1
|
Han S, Tushoski-Alemán GW, Zhang P, Zheng G, Zhou D, Huo Z, Licht J, George TJ, Allegra C, Trevino JG, Hughes SJ. A novel regimen for pancreatic ductal adenocarcinoma targeting MEK, BCL-xL, and EGFR. Neoplasia 2025; 59:101070. [PMID: 39541736 PMCID: PMC11609319 DOI: 10.1016/j.neo.2024.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Oncogenic KRAS signaling plays a critical role in pancreatic ductal adenocarcinoma (PDAC) biology. Recent studies indicate that the combination of MEK and BCL-xL inhibition is synthetically lethal and holds promise for some types of solid cancers, however, patient response was poorly observed in PDAC predominantly due to amplified EGFR signaling. Here, we leverage the advantage of the combinational treatment strategy and designed a triplet regimen targeting the comprehensive RAS activation networks through simultaneously blocking MEK/BCL-xL/EGFR. The cytotoxicity of trametinib (MEK inhibitor), DT2216 (BCL-xL degrader) and afatinib (pan-EGFR inhibitor) and their combination was tested in patient-derived, primary PDAC cells using a live cell imaging system. Patient-derived xenograft (PDX) model was employed for the evaluation of the therapeutic efficacy and safety of the combinational regimen. Targeted pathway cascades activities were analyzed using multiplex phosphor-immune assays. In vitro comparisons showed the addition of afatinib as a third agent was statistically superior compared to a doublet of trametinib+DT2216 in suppressing cell growth and inducing cell death in all cell lines tested. This triplet similarly demonstrated significant superiority over the doublet of MEK/BCL-xL inhibition in the in vivo murine model. The triplet regimen was well tolerated in vivo. Overall tumor growth rates were significantly reduced in doublet treatment compared to controls, and further reduced in the triplet treatment group. Pathway analysis revealed the addition of afatinib in triplet regimen further inhibited PI3K/AKT effectors of p90RSK, p70S6K, and GSK3α/β along with a secondary pathway of P38 MAPK. Our study identifies an important contribution of EGFR inhibition to elevate the response of PDAC, supporting a clinical assessment of this triplet combination in patients.
Collapse
Affiliation(s)
- Song Han
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Gerik W Tushoski-Alemán
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Department of Biochemistry and Structural Biology & Center for Innovative Drug Discovery, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan Licht
- UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Thomas J George
- UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carmen Allegra
- UF Health Cancer Center, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jose G Trevino
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Steven J Hughes
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Diao B, Fan Z, Zhou B, Zhan H. Crosstalk between pancreatic cancer and adipose tissue: Molecular mechanisms and therapeutic implications. Biochem Biophys Res Commun 2024; 740:151012. [PMID: 39561650 DOI: 10.1016/j.bbrc.2024.151012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The incidence rate of pancreatic cancer, a fatal illness with a meager 5-year survival rate, has been on the rise in recent times. When individuals accumulate excessive amounts of adipose tissue, the adipose organ becomes dysfunctional due to alterations in the adipose tissue microenvironment associated with inflammation and metabolism. This phenomenon may potentially contribute to the aberrant accumulation of fat that initiates pancreatic carcinogenesis, thereby influencing the disease's progression, resistance to treatment, and metastasis. This review presents a summary of the impact of pancreatic steatosis, visceral fat, cancer-associated adipocytes and lipid diets on the advancement of pancreatic cancer, as well as the reciprocal effects of pancreatic cancer on adipose tissue. Understanding the molecular mechanisms underlying the relationship between dysfunctional adipose tissue and pancreatic cancer better may lead to the discovery of new therapeutic targets for the disease's prevention and individualized treatment. This is especially important given the rising global incidence of obesity, which will improve the pancreatic cancer treatment options that are currently insufficient.
Collapse
Affiliation(s)
- Boyu Diao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
3
|
Qiu H, Gao L, Shi W, Wang J, Li B, Ke S, Chen J, Gong Y, Wu Y, Zhao W, Chen Y. Elaiophylin targets EIF4B to suppress the growth of esophageal squamous cell carcinoma via the PI3K/AKT signaling pathway. Cancer Lett 2024; 611:217401. [PMID: 39694222 DOI: 10.1016/j.canlet.2024.217401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Elaiophylin is known to exert antitumor effects through certain signaling pathways; however, no reports regarding its effects on esophageal cancer are available. This study explored the effects of elaiophylin in esophageal squamous cell carcinoma (ESCC) cells. Transwell and immunofluorescence assays confirmed that elaiophylin inhibited the migration and proliferation of ESCC cells, and western blotting assays showed that it affected apoptosis-related gene expression in ESCC cells. Based on RNA-seq analyses, Single-cell RNA-seq, a human cancer pathway phosphorylation antibody array, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomics analyses, we found that elaiophylin was related to low expression of EIF4B and activation of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. In both in vitro and in vivo experiments, ESCC cells treated with elaiophylin showed low EIF4B expression, which inhibited their proliferation and promoted apoptosis by activating the PI3K/AKT signaling pathway; EIF4B overexpression could reverse these effects of elaiophylin on ESCC cells. Therefore, our results indicate that elaiophylin targets EIF4B to inhibit ESCC cell proliferation via the PI3K/AKT signaling pathway. Targeting elaiophylin or the EIF4B/PI3K/AKT signaling pathway may produce new methods for ESCC treatment.
Collapse
Affiliation(s)
- Hu Qiu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Lijuan Gao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Wei Shi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Jing Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Bin Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Shaobo Ke
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Jiamei Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Yi Gong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Yong Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Wensi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Yongshun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430064, China; Cancer Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
4
|
Du Y, Liu T, Ding T, Zeng X, Chen Q, Zhao H. Adhesive lipophilic gels delivering rapamycin prevent oral leukoplakia from malignant transformation. Mater Today Bio 2024; 29:101305. [PMID: 39525395 PMCID: PMC11546665 DOI: 10.1016/j.mtbio.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Oral leukoplakia (OLK) is the most emblematic oral potentially malignant disorder that may precede the diagnosis of oral squamous cell carcinoma (OSCC) and has an overall malignant transformation rate of 9.8 %. Early intervention is crucial to reduce the malignant transformation rate from OLK to OSCC but the lack of effective local pharmaceutical preparations poses a challenge to clinical management. Rapamycin is speculated to prevent OLK from carcinogenesis and its inherent lipophilicity facilitates its penetration into stratum corneum. Nevertheless, hydrophilic hydrogels frequently encounter challenges when attempting to deliver lipophilic drugs. Furthermore, the oral cavity presents a complex environment defined by oral motor functions, saliva secretion cycles, dynamic fluctuations, and protective barriers comprising mucus and lipid layers. Consequently, addressing issues of muco-penetration and muco-adhesion is imperative for developing an effective drug delivery system aiming at delivering rapamycin to target oral potentially malignant disorders. Here, a dual-function hydrogel drug delivery system integrating adhesion and lipophilicity was successfully developed based on polyvinyl alcohol (PVA) and dioleoyl phosphatidylglycerol (DOPG) via dynamic boronic ester bonds. Rheological experiments based on orthogonal design revealed that PVA-DOPG hydrogels exhibited ideal adhesive strength (around 6 kPa) and could adhere to various surfaces in both dry and wet conditions. PVA-DOPG hydrogels also significantly promoted lipophilic molecules' penetration into stratum corneum (integrated fluorescence density of 6.95 ± 0.52 × 106 and mean fluorescence depth of 0.96 ± 0.07 mm) of ex-vivo porcine buccal mucosa (p < 0.001). Furthermore, PVA-DOPG hydrogels incorporating rapamycin inhibited malignant transformation of OLK mouse model induced by 4-Nitroquinoline N-oxide (4-NQO), distinct improvements in survival (the neoplasm incidence density at the 40th day is 0.0091) (p < 0.05), decrease in neoplasm incidence density of 36.36 % and inhibition rate in neoplasm volume of 75.04 ± 33.67 % have been demonstrated, suggesting the hydrogels were valuable candidates for potential applications in the management of OLK.
Collapse
Affiliation(s)
- Yuqi Du
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Tiannan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Tingting Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
5
|
Wang D, Lv L, Du J, Tian K, Chen Y, Chen M. TRIM16 and PRC1 Are Involved in Pancreatic Cancer Progression and Targeted by Delphinidin. Chem Biol Drug Des 2024; 104:e70026. [PMID: 39635962 DOI: 10.1111/cbdd.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Pancreatic cancer (PC) is the leading cause of cancer-related death worldwide, and new biomarkers, therapeutic targets, and candidate drugs are needed. In this work, three PC-related microarray datasets (GSE183795, GSE28735, and GSE62452) were analyzed. The differentially expressed genes (DEGs) of PC were obtained with the limma package in R. Weighted gene co-expression network analysis (WGCNA) and machine learning approaches were used to screen the hub genes. Kaplan-Meier plotter and receiver operating characteristic (ROC) curve analysis were utilized to assess the diagnostic efficacy of the hub genes. The binding ability between natural bioactive ingredients and hub proteins was evaluated by molecular docking and molecular dynamics simulation. CCK-8, flow cytometry, transwell, and western blot assays were used to analyze the viability, apoptosis, cell cycle progression, invasion, and pathway change of PC cells. Additionally, a nude mice model was used to evaluate the aggressive properties of PC cells in vivo. In this study, a total of 988 DEGs were identified, which were mainly enriched in cell adhesion and PI3K-Akt signaling pathway, and two core genes TRIM16 and PRC1 were further identified. The overall survival of patients with high expression of TRIM16 and PRC1 was shorter. Delphinidin (Del) had good binding affinity with both TRIM16 and PRC1, and Del could inhibit the viability, invasion, and metastasis of PC cells and induce cell apoptosis and G0/G1 phase arrest. In addition, Del could promote the activation of p53 and inhibit the activation of the PI3K/AKT signaling pathway in PC cells. In summary, TRIM16 and PRC1 are identified as prognostic biomarkers and therapeutic targets for PC, and Del has good binding affinity with them and may be a potential therapeutic agent for PC.
Collapse
Affiliation(s)
- Donghua Wang
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Long Lv
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jinghu Du
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Kui Tian
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yu Chen
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Manyu Chen
- Department of Coloproctological Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
6
|
Liu J, Jiang B, Xu W, Liu Q, Huang H, Chang X, Ma G, Xu X, Zhou L, Xiao GG, Guo J. Targeted inhibition of CHKα and mTOR in models of pancreatic ductal adenocarcinoma: A novel regimen for metastasis. Cancer Lett 2024; 605:217280. [PMID: 39343354 DOI: 10.1016/j.canlet.2024.217280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic malignancy for which there are currently no effective anti-metastatic therapies. Herein, we employed single-cell RNA sequencing and metabolomics analysis to demonstrate that metastatic cells highly express focal adhesion kinase (FAK), which promotes metastasis by remodeling choline kinase α (CHKα)-dependent choline metabolism. We designed a novel CHKα inhibitor, CHKI-03, and verified its efficacy in inhibiting metastasis in multiple preclinical models. Classical and newly synthesized small-molecule inhibitors have previously been used to assess the therapeutic potential of targeting mTOR and CHKα in various animal models. Mechanistically, FAK activated mTOR and its downstream HIF-1α, thereby elevating CHKα expression and promoting the proliferation, migration, and invasion of PDAC cells, as well as tumor growth and metastasis. Consistently, high expression levels of both FAK and CHKα are correlated with poor prognosis in patients with PDAC. Notably, CHK1-03 inhibited CHKα expression and also suppressed mTORC1 phosphorylation, disrupting the mTORC1-CHKα positive feedback loop. In addition, the combination of CHKI-03 and the mTORC1 inhibitor rapamycin synergistically inhibited tumor growth and metastasis in PDX models. The combination of CHKI-03 and rapamycin demonstrates considerable therapeutic efficacy in PDO models resistant to gemcitabine. Our findings reveal a pivotal mechanism underlying PDAC metastasis regulated by mTORC1-CHKα loop-dependent choline metabolism reprogramming, highlighting the therapeutic potential of this novel regimen for treating PDAC metastasis.
