1
|
Brázda V, Šislerová L, Cucchiarini A, Mergny JL. G-quadruplex propensity in H. neanderthalensis, H. sapiens and Denisovans mitochondrial genomes. NAR Genom Bioinform 2024; 6:lqae060. [PMID: 38817800 PMCID: PMC11137754 DOI: 10.1093/nargab/lqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Current methods of processing archaeological samples combined with advances in sequencing methods lead to disclosure of a large part of H. neanderthalensis and Denisovans genetic information. It is hardly surprising that the genome variability between modern humans, Denisovans and H. neanderthalensis is relatively limited. Genomic studies may provide insight on the metabolism of extinct human species or lineages. Detailed analysis of G-quadruplex sequences in H. neanderthalensis and Denisovans mitochondrial DNA showed us interesting features. Relatively similar patterns in mitochondrial DNA are found compared to modern humans, with one notable exception for H. neanderthalensis. An interesting difference between H. neanderthalensis and H. sapiens corresponds to a motif found in the D-loop region of mtDNA, which is responsible for mitochondrial DNA replication. This area is directly responsible for the number of mitochondria and consequently for the efficient energy metabolism of cell. H. neanderthalensis harbor a long uninterrupted run of guanines in this region, which may cause problems for replication, in contrast with H. sapiens, for which this run is generally shorter and interrupted. One may propose that the predominant H. sapiens motif provided a selective advantage for modern humans regarding mtDNA replication and function.
Collapse
Affiliation(s)
- Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Anne Cucchiarini
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
2
|
Song K, Li B, Li H, Zhang R, Zhang X, Luan R, Liu Y, Yang L. The Characterization of G-Quadruplexes in Tobacco Genome and Their Function under Abiotic Stress. Int J Mol Sci 2024; 25:4331. [PMID: 38673916 PMCID: PMC11050182 DOI: 10.3390/ijms25084331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tobacco is an ideal model plant in scientific research. G-quadruplex is a guanine-rich DNA structure, which regulates transcription and translation. In this study, the prevalence and potential function of G-quadruplexes in tobacco were systematically analyzed. In tobacco genomes, there were 2,924,271,002 G-quadruplexes in the nuclear genome, 430,597 in the mitochondrial genome, and 155,943 in the chloroplast genome. The density of the G-quadruplex in the organelle genome was higher than that in the nuclear genome. G-quadruplexes were abundant in the transcription regulatory region of the genome, and a difference in G-quadruplex density in two DNA strands was also observed. The promoter of 60.4% genes contained at least one G-quadruplex. Compared with up-regulated differentially expressed genes (DEGs), the G-quadruplex density in down-regulated DEGs was generally higher under drought stress and salt stress. The G-quadruplex formed by simple sequence repeat (SSR) and its flanking sequence in the promoter region of the NtBBX (Nitab4.5_0002943g0010) gene might enhance the drought tolerance of tobacco. This study lays a solid foundation for further research on G-quadruplex function in tobacco and other plants.
Collapse
Affiliation(s)
- Kangkang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Bin Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohua Zhang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Ruiwei Luan
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
- College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Ying Liu
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| |
Collapse
|
3
|
Luo Y, Živković ML, Wang J, Ryneš J, Foldynová-Trantírková S, Trantírek L, Verga D, Mergny JL. A sodium/potassium switch for G4-prone G/C-rich sequences. Nucleic Acids Res 2024; 52:448-461. [PMID: 37986223 PMCID: PMC10783510 DOI: 10.1093/nar/gkad1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Metal ions are essential components for the survival of living organisms. For most species, intracellular and extracellular ionic conditions differ significantly. As G-quadruplexes (G4s) are ion-dependent structures, changes in the [Na+]/[K+] ratio may affect the folding of genomic G4s. More than 11000 putative G4 sequences in the human genome (hg19) contain at least two runs of three continuous cytosines, and these mixed G/C-rich sequences may form a quadruplex or a competing hairpin structure based on G-C base pairing. In this study, we examine how the [Na+]/[K+] ratio influences the structures of G/C-rich sequences. The natural G4 structure with a 9-nt long central loop, CEBwt, was chosen as a model sequence, and the loop bases were gradually replaced by cytosines. The series of CEB mutations revealed that the presence of cytosines in G4 loops does not prevent G4 folding or decrease G4 stability but increases the probability of forming a competing structure, either a hairpin or an intermolecular duplex. Slow conversion to the quadruplex in vitro (in a potassium-rich buffer) and cells was demonstrated by NMR. 'Shape-shifting' sequences may respond to [Na+]/[K+] changes with delayed kinetics.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| | - Martina Lenarčič Živković
