48903, Spain
| | - Paolo Caffarra
- Unit of Neurology, University of Parma and AOU, Parma43121, Italy
| | - Jordi Clarimon
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona08193, Spain
| | - Antonio Daniele
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome00168, Italy
| | - Daniel Darling
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Stéphanie Debette
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux33000, France
- Department of Neurology, Bordeaux University Hospital, Bordeaux33400, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry91057, France
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich37075, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Carole Dufouil
- Inserm, Bordeaux Population Health Research Center, UMR 1219, Univ. Bordeaux, ISPED, CIC 1401-EC, Université de Bordeaux, Bordeaux33405, France
- CHU de Bordeaux, Pole santé publique, Bordeaux33400, France
| | - Emmanuel During
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg39106, Germany
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Milan20122, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan20122, Italy
| | | | - José María García-Alberca
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Alzheimer Research Center and Memory Clinic, Andalusian Institute for Neuroscience, Málaga29012, Spain
| | - Pablo García-González
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala751 22, Sweden
- Geriatrics, Uppsala University, Uppsala751 22, Sweden
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Klinikum recs der Isar, Munich80333, Germany
| | - Caroline Graff
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital-Solna, Stockholm171 64, Swdeen
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich8032, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich8057, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich8057, Switzerland
| | - Olivier Hanon
- Université de Paris, EA 4468, APHP, Hôpital Broca, Paris75013, France
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute for Mental Health Mannheim, Faculty Mannheim, University of Heidelberg, Heidelberg68159, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn53127, Germany
| | - Henne Holstege
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam1081 HV, The Netherlands
| | - Jakub Hort
- Department of Neurology, Memory Clinic, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague150 06, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno656 91, Czech Republic
| | - Yoo Jin Jung
- Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford94305, CA
| | - Deckert Jürgen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg97080, Germany
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg405 30, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, Gothenburg413 45, Sweden
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Joensuu, Kuopio, Eastern Finland80101, Finland
| | - Kun Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju61452, Republic of Korea
- Department of Integrative Biological Sciences, Chosun University, Gwangju61452, Republic of Korea
- Gwangju Alzheimer's and Related Dementias Cohort Research Center, Chosun University, Gwangju61452, Republic of Korea
- Korea Brain Research Institute, Daegu41062, Republic of Korea
- Neurozen Inc., Seoul06236, Republic of Korea
| | - Ling Lin
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | - Carlo Masullo
- Institute of Neurology, Catholic University of the Sacred Heart, Rome20123, Italy
| | - Patrizia Mecocci
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Perugia06123, Italy
| | - Shima Mehrabian
- Clinic of Neurology, UH “Alexandrovska”, Medical University–Sofia, Sofia1431, Bulgaria
| | | | - Mercè Boada
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
| | - Pablo Mir
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville41013, Spain
| | - Susanne Moebus
- Institute for Urban Public Health, University Hospital of University Duisburg-Essen, Essen45147, Germany
| | - Fermin Moreno
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian20014, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian20014, Spain
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health University of Florence, Florence50121, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence20162, Italy
| | - Gael Nicolas
- Department of Genetics and CNR-MAJ, Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, RouenF-76000, France
| | - Shumpei Niida
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu474-8511, Japan
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev Gentofte, Copenhagen2730, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen1172, Denmark
| | - Goran Papenberg
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm171 77, Sweden
| | - Janne Papma
- Department of Neurology, Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam3000, The Netherlands
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia06123, Italy
| | - Florence Pasquier
- Université de Lille, Inserm 1172, CHU Clinical and Research Memory Research Centre of Distalz, Lille59000, France
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona08221, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona08221, Spain
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin37075, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Berlin12203, Germany
| | - Yolande A. L. Pijnenburg
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida25198, Spain
- Institut de Recerca Biomedica de Lleida, Lleida25198, Spain
| | - Julius Popp