Collapse
Affiliation(s)
- Jianzhou Liu
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Bolun Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 31003, China
| | - Wenchao Xu
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haoran Huang
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Li Zhou
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Gary Guishan Xiao
- Functional Genomics and Proteomics Center, Creighton University Medical Center, 601N 30th ST, Omaha, NE, 68131, USA
| | - Junchao Guo
- Department of General Surgery, Key Laboratory of Research in Pancreatic Tumor, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Pecoraro C, Scianò F, Carbone D, Xu G, Deng J, Cascioferro S, Giovannetti E, Diana P, Parrino B. Synthesis and biological evaluation of a new class of azole urea compounds as Akt inhibitors with promising anticancer activity in pancreatic cancer models. Bioorg Chem 2024; 153:107959. [PMID: 39556934 DOI: 10.1016/j.bioorg.2024.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The PI3K/Akt pathway is crucial in numerous cellular functions such as cell growth, survival proliferation and movement in both normal and cancer cells. It plays also a key role in epithelial-mesenchymal transitions and angiogenesis during the tumorigenesis processes. Since many transformative events in cancer are driven by increased PI3K/Akt pathway signaling, Akt is considered a valuable target for developing new therapies against various tumor types, including pancreatic cancer. This is because the PI3K/AKT/mTOR pathway is a key downstream effector of RAS, and RAS activation is the most prominent genetic alteration in pancreatic cancer. Herein we report the synthesis and the biological evaluation of a new series of azole urea compounds that exhibited promising antiproliferative and antimigratory activities against pancreatic cancer cells through an Akt inhibition mechanism. These effects were demonstrated using a variety of assays, including Sulforhodamine B, cell-cycle, wound-healing, and kinase activity, apotposis and ELISA assays. Additionally, the anticancer properties of the most active compound in the series were confirmed in the 3D spheroid model of PATU-T cells.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Fabio Scianò
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam 1081 HV, The Netherlands
| | - Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam 1081 HV, The Netherlands
| | - Juan Deng
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam 1081 HV, The Netherlands
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam 1081 HV, The Netherlands; Cancer Pharmacology Laboratory, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 Pisa, Italy.
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
8
|
Li Y, Pan L, Mugaanyi J, Li H, Li G, Huang J, Dai L. Pathomic and bioinformatics analysis of clinical-pathological and genomic factors for pancreatic cancer prognosis. Sci Rep 2024; 14:27769. [PMID: 39533091 PMCID: PMC11557977 DOI: 10.1038/s41598-024-79619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic cancer exhibits a high degree of malignancy with a poor prognosis, lacking effective prognostic targets. Utilizing histopathological methodologies, this study endeavors to predict the expression of pathological features in pancreatic ductal adenocarcinoma (PAAD) and investigate their underlying molecular mechanisms. Pathological images, transcriptomic, and clinical data from TCGA-PAAD were collected for survival analysis. Image segmentation using unsupervised machine learning was employed to extract features, perform clustering, and establish models. The prognostic value of pathological features and associated clinical risk factors were evaluated; the correlation between pathological features and molecular mechanisms, gene mutations, and immune infiltration was analyzed. By clustering 45 effective pathological features, we divided PAAD patients into two groups: cluster 1 and cluster 2. Significant associations with poor prognosis were found for cluster 2 in both the training group (n = 113) and validation group (n = 75) (p = 0.006), with pathological stages II-IV identified as potential synergistic risk factors (HR = 2.421, 95% CI = 1.263-4.639, p = 0.008). Subsequently, through multi-omics correlation analysis, we further revealed a close association between cluster 2 and the oxidative phosphorylation mechanism. Within the cluster 2 group, 28 oxidative phosphorylation genes exhibited reduced expression, CDKN2A gene mutations were upregulated, and there was significant downregulation of Tregs infiltration and related immune gene expression. The pathomic model constructed using machine learning serves as a valuable prognostic target for PAAD. The histopathological features cluster 2 are closely associated with the downregulation of oxidative phosphorylation levels and Tregs immune infiltration.
Collapse
Affiliation(s)
- Yang Li
- Department of Emergency, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Lujuan Pan
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, 533000, Guangxi, China
| | - Joseph Mugaanyi
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Hua Li
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, 533000, Guangxi, China
| | - Gehui Li
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jing Huang
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, China.
| | - Lei Dai
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The affiliated hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Hepato-pancreato-biliary Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, 1111 Jiangnan Road, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
9
|
Ouissam AJ, Hind C, Sami Aziz B, Said A. Inhibition of the PI3K/AKT/mTOR pathway in pancreatic cancer: is it a worthwhile endeavor? Ther Adv Med Oncol 2024; 16:17588359241284911. [PMID: 39399412 PMCID: PMC11468005 DOI: 10.1177/17588359241284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease that is challenging to treat and is associated with a high mortality rate. The most common type of PC is pancreatic ductal adenocarcinoma (PDAC), and the existing treatment options are insufficient for PDAC patients. Due to the complexity and heterogeneity of PDAC, personalized medicine is necessary for effectively treating this illness. To achieve this, it is essential to understand the mechanism of PDAC carcinogenesis. Targeted therapies are a promising strategy to improve patient outcomes. Aberrant activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a crucial role in PC pathogenesis, from initiation to progression. This review provides a comprehensive overview of the current state of knowledge regarding the PI3K pathway in PDAC, summarizes clinical data on PI3K pathway inhibition in PDAC, and explores potential effective combinations that are a promising direction requiring further investigation in PDAC.
Collapse
Affiliation(s)
- Al Jarroudi Ouissam
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Chibani Hind
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Brahmi Sami Aziz
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Afqir Said
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
10
|
Calistri S, Ottaviano G, Ubaldini A. Radiopharmaceuticals for Pancreatic Cancer: A Review of Current Approaches and Future Directions. Pharmaceuticals (Basel) 2024; 17:1314. [PMID: 39458955 PMCID: PMC11510189 DOI: 10.3390/ph17101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The poor prognosis of pancreatic cancer requires novel treatment options. This review examines the evolution of radiopharmaceuticals in the treatment of pancreatic cancer. Established strategies such as peptide receptor radionuclide therapy (PRRT) offer targeted and effective treatment, compared to conventional treatments. However, there are currently no radiopharmaceuticals approved for the treatment of pancreatic cancer in Europe, which requires further research and novel approaches. New radiopharmaceuticals including radiolabeled antibodies, peptides, and nanotechnological approaches are promising in addressing the challenges of pancreatic cancer therapy. These new agents may offer more specific targeting and potentially improve efficacy compared to traditional therapies. Further research is needed to optimize efficacy, address limitations, and explore the overall potential of these new strategies in the treatment of this aggressive and harmful pathology.
Collapse
Affiliation(s)
- Sara Calistri
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| | - Giuseppe Ottaviano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| | - Alberto Ubaldini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy; (G.O.); (A.U.)
| |
Collapse
|
11
|
Basar E, Mead H, Shum B, Rauter I, Ay C, Skaletz-Rorowski A, Brockmeyer NH. Biological Barriers for Drug Delivery and Development of Innovative Therapeutic Approaches in HIV, Pancreatic Cancer, and Hemophilia A/B. Pharmaceutics 2024; 16:1207. [PMID: 39339243 PMCID: PMC11435036 DOI: 10.3390/pharmaceutics16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Biological barriers remain a major obstacle for the development of innovative therapeutics. Depending on a disease's pathophysiology, the involved tissues, cell populations, and cellular components, drugs often have to overcome several biological barriers to reach their target cells and become effective in a specific cellular compartment. Human biological barriers are incredibly diverse and include multiple layers of protection and obstruction. Importantly, biological barriers are not only found at the organ/tissue level, but also include cellular structures such as the outer plasma membrane, the endolysosomal machinery, and the nuclear envelope. Nowadays, clinicians have access to a broad arsenal of therapeutics ranging from chemically synthesized small molecules, biologicals including recombinant proteins (such as monoclonal antibodies and hormones), nucleic-acid-based therapeutics, and antibody-drug conjugates (ADCs), to modern viral-vector-mediated gene therapy. In the past decade, the therapeutic landscape has been changing rapidly, giving rise to a multitude of innovative therapy approaches. In 2018, the FDA approval of patisiran paved the way for small interfering RNAs (siRNAs) to become a novel class of nucleic-acid-based therapeutics, which-upon effective drug delivery to their target cells-allow to elegantly regulate the post-transcriptional gene expression. The recent approvals of valoctocogene roxaparvovec and etranacogene dezaparvovec for the treatment of hemophilia A and B, respectively, mark the breakthrough of viral-vector-based gene therapy as a new tool to cure disease. A multitude of highly innovative medicines and drug delivery methods including mRNA-based cancer vaccines and exosome-targeted therapy is on the verge of entering the market and changing the treatment landscape for a broad range of conditions. In this review, we provide insights into three different disease entities, which are clinically, scientifically, and socioeconomically impactful and have given rise to many technological advancements: acquired immunodeficiency syndrome (AIDS) as a predominant infectious disease, pancreatic carcinoma as one of the most lethal solid cancers, and hemophilia A/B as a hereditary genetic disorder. Our primary objective is to highlight the overarching principles of biological barriers that can be identified across different disease areas. Our second goal is to showcase which therapeutic approaches designed to cross disease-specific biological barriers have been promising in effectively treating disease. In this context, we will exemplify how the right selection of the drug category and delivery vehicle, mode of administration, and therapeutic target(s) can help overcome various biological barriers to prevent, treat, and cure disease.
