1
|
Su B, Li Z, Liu H, Niu X, Zhao X, Wu Y, Wang Q, Yuan Y, Xiao Z, Huang D. Identification and validation of reference genes for RT-qPCR analysis in Iris domestica under Cd stress. Heliyon 2024; 10:e36923. [PMID: 39281568 PMCID: PMC11400969 DOI: 10.1016/j.heliyon.2024.e36923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Iris domestica is a widely used ornamental garden and important medicinal plant. Our previous studies have shown that it exhibits significant uptake and translocation capacity under Cd stress compared to other Iris species. Gene expression is studied using RT-qPCR; however, there are no reference genes have been found for I. domestica under Cd stress. In this investigation, thirteen possible reference genes from previous studies and our transcriptome were screened using RT-qPCR in the leaves and roots of Cd-stressed plants. The findings revealed that UBC9 and ACT were the best reference genes for roots with and without Cd stress, whereas YLS8 and ACT7 were the best reference genes for leaves. Among the different tissues without Cd stress, UBC9 and UBC28 exhibited the best results, whereas PP2C06 and UBC9 exhibited the best results under Cd stress. The most stable reference genes in the leaves and roots were UBC9 and UBC28, respectively, under and without Cd stress, and GADPH was the most unstable. Finally, three metal ion response genes, NRAMP2, YSL9 and CYP81Q32 were detected using RT-qPCR and compared with the transcriptome data to further confirm the reliability of the chosen genes. This study identified suitable reference genes for I. domestica under Cd-stress conditions.
Collapse
Affiliation(s)
- Beibei Su
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
- Shijiazhuang Information Engineering Vocational College, Shijiazhuang, 052161, China
| | - Ziwei Li
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Hongli Liu
- College of Landscape Architecture and Arts, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoyun Niu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaojie Zhao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Yumeng Wu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Qian Wang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Yangchen Yuan
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Zhuolin Xiao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| | - Dazhuang Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, 071000, China
| |
Collapse
|
2
|
Chen Y, Li A, Yun P, Chen Q, Pan D, Guo R, Zhang H, Ahmed HAI, Hu H, Peng Y, Wang C, Dong H, Qiu C, Shabala L, Shabala S, Luo B, Hou P. Genome-wide analysis of MYB transcription factor family and AsMYB1R subfamily contribution to ROS homeostasis regulation in Avena sativa under PEG-induced drought stress. BMC PLANT BIOLOGY 2024; 24:632. [PMID: 38970019 PMCID: PMC11227197 DOI: 10.1186/s12870-024-05251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The myeloblastosis (MYB) transcription factor (TF) family is one of the largest and most important TF families in plants, playing an important role in a life cycle and abiotic stress. RESULTS In this study, 268 Avena sativa MYB (AsMYB) TFs from Avena sativa were identified and named according to their order of location on the chromosomes, respectively. Phylogenetic analysis of the AsMYB and Arabidopsis MYB proteins were performed to determine their homology, the AsMYB1R proteins were classified into 5 subgroups, and the AsMYB2R proteins were classified into 34 subgroups. The conserved domains and gene structure were highly conserved among the subgroups. Eight differentially expressed AsMYB genes were screened in the transcriptome of transcriptional data and validated through RT-qPCR. Three genes in AsMYB2R subgroup, which are related to the shortened growth period, stomatal closure, and nutrient and water transport by PEG-induced drought stress, were investigated in more details. The AsMYB1R subgroup genes LHY and REV 1, together with GST, regulate ROS homeostasis to ensure ROS signal transduction and scavenge excess ROS to avoid oxidative damage. CONCLUSION The results of this study confirmed that the AsMYB TFs family is involved in the homeostatic regulation of ROS under drought stress. This lays the foundation for further investigating the involvement of the AsMYB TFs family in regulating A. sativa drought response mechanisms.
Collapse
Affiliation(s)
- Yang Chen
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- College of Life Scienc, Jilin Agricultural University, Changchun, 130118, China
| | - Aixue Li
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
| | - Ping Yun
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Quan Chen
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
| | - Dayu Pan
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
| | - Rui Guo
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
| | - Han Zhang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
| | | | - Haiying Hu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China
| | - Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 625014, China
| | - Cheng Wang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
| | - Hongtu Dong
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
| | - Chaoyang Qiu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China
| | - Lana Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Sergey Shabala
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Bin Luo
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China.
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China.
| | - Peichen Hou
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China.
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100083, China.
| |
Collapse
|
3
|
Sun H, Li C, Li S, Ma J, Li S, Li X, Gao C, Yang R, Ma N, Yang J, Yang P, He X, Hu T. Identification and validation of stable reference genes for RT-qPCR analyses of Kobresia littledalei seedlings. BMC PLANT BIOLOGY 2024; 24:389. [PMID: 38730341 PMCID: PMC11088182 DOI: 10.1186/s12870-024-04924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.