- Department of Psychiatry, Old Age Psychiatry, Lausanne University Hospital, Lausanne1005, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich8032, Switzerland
- Institute for Regenerative Medicine, University of Zürich, Zürich8952, Switzerland
| | - Laura Molina Porcel
- Neurological Tissue Bank–Biobanc- Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona08036, Spain
- Alzheimer’s disease and other cognitive disorders Unit, Neurology Department, Hospital Clinic, Barcelona08036, Spain
| | - Raquel Puerta
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
| | - Jordi Pérez-Tur
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-Consejo Superior de Investigaciones CientíficasValencia46010, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia46026, Spain
| | - Innocenzo Rainero
- Department of Neuroscience “Rita Levi Montalcini”, University of Torino, Torino10126, Italy
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht University, Maastricht6229 GS, The Netherlands
| | - Luis M. Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla41014, Spain
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga29010, Spain
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig04109, Germany
| | - Eloy Rodriguez-Rodriguez
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander39011, Spain
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic-Florida, Jacksonville32224, FL
- Department of Clinical Genomics, Mayo Clinic-Florida, Jacksonville32224, FL
| | - Jose Luís Royo
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. Facultad de Medicina, Universidad de Málaga, Málaga29010, Spain
| | - Dan Rujescu
- Martin-Luther-University Halle-Wittenberg, University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Halle (Saale)06120, Germany
| | - Nikolaos Scarmeas
- Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York10032, NY
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens106 79, Greece
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Medical Faculty, LVR-Hospital Essen, University of Duisburg-Essen, 45147Duisberg, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), 37075Göttingen, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn53127, Germany
| | - Davide Seripa
- Department of Hematology and Stem Cell Transplant, Laboratory for Advanced Hematological Diagnostics, Lecce73100, Italy
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg405 30, Sweden
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg405 30, Sweden
| | - Vincenzo Solfrizzi
- Interdisciry Department of Medicine, Geriatric Medicine and Memory Unit, University of Bari “A. Moro, Bari70121, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome00179, Italy
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston77030, TX
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari09124, Italy
| | - John van Swieten
- Department of Neurology, ErasmusMC, Rotterdam3000CA, Netherlands
| | - Raquel Sánchez-Valle
- Alzheimer's disease and other cognitive disorders unit, Service of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona08036, Spain
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore308433, Singapore
- Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Thomas Tegos
- 1st Department of Neurology, Medical school, Aristotle University of Thessaloniki, Thessaloniki541 24, Greece
| | - Charlotte Teunissen
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam1081 HV, Netherlands
| | - Jesper Qvist Thomassen
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen2100, Denmark
| | - Lucio Tremolizzo
- Neurology, "San Gerardo" hospital, Monza and University of Milano-Bicocca, Monza20900, Italy
| | - Martin Vyhnalek
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam1081 HV, The Netherlands
- Department of Neurology, Memory Clinic, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague150 06, Czech Republic
| | - Frans Verhey
- Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht University, Maastricht6229 GS, Netherlands
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg431 41, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Psychosis Clinic, Gothenburg413 45, Sweden
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen37075, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), Goettingen37075, Germany
- Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine, University of Aveiro, Aveiro3810-193, Portugal
| | - Jing Zhang
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| | | | | | | | | | | | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, MölndalSE-43180, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, LondonWC1E 6BT, United Kingdom
- UK Dementia Research Institute at UCL, LondonWC1E 6BT, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, MölndalSE-43180, Sweden
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
| | - Julie Williams
- UKDRI@Cardiff, School of Medicine, Cardiff University, WalesCF14 4YS, United Kingdom
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff WalesCF14 4XN, United Kingdom
| | - Philippe Amouyel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), 37075Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne50937, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne50931, Germany
| | - Patrick G. Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, BristolBS8 1QU, United Kingdom
| | - Ole A. Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo0450, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cornelia Van Duin
- Department of Epidemiology, ErasmusMC, Rotterdam3000 CA, The Netherlands