Collapse
Affiliation(s)
- Emre Basar
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | | | - Bennett Shum
- GenePath LLC, Sydney, NSW 2067, Australia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | | | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Adriane Skaletz-Rorowski
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| | - Norbert H. Brockmeyer
- WIR—Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-University Bochum, 44787 Bochum, Germany;
| |
Collapse
|
12
|
Jiang H, Xue Z, Zhao L, Wang B, Wang C, Song H, Sun J. SPDEF drives pancreatic adenocarcinoma progression via transcriptional upregulation of S100A16 and activation of the PI3K/AKT signaling pathway. BIOMOLECULES & BIOMEDICINE 2024; 24:1231-1243. [PMID: 38520747 PMCID: PMC11379002 DOI: 10.17305/bb.2024.10346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a notably aggressive malignancy with limited treatment options and an unfavorable prognosis for patients. We aimed to investigate molecular mechanisms by which Sam's pointed domain-containing ETS transcription factor (SPDEF) exerts effects on PAAD progression. We analyzed differentially expressed genes (DEGs) and their integration with ETS family members using the The Cancer Genome Atlas (TCGA) database, hence identifying SPDEF as a core gene in PAAD. Kaplan-Meier survival analysis confirmed SPDEF's prognostic potential. In vitro experiments validated the association with cell proliferation and apoptosis, affecting pancreatic cancer cell dynamics. We detected increased SPDEF expression in PAAD tumor samples. Our in vitro studies revealed that SPDEF regulates mRNA and protein expression levels, and significantly affects cell proliferation. Moreover, SPDEF was associated with reduced apoptosis and enhanced cell migration and invasion. In-depth analysis of SPDEF-targeted genes revealed four crucial genes for advanced prognostic model, among which S100A16 was significantly correlated with SPDEF. Mechanistic analysis showed that SPDEF enhances the transcription of S100A16, which in turn enhances PAAD cell migration, proliferation, and invasion by activating the PI3K/AKT signaling pathway. Our study revealed the critical role of SPDEF in promoting PAAD by upregulating S100A16 transcription and stimulating the PI3K/AKT signaling pathway. This knowledge deepened our understanding of pancreatic cancer's molecular progression and unveiled potential therapeutic strategies targeting SPDEF-driven pathways.
Collapse
Affiliation(s)
- Hang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhiqian Xue
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Liping Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Boyuan Wang
- Shanghai Qibao Dwight High School, Shanghai, China
| | - Chenfei Wang
- Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haihan Song
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Immunology, DICAT Biomedical Computation Centre, Vancouver, BC, Canada
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jianjun Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
13
|
Swain S, Narayan RK, Mishra PR. Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis. Front Cell Dev Biol 2024; 12:1461278. [PMID: 39239563 PMCID: PMC11374643 DOI: 10.3389/fcell.2024.1461278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Pancreatic cancer continues to be a deadly disease because of its delayed diagnosis and aggressive tumor biology. Oncogenes and risk factors are being reported to influence the signaling pathways involved in pancreatic embryogenesis leading to pancreatic cancer genesis. Although studies using rodent models have yielded insightful information, the scarcity of human pancreatic tissue has made it difficult to comprehend how the human pancreas develops. Transcription factors like IPF1/PDX1, HLXB9, PBX1, MEIS, Islet-1, and signaling pathways, including Hedgehog, TGF-β, and Notch, are directing pancreatic organogenesis. Any derangements in the above pathways may lead to pancreatic cancer. TP53: and CDKN2A are tumor suppressor genes, and the mutations in TP53 and somatic loss of CDKN2A are the drivers of pancreatic cancer. This review clarifies the complex signaling mechanism involved in pancreatic cancer, the same signaling pathways in pancreas development, the current therapeutic approach targeting signaling molecules, and the mechanism of action of risk factors in promoting pancreatic cancer.
Collapse
Affiliation(s)
- Sashikanta Swain
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Ravi Kant Narayan
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar, India
| | | |
Collapse
|
14
|
Mohite P, Lokwani DK, Sakle NS. Exploring the therapeutic potential of SGLT2 inhibitors in cancer treatment: integrating in silico and in vitro investigations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6107-6119. [PMID: 38416196 DOI: 10.1007/s00210-024-03021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
The present study aimed to investigate the anti-cancer mechanism of canagliflozin (CANA) and dapagliflozin (DAPA), sodium-glucose co-transporter-2 (SGLT2) inhibitors, using in silico and in vitro approaches. Network pharmacology was employed to predict the targets of the inhibitors and GO gene enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation conducted to explore the interacting pathways. Molecular docking and molecular dynamic (MD) simulation studies were performed to confirm the important targets and assess conformational stability. In vitro cytotoxicity assays, MIA-PaCa-2 and DU-145 cell lines CANA and DAPA was performed. Protein-protein interaction (PPI) network analysis indicated that CANA and DAPA exert anticancer effects through MAPK, mTOR, EGFR-KRAS-BRAF, FGFR, and PI3KA pathways. KEGG analysis revealed that these inhibitors could be used in the treatment of various cancers, including breast, prostate, pancreatic, chronic myeloid leukemia, thyroid, small cell lung, gastric, and bladder cancer. Docking results showed highest affinity for MAPK1 for CANA (- 9.60 kcal/mol) and DAPA (- 9.58 kcal/mol). MD simulation results showed that RMSD values for the MAPK1-compound exhibit remarkable stability over a timeframe of 100 ns. In cytotoxicity assays using MIA-PaCa-2 and DU-145 cell lines, CANA demonstrated a potential antiproliferative effect on the pancreatic cell line MIA-PaCa-2 after 48 h of treatment at a concentration of 100 µg/ml. Furthermore, CANA arrested the cell cycle in the sub-G1 phase and induced late apoptosis and necrosis in MIA-PaCa-2 cell line. Based on these findings, CANA shows promise as a potential novel treatment strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Prasanna Mohite
- Dr. Rafiq Zakaria Campus, Y. B. Chavan College of Pharmacy, Aurangabad, 431001, Maharashtra, India
| | - Deepak K Lokwani
- Department of Pharmaceutical Chemistry, Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Nikhil S Sakle
- Dr. Rafiq Zakaria Campus, Y. B. Chavan College of Pharmacy, Aurangabad, 431001, Maharashtra, India.
| |
Collapse
|
15
|
Ghabra S, Ramamoorthy B, Andrews SG, Sadowski SM. Surgical Management and Long-Term Evaluation of Pancreatic Neuroendocrine Tumors. Surg Clin North Am 2024; 104:891-908. [PMID: 38944507 PMCID: PMC11214659 DOI: 10.1016/j.suc.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Pancreatic neuroendocrine tumors (PNETs) arise from neuroendocrine cells and are a rare class of heterogenous tumors with increasing incidence. The diagnosis, staging, treatment, and prognosis of PNETs depend heavily on identifying the histologic features and biological mechanisms. Here, the authors provide an overview of the diagnostic workup (biomarkers and imaging), grade, and staging of PNETs. The authors also explore associated genetic mutations and molecular pathways and describe updated guidelines on surgical and systemic treatment modalities.
Collapse
Affiliation(s)
- Shadin Ghabra
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. https://twitter.com/ShadinGhabra_MD
| | - Bhavishya Ramamoorthy
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen G Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 CRC, Room 4-5932, Bethesda, MD 20892, USA. https://twitter.com/AndrewsStephenG
| | - Samira M Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 CRC, Room 4-5932, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
17
|
Vinothkanna A, Shi‐Liang X, Karthick Rajan D, Prathiviraj R, Sekar S, Zhang S, Wang B, Liu Z, Jia A. Feasible mechanisms and therapeutic potential of food probiotics to mitigate diabetes‐associated cancers: A comprehensive review and in silico validation. FOOD FRONTIERS 2024; 5:1476-1511. [DOI: 10.1002/fft2.406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractPeople with diabetes mellitus (DM) and hyperglycemia are linked with cancer risk. Diabetes and cancer have been corroborated by high morbidity and mortality rates. Studies revealed that elevated levels of insulin secretions trigger insulin‐like growth factor 1 (IGF‐1) production. Moreover, IGF‐1 is a key regulator involved in promoting cancer cell progression and is linked with DM. Cancer drug resistance and ototoxic effects can adversely affect the health and lifespan of an individual. However, naturally derived bioactive compounds are gaining attention for their nontoxic properties and specific behavior. Likewise, probiotics have also been regarded as safe and successful alternatives to treat DM‐linked cancers. The present review aims to highlight the therapeutic potential and feasible functions of probiotics to mitigate or inhibit DM‐associated cancers. Meanwhile, the intracellular signaling cascades involved in promoting DM‐linked cancer are enumerated for future prospective research. However, metabolomics interactions and protein–protein interactions are to be discussed for deeper insights into affirmative principles in diabetic‐linked cancers. Drug discovery and innovative preclinical evaluation need further adjuvant and immune‐enhancement therapies. Furthermore, the results of the in silico assessment could provide scientific excellence of IGF‐1 in diabetes and cancer. Overall, this review summarizes the mechanistic insights and therapeutic targets for diabetes‐associated cancer.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
- School of Life and Health Sciences Hainan University Haikou China
| | - Xiang Shi‐Liang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences Hainan University Haikou China
| | - Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences Central South University Changsha Hunan China
| | | | - Soundarapandian Sekar
- Department of Biotechnology Bharathidasan University Tiruchirappalli Tamil Nadu India
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences Central South University Changsha Hunan China
| | - Bo Wang
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
| | - Zhu Liu
- School of Life and Health Sciences Hainan University Haikou China
| | - Ai‐Qun Jia
- Hainan Affiliated Hospital of Hainan Medical University Hainan General Hospital Haikou China
| |
Collapse
|
18
|
Doi T, Takahashi S, Aoki D, Yonemori K, Hara H, Hasegawa K, Takehara K, Harano K, Yunokawa M, Nomura H, Shimoi T, Horie K, Ogasawara A, Okame S. A first-in-human phase I study of TAS-117, an allosteric AKT inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 2024; 93:605-616. [PMID: 38411735 PMCID: PMC11129975 DOI: 10.1007/s00280-023-04631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/08/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE TAS-117 is a highly potent and selective, oral, allosteric pan-AKT inhibitor under development for advanced/metastatic solid tumors. The safety, clinical pharmacology, pharmacogenomics and efficacy were investigated. METHODS This phase I, open-label, non-randomized, dose-escalating, first-in-human study enrolled patients with advanced/metastatic solid tumors and comprised three phases (dose escalation phase [DEP], regimen modification phase [RMP], and safety assessment phase [SAP]). The SAP dose and regimen were determined in the DEP and RMP. Once-daily and intermittent dosing (4 days on/3 days off, 21-day cycles) were investigated. The primary endpoints were dose-limiting toxicities (DLTs) in Cycle 1 of the DEP and RMP and incidences of adverse events (AEs) and adverse drug reactions (ADRs) in the SAP. Secondary endpoints included pharmacokinetics, pharmacodynamics, pharmacogenomics, and antitumor activity. RESULTS Of 66 enrolled patients, 65 received TAS-117 (DEP, n = 12; RMP, n = 10; SAP, n = 43). No DLTs were reported with 24-mg/day intermittent dosing, which was selected as a recommended dose in SAP. In the SAP, 98.5% of patients experienced both AEs and ADRs (grade ≥ 3, 67.7% and 60.0%, respectively). In the dose range tested (8 to 32 mg/day), TAS-117 pharmacokinetics were dose proportional, and pharmacodynamic analysis showed a reduction of phosphorylated PRAS40, a direct substrate of AKT. Four patients in the SAP had confirmed partial response. CONCLUSION Oral doses of TAS-117 once daily up to 16 mg/day and intermittent dosing of 24 mg/day were well tolerated. TAS-117 pharmacokinetics were dose proportional at the doses evaluated. Antitumor activity may occur through AKT inhibition. TRIAL REGISTRATION jRCT2080222728 (January 29, 2015).