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia
| | - Jiawei Wang
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jan Ryneš
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | | | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Jean-Louis Mergny
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
4
|
Luo Y, Granzhan A, Marquevielle J, Cucchiarini A, Lacroix L, Amrane S, Verga D, Mergny JL. Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie 2023; 214:5-23. [PMID: 36596406 DOI: 10.1016/j.biochi.2022.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Besides the well-known DNA double-helix, non-canonical nucleic acid structures regulate crucial biological activities. Among these oddities, guanine-rich DNA sequences can form unusual four-stranded secondary structures called G-quadruplexes (G4s). G4-prone sequences have been found in the genomes of most species, and G4s play important roles in essential processes such as transcription, replication, genome integrity and epigenetic regulation. Here, we present a short overview of G-quadruplexes followed by a detailed description of the biophysical and biochemical methods used to characterize G4s in vitro. The principles, experimental details and possible shortcomings of each method are discussed to provide a comprehensive view of the techniques used to study these structures. We aim to provide a set of guidelines for standardizing research on G-quadruplexes; these guidelines are not meant to be a dogmatic set of rules, but should rather provide useful information on the methods currently used to study these fascinating motifs.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
| | - Julien Marquevielle
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Anne Cucchiarini
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Laurent Lacroix
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Samir Amrane
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France.
| | - Jean-Louis Mergny
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
5
|
Saad M, Zhang R, Cucchiarini A, Mehawej C, Mergny JL, Mroueh M, Faour WH. G-quadruplex forming sequences in the genes coding for cytochrome P450 enzymes and their potential roles in drug metabolism. Biochimie 2023; 214:45-56. [PMID: 37660977 DOI: 10.1016/j.biochi.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
The majority of drugs are metabolized by cytochrome P450 (CYP) enzymes, primarily belonging to the CYP1, CYP2 and CYP3 families. Genetic variations are the main cause of inter-individual differences in drug response, which constitutes a major concern in pharmacotherapy. G-quadruplexes (G4s), are non-canonical DNA and RNA secondary structures formed by guanine-rich sequences. G4s have been implicated in cancer and gene regulation. In this study, we investigated putative G4-forming sequences (PQSs) in the CYP genes. Our findings reveal a high density of PQSs in the full genes of CYP family 2. Moreover, we observe an increased density of PQSs in the promoters of CYP family 1 genes compared to non-CYP450 genes. Importantly, stable PQSs were also identified in all studied CYP genes. Subsequently, we assessed the impact of the most frequently reported genetic mutations in the selected genes and the possible effect of these mutations on G4 formation as well as on the thermodynamic stability of predicted G4s. We found that 4 SNPs overlap G4 sequences and lead to mutated DNA and RNA G4 forming sequences in their context. Notably, the mutation in the CYP2C9 gene, which is associated with impaired (S)-warfarin metabolism in patients, alters a G4 sequence. We then demonstrated that at least 10 of the 13 chosen cytochrome P450 G4 candidates form G-quadruplex structures in vitro, using a combination of spectroscopic methods. In conclusion, our findings indicate the potential role of G-quadruplexes in the regulation of cytochrome genes, and emphasize the importance of G-quadruplexes in drug metabolism.
Collapse
Affiliation(s)
- Mona Saad
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Rongxin Zhang
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120, Palaiseau, France; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120, Palaiseau, France
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Institut Polytechnique de Paris, CNRS, INSERM, Université Paris-Saclay, 91120, Palaiseau, France.
| | - Mohamad Mroueh
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos, Lebanon
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
6
|
Smýkal P, von Wettberg EJB. A Commemorative Issue in Honor of 200th Anniversary of the Birth of Gregor Johann Mendel: The Genius of Genetics. Int J Mol Sci 2023; 24:11718. [PMID: 37511477 PMCID: PMC10380561 DOI: 10.3390/ijms241411718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/06/2023] [Indexed: 07/30/2023] Open
Abstract
In celebration of the bicentennial of the birth of Gregor Johann Mendel, the genius of genetics, this Special Issue presents seven papers [...].
