1
|
Hu R, Liu Z, Hou H, Li J, Yang M, Feng P, Wang X, Xu D. Identification of key necroptosis-related genes and immune landscape in patients with immunoglobulin A nephropathy. BMC Nephrol 2024; 25:459. [PMID: 39696012 DOI: 10.1186/s12882-024-03885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is a major cause of chronic kidney disease (CKD) and kidney failure. Necroptosis is a novel type of programmed cell death that has been proved to be associated with the pathogenesis of infectious disease, cardiovascular disease, neurological disorders and so on. However, the role of necroptosis in IgAN remains unclear. METHODS In this study, we explored the role of necroptosis-related genes in the pathogenesis of IgAN using a comprehensive bioinformatics method. Microarray datasets GSE93798 and GSE115857 were downloaded from Gene Expression Omnibus (GEO). "limma" package of R software was employed to identify necroptosis-related differentially expressed genes (NRDEGs) between IgAN and healthy controls. GO and KEGG functional enrichment analysis was performed by Clusterprofiler. Least absolute shrinkage and selection operator (LASSO) regression analysis identified hub NRDEGs. We further established a diagnostic model consisting of 7 diagnostic hub NRDEGs and validated the efficacy by an external dataset. The expression of hub genes was confirmed in sc-RNA dataset GSE171314. Immune infiltration, gene set enrichment analysis and transcription factor binding motifs enrichment analysis were conducted to further uncover their roles. RESULTS 1076 differentially expressed genes were identified between healthy individuals and IgAN patients from RNA-seq dataset GSE9379. Then we cross-linked them with necroptosis-related genes to obtain 9 NRDEGs. LASSO regression analysis screened out 7 hub genes (JUN, CD274, SERTAD1, NFKBIA, H19, UCHL1 and EZH2) of IgAN. We further conducted functional enrichment analysis and constructed the diagnostic model based on dataset GSE93798. GSE115857 was used as the independent validation cohort and indicated a great predictive efficacy. Immune infiltration, gene set enrichment analysis and transcription factor binding motifs enrichment analysis revealed their potential function. Finally, we screened out four drugs that were predicted to have therapeutic value of IgAN. CONCLUSIONS In summary, we identified 7 hub necroptosis-associated genes, which can be used as potential genetic biomarkers for IgAN prediction and treatment. Four drugs were predicted as the potential therapeutic solutions. Collectively, we provided insights into the necroptosis-related mechanisms and treatment of IgAN at the transcriptome level.
Collapse
Affiliation(s)
- Ruikun Hu
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Ziyu Liu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huihui Hou
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jingyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ming Yang
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Panfeng Feng
- Department of Pharmacy, The First People's Hospital of Nantong city, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Xiaorong Wang
- Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Dechao Xu
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
2
|
Feng L, Wu Z, Jia X, Yang L, Wang M, Huang M, Ma Y. Screening, identification and targeted intervention of necroptotic biomarkers of asthma. Biochem Biophys Res Commun 2024; 735:150674. [PMID: 39270557 DOI: 10.1016/j.bbrc.2024.150674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND As a pivotal pathway of programmed cell death, necroptosis significantly contributes to the pathogenesis of respiratory disorders. However, its role in asthma is not yet fully elucidated. Therefore, this study aimed to identify markers associated with necroptosis, evaluate their functions in asthma, and explore potential therapeutic agents targeting necroptosis for the management of asthma. METHODS Firstly, machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest, and Support Vector Machine-Recursive Feature Elimination (SVM-RFE), were utilized to identify necroptosis-related differentially expressed genes (NRDEGs) in asthma patients compared to healthy controls. Concurrently, the expression of NRDEGs was validated using external datasets, Western blot, and quantitative real-time polymerase chain reaction (qPCR). Secondly, the clinical relevance of NRDEGs was assessed through Receiver Operating Characteristic (ROC) curve analysis and correlation with clinical indicators. Thirdly, the relationship between NRDEGs and pulmonary immune cell infiltration, as well as the signaling interactions between different cells types, were analyzed through immune infiltration and single-cell analysis. Fourthly, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), were conducted to elucidate the functional roles of NRDEGs. Finally, compounds targeting NRDEGs were screened, and their binding affinities were evaluated using molecular docking studies. RESULTS In asthma, necroptosis is activated, leading to the identification of four NRDEGs: NLRP3, PYCARD, ALOX15, and VDAC3. Among these, NLRP3, PYCARD, and ALOX15 are upregulated, whereas VDAC3 is downregulated in asthma. Comprehensive clinical evaluations indicated that NRDEGs hold diagnostic value for asthma. Specifically, NLRP3 was inversely correlated with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), while VDAC3 showed an inverse correlation with sputum neutrophils. Conversely, ALOX15 expression was positively correlated with fractional exhaled nitric oxide (FeNO) levels, as well as sputum eosinophils, blood eosinophils, and blood IgE levels. Subsequent immune infiltration analysis revealed associations between NRDEGs and activated dendritic cells, mast cells, and eosinophils. Single-cell RNA sequencing (scRNA-seq) further confirmed the communication signals between myeloid dendritic cells, fibroblasts, neutrophils, and helper T cells, predominantly related to fibrosis and immune-inflammatory responses. Pathway enrichment analysis demonstrated that NRDEGs are involved in ribosomal function, oxidative phosphorylation, and fatty acid metabolism. Finally, resveratrol and triptonide were identified as potential therapeutic agents targeting the proteins encoded by NRDEGs for asthma treatment. CONCLUSIONS The necroptosis pathway is activated in asthma, with NRDEGs-namely PYCARD, NLRP3, ALOX15, and VDAC3-correlated with declines in lung function and airway inflammation. These genes serve as reliable predictors of asthma risk and are involved in the regulation of the immune-inflammatory microenvironment. Resveratrol and triptolide have been identified as promising therapeutic candidates due to their potential to target the proteins encoded by these genes.
Collapse
Affiliation(s)
- Ling Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Li S, Liu Y, Li D, Zhang K, Zhang Z, Zhang Z, Cai J. Microalgal astaxanthin ameliorates cypermethrin-induced necroptosis and inflammation via targeting mitochondrial Ca 2+ homeostasis and the ROS-NF-κB-RIPK3/MLKL axis in carp hepatocytes (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109944. [PMID: 39370019 DOI: 10.1016/j.fsi.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Cypermethrin is a toxic pesticide that has infiltrated water bodies due to its widespread use. This contamination has led to detrimental effects on the immune organs of aquatic species, including fish. The natural fat-soluble orange-red carotenoid, astaxanthin (MAT), derived from microalgae, possesses anti-inflammatory, antioxidant, and immunomodulatory properties. To elucidate the mechanism of CY induced damage to carp liver cells and assess the potential protective effects of MAT, we established a carp hepatocyte model exposed to CY and/or MAT. Hepatocytes from carp (Cyprinus carpio) were treated with either 8 μM CY or 60 μM MAT for 24 h. Upon exposure CY, a significant increase in reactive oxygen species (ROS) was observed alongside a diminution in the activities of key antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), suggesting an impairment of cellular antioxidant capacity. Subsequently, acridine orange/ethidium bromide (AO/EB) staining and flow cytometry analysis revealed that hepatocytes exposed to CY exhibited a higher incidence of necroptosis, associated with an elevated mitochondrial Ca2+ concentration, which contributed to cellular dysfunction. Furthermore, exposure to CY also activated the ROS-NF-κB-RIPK3/MLKL signaling pathway, increasing the levels of necroptosis-related regulatory factors (RIP1, RIP3, and MLKL) in hepatocytes and the expression of inflammatory genes (IL-6, IFN-γ, IL-4, IL-1β, and TNF-α), which led to immune dysfunction in hepatocytes. The immunotoxic effects induced by CY were mitigated by MAT treatment, suggesting its potential in alleviating the aforementioned changes caused by CY. Overall, the data suggested that MAT therapy could enhance hepatocyte defenses against CY-induced necroptosis and inflammatory responses by regulating mitochondrial Ca2+ homeostasis and inhibiting the ROS-NF-κB-RIPK3/MLKL signaling cascade. This study elucidated the potential benefits of employing MAT to protect farmed fish from agrobiological hazards during CY exposure, underscoring the practical applications of MAT in aquaculture.