Collapse
Affiliation(s)
- Haoyang Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Chunping Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Siyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Jiaxin Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Shuo Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Xin Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Cai Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Nan Ma
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Jing Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Xueqing He
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| |
Collapse
|
4
|
Ebrahimi A, Gharanjik S, Azadvari E, Rashidi-Monfared S. Characterizing reference genes for high-fidelity gene expression analysis under different abiotic stresses and elicitor treatments in fenugreek leaves. PLANT METHODS 2024; 20:40. [PMID: 38491388 PMCID: PMC10943880 DOI: 10.1186/s13007-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Quantifying gene expression is a critical aspect of applied genomics research across all organisms, and real-time PCR has emerged as a powerful tool for this purpose. However, selecting appropriate internal control genes for data normalization presents specific challenges. This study aimed to identify suitable reference genes for gene expression analysis under various conditions, encompassing salinity, low and high-temperature stresses, and different elicitor treatments. These treatments included titanium dioxide, cold plasma, 24-epibrassinolide, and melatonin, resulting in a total of 13 unique treatments and 148 treatment combinations applied to fenugreek plants. RESULTS As per the analysis performed with the BestKeeper tool, EEF-1α, and GAPDH were recognized as the most stable reference genes under the majority of conditions. Furthermore, the GeNorm and NormFinder tools identified β-tubulin and EEF-1α as the most stable reference genes. The findings of this research demonstrated that, although the stability of three reference genes expression was acceptable in almost all evaluated treatments, fluctuations in their expression were observed under the treatments of cold stress with TiO2 NPs application, cold plasma application with salinity stress, and cold plasma application with high-temperature stress compared to others. Simultaneously, the GeNorm analysis results demonstrated that in the mentioned treatments, relying on only one reference gene is inadequate. To corroborate the results, we examined the expression profile of the SSR gene, a pivotal gene in diosgenin biosynthesis, under all investigated treatments and treatment combinations. The outcomes suggested that employing stable reference genes yielded highly consistent results. CONCLUSIONS The varying expression patterns of the target genes emphasize the crucial need for precise optimization of experimental conditions and selecting stable reference genes to achieve accurate results in gene expression studies utilizing real-time PCR. These findings offer valuable insights into the selection of appropriate reference genes for gene expression analysis under diverse conditions using real-time PCR.
Collapse
Affiliation(s)
- Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
| | - Shahrokh Gharanjik
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Elham Azadvari
- Horticultural Sciences Department, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Sajad Rashidi-Monfared
- Plant Breeding and Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Guo W, Yang Y, Ma B, Wang W, Hu Z, Leng P. Selection and Validation of Reference Genes for Gene Expression Studies in Euonymus japonicus Based on RNA Sequencing. Genes (Basel) 2024; 15:131. [PMID: 38275612 PMCID: PMC10815735 DOI: 10.3390/genes15010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Euonymus japonicus is one of the most low-temperature-tolerant evergreen broad-leaved tree species in the world and is widely used in urban greening. However, there are very few molecular biology studies on its low-temperature tolerance mechanism. So far, no researcher has selected and reported on its reference genes. In this study, 21 candidate reference genes (12 traditional housekeeping genes and 9 other genes) were initially selected based on gene expression and coefficient of variation (CV) through RNA-Seq (unpublished data), and qRT-PCR was used to detect the expression levels of candidate reference genes in three different groups of samples (leaves under different temperature stresses, leaves of plants at different growth stages, and different organs). After further evaluating the expression stability of these genes using geNorm, NormFinder, Bestkeeper, and RefFind, the results show that the traditional housekeeping gene eIF5A and the new reference gene RTNLB1 have good stability in the three different groups of samples, so they are reference genes with universality. In addition, we used eIF5A and RTNLB1 as reference genes to calibrate the expression pattern of the target gene EjMAH1, which confirmed this view. This article is the first to select and report on the reference gene of E. japonicus, laying the foundation for its low-temperature tolerance mechanism and other molecular biology research.
Collapse
Affiliation(s)
- Wei Guo
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Yihui Yang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Bo Ma
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Wenbo Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| | - Zenghui Hu
- Engineering Research Center for Ancient Tree Health and Ancient Tree Culture of National Forestry and Grassland Administration, Beijing 102206, China
| | - Pingsheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; (W.G.); (B.M.); (W.W.)