Collapse
Affiliation(s)
- Petr Smýkal
- Department of Botany, Palacky University, 771 47 Olomouc, Czech Republic
| | - Eric J B von Wettberg
- Department of Plant and Soil Science and Gund Institute for the Environment, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
7
|
Pečinka P, Bohálová N, Volná A, Kundrátová K, Brázda V, Bartas M. Analysis of G-Quadruplex-Forming Sequences in Drought Stress-Responsive Genes, and Synthesis Genes of Phenolic Compounds in Arabidopsis thaliana. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010199. [PMID: 36676148 PMCID: PMC9865073 DOI: 10.3390/life13010199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Sequences of nucleic acids with the potential to form four-stranded G-quadruplex structures are intensively studied mainly in the context of human diseases, pathogens, or extremophile organisms; nonetheless, the knowledge about their occurrence and putative role in plants is still limited. This work is focused on G-quadruplex-forming sites in two gene sets of interest: drought stress-responsive genes, and genes related to the production/biosynthesis of phenolic compounds in the model plant organism Arabidopsis thaliana. In addition, 20 housekeeping genes were analyzed as well, where the constitutive gene expression was expected (with no need for precise regulation depending on internal or external factors). The results have shown that none of the tested gene sets differed significantly in the content of G-quadruplex-forming sites, however, the highest frequency of G-quadruplex-forming sites was found in the 5'-UTR regions of phenolic compounds' biosynthesis genes, which indicates the possibility of their regulation at the mRNA level. In addition, mainly within the introns and 1000 bp flanks downstream gene regions, G-quadruplex-forming sites were highly underrepresented. Finally, cluster analysis allowed us to observe similarities between particular genes in terms of their PQS characteristics. We believe that the original approach used in this study may become useful for further and more comprehensive bioinformatic studies in the field of G-quadruplex genomics.
Collapse
Affiliation(s)
- Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 70833 Ostrava, Czech Republic
| | - Natália Bohálová
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Adriana Volná
- Department of Physics, University of Ostrava, 70833 Ostrava, Czech Republic
| | - Kristýna Kundrátová
- Department of Biology and Ecology, University of Ostrava, 70833 Ostrava, Czech Republic
| | - Václav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 70833 Ostrava, Czech Republic
- Correspondence:
| |
Collapse
|
8
|
Volná A, Bartas M, Nezval J, Pech R, Pečinka P, Špunda V, Červeň J. Beyond the Primary Structure of Nucleic Acids: Potential Roles of Epigenetics and Noncanonical Structures in the Regulations of Plant Growth and Stress Responses. Methods Mol Biol 2023; 2642:331-361. [PMID: 36944887 DOI: 10.1007/978-1-0716-3044-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as "non-B DNA" structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jakub Nezval
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radomír Pech
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Špunda
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
9
|
Falanga AP, Terracciano M, Oliviero G, Roviello GN, Borbone N. Exploring the Relationship between G-Quadruplex Nucleic Acids and Plants: From Plant G-Quadruplex Function to Phytochemical G4 Ligands with Pharmaceutic Potential. Pharmaceutics 2022; 14:2377. [PMID: 36365194 PMCID: PMC9698481 DOI: 10.3390/pharmaceutics14112377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 10/31/2023] Open
Abstract
G-quadruplex (G4) oligonucleotides are higher-order DNA and RNA secondary structures of enormous relevance due to their implication in several biological processes and pathological states in different organisms. Strategies aiming at modulating human G4 structures and their interrelated functions are first-line approaches in modern research aiming at finding new potential anticancer treatments or G4-based aptamers for various biomedical and biotechnological applications. Plants offer a cornucopia of phytocompounds that, in many cases, are effective in binding and modulating the thermal stability of G4s and, on the other hand, contain almost unexplored G4 motifs in their genome that could inspire new biotechnological strategies. Herein, we describe some G4 structures found in plants, summarizing the existing knowledge of their functions and biological role. Moreover, we review some of the most promising G4 ligands isolated from vegetal sources and report on the known relationships between such phytochemicals and G4-mediated biological processes that make them potential leads in the pharmaceutical sector.
Collapse
Affiliation(s)
- Andrea P. Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
- Institute of Applied Sciences and Intelligent Systems, Italian National Council of Research (ISASI-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
10
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|