Collapse
Affiliation(s)
- Shuoyue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Yinuo Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Di Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Kaixuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Zequn Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Peoples R China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Peoples R China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Peoples R China.
| |
Collapse
|
4
|
Wu S, Ding D, Wang D. Regulated Cell Death Pathways in Pathological Cardiac Hypertrophy. Rev Cardiovasc Med 2024; 25:366. [PMID: 39484135 PMCID: PMC11522757 DOI: 10.31083/j.rcm2510366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac hypertrophy is characterized by an increased volume of individual cardiomyocytes rather than an increase in their number. Myocardial hypertrophy due to pathological stimuli encountered by the heart, which reduces pressure on the ventricular walls to maintain cardiac function, is known as pathological hypertrophy. This eventually progresses to heart failure. Certain varieties of regulated cell death (RCD) pathways, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagy, are crucial in the development of pathological cardiac hypertrophy. This review summarizes the molecular mechanisms and signaling pathways underlying these RCD pathways, focusing on their mechanism of action findings for pathological cardiac hypertrophy. It intends to provide new ideas for developing therapeutic approaches targeted at the cellular level to prevent or reverse pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shengnan Wu
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Ding Ding
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Deguo Wang
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| |
Collapse
|
5
|
Liu Y, Teng X, Yan Y, Zhao S, Wang G. Dexmedetomidine promotes necroptosis by upregulating PARP1 in non-small cell lung cancer. Biotechnol Genet Eng Rev 2024; 40:1281-1301. [PMID: 37066722 DOI: 10.1080/02648725.2023.2193469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
The score and prognostic value of necroptosis were analyzed in the TCGA and GSE120622 datasets. Necroptosis has the highest correlation with the immune microenvironment, and the high score in NSCLC correlates with poor prognosis. Differentially expressed genes between non-small cell lung cancer (NSCLC) and controls in both datasets were identified and subjected to construct co-expression networks, respectively. Black and blue modules were selected because of high correction with necroptosis. The intersected two module genes were mainly involved in immune and inflammatory response, cell cycle process and DNA replication. Nine marker genes of necroptosis were identified in these modules and considered as candidate genes. Based on candidate genes, we identified two clusters utilizing concordance clustering, additionally dividing NSCLC samples into high- and low-risk groups. There were significant differences in overall survival between two clusters and between high- and low-risk groups. Furthermore, PARP1 was found among the candidate genes to be the target gene of dexmedetomidine acting on necroptosis. Molecular experimental results found that PARP1 was highly expressed in the dexmedetomidine treated NSCLC compared with the NSCLC. Candidate genes associated with necroptosis may provide a powerful prognostic tool for precision oncology. Dexmedetomidine may target PARP1 to promote necroptosis and then affect NSCLC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaodan Teng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yubo Yan
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Su Zhao
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guonian Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Ran R, Zhang SB, Shi YQ, Dong H, Song W, Dong YB, Zhou KS, Zhang HH. Spotlight on necroptosis: Role in pathogenesis and therapeutic potential of intervertebral disc degeneration. Int Immunopharmacol 2024; 138:112616. [PMID: 38959544 DOI: 10.1016/j.intimp.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of low back pain, which is one of the major factors leading to disability and severe economic burden. Necroptosis is an important form of programmed cell death (PCD), a highly regulated caspase-independent type of cell death that is regulated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL)-mediated, play a key role in the pathophysiology of various inflammatory, infectious and degenerative diseases. Recent studies have shown that necroptosis plays an important role in the occurrence and development of IDD. In this review, we provide an overview of the initiation and execution of necroptosis and explore in depth its potential mechanisms of action in IDD. The analysis focuses on the connection between NP cell necroptosis and mitochondrial dysfunction-oxidative stress pathway, inflammation, endoplasmic reticulum stress, apoptosis, and autophagy. Finally, we evaluated the possibility of treating IDD by inhibiting necroptosis, and believed that targeting necroptosis may be a new strategy to alleviate the symptoms of IDD.
Collapse
Affiliation(s)
- Rui Ran
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Shun-Bai Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hao Dong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Wei Song
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Yan-Bo Dong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
7
|
Xu Y, Lin F, Liao G, Sun J, Chen W, Zhang L. Ripks and Neuroinflammation. Mol Neurobiol 2024; 61:6771-6787. [PMID: 38349514 DOI: 10.1007/s12035-024-03981-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/20/2024] [Indexed: 08/22/2024]
Abstract
Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson's disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Yue Xu
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Feng Lin
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Guolei Liao
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Jiaxing Sun
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Wenli Chen
- Department of Pharmacy, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Lei Zhang
- Department of Cerebrovascular Disease, Sun Yat-Sen University, The Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Centrone M, Saltarella I, D'Agostino M, Ranieri M, Venneri M, Di Mise A, Simone L, Pisani F, Valenti G, Frassanito MA, Tamma G. RhoB plays a central role in hyperosmolarity-induced cell shrinkage in renal cells. J Cell Physiol 2024; 239:e31343. [PMID: 38946197 DOI: 10.1002/jcp.31343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The small Rho GTP-binding proteins are important cell morphology, function, and apoptosis regulators. Unlike other Rho proteins, RhoB can be subjected to either geranylgeranylation (RhoB-GG) or farnesylation (RhoB-F), making that the only target of the farnesyltransferase inhibitor (FTI). Fluorescence resonance energy transfer experiments revealed that RhoB is activated by hyperosmolarity. By contrast, hyposmolarity did not affect RhoB activity. Interestingly, treatment with farnesyltransferase inhibitor-277 (FTI-277) decreased the cell size. To evaluate whether RhoB plays a role in volume reduction, renal collecting duct MCD4 cells and Human Kidney, HK-2 were transiently transfected with RhoB-wildtype-Enhance Green Fluorescence Protein (RhoB-wt-EGFP) and RhoB-CLLL-EGFP which cannot undergo farnesylation. A calcein-based fluorescent assay revealed that hyperosmolarity caused a significant reduction of cell volume in mock and RhoB-wt-EGFP-expressing cells. By contrast, cells treated with FTI-277 or expressing the RhoB-CLLL-EGFP mutant did not properly respond to hyperosmolarity with respect to mock and RhoB-wt-EGFP expressing cells. These findings were further confirmed by 3D-LSCM showing that RhoB-CLLL-EGFP cells displayed a significant reduction in cell size compared to cells expressing RhoB-wt-EGFP. Moreover, flow cytometry analysis revealed that RhoB-CLLL-EGFP expressing cells as well as FTI-277-treated cells showed a significant increase in cell apoptosis. Together, these data suggested that: (i) RhoB is sensitive to hyperosmolarity and not to hyposmolarity; (ii) inhibition of RhoB farnesylation associates with an increase in cell apoptosis, likely suggesting that RhoB might be a paramount player controlling apoptosis by interfering with responses to cell volume change.