- Nuffield Department of Population Health Oxford University, OxfordOX3 7LF, United Kingdom
| | - Magda Tsolaki
- 1st Department of Neurology, Medical school, Aristotle University of Thessaloniki, Thessaloniki541 24, Greece
| | - Pascual Sánchez-Juan
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
- Alzheimer’s Centre Reina Sofia-CIEN Foundation, Madrid, Spain
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, University of Copenhagen, Copenhagen1172, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital–Rigshospitalet, Copenhagen2100, Denmark
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp2610, Belgium
- Laboratory of Neurogenetics, Institute Born–Bunge, Antwerp2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp2000, Belgium
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo192-0982, Japan
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Gothenburg431 41, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala751 22, Sweden
- Geriatrics, Uppsala University, Uppsala751 22, Sweden
- Krembil Brain Institute, University Health Network, TorontoM5G 2C4, Canada
- Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, TorontoM5S 1A8, Canada
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita565-0871, Japan
| | - Giacomina Rossi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan20133, Italy
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Joensuu, Kuopio, Eastern Finland80101, Finland
| | - Jungsoo Gim
- Department of Biomedical Science, Chosun University, Gwangju61452, Korea
- Department of Integrative Biological Sciences, Chosun University, Gwangju61452, Republic of Korea
- Gwangju Alzheimer's and Related Dementias Cohort Research Center, Chosun University, Gwangju61452, Republic of Korea
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu474-8511, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, WalesCF14 4YS, United Kingdom
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore308232, Singapore
- Laboratory of Neurogenetics, Genome Institute of Singapore, A*STAR, Singapore138672, Singapore
| | - Wiesje van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HVAmsterdam, The Netherlands
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata950-218, Japan
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne50937, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn53127, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen), 37075Göttingen, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases, University of Cologne, Cologne50931, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio78229, TX
| | - Ignacio Mata
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland44196, OH
| | - Agustín Ruiz
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona08029, Spain
- Networking Research Center on Neurodegenerative Diseases (CIRNED), Instituto de Salud Carlos III, Madrid28029, Spain
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), Montreal, QuebecH3A 2B4, Canada
- Department of Human Genetics, McGill University, Montreal, QuebecH3A 0G4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QuebecH3A 0G4, Canada
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Lille59000, France
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford94305, CA
| | - Emmanuel Mignot
- Center for Sleep Sciences and Medicine, Stanford University, Palo Alto94304, CA
| |
Collapse
|
33
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
34
|
Liu M, Xue J, Liu H, Bai Y. Imidazolium-based mass tags for protein biomarker detection using laser desorption ionization mass spectrometry. Chem Commun (Camb) 2023; 59:9996-9999. [PMID: 37522155 DOI: 10.1039/d3cc02907g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Novel imidazolium-based mass tags (IMTs) were designed, synthesized and applied to simultaneous in situ analysis of multiple biomarkers on less than 10 cells. The high sensitivity, flexible extensibility and excellent distinguishability of IMTs open new avenues for designing common mass tag templates suitable for mass spectrometric immunoassay and provide an ideal option for multiplex-sensitive detection at the cellular scale.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jinjuan Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
35
|
Brackhan M, Arribas-Blazquez M, Lastres-Becker I. Aging, NRF2, and TAU: A Perfect Match for Neurodegeneration? Antioxidants (Basel) 2023; 12:1564. [PMID: 37627559 PMCID: PMC10451380 DOI: 10.3390/antiox12081564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Although the trigger for the neurodegenerative disease process is unknown, the relevance of aging stands out as a major risk for the development of neurodegeneration. In this review, we highlighted the relationship between the different cellular mechanisms that occur as a consequence of aging and transcription factor nuclear factor erythroid-2-related factor 2 (NRF2) and the connection with the TAU protein. We focused on the relevance of NRF2 in the main processes involved in neurodegeneration and associated with aging, such as genomic instability, protein degradation systems (proteasomes/autophagy), cellular senescence, and stem cell exhaustion, as well as inflammation. We also analyzed the effect of aging on TAU protein levels and its aggregation and spread process. Finally, we investigated the interconnection between NRF2 and TAU and the relevance of alterations in the NRF2 signaling pathway in both primary and secondary tauopathies. All these points highlight NRF2 as a possible therapeutic target for tauopathies.