Collapse
Affiliation(s)
- Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Japan.
| | - Shunji Takahashi
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Aoki
- Keio University School of Medicine, Tokyo, Japan
- Akasaka Sannou Medical Center, Tokyo, Japan
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | | | | | - Kosei Hasegawa
- Saitama Medical University International Medical Center, Hidaka, Japan
| | | | | | - Mayu Yunokawa
- Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Nomura
- Keio University School of Medicine, Tokyo, Japan
- Fujita Health University, Toyoake, Japan
| | | | - Koji Horie
- Saitama Cancer Center, Kita-Adachi, Japan
| | - Aiko Ogasawara
- Saitama Medical University International Medical Center, Hidaka, Japan
| | | |
Collapse
|
19
|
Sun X, Wang S, Wong CC. Mass spectrometry–based proteomics technology in pancreatic cancer research. JOURNAL OF PANCREATOLOGY 2024; 7:145-163. [DOI: 10.1097/jp9.0000000000000152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has become a significant health concern with increasing incidence and mortality rates over the past few decades. Researchers have turned their attention to cutting-edge mass spectrometry (MS) technology due to its high-throughput and accurate detection capacity, which plays a vital role in understanding the mechanisms and discovering biomarkers for pancreatic diseases. In this review, we comprehensively investigate various methodologies of quantitative and qualitative proteomics MS technologies, alongside bioinformatical platforms employed in pancreatic cancer research. The integration of these optimized approaches provides novel insights into the molecular mechanisms underlying tumorigenesis and disease progression, ultimately facilitating the discovery of potential diagnostic, prognostic biomarkers, and therapeutic targets. The robust MS-based strategy shows promise in paving the way for early diagnosis and personalized medicine for pancreatic cancer patients.
Collapse
Affiliation(s)
- Xue Sun
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing 100871, China
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Siyuan Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Catherine C.L. Wong
- First School of Clinical Medicine, Peking University Health Science Center, Peking University, Beijing 100871, China
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical Research Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- Tsinghua-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Cheng L, Li X, Dong W, Yang J, Li P, Qiang X, Yin J, Guo L. LAMC2 regulates the proliferation, invasion, and metastasis of gastric cancer via PI3K/Akt signaling pathway. J Cancer Res Clin Oncol 2024; 150:230. [PMID: 38703300 PMCID: PMC11069487 DOI: 10.1007/s00432-024-05720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/21/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES Gastric cancer (GC) is a prevalent malignant tumor widely distributed globally, exhibiting elevated incidence and fatality rates. The gene LAMC2 encodes the laminin subunit gamma-2 chain and is found specifically in the basement membrane of epithelial cells. Its expression is aberrant in multiple types of malignant tumors. This research elucidated a link between LAMC2 and the clinical characteristics of GC and investigated the potential involvement of LAMC2 in GC proliferation and advancement. MATERIALS AND METHODS LAMC2 expressions were detected in GC cell lines and normal gastric epithelial cell lines via qRT-PCR. Silencing and overexpression of the LAMC2 were conducted by lentiviral transfection. A xenograft mouse model was also developed for in vivo analysis. Cell functional assays were conducted to elucidate the involvement of LAMC2 in cell growth, migration, and penetration. Further, immunoblotting was conducted to investigate the impact of LAMC2 on the activation of signal pathways after lentiviral transfection. RESULTS In the findings, LAMC2 expression was markedly upregulated in GC cell lines as opposed to normal gastric epithelial cells. In vitro analysis showed that sh-LAMC2 substantially inhibited GC cell growth, migration, and invasion, while oe-LAMC2 displayed a contrasting effect. Xenograft tumor models demonstrated that oe-LAMC2 accelerated tumor growth via high expression of Ki-67. Immunoblotting analysis revealed a substantial decrease in various signaling pathway proteins, PI3K, p-Akt, and Vimentin levels upon LAMC2 knockdown, followed by increased E-cadherin expression. Conversely, its overexpression exhibited contrasting effects. Besides, epithelial-mesenchymal transition (EMT) was accelerated by LAMC2. CONCLUSION This study provides evidence indicating that LAMC2, by stimulating signaling pathways, facilitated EMT and stimulated the progression of GC cells in laboratory settings and mouse models. Research also explored that the abnormal LAMC2 expression acts as a biomarker for GC.
Collapse
Affiliation(s)
- Lulu Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaofei Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Wenhui Dong
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jing Yang
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Pengmei Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xihui Qiang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jiajun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
21
|
Zhou X, Chen W, Zhuang D, Xu G, Puyang Y, Rui H. Knockdown of SETD5 Inhibits Colorectal Cancer Cell Growth and Stemness by Regulating PI3K/AKT/mTOR Pathway. Biochem Genet 2024:10.1007/s10528-024-10766-w. [PMID: 38641699 DOI: 10.1007/s10528-024-10766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/28/2024] [Indexed: 04/21/2024]
Abstract
SET domain-containing 5 (SETD5), a member of protein lysine methyltransferase family, is expressed in multiple cancers, making it potential therapeutic targets. However, the role of SETD5 in colorectal cancer remains largely unknown. The expression of SETD5 in the 30 pairs colorectal cancer tissues samples and cell lines were determined by qRT-PCR. The functions of SETD5 was detected by knocked-down or overexpression in colorectal cancer cell lines SW480 and HCT116 cells. Cell proliferative activity, cell death, and stemness characteristics were assessed. BEZ235, a PI3K/AKT/mTOR pathway inhibitor, was used to perform rescue experiment to analyze whether SETD5 exerted its effects through activating PI3K/AKT/mTOR pathway. SETD5 was substantially upregulated in colorectal cancer, and correlated to metastasis and clinical stage of patients. Knockdown of SETD5 inhibited SW480 and HCT116 cell growth, as evidenced by the inhibition of cell viability and clone-forming. Moreover, Knockdown of SETD5 suppressed the capability of tumor sphere formation of SW480 and HCT116 cells, and reduced the expression of stemness-related proteins Nanog and Sox2. Further western blot analysis revealed that SETD5 knockdown inhibited the phosphorylation of proteins associated with the PI3K/AKT/mTOR pathway. In contrast, overexpression of SETD5 exerted the opposite effects. Mechanistically, by blocking PI3K/AKT/mTOR pathway with BEZ235, the effects of SETD5 overexpression on cell viability and Nanog and Sox2 protein expression were reversed. Our results substantiated that SETD5 functioned as an oncogene by promoting cell growth and stemness in colorectal cancer cells through activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaohua Zhou
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Wenqiang Chen
- Department of Medical Oncology, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Duanming Zhuang
- Department of Gastroenterology, Economic Development Zone, Nanjing Gaochun People's Hospital, No. 53, Maoshan, Gaochun, 211300, Jiangsu, China.
| | - Guangqi Xu
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Yongqiang Puyang
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| | - Hongqing Rui
- Department of General Surgery, Nanjing Gaochun People's Hospital, Gaochun, 211300, Jiangsu, China
| |
Collapse
|
22
|
Yang S, Yang X, Hou Z, Zhu L, Yao Z, Zhang Y, Chen Y, Teng J, Fang C, Chen S, Jia M, Liu Z, Kang S, Chen Y, Li G, Niu Y, Cai Q. Rationale for immune checkpoint inhibitors plus targeted therapy for advanced renal cell carcinoma. Heliyon 2024; 10:e29215. [PMID: 38623200 PMCID: PMC11016731 DOI: 10.1016/j.heliyon.2024.e29215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Renal cell carcinoma (RCC) is a frequent urological malignancy characterized by a high rate of metastasis and lethality. The treatment strategy for advanced RCC has moved through multiple iterations over the past three decades. Initially, cytokine treatment was the only systemic treatment option for patients with RCC. With the development of medicine, antiangiogenic agents targeting vascular endothelial growth factor and mammalian target of rapamycin and immunotherapy, immune checkpoint inhibitors (ICIs) have emerged and received several achievements in the therapeutics of advanced RCC. However, ICIs have still not brought completely satisfactory results due to drug resistance and undesirable side effects. For the past years, the interests form researchers have been attracted by the combination of ICIs and targeted therapy for advanced RCC and the angiogenesis and immunogenic tumor microenvironmental variations in RCC. Therefore, we emphasize the potential principle and the clinical progress of ICIs combined with targeted treatment of advanced RCC, and summarize the future direction.
Collapse
Affiliation(s)
- Siwei Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xianrui Yang
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zekai Hou
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Liang Zhu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhili Yao
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | | | - Yanzhuo Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jie Teng
- Affiliated Hospital of Hebei University, Baoding, China
| | - Cheng Fang
- Taihe County People's Hospital, Anhui, China
| | - Songmao Chen
- Department of Urology, Fujian Provincial Hospital, Fujian, China
- Provincial Clinical Medical College of Fujian Medical University, Fujian, China
| | - Mingfei Jia
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Zhifei Liu
- Department of Urology, Tangshan People's Hospital, Hebei, China
| | - Shaosan Kang
- Department of Urology, North China University of Science and Technology Affiliated Hospital, Hebei, China
| | - Yegang Chen
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiliang Cai
- Department of Urology, Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
23
|
Ma Y, Tang R, Huang P, Li D, Liao M, Gao S. Mitochondrial energy metabolism-related gene signature as a prognostic indicator for pancreatic adenocarcinoma. Front Pharmacol 2024; 15:1332042. [PMID: 38572434 PMCID: PMC10987750 DOI: 10.3389/fphar.2024.1332042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is a highly malignant gastrointestinal tumor and is associated with an unfavorable prognosis worldwide. Considering the effect of mitochondrial metabolism on the prognosis of pancreatic cancer has rarely been investigated, we aimed to establish prognostic gene markers associated with mitochondrial energy metabolism for the prediction of survival probability in patients with PAAD. Methods: Gene expression data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases, and the mitochondrial energy metabolism-related genes were obtained from the GeneCards database. Based on mitochondrial energy metabolism score (MMs), differentially expressed MMRGs were established for MMs-high and MMs-low groups using ssGSEA. After the univariate Cox and least absolute and selection operator (LASSO) analyses, a prognostic MMRG signature was used in the multivariate Cox proportional regression model. Survival and immune cell infiltration analyses were performed. In addition, a nomogram based on the risk model was used to predict the survival probability of patients with PAAD. Finally, the expression of key genes was verified using quantitative polymerase chain reaction and immunohistochemical staining. Intro cell experiments were performed to evaluated the proliferation and invasion of pancreatic cancer cells. Results: A prognostic signature was constructed consisting of two mitochondrial energy metabolism-related genes (MMP11, COL10A1). Calibration and receiver operating characteristic (ROC) curves verified the good predictability performance of the risk model for the survival rate of patients with PAAD. Finally, immune-related analysis explained the differences in immune status between the two subgroups based on the risk model. The high-risk score group showed higher estimate, immune, and stromal scores, expression of eight checkpoint genes, and infiltration of M0 macrophages, which might indicate a beneficial response to immunotherapy. The qPCR results confirmed high expression of MMP11 in pancreatic cancer cell lines, and IHC also verified high expression of MMP11 in clinical pancreatic ductal adenocarcinoma tissues. In vitro cell experiments also demonstrated the role of MMP11 in cell proliferation and invasion. Conclusion: Our study provides a novel two-prognostic gene signature-based on MMRGs-that accurately predicted the survival of patients with PAAD and could be used for mitochondrial energy metabolism-related therapies in the future.