Collapse
Affiliation(s)
- Mariangela Centrone
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Saltarella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia D'Agostino
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Venneri
- Istituti Clinici Scientifici Maugeri SPA SB IRCCS, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo, Italy
| | - Francesco Pisani
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria A Frassanito
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Clinical Pathology, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
9
|
Wen P, Zhao Y, Yang M, Yang P, Nan K, Liu L, Xu P. Identification of necroptosis-related genes in ankylosing spondylitis by bioinformatics and experimental validation. J Cell Mol Med 2024; 28:e18557. [PMID: 39031474 PMCID: PMC11258886 DOI: 10.1111/jcmm.18557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Abstract
The pathogenesis of ankylosing spondylitis (AS) remains unclear, and while recent studies have implicated necroptosis in various autoimmune diseases, an investigation of its relationship with AS has not been reported. In this study, we utilized the Gene Expression Omnibus database to compare gene expressions between AS patients and healthy controls, identifying 18 differentially expressed necroptosis-related genes (DENRGs), with 8 upregulated and 10 downregulated. Through the application of three machine learning algorithms-least absolute shrinkage and selection operation, support vector machine-recursive feature elimination and random forest-two hub genes, FASLG and TARDBP, were pinpointed. These genes demonstrated high specificity and sensitivity for AS diagnosis, as evidenced by receiver operating characteristic curve analysis. These findings were further supported by external datasets and cellular experiments, which confirmed the downregulation of FASLG and upregulation of TARDBP in AS patients. Immune cell infiltration analysis suggested that CD4+ T cells, CD8+ T cells, NK cells and neutrophils may be associated with the development of AS. Notably, in the group with high FASLG expression, there was a significant infiltration of CD8+ T cells, memory-activated CD4+ T cells and resting NK cells, with relatively less infiltration of memory-resting CD4+ T cells and neutrophils. Conversely, in the group with high TARDBP expression, there was enhanced infiltration of naïve CD4+ T cells and M0 macrophages, with a reduced presence of memory-resting CD4+ T cells. In summary, FASLG and TARDBP may contribute to AS pathogenesis by regulating the immune microenvironment and immune-related signalling pathways. These findings offer new insights into the molecular mechanisms of AS and suggest potential new targets for therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Yan Zhao
- Department of Laboratory, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Mingyi Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Kai Nan
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Lin Liu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Xu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| |
Collapse
|
10
|
Hu H, Ma J, Peng Y, Feng R, Luo C, Zhang M, Tao Z, Chen L, Zhang T, Chen W, Yin Q, Zhai J, Chen J, Yin A, Wang CC, Zhong M. Thrombospondin-1 Regulates Trophoblast Necroptosis via NEDD4-Mediated Ubiquitination of TAK1 in Preeclampsia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309002. [PMID: 38569496 PMCID: PMC11151050 DOI: 10.1002/advs.202309002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Preeclampsia (PE) is considered as a disease of placental origin. However, the specific mechanism of placental abnormalities remains elusive. This study identified thrombospondin-1 (THBS1) is downregulated in preeclamptic placentae and negatively correlated with blood pressure. Functional studies show that THBS1 knockdown inhibits proliferation, migration, and invasion and increases the cycle arrest and apoptosis rate of HTR8/SVneo cells. Importantly, THBS1 silencing induces necroptosis in HTR8/SVneo cells, accompanied by the release of damage-associated molecular patterns (DAMPs). Necroptosis inhibitors necrostatin-1 and GSK'872 restore the trophoblast survival while pan-caspase inhibitor Z-VAD-FMK has no effect. Mechanistically, the results show that THBS1 interacts with transforming growth factor B-activated kinase 1 (TAK1), which is a central modulator of necroptosis quiescence and affects its stability. Moreover, THBS1 silencing up-regulates the expression of neuronal precursor cell-expressed developmentally down-regulated 4 (NEDD4), which acts as an E3 ligase of TAK1 and catalyzes K48-linked ubiquitination of TAK1 in HTR8/SVneo cells. Besides, THBS1 attenuates PE phenotypes and improves the placental necroptosis in vivo. Taken together, the down-regulation of THBS1 destabilizes TAK1 by activating NEDD4-mediated, K48-linked TAK1 ubiquitination and promotes necroptosis and DAMPs release in trophoblast cells, thus participating in the pathogenesis of PE.
Collapse
Affiliation(s)
- Haoyue Hu
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jing Ma
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdong510515China
| | - You Peng
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Rixuan Feng
- School of NursingSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Chenling Luo
- School of NursingSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Minyi Zhang
- Department of EpidemiologySchool of Public HealthSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zixin Tao
- Department of Obstetrics and GynecologyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhouGuangdong510180China
| | - Lu Chen
- Department of Obstetrics and Gynaecology;Li Ka Shing Institute of Health Sciences;School of Biomedical Sciences;Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive Medicine; The Chinese University of Hong KongHong Kong SARNTChina
| | - Tao Zhang
- Department of Obstetrics and Gynaecology;Li Ka Shing Institute of Health Sciences;School of Biomedical Sciences;Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive Medicine; The Chinese University of Hong KongHong Kong SARNTChina
| | - Wenqian Chen
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Guangzhou Key Laboratory of Forensic Multi‐Omics for Precision IdentificationSchool of Forensic MedicineSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Qian Yin
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jinguo Zhai
- School of NursingSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jun Chen
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Ailan Yin
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology;Li Ka Shing Institute of Health Sciences;School of Biomedical Sciences;Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive Medicine; The Chinese University of Hong KongHong Kong SARNTChina
| | - Mei Zhong
- Department of Obstetrics and GynecologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
11
|
Dong J, Liu W, Liu W, Wen Y, Liu Q, Wang H, Xiang G, Liu Y, Hao H. Acute lung injury: a view from the perspective of necroptosis. Inflamm Res 2024; 73:997-1018. [PMID: 38615296 DOI: 10.1007/s00011-024-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND ALI/ARDS is a syndrome of acute onset characterized by progressive hypoxemia and noncardiogenic pulmonary edema as the primary clinical manifestations. Necroptosis is a form of programmed cell necrosis that is precisely regulated by molecular signals. This process is characterized by organelle swelling and membrane rupture, is highly immunogenic, involves extensive crosstalk with various cellular stress mechanisms, and is significantly implicated in the onset and progression of ALI/ARDS. METHODS The current body of literature on necroptosis and ALI/ARDS was thoroughly reviewed. Initially, an overview of the molecular mechanism of necroptosis was provided, followed by an examination of its interactions with apoptosis, pyroptosis, autophagy, ferroptosis, PANOptosis, and NETosis. Subsequently, the involvement of necroptosis in various stages of ALI/ARDS progression was delineated. Lastly, drugs targeting necroptosis, biomarkers, and current obstacles were presented. CONCLUSION Necroptosis plays an important role in the progression of ALI/ARDS. However, since ALI/ARDS is a clinical syndrome caused by a variety of mechanisms, we emphasize that while focusing on necroptosis, it may be more beneficial to treat ALI/ARDS by collaborating with other mechanisms.