Collapse
Affiliation(s)
- Mirjam Brackhan
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
| | - Marina Arribas-Blazquez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain;
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, c/Arturo Duperier 4, 28029 Madrid, Spain
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| |
Collapse
|
36
|
Krueger KR, Desai P, Beck T, Wilson RS, Evans D, Rajan KB. Cognitive Activity Is Associated with Cognitive Function over Time in a Diverse Group of Older Adults, Independent of Baseline Biomarkers. Neuroepidemiology 2023; 57:229-237. [PMID: 37263261 PMCID: PMC10997141 DOI: 10.1159/000531208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND More frequent engagement in cognitive activity is associated with better cognitive function in older adults, but the mechanism of action is not fully understood. Debate remains whether increased cognitive activity provides a meaningful benefit for cognitive health or if decreased cognitive activity represents a prodrome of cognitive impairment. Neurological biomarkers provide a novel way to examine this relationship in the context of cognitive aging. METHODS We examined the association of self-reported cognitive activity, cognitive function, and concentrations of three biomarkers in community-dwelling participants of a longitudinal, population-based study. Cognitive activity was measured at baseline by asking participants to rate the frequency of 7 activities: (1) viewing television, (2) listening to the radio, (3) visiting a museum, (4) playing games, such as cards, checkers, crosswords, or other puzzles or games, (5) reading books, (6) reading magazines, and (7) reading newspapers. Cognitive function was measured with a battery of four tests (Mini-Mental State Examination, Digit Symbol Test, and the immediate and delayed recall of the East Boston Test) averaged into a composite score. At baseline, we evaluated the concentration of total tau (tau), neurofilament light (NfL), and glial fibrillary acidic protein (GFAP). RESULTS The study sample comprised 1,168 older participants, primarily non-Hispanic Blacks (60%) and women (63%). At baseline, they were an average of 77 years old with 12.6 years of education. Mixed-effects models showed that cognitive activity was associated with better cognitive functioning at baseline and over time. These relationships remained after each biomarker was added to the model. Over an average of 6.4 years of follow-up, cognitive activity was associated with cognitive decline in the model with tau (estimate = 0.0123; p value = 0.03) and was mildly attenuated in the models with NfL (estimate = 0.0110; p value = 0.06) and GFAP (estimate = 0.0111; p value = 0.06). Biomarkers did not modify the association between cognitive activity and cognitive function over time. CONCLUSION The benefits of cognitive activity on cognition appear to be independent of biomarkers: tau, NfL, and GFAP, measured at baseline. More frequent cognitive activity may benefit the cognitive health of older adults with a wide range of potential disease risk and presentations.
Collapse
Affiliation(s)
- Kristin R. Krueger
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Pankaja Desai
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Todd Beck
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Denis Evans
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| | - Kumar B. Rajan
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, (IL) 60612, United States of America
| |
Collapse
|
37
|
Mees I, Nisbet R, Hannan A, Renoir T. Implications of Tau Dysregulation in Huntington's Disease and Potential for New Therapeutics. J Huntingtons Dis 2023; 12:1-13. [PMID: 37092231 DOI: 10.3233/jhd-230569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The disease, characterized by motor, cognitive, and psychiatric impairments, is caused by the expansion of a CAG repeat in the huntingtin gene. Despite the discovery of the mutation in 1993, no disease-modifying treatments are yet available. Understanding the molecular and cellular mechanisms involved in HD is therefore crucial for the development of novel treatments. Emerging research has found that HD might be classified as a secondary tauopathy, with the presence of tau insoluble aggregates in late HD. Increased total tau protein levels have been observed in both HD patients and animal models of HD. Tau hyperphosphorylation, the main feature of tau pathology, has also been investigated and our own published results suggest that the protein phosphorylation machinery is dysregulated in the early stages of HD in R6/1 transgenic mice, primarily in the cortex and striatum. Protein phosphorylation, catalysed by kinases, regulates numerous cellular mechanisms and has been shown to be dysregulated in other neurodegenerative disorders, including Alzheimer's disease. While it is still unclear how the mutation in the huntingtin gene leads to tau dysregulation in HD, several hypotheses have been explored. Evidence suggests that the mutant huntingtin does not directly interact with tau, but instead interacts with tau kinases, phosphatases, and proteins involved in tau alternative splicing, which could result in tau dysregulation as observed in HD. Altogether, there is increasing evidence that tau is undergoing pathological changes in HD and may be a good therapeutic target.