Collapse
Affiliation(s)
- Yu Ma
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Ronghao Tang
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Peilin Huang
- School of Medicine, Southeast University, Nanjing, China
| | - Danhua Li
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Meijian Liao
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| | - Shoucui Gao
- Department of Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Vasileiadi S, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. A Current Synopsis of the Emerging Role of Extracellular Vesicles and Micro-RNAs in Pancreatic Cancer: A Forward-Looking Plan for Diagnosis and Treatment. Int J Mol Sci 2024; 25:3406. [PMID: 38542378 PMCID: PMC10969997 DOI: 10.3390/ijms25063406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 12/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 11527 Athens, Greece;
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sofia Vasileiadi
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
25
|
Li Y, Chen MX, Li HT, Cai XM, Chen B, Xie ZF. Comprehensive analysis based on the disulfidptosis-related genes identifies hub genes and immune infiltration for pancreatic adenocarcinoma. Open Med (Wars) 2024; 19:20240906. [PMID: 38463521 PMCID: PMC10921452 DOI: 10.1515/med-2024-0906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a prevalent and aggressive malignancy in the digestive tract, requiring accurate prediction and effective treatment strategies. Recently, the discovery of disulfidptosis, a novel form of programmed cell death characterized by abnormal disulfide accumulation, has sparked interest in its role in PAAD. In this study, we aimed to investigate the involvement of disulfidptosis-related genes (DRGs) in PAAD. Using publicly available databases, we conducted a comprehensive analysis exploring the complex relationships between DRGs and important aspects of PAAD, including gene expression, immune response, mutation, drug sensitivity, and functional enrichment. Notably, we observed significant heterogeneity among different disulfidptosis subclusters and identified specific differentially expressed genes in PAAD. Through machine learning techniques, we identified SLC7A11, S100A4, DIAPH3, PRDX1, and SLC7A7 as the most relevant hub genes. We further validated their significance in PAAD by considering their expression patterns, prognostic value, diagnostic potential, diagnostic model, and immune infiltration. This study presents exciting opportunities and challenges in unraveling the underlying mechanisms of PAAD prognosis. It also establishes a foundation for personalized cancer care and the development of innovative immunotherapeutic strategies. By shedding light on the role of DRGs, particularly hub genes, we enhance our understanding and management of PAAD.
Collapse
Affiliation(s)
- Yu Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Miao-Xuan Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hai-Tao Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-Ming Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bo Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ze-Feng Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
26
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
27
|
Xu Z, Nemati S. Long intergenic non-protein coding RNA 115 (Linc00115): A notable oncogene in human malignancies. Gene 2024; 897:148066. [PMID: 38070791 DOI: 10.1016/j.gene.2023.148066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Long noncoding RNAs (LncRNAs) are RNA transcripts ranging from 200 to 1000 nucleotides that have emerged as critical regulators of gene expression. Growing evidence highlights their involvement in tumor development. In particular, long intergenic non-protein coding RNA115 (Linc00115) has been identified as an oncogene across various human malignancies, with aberrant expression strongly linked to poor clinical outcomes in cancer patients. This review aims to delve into the expression patterns of Linc00115 and elucidate the underlying molecular mechanisms behind its oncogenic properties. Moreover, we discuss the potential utility of Linc00115 as a valuable diagnostic and prognostic biomarker in cancer.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No. 1 Hospital, Wuhan Hubei, 430022, China.
| | - Sara Nemati
- Department of Medical Sciences, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
28
|
Liu Y, Sun Q, Wei X. Strategies and techniques for preclinical therapeutic targeting of PI3K in oncology: where do we stand in 2024? Expert Opin Ther Targets 2024; 28:221-232. [PMID: 38646899 DOI: 10.1080/14728222.2024.2342522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION The PI3K/AKT/mTOR signaling pathway is an important signaling pathway in eukaryotic cells that is activated in a variety of cancers and is also associated with treatment resistance. This signaling pathway is an important target for anticancer therapy and holds great promise for research. At the same time PI3K inhibitors have a general problem that they have unavoidable toxic side effects. AREAS COVERED This review provides an explanation of the role of PI3K in the development and progression of cancer, including several important mutations, and a table listing the cancers caused by these mutations. We discuss the current landscape of PI3K inhibitors in preclinical and clinical trials, address the mechanisms of resistance to PI3K inhibition along with their associated toxic effects, and highlight significant advancements in preclinical research of this field. Furthermore, based on our study and comprehension of PI3K, we provide a recapitulation of the key lessons learned from the research process and propose potential measures for improvement that could prove valuable. EXPERT OPINION The PI3K pathway is a biological pathway of great potential value. However, the reduction of its toxic side effects and combination therapies need to be further investigated.
Collapse
Affiliation(s)
- Yanyan Liu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Qiu Sun
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
29
|
Gupta S, Tak H, Rathore K, Banavath HN, Tejavath KK. Caffeic acid, a dietary polyphenol, pre-sensitizes pancreatic ductal adenocarcinoma to chemotherapeutic drug. J Biomol Struct Dyn 2024:1-15. [PMID: 38385452 DOI: 10.1080/07391102.2024.2318481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Resistance to chemotherapeutics is an eminent cause that leads to search for options that help in diminution of pancreatic ductal adenocarcinoma (PDAC) by overcoming resistance issues. Caffeic acid (CFA), a polyphenol occurring in many dietary foods, is known to show antidiabetic and anticancer properties potential. To unveil the effect of CFA on PDAC, we carried out this research in PDAC cells, following which we checked the combination effect of CFA and chemotherapeutics and pre-sensitization effects of CFA. Multitudinous web-based approaches were applied for identifying CFA targets in PDAC and then getting their interconnections. Subsequently, we manifested CFA effects by in-vitro analysis showing IC50 concentrations of 37.37 and 15.06 µM on Panc-1 and Mia-PaCa-2, respectively. The combination index of CFA with different drugs was explored which showed the antagonistic effects of combination treatment leading to further investigation of the pre-sensitizing effects. CFA pre-sensitization reduced IC50 concentration of doxorubicin in both PDAC cell lines which also triggered ROS generation determined by 2',7'-dichlorofluorescin diacetate assay. The differential gene expression analysis after CFA treatment showed discrete genes affected in both cells, i.e. N-Cad and Cas9 in Panc-1 and Pi3K/AkT/mTOR along with p53 in Mia-PaCa-2. Collectively, this study investigated the role of CFA as PDAC therapeutics and explored the mechanism in mitigating resistance of PDAC by sensitizing to chemotherapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Harshita Tak
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Khushhal Rathore
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Hemanth Naick Banavath
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Rajasthan, Ajmer, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, Ajmer, India
| |
Collapse
|
30
|
Zeppa L, Aguzzi C, Morelli MB, Marinelli O, Giangrossi M, Luongo M, Amantini C, Santoni G, Nabissi M. Cannabigerol Induces Autophagic Cell Death by Inhibiting EGFR-RAS Pathways in Human Pancreatic Ductal Adenocarcinoma Cell Lines. Int J Mol Sci 2024; 25:2001. [PMID: 38396679 PMCID: PMC10888274 DOI: 10.3390/ijms25042001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most frequent infiltrating type of pancreatic cancer. The poor prognosis associated with this cancer is due to the absence of specific biomarkers, aggressiveness, and treatment resistance. PDAC is a deadly malignancy bearing distinct genetic alterations, the most common being those that result in cancer-causing versions of the KRAS gene. Cannabigerol (CBG) is a non-psychomimetic cannabinoid with anti-inflammatory properties. Regarding the anticancer effect of CBG, up to now, there is only limited evidence in human cancers. To fill this gap, we investigated the effects of CBG on the PDAC cell lines, PANC-1 and MIAPaCa-2. The effect of CBG activity on cell viability, cell death, and EGFR-RAS-associated signaling was investigated. Moreover, the potential synergistic effect of CBG in combination with gemcitabine (GEM) and paclitaxel (PTX) was investigated. MTT was applied to investigate the effect of CBG on PDAC cell line viabilities. Annexin-V and Acridine orange staining, followed by cytofluorimetric analysis and Western blotting, were used to evaluate CBG's effect on cell death. The modulation of EGFR-RAS-associated pathways was determined by Western blot analysis and a Milliplex multiplex assay. Moreover, by employing the MTT data and SynergyFinder Plus software analysis, the effect of the combination of CBG and chemotherapeutic drugs was determined.
Collapse
Affiliation(s)
- Laura Zeppa
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy; (L.Z.); (C.A.); (M.B.M.); (O.M.); (M.G.); (G.S.)
- Integrative Therapy Discovery Lab, University of Camerino, 62032 Camerino, MC, Italy
| | - Cristina Aguzzi
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy; (L.Z.); (C.A.); (M.B.M.); (O.M.); (M.G.); (G.S.)
- Integrative Therapy Discovery Lab, University of Camerino, 62032 Camerino, MC, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy; (L.Z.); (C.A.); (M.B.M.); (O.M.); (M.G.); (G.S.)
- Integrative Therapy Discovery Lab, University of Camerino, 62032 Camerino, MC, Italy
| | - Oliviero Marinelli
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy; (L.Z.); (C.A.); (M.B.M.); (O.M.); (M.G.); (G.S.)
- Integrative Therapy Discovery Lab, University of Camerino, 62032 Camerino, MC, Italy
| | - Martina Giangrossi
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy; (L.Z.); (C.A.); (M.B.M.); (O.M.); (M.G.); (G.S.)
| | - Margherita Luongo
- “Maria Guarino” Foundation—AMOR No Profit Association, 80078 Pozzuoli, NA, Italy
| | - Consuelo Amantini
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy;
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy; (L.Z.); (C.A.); (M.B.M.); (O.M.); (M.G.); (G.S.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy; (L.Z.); (C.A.); (M.B.M.); (O.M.); (M.G.); (G.S.)