Collapse
Affiliation(s)
- Jinyan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Wenli Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yuqi Wen
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Qingkuo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongtao Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Guohan Xiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| |
Collapse
|
12
|
He Z, Zhu Y, Ma H, Shen Q, Chen X, Wang X, Shao H, Wang Y, Yang S. Hydrogen sulfide regulates macrophage polarization and necroptosis to accelerate diabetic skin wound healing. Int Immunopharmacol 2024; 132:111990. [PMID: 38574702 DOI: 10.1016/j.intimp.2024.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Hydrogen sulfide (H2S), recognized as the third gasotransmitter, plays a pivotal role in the pathophysiological processes of various diseases. Cystathionine γ-lyase (CSE) is the main enzyme for H2S production in the skin. However, effects and mechanisms of H2S in diabetic skin wound healing remain unclear. Our findings revealed a decrease in plasma H2S content in diabetic patients with skin wounds. CSE knockout (KO) diabetic mice resulted in delayed wound healing, reduced blood perfusion, and CD31 expression around the wounds. It also led to increased infiltration of inflammatory cells and M1-type macrophages, decreased collagen levels, α-smooth muscle actin (α-SMA), and proliferating cell nuclear antigen (PCNA) expression. Additionally, there were enhanced expressions of necroptosis related proteins, including receptor interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain like protein (MLKL). In comparison, sodium hydrosulfide (NaHS), H2S donor, accelerated skin wound healing in leptin receptor deficiency (db/db) mice. This acceleration was accompanied by increased blood perfusion and CD31 expression, reduced infiltration of inflammatory cells and M1-type macrophages, elevated collagen levels, α-SMA, and PCNA expressions, and decreased necroptosis-related protein expressions together with nuclear factor-κB (NF-κB) p65 phosphorylation. In conclusion, H2S regulates macrophage polarization and necroptosis, contributing to the acceleration of diabetic skin wound healing. These findings offer a novel strategy for the treatment of diabetic skin wounds.
Collapse
Affiliation(s)
- Ziying He
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yue Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Haojie Ma
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qiyan Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xudong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hongmei Shao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
13
|
Shi Y, Wu C, Shi J, Gao T, Ma H, Li L, Zhao Y. Protein phosphorylation and kinases: Potential therapeutic targets in necroptosis. Eur J Pharmacol 2024; 970:176508. [PMID: 38493913 DOI: 10.1016/j.ejphar.2024.176508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Necroptosis is a pivotal contributor to the pathogenesis of various human diseases, including those affecting the nervous system, cardiovascular system, pulmonary system, and kidneys. Extensive investigations have elucidated the mechanisms and physiological ramifications of necroptosis. Among these, protein phosphorylation emerges as a paramount regulatory process, facilitating the activation or inhibition of specific proteins through the addition of phosphate groups to their corresponding amino acid residues. Currently, the targeting of kinases has gained recognition as a firmly established and efficacious therapeutic approach for diverse diseases, notably cancer. In this comprehensive review, we elucidate the intricate role of phosphorylation in governing key molecular players in the necroptotic pathway. Moreover, we provide an in-depth analysis of recent advancements in the development of kinase inhibitors aimed at modulating necroptosis. Lastly, we deliberate on the prospects and challenges associated with the utilization of kinase inhibitors to modulate necroptotic processes.
Collapse
Affiliation(s)
- Yihui Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiayi Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Taotao Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
14
|
Zhou Y, Xiang Y, Liu S, Li C, Dong J, Kong X, Ji X, Cheng X, Zhang L. RIPK3 signaling and its role in regulated cell death and diseases. Cell Death Discov 2024; 10:200. [PMID: 38684668 PMCID: PMC11059363 DOI: 10.1038/s41420-024-01957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Receptor-interacting protein kinase 3 (RIPK3), a member of the receptor-interacting protein kinase (RIPK) family with serine/threonine protein kinase activity, interacts with RIPK1 to generate necrosomes, which trigger caspase-independent programmed necrosis. As a vital component of necrosomes, RIPK3 plays an indispensable role in necroptosis, which is crucial for human life and health. In addition, RIPK3 participates in the pathological process of several infections, aseptic inflammatory diseases, and tumors (including tumor-promoting and -suppressive activities) by regulating autophagy, cell proliferation, and the metabolism and production of chemokines/cytokines. This review summarizes the recent research progress of the regulators of the RIPK3 signaling pathway and discusses the potential role of RIPK3/necroptosis in the aetiopathogenesis of various diseases. An in-depth understanding of the mechanisms and functions of RIPK3 may facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Department of Pathology, the Second People's Hospital of Jiaozuo; The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, 454000, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Yaxuan Xiang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Sijie Liu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Chenyao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Jiaheng Dong
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangrui Kong
- Wushu College, Henan University, Kaifeng, 475004, China
| | - Xinying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, No. 6 Gong-Ming Rd, Mazhai Town, Erqi District, Zhengzhou, Henan, 450064, China
| | - Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Syed RU, Afsar S, Aboshouk NAM, Salem Alanzi S, Abdalla RAH, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Satheesh Kumar G, Alshammari MD. LncRNAs in necroptosis: Deciphering their role in cancer pathogenesis and therapy. Pathol Res Pract 2024; 256:155252. [PMID: 38479121 DOI: 10.1016/j.prp.2024.155252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
Necroptosis, a controlled type of cell death that is different from apoptosis, has become a key figure in the aetiology of cancer and offers a possible target for treatment. A growing number of biological activities, including necroptosis, have been linked to long noncoding RNAs (lncRNAs), a varied family of RNA molecules with limited capacity to code for proteins. The complex interactions between LncRNAs and important molecular effectors of necroptosis, including mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting protein kinase 3 (RIPK3), will be investigated. We will explore the many methods that LncRNAs use to affect necroptosis, including protein-protein interactions, transcriptional control, and post-transcriptional modification. Additionally, the deregulation of certain LncRNAs in different forms of cancer will be discussed, highlighting their dual function in influencing necroptotic processes as tumour suppressors and oncogenes. The goal of this study is to thoroughly examine the complex role that LncRNAs play in controlling necroptotic pathways and how that regulation affects the onset and spread of cancer. In the necroptosis for cancer treatment, this review will also provide insight into the possible therapeutic uses of targeting LncRNAs. Techniques utilising LncRNA-based medicines show promise in controlling necroptotic pathways to prevent cancer from spreading and improve the effectiveness of treatment.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | | | - Amna Abakar Suleiman Khalifa
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - G Satheesh Kumar
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
16
|
Xia J, Zhou X. Necroptosis-related KLRB1 was a potent tumor suppressor and immunotherapy determinant in breast cancer. Heliyon 2024; 10:e27294. [PMID: 38509875 PMCID: PMC10951529 DOI: 10.1016/j.heliyon.2024.e27294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Breast cancer is a multifaceted and diverse illness that impacts millions of people globally. Identifying the underlying causes of BRCA and creating efficient treatment plans are urgent. Necroptosis is widely involved in cancer development. However, the specific roles of necroptosis in cancer immunotherapy of breast cancer have not been explored. In this study, we aim to establish the connection between necroptosis and immunotherapy in BRCA. TCGA, METABRIC, GSE103091, GSE159956, and GSE96058 were included for bioinformatics analysis. NMF and CoxBoost algorithms were used to develop the necroptosis-related patterns and model, respectively. A necroptosis-related model was developed and determined KLRB1 as a critical tumor suppressor by in vitro validation. The mutation characteristics, immune characteristics, and molecular functions of KLRB1 were explored. We further examined how necroptosis-related KLRB1 functions in BRCA as a powerful tumor suppressor and regulates the activity of macrophages by in vitro validation, including CCK8, EdU, and Transwell assays. KLRB1 was also revealed to be an immunotherapy determinant.