Collapse
Affiliation(s)
- Isaline Mees
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Rebecca Nisbet
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
38
|
Varte V, Munkelwitz JW, Rincon-Limas DE. Insights from Drosophila on Aβ- and tau-induced mitochondrial dysfunction: mechanisms and tools. Front Neurosci 2023; 17:1184080. [PMID: 37139514 PMCID: PMC10150963 DOI: 10.3389/fnins.2023.1184080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia in older adults worldwide. Sadly, there are no disease-modifying therapies available for treatment due to the multifactorial complexity of the disease. AD is pathologically characterized by extracellular deposition of amyloid beta (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Increasing evidence suggest that Aβ also accumulates intracellularly, which may contribute to the pathological mitochondrial dysfunction observed in AD. According with the mitochondrial cascade hypothesis, mitochondrial dysfunction precedes clinical decline and thus targeting mitochondria may result in new therapeutic strategies. Unfortunately, the precise mechanisms connecting mitochondrial dysfunction with AD are largely unknown. In this review, we will discuss how the fruit fly Drosophila melanogaster is contributing to answer mechanistic questions in the field, from mitochondrial oxidative stress and calcium dysregulation to mitophagy and mitochondrial fusion and fission. In particular, we will highlight specific mitochondrial insults caused by Aβ and tau in transgenic flies and will also discuss a variety of genetic tools and sensors available to study mitochondrial biology in this flexible organism. Areas of opportunity and future directions will be also considered.
Collapse
Affiliation(s)
- Vanlalrinchhani Varte
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jeremy W. Munkelwitz
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Diego E. Rincon-Limas
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Ostermann PN, Schaal H. Human brain organoids to explore SARS-CoV-2-induced effects on the central nervous system. Rev Med Virol 2023; 33:e2430. [PMID: 36790825 DOI: 10.1002/rmv.2430] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). In less than three years, an estimated 600 million infections with SARS-CoV-2 occurred worldwide, resulting in a pandemic with tremendous impact especially on economic and health sectors. Initially considered a respiratory disease, COVID-19, along with its long-term sequelae (long-COVID) rather is a systemic disease. Neurological symptoms like dementia or encephalopathy were reported early during the pandemic as concomitants of the acute phase and as characteristics of long-COVID. An excessive inflammatory immune response is hypothesized to play a major role in this context. However, direct infection of neural cells may also contribute to the neurological aspects of (long)-COVID-19. To mainly explore such direct effects of SARS-CoV-2 on the central nervous system, human brain organoids provide a useful platform. Infecting these three-dimensional tissue cultures allows the study of viral neurotropism as well as of virus-induced effects on single cells or even the complex cellular network within the organoid. In this review, we summarize the experimental studies that used SARS-CoV-2-infected human brain organoids to unravel the complex nature of (long)-COVID-19-related neurological manifestations.
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
Veselkina ER, Trostnikov MV, Roshina NV, Pasyukova EG. The Effect of the Tau Protein on D. melanogaster Lifespan Depends on GSK3 Expression and Sex. Int J Mol Sci 2023; 24:2166. [PMID: 36768490 PMCID: PMC9916465 DOI: 10.3390/ijms24032166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The microtubule-associated conserved protein tau has attracted significant attention because of its essential role in the formation of pathological changes in the nervous system, which can reduce longevity. The study of the effects caused by tau dysfunction and the molecular mechanisms underlying them is complicated because different forms of tau exist in humans and model organisms, and the changes in protein expression can be multidirectional. In this article, we show that an increase in the expression of the main isoform of the Drosophila melanogaster tau protein in the nervous system has differing effects on lifespan depending on the sex of individuals but has no effect on the properties of the nervous system, in particular, the synaptic activity and distribution of another microtubule-associated protein, Futsch, in neuromuscular junctions. Reduced expression of tau in the nervous system does not affect the lifespan of wild-type flies, but it does increase the lifespan dramatically shortened by overexpression of the shaggy gene encoding the GSK3 (Glycogen Synthase Kinase 3) protein kinase, which is one of the key regulators of tau phosphorylation levels. This effect is accompanied by the normalization of the Futsch protein distribution impaired by shaggy overexpression. The results presented in this article demonstrate that multidirectional changes in tau expression can lead to effects that depend on the sex of individuals and the expression level of GSK3.