- Integrative Therapy Discovery Lab, University of Camerino, 62032 Camerino, MC, Italy
| |
Collapse
|
31
|
Zheng R, Wang S, Wang J, Zhou M, Shi Q, Liu B. Neuromedin U regulates the anti-tumor activity of CD8 + T cells and glycolysis of tumor cells in the tumor microenvironment of pancreatic ductal adenocarcinoma in an NMUR1-dependent manner. Cancer Sci 2024; 115:334-346. [PMID: 38071753 PMCID: PMC10859610 DOI: 10.1111/cas.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 02/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a poor prognosis, which is lethal in approximately 90% of cases despite advanced standard therapies. A typical feature of PDAC is the immunosuppressive tumor microenvironment with multiple immunosuppressive factors including neurotransmitters. Recently, neuromedin U (NMU), a highly conserved neuropeptide with many physiological functions, has attracted attention for its roles in tumorigenesis and metastasis in several types of cancers. However, whether NMU affects PDAC progression remains unclear. In this study, using an orthotopic mouse model of PDAC in combination with bioinformatics analysis, we found that NMU was upregulated in tumor tissues from the patients with PDAC and positively correlated with a poor prognosis of the disease. Interestingly, knockout of the Nmu gene in mice enhanced the anti-tumor functions of tumor-infiltrating CD8+ T cells in an NMU receptor 1-dependent manner. Additionally, NMU promoted the glycolytic metabolism of mouse PDAC tumors. The activities of pyruvate kinase (PK) and lactate dehydrogenase (LDH), pivotal enzymes involved in the regulation of lactate production, were markedly reduced in tumor tissues from NMU-knockout mice. In vitro the presence of LDHA inhibitor can reduce the production of lactic acid stimulated by NMU, which can increase the anti-tumor activity of CD8+ T cells. Moreover, treatment of the pancreatic cancer cells with a phosphoinositide 3-kinase (PI3K) inhibitor diminished NMU-induced lactate production and the activities of PK and LDH, suggesting that NMU might regulate glycolysis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
- Department of Physiology, School of Basic Medical ScienceShenyang Medical CollegeShenyangChina
| | - Si Wang
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Jia Wang
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Mengnan Zhou
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Qi Shi
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| | - Beixing Liu
- Department of Pathogenic Microbiology, School of Basic Medical ScienceChina Medical UniversityShenyangChina
| |
Collapse
|
32
|
Xie P, Tan SY, Li HF, Tang HD, Zhou JH. Transcriptome data-based status of PI3K/AKT/mTOR pathway indicates heterogeneity and immune modulation in patients with pancreatic ductal adenocarcinoma. J Gene Med 2024; 26:e3570. [PMID: 37482968 DOI: 10.1002/jgm.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with limited treatment options. The PI3K/AKT/mTOR pathway is commonly activated in PDAC and plays a critical role in its progression. METHODS AND RESULTS In this study, the effect of taselisib (a selective PI3K inhibitor) on PDAC cell proliferation was investigated, and a significant decrease in viability was observed with increasing concentrations of taselisib. Differential analysis on samples from the Genotype-Tissue Expression and The Cancer Genome Atlas databases revealed 24 dysregulated PI3K/AKT/mTOR pathway-related genes (PRGs). Unsupervised clustering-based analysis of transcriptome cohorts revealed two clusters with high consistency between RNA-seq and microarray cohorts. Cluster B had higher enrichment of immune cells, particularly CD8+ T cells, and lower levels of immunosuppressive Treg cells. Moreover, we investigated the relationship between drug sensitivity and different clusters and found that cluster A had a better response to PI3K/AKT/mTOR pathway-related inhibitors and chemotherapy. Finally, cluster A exhibited significant activation of PI3K/AKT/mTOR and related oncogenic pathways, contributing to poor prognosis. The study also developed a risk score based on the expression profiles of PRGs and machine learning, which showed a significant increase in overall survival time among patients in the low-risk group. Importantly, the PI3K/AKT/mTOR pathway could be used to better predict individual risk scores, as evidenced by stratified survival analysis. CONCLUSIONS These findings suggest that targeting the PI3K/AKT/mTOR pathway may have therapeutic potential in PDAC, and distinct pathway states, immune modulation and tumor microenvironments have prognostic value.
Collapse
Affiliation(s)
- Peng Xie
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| | - Si-Yuan Tan
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| | - Hai-Feng Li
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| | - Hao-Dong Tang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| | - Jia-Hua Zhou
- Department of Surgery, School of Medicine, Southeast University, Nanjing, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, China
| |
Collapse
|
33
|
Wang X, Yao L, Li Z, Zhang J, Ruan M, Mulati Y, Gan Y, Zhang Q. ZNF471 Interacts with BANP to Reduce Tumour Malignancy by Inactivating PI3K/AKT/mTOR Signalling but is Frequently Silenced by Aberrant Promoter Methylation in Renal Cell Carcinoma. Int J Biol Sci 2024; 20:643-663. [PMID: 38169650 PMCID: PMC10758100 DOI: 10.7150/ijbs.89785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Background: Renal cell carcinoma (RCC) is one of the most common malignant tumours of the urinary system. However, the aetiology and pathogenesis of RCC remain unclear. The C2H2 zinc finger protein (ZNF) family is the largest transcriptional regulatory factor family found in mammals, and Krüppel-associated box domain-containing zinc finger proteins (KRAB-ZFPs) constitute the largest subfamily of the C2H2 zinc finger protein family and play an important role in the occurrence and development of tumours. The aim of this study was to explore the role of abnormal methylation of ZNF471 in the development of renal carcinoma. Methods: In this study, we first used the TCGA and EWAS Data Hub databases to analyse the expression and methylation levels of ZNF471 in renal carcinoma tissues and adjacent normal tissues. Second, we collected samples of renal cancer and adjacent normal tissues at Peking University First Hospital to investigate the expression and methylation level of ZNF471 in renal cancer tissues and the relationships between these levels and the clinicopathological features and prognosis of patients with renal cancer. Next, we investigated the effects of ZNF471 on the proliferation, metastasis, cell cycle progression, and apoptosis of renal cell carcinoma cells by cell biology experiments. Finally, we elucidated the underlying molecular mechanisms of ZNF471 in renal cell carcinoma by transcriptome sequencing, bioinformatics analysis and molecular biology experiments. Results: The expression of ZNF471 in renal carcinoma tissues and cell lines was significantly lower than that in adjacent normal tissues and cell lines due to abnormal promoter CpG methylation. Furthermore, the expression of ZNF471 in renal carcinoma tissues was negatively correlated with tumour stage and grade in patients with renal carcinoma. The results of the cell biology experiments showed that ZNF471 could significantly inhibit the proliferation, migration and cell cycle progression of renal cell carcinoma cells and promote apoptosis in these cells. In addition, ZNF471 could interact with BANP and suppress the malignant phenotype of RCC by inactivating the PI3K/AKT/mTOR signalling pathway. Conclusions: As an important tumour suppressor, ZNF471 can interact with BANP in renal cancer cells and inhibit the activation of the PI3K/AKT/mTOR signalling pathway, thereby inhibiting the occurrence and development of renal cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Zheng Li
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Jiaen Zhang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Mingjian Ruan
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Yelin Mulati
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Ying Gan
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital; Institute of Urology, Peking University; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China
- Peking University Binhai Hospital, Tianjin 300450, China
| |
Collapse
|
34
|
van der Veen L, Schmitt M, Deken MA, Lahn M. Non-Clinical Toxicology Evaluation of the Novel Non-ATP Competitive Oral PI3 Kinase Delta Inhibitor Roginolisib. Int J Toxicol 2023; 42:515-534. [PMID: 37667445 PMCID: PMC10629260 DOI: 10.1177/10915818231200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Roginolisib (IOA-244) is a novel, non-ATP competitive phosphoinositide-3-kinase (PI3K) delta inhibitor that regulates Akt/mTOR signaling. Roginolisib was administered once daily to rats and dogs in dose-range finding (DRF) and 4-week GLP toxicology studies. Free plasma levels of roginolisib exceeded the cellular target engagement IC90 for PI3Kδ for ≥12 hours at doses of 5 mg/kg, the IC90 for PI3Kβ for ≥2 hours at doses ≥15 mg/kg, and the IC50 for PI3Kα for ≥2 hours at dose levels ≥45 mg/kg. Toxicity in rats occurred at doses ≥100 mg/kg. In dogs, we observed dose-dependent skin and gastrointestinal toxicity and doses ≥30 mg/kg had a greater incidence of mortality. Lymphoid tissue toxicity occurred in both species. Toxicities in dogs observed at the ≥15 mg/kg dose, affecting the digestive mucosa, liver, and skin, cleared after treatment cessation. Doses ≤75 mg/kg were tolerated in rats and the no-observed-adverse-effect-level (NOAEL) in rats was 15 mg/kg. Due to mainly epithelial lesions of the skin at 5 mg/kg and necrotizing damage of the intestinal epithelia at ≥15 mg/kg, no NOAEL was determined in dogs. However, the adverse effects observed in dogs at 5 mg/kg were considered monitorable and reversible in patients with advanced malignancies. Furthermore, the PK profile subsequently proved to be a decisive factor for achieving selective PI3Kδ inhibition without the toxicities observed in dogs. As the result of the unique PK profile of roginolisib, patients were able to take daily roginolisib without dose modification and showed pharmacodynamic PI3Kδ inhibition over several months without gastrointestinal or dermatologic toxicities.
Collapse
Affiliation(s)
| | - Michael Schmitt
- Chemical and Preclinical Safety Merck KGaA, Merck Healthcare KGaA, Darmstadt, Germany
| | - Marcel A. Deken
- Oncology Department, iOnctura BV, Amsterdam, The Netherlands
| | - Michael Lahn
- Oncology Department, iOnctura SA, Geneva, Switzerland
| |
Collapse
|
35
|
Ingle K, LaComb JF, Graves LM, Baines AT, Bialkowska AB. AUM302, a novel triple kinase PIM/PI3K/mTOR inhibitor, is a potent in vitro pancreatic cancer growth inhibitor. PLoS One 2023; 18:e0294065. [PMID: 37943821 PMCID: PMC10635512 DOI: 10.1371/journal.pone.0294065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer deaths, with pancreatic ductal adenocarcinoma (PDAC) being the most common subtype. Advanced stage diagnosis of PDAC is common, causing limited treatment opportunities. Gemcitabine is a frequently used chemotherapeutic agent which can be used as a monotherapy or in combination. However, tumors often develop resistance to gemcitabine. Previous studies show that the proto-oncogene PIM kinases (PIM1 and PIM3) are upregulated in PDAC compared to matched normal tissue and are related to chemoresistance and PDAC cell growth. The PIM kinases are also involved in the PI3K/AKT/mTOR pathway to promote cell survival. In this study, we evaluate the effect of the novel multikinase PIM/PI3K/mTOR inhibitor, AUM302, and commercially available PIM inhibitor, TP-3654. Using five human PDAC cell lines, we found AUM302 to be a potent inhibitor of cell proliferation, cell viability, cell cycle progression, and phosphoprotein expression, while TP-3654 was less effective. Significantly, AUM302 had a strong impact on the viability of gemcitabine-resistant PDAC cells. Taken together, these results demonstrate that AUM302 exhibits antitumor activity in human PDAC cells and thus has the potential to be an effective drug for PDAC therapy.
Collapse
Affiliation(s)
- Komala Ingle
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| | - Lee M. Graves
- Department of Pharmacology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Antonio T. Baines
- Department of Pharmacology, School of Medicine, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biological & Biomedical Sciences, College of Health & Sciences, North Carolina Central University, Durham, North Carolina, United States of America
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
36
|
Jin H, Liu X, Liu HX. Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188970. [PMID: 37657682 DOI: 10.1016/j.bbcan.2023.188970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Studies examining the regulatory roles and clinical applications of monosaccharides other than glucose in cancer have been neglected. Mannose, a common type of monosaccharide found in human body fluids and tissues, primarily functions in protein glycosylation rather than carbohydrate metabolism. Recent research has demonstrated direct anticancer effects of mannose in vitro and in vivo. Simply supplementing cell culture medium or drinking water with mannose achieved these effects. Moreover, mannose enhances the effectiveness of current cancer treatments including chemotherapy, radiotherapy, targeted therapy, and immune therapy. Besides the advancements in basic research on the anticancer effects of mannose, recent studies have reported its application as a biomarker for cancer or in the delivery of anticancer drugs using mannose-modified drug delivery systems. This review discusses the progress made in understanding the regulatory roles of mannose in cancer progression, the mechanisms underlying its anticancer effects, and its current application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China; Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
37
|
Li O, Li L, Sheng Y, Ke K, Wu J, Mou Y, Liu M, Jin W. Biological characteristics of pancreatic ductal adenocarcinoma: Initiation to malignancy, intracellular to extracellular. Cancer Lett 2023; 574:216391. [PMID: 37714257 DOI: 10.1016/j.canlet.2023.216391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly life-threatening tumour with a low early-detection rate, rapid progression and a tendency to develop resistance to chemotherapy. Therefore, understanding the regulatory mechanisms underlying the initiation, development and metastasis of pancreatic cancer is necessary for enhancing therapeutic effectiveness. In this review, we summarised single-gene mutations (including KRAS, CDKN2A, TP53, SMAD4 and some other less prevalent mutations), epigenetic changes (including DNA methylation, histone modifications and RNA interference) and large chromosome alterations (such as copy number variations, chromosome rearrangements and chromothripsis) associated with PDAC. In addition, we discussed variations in signalling pathways that act as intermediate oncogenic factors in PDAC, including PI3K/AKT, MAPK/ERK, Hippo and TGF-β signalling pathways. The focus of this review was to investigate alterations in the microenvironment of PDAC, particularly the role of immunosuppressive cells, cancer-associated fibroblasts, lymphocytes, other para-cancerous cells and tumour extracellular matrix in tumour progression. Peripheral axons innervating the pancreas have been reported to play a crucial role in the development of cancer. In addition, tumour cells can influence the behaviour of neighbouring non-tumour cells by secreting certain factors, both locally and at a distance. In this review, we elucidated the alterations in intracellular molecules and the extracellular environment that occur during the progression of PDAC. Altogether, this review may enhance the understanding of the biological characteristics of PDAC and guide the development of more precise treatment strategies.