Collapse
Affiliation(s)
- Jie Xia
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Zhou
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Li W, Zhang W, Zhang D, Shi C, Wang Y. Effect of lipopolysaccharide on TAK1-mediated hepatocyte PANoptosis through Toll-like receptor 4 during acute liver failure. Int Immunopharmacol 2024; 129:111612. [PMID: 38335652 DOI: 10.1016/j.intimp.2024.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Intestinal endotoxemia (IETM) is an important pathogenic mechanism of acute liver failure (ALF), and TAK1-mediated PANoptosis is a novel cell death mode. This study investigated whether IETM can induce hepatocyte PANoptosis during ALF. METHOD PANoptosis cell and mouse models were generated, and lentiviruses (LVs), adeno-associated viral vectors (AVVs), and small interfering RNAs (siRNAs) were subsequently used to overexpress or knock down TLR and TAK1. Then, the levels of hepatocyte injury, TLR4, TAK1 and PANoptosis were detected via an enzyme-labeling instrument, tissue staining, RT-PCR, western blotting, immunofluorescence, and flow cytometry. RESULTS The BioGRID database search revealed that TAK1 might interact with TLR4. According to the in vivo experiments, compared with those in ALF mice, liver tissue damage, hepatocyte mortality and PANoptosis in mice in the AAV-TAK1 group were significantly lower, and liver function was significantly improved. According to the in vitro experiments, after promoting the expression of TLR4 in the model group, the degree of cell damage, TLR4 expression and PANoptosis further increased, while the level of TAK1 further decreased. The opposite result was obtained when TLR4 expression was inhibited. The increase in TAK1 expression in the model group reduced the degree of cell damage and PANoptosis, but the level of TLR4 was not significantly changed. In the model group of cells that exhibited TAK1 expression, further promotion of TLR4 expression inhibited the protective effect of TAK1 on cells. In the model group of cells after TAK1 expression was promoted, if the expression of TLR4 was further promoted, the protective effect of TAK1 on cells was inhibited. CONCLUSION IETM inhibited the expression of TAK1 by binding to TLR4 molecules and promoting hepatocyte PANoptosis during ALF. Promoting TAK1 expression effectively relieved lipopolysaccharide-induced hepatocyte PANoptosis.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenbin Zhang
- Department of Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
18
|
Li L, Chen X, Liu C, He Z, Shen Q, Zhu Y, Wang X, Cao S, Yang S. Endogenous hydrogen sulphide deficiency and exogenous hydrogen sulphide supplement regulate skin fibroblasts proliferation via necroptosis. Exp Dermatol 2024; 33:e14972. [PMID: 37975594 DOI: 10.1111/exd.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
An excessive proliferation of skin fibroblasts usually results in different skin fibrotic diseases. Hydrogen sulphide (H2 S) is regarded as an important endogenous gasotransmitter with various functions. The study aimed to investigate the roles and mechanisms of H2 S on primary mice skin fibroblasts proliferation. Cell proliferation and collagen synthesis were assessed with the expression of α-smooth muscle actin (α-SMA), proliferating cell nuclear antigen (PCNA), Collagen I and Collagen III. The degree of oxidative stress was evaluated by dihydroethidium (DHE) and MitoSOX staining. Mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining. Necroptosis was evaluated with TDT-mediated dUTP nick end labelling (TUNEL) and expression of receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL). The present study found that α-SMA, PCNA, Collagen I and Collagen III expression were increased, oxidative stress was promoted, ΔΨm was impaired and positive rate of TUNEL staining, RIPK1 and RIPK3 expression as well as MLKL phosphorylation were all enhanced in skin fibroblasts from cystathionine γ-lyase (CSE) knockout (KO) mice or transforming growth factor-β1 (TGF-β1, 10 ng/mL)-stimulated mice skin fibroblasts, which was restored by exogenous sodium hydrosulphide (NaHS, 50 μmol/L). In conclusion, endogenous H2 S production impairment in CSE-deficient mice accelerated skin fibroblasts proliferation via promoted necroptosis, which was attenuated by exogenous H2 S. Exogenous H2 S supplement alleviated proliferation of skin fibroblasts with TGF-β1 stimulation via necroptosis inhibition. This study provides evidence for H2 S as a candidate agent to prevent and treat skin fibrotic diseases.
Collapse
Affiliation(s)
- Ling Li
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First people's Hospital of Yancheng, Yancheng, China
| | - Xudong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chang Liu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Ziying He
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Qiyan Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yue Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shuanglin Cao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
19
|
Zeng X, Han Z, Chen K, Zeng P, Tang Y, Li L. Single-Cell Analyses Reveal Necroptosis's Potential Role in Neuron Degeneration and Show Enhanced Neuron-Immune Cell Interaction in Parkinson's Disease Progression. PARKINSON'S DISEASE 2023; 2023:5057778. [PMID: 38149092 PMCID: PMC10751163 DOI: 10.1155/2023/5057778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
Parkinson's disease (PD) is a common neuron degenerative disease among the old, characterized by uncontrollable movements and an impaired posture. Although widely investigated on its pathology and treatment, the disease remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) has been applied to the area of PD, providing valuable data for related research. However, few works have taken deeper insights into the causes of neuron death and cell-cell interaction between the cell types in the brain. Our bioinformatics analyses revealed necroptosis-related genes (NRGs) enrichment in neuron degeneration and selecting the cells by NRGs levels showed two subtypes within the main degenerative cell types in the midbrain. NRG-low subtype was largely replaced by NRG-high subtype in the patients, indicating the striking change of cell state related to necroptosis in PD progression. Moreover, we carried out cell-cell interaction analyses between cell types and found that microglia (MG)'s interaction strength with glutamatergic neuron (GLU), GABAergic neuron (GABA), and dopaminergic neuron (DA) was significantly upregulated in PD. Also, MG show much stronger interaction with NRG-high subtypes and a stronger cell killing function in PD samples. Additionally, we identified CLDN11 as a novel interaction pattern specific to necroptosis neurons and MG. We also found LEF1 and TCF4 as key transcriptional regulators in neuron degeneration. These findings suggest that MG were significantly overactivated in PD patients to clear abnormal neurons, especially the NRG-high cells, explaining the neuron inflammation in PD. Our analyses provide insights into the causes of neuron death and inflammation in PD from single-cell resolution, which could be seriously considered in clinical trials.