Collapse
Affiliation(s)
- Ekaterina R. Veselkina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Mikhail V. Trostnikov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Natalia V. Roshina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena G. Pasyukova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
41
|
Holper S, Watson R, Churilov L, Yates P, Lim YY, Barnham KJ, Yassi N. Protocol of a Phase II Randomized, Multi-Center, Double-Blind, Placebo-Controlled Trial of S-Adenosyl Methionine in Participants with Mild Cognitive Impairment or Dementia Due to Alzheimer's Disease. J Prev Alzheimers Dis 2023; 10:800-809. [PMID: 37874102 PMCID: PMC10186290 DOI: 10.14283/jpad.2023.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND S-adenosyl methionine (SAMe) is a pivotal metabolite in multiple pathways required for neuronal homeostasis, several of which are compromised in Alzheimer's disease (AD). Correction of the SAMe deficiency that is characteristic of the AD brain may attenuate or prevent pathological processes driving AD-associated neurodegeneration including aberrant tau hyperphosphorylation and DNA hypomethylation. OBJECTIVES The primary aim is to test the hypothesis that daily treatment with 400 mg oral SAMe for 180 days will lead to a greater reduction from baseline in plasma levels of p-tau181 compared to placebo in patients with mild cognitive impairment or dementia due to AD. DESIGN, SETTING, PARTICIPANTS This is a phase II, randomized, multi-center, double-blind, placebo-controlled trial among 60 participants with mild cognitive impairment or dementia due to AD. Participants will be randomized in a 1:1 ratio to receive either SAMe or matching placebo, to be taken as an adjunct to their AD standard of care. MEASUREMENTS AND RESULTS The primary outcome is change in plasma p-tau181 concentration between baseline and following 180 days of treatment, which will be compared between the active and placebo group. Secondary outcomes are the safety of SAMe administration (incidence of serious adverse events), change from baseline in cognitive performance (as measured by the Repeatable Battery for the Assessment of Neuropsychological Status), and epigenetic changes in DNA methylation. CONCLUSION Demonstration of effective and safe lowering of plasma p-tau181 with SAMe in this phase II trial would pave the way for an exciting field of translational research and a larger phase III trial.
Collapse
Affiliation(s)
- S Holper
- Sarah Holper, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, VIC, 3052, Australia. . Telephone: +61 3 9345 2555. Fax: +61 3 9347 0852
| | | | | | | | | | | | | |
Collapse
|
42
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
43
|
Loveland PM, Watson R, Yassi N. Diagnostic challenges for dementia in Australia: are blood-based biomarkers the solution? Intern Med J 2022; 52:2181-2185. [PMID: 37133369 PMCID: PMC10946735 DOI: 10.1111/imj.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/24/2022] [Indexed: 12/23/2022]
Abstract
The burden of dementia will increase as the Australian population ages and grows in coming decades. Early and accurate diagnosis remains challenging, and disproportionately so for particular groups, including rural communities. Recent advances in technology, however, now allow reliable measurement of blood biomarkers that could improve diagnosis in a range of settings. We discuss the most promising biomarker candidates for translation into clinical practice and research in the near future.
Collapse
Affiliation(s)
- Paula M. Loveland
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
- Department of Medicine, The Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | - Rosie Watson
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
- Department of Medicine, The Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | - Nawaf Yassi
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneMelbourneVictoriaAustralia
- Department of Medicine, The Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Neurology, Melbourne Brain Centre at The Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
44
|
2020 Editor’s Choice Articles in the “Cell Nuclei: Function, Transport and Receptors” Section. Cells 2022; 11:cells11172625. [PMID: 36078033 PMCID: PMC9454793 DOI: 10.3390/cells11172625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, a total of 106 original research articles, 84 reviews, and 1 other paper were published within the “Cell Nuclei: Function, Transport and Receptors” section [...]
Collapse
|