Collapse
Affiliation(s)
- Ou Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunru Sheng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianzhang Wu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center, China; National Clinical Research Center for Cancer, China; Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
38
|
Huang C, Azizi P, Vazirzadeh M, Aghaei-Zarch SM, Aghaei-Zarch F, Ghanavi J, Farnia P. Non-coding RNAs/DNMT3B axis in human cancers: from pathogenesis to clinical significance. J Transl Med 2023; 21:621. [PMID: 37705098 PMCID: PMC10500757 DOI: 10.1186/s12967-023-04510-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer is a complex disease with many contributing factors, and researchers have gained extensive knowledge that has helped them understand the diverse and varied nature of cancer. The altered patterns of DNA methylation found in numerous types of cancer imply that they may play a part in the disease's progression. The human cancer condition involves dysregulation of the DNA methyltransferase 3 beta (DNMT3B) gene, a prominent de novo DNA methyltransferase, and its abnormal behavior serves as an indicator for tumor prognosis and staging. The expression of non-coding RNAs (ncRNAs), which include microRNAs (miRNA), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), is critical in controlling targeted gene expression and protein translation and their dysregulation correlates with the onset of tumors. NcRNAs dysregulation of is a critical factor that influences the modulation of several cellular characteristics in cancerous cells. These characteristics include but are not limited to, drug responsiveness, angiogenesis, metastasis, apoptosis, proliferation, and properties of tumor stem cell. The reciprocal regulation of ncRNAs and DNMT3B can act in synergy to influence the destiny of tumor cells. Thus, a critical avenue for advancing cancer prevention and treatment is an inquiry into the interplay between DNMT3B and ncRNAs. In this review, we present a comprehensive overview of the ncRNAs/DNMT3B axis in cancer pathogenesis. This brings about valuable insights into the intricate mechanisms of tumorigenesis and provides a foundation for developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Paniz Azizi
- Department of Psychological and Brain Science, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Masoud Vazirzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Jalaledin Ghanavi
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Du Y, Hou S, Chen Z, Li W, Li X, Zhou W. Comprehensive Analysis Identifies PKP3 Overexpression in Pancreatic Cancer Related to Unfavorable Prognosis. Biomedicines 2023; 11:2472. [PMID: 37760912 PMCID: PMC10526039 DOI: 10.3390/biomedicines11092472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plakophilin 3 (PKP3) affects cell signal transduction and cell adhesion and performs a crucial function in tumorigenesis. The current investigation evaluated the predictive significance and underlying processes of PKP3 within pancreatic cancer (PC) tissues. The assessment of differences in PKP3 expression was conducted through an analysis of RNA-seq data acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Additionally, clinical samples were collected to validate the findings. The predictive significance of PKP3 was investigated by analyzing survival data derived from TCGA and clinical specimens. PKP3's biological function was assessed via phenotypic experiments after the suppression of PKP3 expression within PC cells. Functional enrichment analysis, encompassing KEGG, GO, and GSEA, was employed to assess the underlying mechanism of PKP3. Immune infiltration analysis was conducted in the present investigation to determine the association between PKP3 and tumor-infiltrating immune cells (TICs). In PC tissues, PKP3 expression was abnormally upregulated and correlated with a negative prognosis in individuals with PC. PKP3 can promote the progression, migration, and invasive capacity of PC cells and is relevant to the regulation of the PI3K-Akt and MAPK signaling pathways. Immune infiltration analysis demonstrated that PKP3 impeded CD8+ T-cell infiltration and immune cytokine expression within the tumor microenvironment. The PKP3 protein was identified as a prospective independent predictive indicator and represents a viable approach for immunotherapy in the context of PC. PKP3 may impact prognosis by broadly inhibiting immune cell infiltration and promoting the activation of tumor-associated signaling pathways.
Collapse
Affiliation(s)
- Yan Du
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Shuang Hou
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Zhou Chen
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
| | - Xin Li
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
40
|
Wu B, Lan X, Chen X, Wu Q, Yang Y, Wang Y. Researching the molecular mechanisms of Taohong Siwu Decoction in the treatment of varicocele-associated male infertility using network pharmacology and molecular docking: A review. Medicine (Baltimore) 2023; 102:e34476. [PMID: 37543801 PMCID: PMC10402989 DOI: 10.1097/md.0000000000034476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 08/07/2023] Open
Abstract
Taohong Siwu Decoction (THSWD) was widely used for the treatment of varicocele-associated male infertility. However, the pharmacological mechanism of action is not completely clear. Therefore, network pharmacology and molecular docking were performed to explore potential mechanism of THSWD in the treatment of varicocele-associated male infertility. The Traditional Chinese Medicine Systems Pharmacology (TCMSP), Swiss Target Prediction, and GeneCards were used to retrieve candidate compounds, action targets, and disease-related targets. The construction of the protein-protein interaction (PPI) network and the screening of core genes were completed by the STRING and Cytoscape 3.9.1, respectively. The DAVID was used to obtain results of gene ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The Mcule analysis platform was used to perform molecular docking. There were a total of 53 candidate compounds and 782 relevant targets in THSWD. There were 45 common targets between THSWD, varicocele, and male infertility, and 23 core genes were found in the PPI network. Biological processes involved response to hypoxia, regulation of blood pressure, cellular response to hypoxia, and regulation of the nitric oxide biosynthetic process. Furthermore, the KEGG pathway enrichment analysis showed that the common targets mainly regulated the disease of varicocele-associated male infertility through the HIF-1 signaling pathway, PI3K-Akt signaling pathway, Relaxin signaling pathway, and TNF signaling pathway. Finally, the molecular docking showed that luteolin, quercetin, and kaempferol had good intercalation with major targets. As predicted by network pharmacology, THSWD regulated varicocele-associated male infertility through multiple compounds and targets, and its mechanism was closely related to inflammatory response, reactive oxygen species damage, and function of blood vessels.
Collapse
Affiliation(s)
- Bo Wu
- Department of Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaohong Lan
- Department of Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuqing Chen
- Department of Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qinyan Wu
- Department of Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yang Yang
- Department of Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuekun Wang
- Department of Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
41
|
Dobre M, Poenaru RC, Niculae AM, Vladut C, Herlea V, Milanesi E, Hinescu ME. Increased Levels of miR-15b-5p and miR-20b-5p in Pancreatic Ductal Adenocarcinoma with Hepatic Metastases. Genes (Basel) 2023; 14:1577. [PMID: 37628628 PMCID: PMC10454474 DOI: 10.3390/genes14081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer. The symptoms appear in advanced stages, and diagnostic and prognostic tests for the early detection of PDAC and disease evolution are not available. The dysregulation of microRNAs (miRNAs) has been associated with cancer development and progression, and some miRNAs have been reported to promote specific metastasis. In this study we aimed to identify the miRNAs dysregulated in PDAC tumoral tissues and a subset of miRNAs associated with tumoral characteristics, mainly metastasis presence and site. For this, the expression of 84 miRNAs was evaluated by qPCR in 30 tumoral tissues and 16 samples of non-tumoral pancreatic tissues. The comparison revealed 32 dysregulated miRNAs (19 upregulated and 13 downregulated) in the PDAC group. Reactome pathway over-representation analysis revealed that these miRNAs are involved in several biological pathways, including "ESR-mediated signaling", "PIP3 activates AKT signaling", and "Regulation of PTEN", among others. Moreover, our study identified an upregulation of miR-15b-5p and miR-20b-5p in the tumoral tissues of patients with hepatic metastasis, outlining these miRNAs as potential markers for hepatic metastasis. No significant difference in miRNA expression was observed in relation to anatomic location, lymphovascular invasion, lung metastasis, and the presence of diabetes.
Collapse
Affiliation(s)
- Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
| | - Radu Cristian Poenaru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| | - Andrei Marian Niculae
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| | - Catalina Vladut
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
- Department of Gastroenterology, “Prof. Dr. Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania
| | - Vlad Herlea
- Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (M.D.); (A.M.N.); (M.E.H.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (R.C.P.); (C.V.)
| |
Collapse
|
42
|
Dżaman K, Czerwaty K, Reichert TE, Szczepański MJ, Ludwig N. Expression and Regulatory Mechanisms of MicroRNA in Cholesteatoma: A Systematic Review. Int J Mol Sci 2023; 24:12277. [PMID: 37569652 PMCID: PMC10418341 DOI: 10.3390/ijms241512277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Cholesteatoma is a temporal bone disease characterized by dysfunctions of keratinocytes. MicroRNAs (miRNAs) are evolutionary conserved noncoding RNAs that regulate mRNA expression. They can be packaged into exosomes and transported to target cells that can be used in the future therapy of cholesteatoma. This study aimed to collect knowledge on the role of miRNAs and exosomal miRNAs in cholesteatoma and was conducted according to the PRISMA guidelines for systematic reviews. Four databases were screened: Pubmed/MEDLINE, Web of Science, Scopus, and the Cochrane Library. The last search was run on the 6th of June 2023. We included full-text original studies written in English, which examined miRNAs in cholesteatoma. The risk of bias was assessed using the Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool, modified for the needs of this review. We identified 118 records and included 18 articles. Analyses revealed the downregulation of exosomal miR-17 as well as miR-10a-5p, miR-125b, miR-142-5p, miR34a, miR-203a, and miR-152-5p and the overexpression of exosomal miR-106b-5p as well as miR-1297, miR-26a-5p, miR-199a, miR-508-3p, miR-21-3p, miR-584-5p, and miR-16-1-3p in cholesteatoma. The role of differentially expressed miRNAs in cholesteatoma, including cell proliferation, apoptosis, the cell cycle, differentiation, bone resorption, and the remodeling process, was confirmed, making them a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.D.); (K.C.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.D.); (K.C.)
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| | - Mirosław J. Szczepański
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.D.); (K.C.)