Collapse
Affiliation(s)
- Xiaomei Zeng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Zhifen Han
- Department of Ultrasound, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, China
| | - Kehan Chen
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Peng Zeng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Yidan Tang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Lijuan Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Ruera CN, Perez F, Iribarren ML, Guzman L, Menendez L, Garbi L, Chirdo FG. Coexistence of apoptosis, pyroptosis, and necroptosis pathways in celiac disease. Clin Exp Immunol 2023; 214:328-340. [PMID: 37455655 PMCID: PMC10719221 DOI: 10.1093/cei/uxad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023] Open
Abstract
Usually, the massive elimination of cells under steady-state conditions occurs by apoptosis, which is also acknowledged to explain the loss of enterocytes in the small intestine of celiac disease (CD) patients. However, little is known about the role of proinflammatory cell death pathways in CD. Here, we have used confocal microscopy, western blot, and RT-qPCR analysis to assess the presence of regulated cell death pathways in the duodenum of CD patients. We found an increased number of dead (TUNEL+) cells in the lamina propria of small intestine of CD patients, most of them are plasma cells (CD138+). Many dying cells expressed FAS and were in close contact with CD3+ T cells. Caspase-8 and caspase-3 expression was increased in CD, confirming the activation of apoptosis. In parallel, caspase-1, IL-1β, and GSDMD were increased in CD samples indicating the presence of inflammasome-dependent pyroptosis. Necroptosis was also present, as shown by the increase of RIPK3 and phosphorylate MLKL. Analysis of published databases confirmed that CD has an increased expression of regulated cell death -related genes. Together, these results reveal that CD is characterized by cell death of different kinds. In particular, the presence of proinflammatory cell death pathways may contribute to mucosal damage.
Collapse
Affiliation(s)
- Carolina N Ruera
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP-CONICET-CIC) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Federico Perez
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP-CONICET-CIC) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Luz Iribarren
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP-CONICET-CIC) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luciana Guzman
- Servicio de Gastroenterología Hospital de Niños “Sor María Ludovica”, La Plata, Argentina
| | - Lorena Menendez
- Servicio de Gastroenterología Hospital de Niños “Sor María Ludovica”, La Plata, Argentina
| | - Laura Garbi
- Servicio de Gastroenterología, HospitalSan Martin, La Plata, Argentina
| | - Fernando G Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), (UNLP-CONICET-CIC) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
21
|
Krishnan RP, Pandiar D, Ramani P, Jayaraman S. Necroptosis in human cancers with special emphasis on oral squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101565. [PMID: 37459966 DOI: 10.1016/j.jormas.2023.101565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 11/06/2023]
Abstract
Necroptosis is a type of caspase independent 'programmed or regulated' necrotic cell death that has a morphological resemblance to necrosis and mechanistic analogy to apoptosis. This type of cell death requires RIPK1, RIPK3, MLKL, death receptors, toll like receptors, interferons, and various other proteins. Necroptosis is implicated in plethora of diseases like rheumatoid arthritis, Alzheimer's disease, Crohn's disease, and head and neck cancers including oral squamous cell carcinoma. Oral carcinomas show dysregulation or mutation of necroptotic proteins, mediate antitumoral immunity, activate immune response and control tumor progression. Necroptosis is known to play a dual role (pro tumorigenic and anti-tumorigenic) in cancer progression and targeting this pathway could be an effective approach in cancer therapy. Necroptosis based chemotherapy has been proposed in malignancies, highlighting the importance of necroptotic pathway to overcome apoptosis resistance and serve as a "fail-safe" pathway to modulate cancer initiation, progression, and metastasis. However, there is dearth of information regarding the use of necroptotic cell death mechanism in the treatment of oral squamous cell carcinoma. In this review, we summarise molecular mechanism of necroptosis, and its protumorigenic and antitumorigenic role in cancers to shed light on the possible therapeutic significance of necroptosis in oral squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Deepak Pandiar
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu.
| |
Collapse
|
22
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
23
|
Fu Q, Yi B, Su Q, Huang Y, Wang L, Zhang Z. A prognostic risk model for programmed cell death and revealing TRIB3 as a promising apoptosis suppressor in renal cell carcinoma. Aging (Albany NY) 2023; 15:13213-13238. [PMID: 38006403 DOI: 10.18632/aging.205237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
Programmed cell death (PCD), a common modality of cell death, affects tumor development and acts as a target for tumor therapeutics. Many modalities of PCD regulate genesis, progression and metastasis of cancers, thus affecting the patients' prognosis, but the comprehensive molecular mechanisms of PCD in tumors are lacking, especially in renal cancer. Here, seventeen PRPCDGs were identified from 1257 genes associated with thirteen PCD modalities, which were highly differentially expressed and significantly affected patients' prognosis. Then, LASSO regression analysis of these PRPCDGs screened the 9-gene PRPCDGs risk signature in TCGA-KIRC database. The PRPCDGs risk signature was closely associated with the patients' prognosis and presented stable prediction efficacy for 5- and 7-year overall survival (OS) in three different cohorts of renal cancer. Immune cell infiltration, immune checkpoint expression and pathway enrichment (including GO, KEGG pathway, tumor-associated pathways and metabolism-associated pathways) were significantly different in the high- or low-PRPCDGs-risk group. Finally, we illustrated that TRIB3 might be a protumor factor responsible for the elevated proliferation and invasion capacities of renal cell carcinoma (RCC) cells. In summary, the PRPCDGs risk signature was developed and showed stable prediction efficacy for the prognosis of patients and that (such as TRIB3) could be a potential target for RCC management.
Collapse
Affiliation(s)
- Qingfeng Fu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Bocun Yi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qiang Su
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yue Huang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lin Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
24
|
Białczyk A, Wełniak A, Kamińska B, Czajkowski R. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review. Mol Diagn Ther 2023; 27:723-739. [PMID: 37737953 PMCID: PMC10590312 DOI: 10.1007/s40291-023-00672-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Vitiligo is a chronic skin disorder characterised by the loss of melanocytes and subsequent skin depigmentation. Although many theories have been proposed in the literature, none alone explains the pathogenesis of vitiligo. Oxidative stress has been identified as a potential factor in the pathogenesis of vitiligo. A growing body of evidence suggests that antioxidant therapies may offer a promising approach to managing this condition. This review summarises the potential mechanisms of oxidative stress and the types of melanocyte death in vitiligo. We also provide a brief overview of the most commonly studied antioxidants. Melanocytes in vitiligo are thought to be damaged by an accumulation of reactive oxygen species to destroy the structural and functional integrity of their DNA, lipids, and proteins. Various causes, including exogenous and endogenous stress factors, an imbalance between prooxidants and antioxidants, disruption of antioxidant pathways, and gene polymorphisms, lead to the overproduction of reactive oxygen species. Although necroptosis, pyroptosis, ferroptosis, and oxeiptosis are newer types of cell death that may contribute to the pathophysiology of vitiligo, apoptosis remains the most studied cell death mechanism in vitiligo. According to studies, vitamin E helps to treat lipid peroxidation of the skin caused by psoralen ultra-violet A treatment. In addition, Polypodium leucotomos increased the efficacy of psoralen ultra-violet A or narrow-band ultraviolet B therapy. Our review provides valuable insights into the potential role of oxidative stress in pathogenesis and antioxidant-based supporting therapies in treating vitiligo, offering a promising avenue for further research and the development of effective treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Białczyk
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland.