| |
Collapse
|
6
|
Zhang Y, Mu D, Wang L, Wang X, Wilson IW, Chen W, Wang J, Liu Z, Qiu D, Tang Q. Reference Genes Screening and Gene Expression Patterns Analysis Involved in Gelsenicine Biosynthesis under Different Hormone Treatments in Gelsemium elegans. Int J Mol Sci 2023; 24:15973. [PMID: 37958955 PMCID: PMC10648913 DOI: 10.3390/ijms242115973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is an accurate method for quantifying gene expression levels. Choosing appropriate reference genes to normalize the data is essential for reducing errors. Gelsemium elegans is a highly poisonous but important medicinal plant used for analgesic and anti-swelling purposes. Gelsenicine is one of the vital active ingredients, and its biosynthesis pathway remains to be determined. In this study, G. elegans leaf tissue with and without the application of one of four hormones (SA, MeJA, ETH, and ABA) known to affect gelsenicine synthesis, was analyzed using ten candidate reference genes. The gene stability was evaluated using GeNorm, NormFinder, BestKeeper, ∆CT, and RefFinder. The results showed that the optimal stable reference genes varied among the different treatments and that at least two reference genes were required for accurate quantification. The expression patterns of 15 genes related to the gelsenicine upstream biosynthesis pathway was determined by RT-qPCR using the relevant reference genes identified. Three genes 8-HGO, LAMT, and STR, were found to have a strong correlation with the amount of gelsenicine measured in the different samples. This research is the first study to examine the reference genes of G. elegans under different hormone treatments and will be useful for future molecular analyses of this medically important plant species.
Collapse
Affiliation(s)
- Yao Zhang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| | - Detian Mu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| | - Liya Wang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| | - Xujun Wang
- Hunan Academy of Forestry, Changsha 410018, China
| | - Iain W. Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Wenqiang Chen
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| | - Jinghan Wang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Zhaoying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Qi Tang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| |
Collapse
|
7
|
Parrotta L, Mareri L, Cai G. Environmental Stress and Plants 2.0. Int J Mol Sci 2023; 24:12413. [PMID: 37569788 PMCID: PMC10418621 DOI: 10.3390/ijms241512413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Following the success of our previous edition [...].
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Lavinia Mareri
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (G.C.)
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy; (L.M.); (G.C.)
| |
Collapse
|
8
|
Evaluation of Candidate Reference Genes for Gene Expression Analysis in Wild Lamiophlomis rotata. Genes (Basel) 2023; 14:genes14030573. [PMID: 36980847 PMCID: PMC10048348 DOI: 10.3390/genes14030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lamiophlomis rotata (Benth.) Kudo is a perennial and unique medicinal plant of the Qinghai–Tibet Plateau. It has the effects of diminishing inflammation, activating blood circulation, removing blood stasis, reducing swelling, and relieving pain. However, thus far, reliable reference gene identifications have not been reported in wild L. rotata. In this study, we identified suitable reference genes for the analysis of gene expression related to the medicinal compound synthesis in wild L. rotata subjected to five different-altitude habitats. Based on the RNA-Seq data of wild L. rotata from five different regions, the stability of 15 candidate internal reference genes was analyzed using geNorm, NormFinder, BestKeeper, and RefFinder. TFIIS, EF-1α, and CYP22 were the most suitable internal reference genes in the leaves of L. rotata from different regions, while OBP, TFIIS, and CYP22 were the optimal reference genes in the roots of L. rotata. The reference genes identified here would be very useful for gene expression studies with different tissues in L. rotata from different habitats.
Collapse
|
9
|
Bharati R, Sen MK, Kumar R, Gupta A, Žiarovská J, Fernández-Cusimamani E, Leuner O. Systematic Identification of Suitable Reference Genes for Quantitative Real-Time PCR Analysis in Melissa officinalis L. PLANTS (BASEL, SWITZERLAND) 2023; 12:470. [PMID: 36771553 PMCID: PMC9919226 DOI: 10.3390/plants12030470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Melissa officinalis L. is well known for its lemon-scented aroma and various pharmacological properties. Despite these valuable properties, the genes involved in the biosynthetic pathways in M. officinalis are not yet well-explored when compared to other members of the mint family. For that, gene expression studies using quantitative real-time PCR (qRT-PCR) are an excellent tool. Although qRT-PCR can provide accurate results, its accuracy is highly reliant on the expression and stability of the reference gene used for normalization. Hence, selecting a suitable experiment-specific reference gene is very crucial to obtain accurate results. However, to date, there are no reports for experiment-specific reference genes in M. officinalis. Therefore, in the current study, ten commonly used reference genes were assessed for their suitability as optimal reference genes in M. officinalis under various abiotic stress conditions and different plant organs. The candidate genes were ranked based on BestKeeper, comparative ΔCt, geNorm, NormFinder, and RefFinder. Based on the results, we recommend the combination of EF-1α and GAPDH as the best reference genes to normalize gene expression studies in M. officinalis. On the contrary, HLH71 was identified as the least-performing gene. Thereafter, the reliability of the optimal gene combination was assessed by evaluating the relative gene expression of the phenylalanine ammonia lyase (PAL) gene under two elicitor treatments (gibberellic acid and jasmonic acid). PAL is a crucial gene involved directly or indirectly in the production of various economically important secondary metabolites in plants. Suitable reference genes for each experimental condition are also discussed. The findings of the current study form a basis for current and future gene expression studies in M. officinalis and other related species.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Ram Kumar
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Jana Žiarovská
- Research Centre AgroBioTech, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|