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| |
Collapse
|
43
|
Liu S, Liu P, Fei X, Zhu C, Hou J, Wang X, Pan Y. Analysis and validation of the potential of the MYO1E gene in pancreatic adenocarcinoma based on a bioinformatics approach. Oncol Lett 2023; 26:285. [PMID: 37274465 PMCID: PMC10236097 DOI: 10.3892/ol.2023.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/22/2023] [Indexed: 06/06/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common digestive cancer, and its prognosis is poor. Myosin 1E (MYO1E) is a class I myosin family member whose expression and function have not been reported in PAAD. In the present study, bioinformatics analysis was used to explore the expression levels of MYO1E in PAAD and its prognostic value, and the immunological role of MYO1E in PAAD was analyzed. The study revealed that a variety of malignancies have substantially increased MYO1E expression. Further investigation demonstrated that PAAD tissues exhibited greater levels of MYO1E mRNA and protein expression than normal tissues. High MYO1E expression is associated with poor prognosis in patients with PAAD. MYO1E expression was also associated with pathological stage in patients with PAAD. Functional enrichment analysis demonstrated that MYO1E was linked to multiple tumor-related mechanisms in PAAD. The pancreatic adenocarcinoma tumor microenvironment (TME) was analyzed and it was revealed that MYO1E expression was positively associated with tumor immune cell infiltration. In addition, MYO1E was closely associated with some tumor chemokines/receptors and immune checkpoints. In vitro experiments revealed that the suppression of MYO1E expression could inhibit pancreatic adenocarcinoma cell proliferation, invasion and migration. Through preliminary analysis, the present study evaluated the potential function of MYO1E in PAAD and its function in TME, and MYO1E may become a potential biomarker for PAAD.
Collapse
Affiliation(s)
- Songbai Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Peng Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Xiaobin Fei
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Changhao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Junyi Hou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Xing Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| | - Yaozhen Pan
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
- Department of Hepatobiliary Surgery, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, P.R. China
| |
Collapse
|
44
|
Xiang Y, Yang Y, Liu J, Yang X. Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma. Front Oncol 2023; 13:1219211. [PMID: 37404761 PMCID: PMC10315918 DOI: 10.3389/fonc.2023.1219211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that occurs in children and adolescents, and the PI3K/AKT pathway is overactivated in most OS patients. MicroRNAs (miRNAs) are highly conserved endogenous non-protein-coding RNAs that can regulate gene expression by repressing mRNA translation or degrading mRNA. MiRNAs are enriched in the PI3K/AKT pathway, and aberrant PI3K/AKT pathway activation is involved in the development of osteosarcoma. There is increasing evidence that miRNAs can regulate the biological functions of cells by regulating the PI3K/AKT pathway. MiRNA/PI3K/AKT axis can regulate the expression of osteosarcoma-related genes and then regulate cancer progression. MiRNA expression associated with PI3K/AKT pathway is also clearly associated with many clinical features. In addition, PI3K/AKT pathway-associated miRNAs are potential biomarkers for osteosarcoma diagnosis, treatment and prognostic assessment. This article reviews recent research advances on the role and clinical application of PI3K/AKT pathway and miRNA/PI3K/AKT axis in the development of osteosarcoma.
Collapse
|
45
|
Awale S, Baba H, Phan ND, Kim MJ, Maneenet J, Sawaki K, Kanda M, Okumura T, Fujii T, Okada T, Maruyama T, Okada T, Toyooka N. Targeting Pancreatic Cancer with Novel Plumbagin Derivatives: Design, Synthesis, Molecular Mechanism, In Vitro and In Vivo Evaluation. J Med Chem 2023. [PMID: 37257133 DOI: 10.1021/acs.jmedchem.3c00394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pancreatic tumors grow in an "austerity" tumor microenvironment characterized by nutrient deprivation and hypoxia. This leads to the activation of adaptive pathways in pancreatic cancer cells, promoting tolerance to nutrition starvation and aggressive malignancy. Conventional anticancer drugs are often ineffective against tumors that grow in such austerity condition. Plumbagin, a plant-derived naphthoquinone, has shown potent preferential cytotoxicity against pancreatic cancer cells under nutrient-deprived conditions. Therefore, we synthesized a series of plumbagin derivatives and found that 2-(cyclohexylmethyl)-plumbagin (3f) was the most promising compound with a PC50 value of 0.11 μM. Mechanistically, 3f was found to inhibit the PI3K/Akt/mTOR signaling pathways, leading to cancer cell death under nutrient-deprived conditions. In vivo studies using pancreatic cancer xenograft mouse models confirmed the efficacy of 3f, demonstrating significant inhibition of tumor growth in a dose-dependent manner. Compound 3f represents a highly promising lead for anticancer drug development based on an antiausterity strategy.
Collapse
Affiliation(s)
- Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hayato Baba
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Nguyen Duy Phan
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Min Jo Kim
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Juthamart Maneenet
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Koichi Sawaki
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takahiro Maruyama
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takahiro Okada
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
46
|
Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, Sahu RK, Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front Pharmacol 2023; 14:1174330. [PMID: 37205904 PMCID: PMC10188950 DOI: 10.3389/fphar.2023.1174330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Head and neck squamous cell carcinoma is a disease that most commonly produce tumours from the lining of the epithelial cells of the lips, larynx, nasopharynx, mouth, or oro-pharynx. It is one of the most deadly forms of cancer. About one to two percent of all neo-plasm-related deaths are attributed to head and neck squamous cell carcinoma, which is responsible for about six percent of all cancers. MicroRNAs play a critical role in cell proliferation, differentiation, tumorigenesis, stress response, triggering apoptosis, and other physiological process. MicroRNAs regulate gene expression and provide new diagnostic, prognostic, and therapeutic options for head and neck squamous cell carcinoma. In this work, the role of molecular signaling pathways related to head and neck squamous cell carcinoma is emphasized. We also provide an overview of MicroRNA downregulation and overexpression and its role as a diagnostic and prognostic marker in head and neck squamous cell carcinoma. In recent years, MicroRNA nano-based therapies for head and neck squamous cell carcinoma have been explored. In addition, nanotechnology-based alternatives have been discussed as a promising strategy in exploring therapeutic paradigms aimed at improving the efficacy of conventional cytotoxic chemotherapeutic agents against head and neck squamous cell carcinoma and attenuating their cytotoxicity. This article also provides information on ongoing and recently completed clinical trials for therapies based on nanotechnology.
Collapse
Affiliation(s)
| | - Ayesha Farhana Syeda
- Department of Pharmaceutics, Unaiza College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Shalam M. Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Sciences, Al-Rayyan Medical College, Madinah, Saudi Arabia
| | | | - Padmanath Pegu
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
47
|
Fukuda K, Seki N, Yasudome R, Mitsueda R, Asai S, Kato M, Idichi T, Kurahara H, Ohtsuka T. Coronin 1C, Regulated by Multiple microRNAs, Facilitates Cancer Cell Aggressiveness in Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2023; 14:genes14050995. [PMID: 37239355 DOI: 10.3390/genes14050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Coronin proteins are actin-related proteins containing WD repeat domains encoded by seven genes (CORO1A, CORO1B, CORO1C, CORO2A, CORO2B, CORO6, and CORO7) in the human genome. Analysis of large cohort data from The Cancer Genome Atlas revealed that expression of CORO1A, CORO1B, CORO1C, CORO2A, and CORO7 was significantly upregulated in pancreatic ductal adenocarcinoma (PDAC) tissues (p < 0.05). Moreover, high expression of CORO1C and CORO2A significantly predicted the 5 year survival rate of patients with PDAC (p = 0.0071 and p = 0.0389, respectively). In this study, we focused on CORO1C and investigated its functional significance and epigenetic regulation in PDAC cells. Knockdown assays using siRNAs targeting CORO1C were performed in PDAC cells. Aggressive cancer cell phenotypes, especially cancer cell migration and invasion, were inhibited by CORO1C knockdown. The involvement of microRNAs (miRNAs) is a molecular mechanism underlying the aberrant expression of cancer-related genes in cancer cells. Our in silico analysis revealed that five miRNAs (miR-26a-5p, miR-29c-3p, miR-130b-5p, miR-148a-5p, and miR-217) are putative candidate miRNAs regulating CORO1C expression in PDAC cells. Importantly, all five miRNAs exhibited tumor-suppressive functions and four miRNAs except miR-130b-5p negatively regulated CORO1C expression in PDAC cells. CORO1C and its downstream signaling molecules are potential therapeutic targets in PDAC.
Collapse
Affiliation(s)
- Kosuke Fukuda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Reiko Mitsueda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
48
|
Al-Noshokaty TM, Mansour A, Abdelhamid R, Abdellatif N, Alaaeldien A, Reda T, Abdelmaksoud NM, Doghish AS, Abulsoud AI, Elshaer SS. Role of long non-coding RNAs in pancreatic cancer pathogenesis and treatment resistance- A review. Pathol Res Pract 2023; 245:154438. [PMID: 37043965 DOI: 10.1016/j.prp.2023.154438] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers associated with poor prognosis. The lack of reliable means of early cancer detection contributes to this disease's dismal prognosis. Long non-coding RNAs (LncRNAs) are protein-free RNAs produced by genome transcription; they play critical roles in gene expression regulation, epigenetic modification, cell proliferation, differentiation, and reproduction. Recent research has shown that lncRNAs play important regulatory roles in PC behaviors, in addition to their recently found functions. Several in-depth investigations have shown that lncRNAs are strongly linked to PC development and progression. Here, we discuss how lncRNAs, which are often overlooked, play many roles as regulators in the molecular mechanism underlying PC. This review also discusses the involved LncRNAs in PC pathogenesis and treatment resistance.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
49
|
Kong W, Zhu L, Li T, Chen J, Fan B, Ji W, Zhang C, Cai X, Hu C, Sun X, Cao P. Azeliragon inhibits PAK1 and enhances the therapeutic efficacy of AKT inhibitors in pancreatic cancer. Eur J Pharmacol 2023; 948:175703. [PMID: 37028543 DOI: 10.1016/j.ejphar.2023.175703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Pancreatic cancer is a lethal malignancy for which there is currently no effective treatment strategy. We previously reported that p21-activated kinase 1 (PAK1) is aberrantly expressed in pancreatic cancer patients and that targeted inhibition of PAK1 significantly suppressed pancreatic cancer progression in vitro and in vivo. In this study, we identified the drug azeliragon as a novel inhibitor of PAK1. Cell experiments revealed that azeliragon abolished PAK1 activation and promoted apoptosis in pancreatic cancer cells. Azeliragon was also found to significantly inhibit tumor growth in a pancreatic cancer xenograft model; when combined with afuresertib, an oral pan-AKT kinase inhibitor, azeliragon exhibited a strong synergistic effect against pancreatic cancer cells. Interestingly, afuresertib enhanced the antitumor efficacy of azeliragon in a xenograft mouse model. Collectively, our findings revealed previously unreported aspects of the drug azeliragon, and identified a novel combination strategy for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Weikang Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Lingxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tian Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Ji
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunli Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
50
|
Kung H, Yu J. Targeted therapy for pancreatic ductal adenocarcinoma: Mechanisms and clinical study. MedComm (Beijing) 2023; 4:e216. [PMID: 36814688 PMCID: PMC9939368 DOI: 10.1002/mco2.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.
Collapse
Affiliation(s)
- Heng‐Chung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|