| | - Adam Wełniak
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Barbara Kamińska
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
25
|
Khaleque MA, Kim JH, Hwang BJ, Kang JK, Quan M, Kim YY. Role of Necroptosis in Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:15292. [PMID: 37894970 PMCID: PMC10607531 DOI: 10.3390/ijms242015292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Apoptosis has historically been considered the primary form of programmed cell death (PCD) and is responsible for regulating cellular processes during development, homeostasis, and disease. Conversely, necrosis was considered uncontrolled and unregulated. However, recent evidence has unveiled the significance of necroptosis, a regulated form of necrosis, as an important mechanism of PCD alongside apoptosis. The activation of necroptosis leads to cellular membrane disruption, inflammation, and vascularization. This process is crucial in various pathological conditions, including intervertebral disc degeneration (IVDD), neurodegeneration, inflammatory diseases, multiple cancers, and kidney injury. In recent years, extensive research efforts have shed light on the molecular regulation of the necroptotic pathway. Various stimuli trigger necroptosis, and its regulation involves the activation of specific proteins such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like (MLKL) pseudokinase. Understanding the intricate mechanisms governing necroptosis holds great promise for developing novel therapeutic interventions targeting necroptosis-associated IVDD. The objective of this review is to contribute to the growing body of scientific knowledge in this area by providing a comprehensive overview of necroptosis and its association with IVDD. Ultimately, these understandings will allow the development of innovative drugs that can modulate the necroptotic pathway, offering new therapeutic avenues for individuals suffering from necroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea; (M.A.K.); (J.-H.K.); (B.-J.H.); (J.-K.K.); (M.Q.)
| |
Collapse
|
26
|
Zhang J, Cao J, Qian J, Gu X, Zhang W, Chen X. Regulatory mechanism of CaMKII δ mediated by RIPK3 on myocardial fibrosis and reversal effects of RIPK3 inhibitor GSK'872. Biomed Pharmacother 2023; 166:115380. [PMID: 37639745 DOI: 10.1016/j.biopha.2023.115380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Myocardial fibrosis (MF) remains a prominent challenge in heart disease. The role of receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is evident in the pathogenesis of numerous heart diseases. Concurrently, the activation of Ca2+/calmodulin-dependent protein kinase (CaMKII) is pivotal in cardiovascular disease (CVD). This study aimed to evaluate the impact and underlying mechanisms of RIPK3 on myocardial injury in MF and to elucidate the potential involvement of CaMKII. METHODS Building upon our previous research methods [1], wild-type (WT) mice and RIPK3 knockout (RIPK3 -/-) mice underwent random assignment for transverse aortic constriction (TAC) in vivo. Four weeks post-procedure, the MF model was effectively established. Parameters such as the extent of MF, myocardial injury, RIPK3 expression, necroptosis, CaMKII activity, phosphorylation of mixed lineage kinase domain-like protein (MLKL), mitochondrial ultrastructural details, and oxidative stress levels were examined. Cardiomyocyte fibrosis was simulated in vitro using angiotensin II on cardiac fibroblasts. RESULTS TAC reliably produced MF, myocardial injury, CaMKII activation, and necroptosis in mice. RIPK3 depletion ameliorated these conditions. The RIPK3 inhibitor, GSK'872, suppressed the expression of RIPK3 in myocardial fibroblasts, leading to improved fibrosis and inflammation, diminished CaMKII oxidation and phosphorylation levels, and the rectification of CaMKIIδ alternative splicing anomalies. Furthermore, GSK'872 downregulated the expressions of RIPK1, RIPK3, and MLKL phosphorylation, attenuated necroptosis, and bolstered the oxidative stress response. CONCLUSIONS Our data suggested that in MF mice, necroptosis was augmented in a RIPK3-dependent fashion. There seemed to be a positive correlation between CaMKII activation and RIPK3 expression. The adverse effects on myocardial fibrosis mediated by CaMKII δ through RIPK3 could potentially be mitigated by the RIPK3 inhibitor, GSK'872. This offered a fresh perspective on the amelioration and treatment of MF and myocardial injury.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China; School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Ji Cao
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianan Qian
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaosong Gu
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China; School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| | - Xianfan Chen
- Department of Pharmacy,Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
27
|
Rathje OH, Perryman L, Payne RJ, Hamprecht DW. PROTACs Targeting MLKL Protect Cells from Necroptosis. J Med Chem 2023; 66:11216-11236. [PMID: 37535857 DOI: 10.1021/acs.jmedchem.3c00665] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mixed Lineage Kinase domain-Like pseudokinase (MLKL) is implicated in a broad range of diseases due to its role as the ultimate effector of necroptosis and has therefore emerged as an attractive drug target. Here, we describe the development of PROteolysis TArgeting Chimeras (PROTACs) as a novel approach to knock down MLKL through chemical means. A series of candidate degraders were synthesized from a high-affinity pyrazole carboxamide-based MLKL ligand leading to the identification of a PROTAC molecule that effectively degraded MLKL and completely abrogated cell death in a TSZ model of necroptosis. By leveraging the innate ability of these PROTACs to degrade MLKL in a dose-dependent manner, the quantitative relationship between MLKL levels and necroptosis was interrogated. This work demonstrates the feasibility of targeting MLKL using a PROTAC approach and provides a powerful tool to further our understanding of the role of MLKL within the necroptotic pathway.
Collapse
Affiliation(s)
- Oliver H Rathje
- Pharmaxis Ltd., 20 Rodborough Road, Frenchs Forest, NSW 2086, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lara Perryman
- Pharmaxis Ltd., 20 Rodborough Road, Frenchs Forest, NSW 2086, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
28
|
Li X, Wang S, Duan S, Long L, Zhuo L, Peng Y, Xiong Y, Li S, Peng X, Yan Y, Wang Z, Jiang W. Exploring the Therapeutic Effects of Multifunctional N-Salicylic Acid Tryptamine Derivative against Parkinson's Disease. ACS OMEGA 2023; 8:28910-28923. [PMID: 37576637 PMCID: PMC10413456 DOI: 10.1021/acsomega.3c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Neuroinflammation and oxidative stress play an important role in the whole course of PD, which have been the focus of PD drug development. In our previous research, a series of N-salicylic acid tryptamine derivatives were synthesized, and the biological evaluation showed that the compound LZWL02003 has good anti-neuroinflammatory activity and displayed great therapeutic potency for neurodegenerative disease models. In this work, the neuroprotective efficiency of LZWL02003 against PD in vitro and in vivo has been explored. It was found that LZWL02003 could protect human neuron cells SH-SY5Y from MPP+-induced neuronal damage by inhibiting ROS generation, mitochondrial dysfunction, and cellular apoptosis. Moreover, LZWL02003 could improve cognition, memory, learning, and athletic ability in a rotenone-induced PD rat model. In general, our study has demonstrated that LZWL02003 has good activity against PD in in vitro and in vivo experiments, which can potentially be developed into a therapeutic candidate for PD.
Collapse
Affiliation(s)
- Xuelin Li
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- The
First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuzhi Wang
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shan Duan
- The
First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lin Long
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Linsheng Zhuo
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yan Peng
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yongxia Xiong
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuang Li
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Xue Peng
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yiguo Yan
- The
First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Zhen Wang
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- The
First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Weifan Jiang
- School
of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
29
|
Gupta A, Chakole S, Agrawal S, Khekade H, Prasad R, Lohakare T, Wanjari M. Emerging Insights Into Necroptosis: Implications for Renal Health and Diseases. Cureus 2023; 15:e43609. [PMID: 37719475 PMCID: PMC10504449 DOI: 10.7759/cureus.43609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Necroptosis is a regulated form of cell death that has gained increasing attention in recent years. It plays a significant role in various physiological and pathological processes, including renal health and disease. This review article provides an overview of necroptosis as a regulated cell death pathway and explores its implications in renal physiology and renal diseases. The molecular signaling pathways involved in necroptosis, including the key players such as receptor-interacting protein kinases (RIPKs) and mixed lineage kinase domain-like protein (MLKL), are discussed in detail. The crosstalk between necroptosis and other cell death pathways, particularly apoptosis, is explored to understand the interplay between these processes in renal cells. In normal physiological conditions, necroptosis has been found to play a crucial role in renal development and tissue homeostasis. However, dysregulated necroptosis can contribute to tissue damage, inflammation, and fibrosis in renal diseases. The review highlights the involvement of necroptosis in acute kidney injury, chronic kidney disease, and renal transplant rejection, elucidating the underlying pathophysiological mechanisms and consequences. The therapeutic targeting of necroptosis in renal diseases is an emerging area of interest. Current and emerging strategies to modulate necroptosis, including the inhibition of key mediators and regulators, are discussed here. Additionally, the potential therapeutic targets and inhibitors of necroptosis, along with preclinical and clinical studies exploring their efficacy, are reviewed.
Collapse
Affiliation(s)
- Anannya Gupta
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshal Khekade
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Child Health Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Wardha, IND
| | - Mayur Wanjari
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
30
|
Wang E, Zhou S, Zeng D, Wang R. Molecular regulation and therapeutic implications of cell death in pulmonary hypertension. Cell Death Discov 2023; 9:239. [PMID: 37438344 DOI: 10.1038/s41420-023-01535-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a clinical and pathophysiological syndrome caused by changes in pulmonary vascular structure or function that results in increased pulmonary vascular resistance and pulmonary arterial pressure, and it is characterized by pulmonary endothelial dysfunction, pulmonary artery media thickening, pulmonary vascular remodeling, and right ventricular hypertrophy, all of which are driven by an imbalance between the growth and death of pulmonary vascular cells. Programmed cell death (PCD), different from cell necrosis, is an active cellular death mechanism that is activated in response to both internal and external factors and is precisely regulated by cells. More than a dozen PCD modes have been identified, among which apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and cuproptosis have been proven to be involved in the pathophysiology of PH to varying degrees. This article provides a summary of the regulatory patterns of different PCD modes and their potential effects on PH. Additionally, it describes the current understanding of this complex and interconnected process and analyzes the therapeutic potential of targeting specific PCD modes as molecular targets.
Collapse
Affiliation(s)
- Enze Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei third clinical college of Anhui Medical University, Hefei, 230022, China
| | - Daxiong Zeng
- Department of pulmonary and critical care medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215006, China.
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei, 230022, China.
| |
Collapse
|
31
|
Prasad Panda S, Kesharwani A, Prasanna Mallick S, Prasanth D, Kumar Pasala P, Bharadwaj Tatipamula V. Viral-induced neuronal necroptosis: Detrimental to brain function and regulation by necroptosis inhibitors. Biochem Pharmacol 2023; 213:115591. [PMID: 37196683 DOI: 10.1016/j.bcp.2023.115591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Neuronal necroptosis (programmed necrosis) in the CNS naturally occurs through a caspase-independent way and, especially in neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parknson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and viral infections. Understanding necroptosis pathways (death receptor-dependent and independent), and its connections with other cell death pathways could lead to new insights into treatment. Receptor-interacting protein kinase (RIPK) mediates necroptosis via mixed-lineage kinase-like (MLKL) proteins. RIPK/MLKL necrosome contains FADD, procaspase-8-cellular FLICE-inhibitory proteins (cFLIPs), RIPK1/RIPK3, and MLKL. The necrotic stimuli cause phosphorylation of MLKL and translocate to the plasma membrane, causing an influx of Ca2+ and Na+ ions and, the immediate opening of mitochondrial permeability transition pore (mPTP) with the release of inflammatory cell damage-associated molecular patterns (DAMPs) like mitochondrial DNA (mtDNA), high-mobility group box1 (HMGB1), and interleukin1 (IL-1). The MLKL translocates to the nucleus to induce transcription of the NLRP3 inflammasome complex elements. MLKL-induced NLRP3 activity causes caspase-1 cleavage and, IL-1 activation which promotes neuroinflammation. RIPK1-dependent transcription increases illness-associated microglial and lysosomal abnormalities to facilitate amyloid plaque (Aβ) aggregation in AD. Recent research has linked neuroinflammation and mitochondrial fission with necroptosis. MicroRNAs (miRs) such as miR512-3p, miR874, miR499, miR155, and miR128a regulate neuronal necroptosis by targeting key components of necroptotic pathways. Necroptosis inhibitors act by inhibiting the membrane translocation of MLKL and RIPK1 activity. This review insights into the RIPK/MLKL necrosome-NLRP3 inflammasome interactions during death receptor-dependent and independent neuronal necroptosis, and clinical intervention by miRs to protect the brain from NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, Andhrapradesh, India
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | | | - Vinay Bharadwaj Tatipamula
- Center for Molecular Biology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| |
Collapse
|
32
|
Otręba M, Stojko J, Rzepecka-Stojko A. Phenothiazine derivatives and their impact on the necroptosis and necrosis processes. A review. Toxicology 2023; 492:153528. [PMID: 37127180 DOI: 10.1016/j.tox.2023.153528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
The current review focuses on the effect of phenothiazine derivatives, tested in vitro, on necrosis and necroptosis, the latter constitutes one of the kinds of programmed cell death. Necroptosis is a necrotic and inflammatory type of programmed cell death. Phenothiazines are D1 and D2-like family receptor antagonists, which are used in the treatment of schizophrenia. Necroptosis begins from TNF-α, whose synthesis is stimulated by dopamine receptors, thus it can be concluded that phenothiazine derivatives may modulate necroptosis. We identified 19 papers reporting in vitro assays of necroptosis and necrosis in which phenothiazine derivatives, and both normal and cancer cell lines were used. Chlorpromazine, fluphenazine, levomepromazine, perphenazine, promethazine, thioridazine, trifluoperazine, and novel derivatives can modulate necroptosis and necrosis. The type of a drug, concentration and a cell line have an impact on the ultimate effect. Unfortunately, the authors confirmed both processes on the basis of TNF-α and ATP levels as well as the final steps of necrosis/necroptosis related to membrane permeability (PI staining, LDH release, and HMGB1 amount), which makes it impossible to understand the complete mechanism of phenothiazines impact on necroptosis and necrosis. Studies analyzing the effect of phenothiazines on RIPK1, RIPK3, or MLKL has not been performed yet. Only the analysis of the expression of those proteins as well as necrosis and necroptosis inhibitors can help us to comprehend how phenothiazine derivatives act, and how to improve their therapeutic potential.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, 41-200 Sosnowiec, Poland.
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogorska 30, 41-200 Sosnowiec, Poland.
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jednosci 8, 41-200 Sosnowiec, Poland.
| |
Collapse
|