1
|
Saleh NS, El-Sayed NNE, Saleh OA, Allam HA, Mohamed NM, Abbas SES, Said MF. 6,7-Dimethoxy-2-methyl-4-substituted quinazolines: Design, synthesis, EGFR inhibitory activity, in vitro cytotoxicity, and in silico studies. Eur J Med Chem 2025; 290:117502. [PMID: 40120497 DOI: 10.1016/j.ejmech.2025.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Six series of 2,4,6,7-tetrasubstituted quinazolines 4a-c, 6a-c, 8a-c, 10a-d, 13a-d along with quinazoline-tetrahydropyrimidine hybrids 15a-c were designed and synthesized based on keeping the essential key binding pattern of some EGFR inhibitors to appraise their EGFR inhibition and anticancer activity. Twelve compounds out of twenty displayed a significant EGFR inhibition in a subnanomolar level (IC50 = 0.143-0.946 nM) compared to afatinib (IC50 = 0.102 nM). The most potent derivatives 4a, 6c, 8b, 13a and 15b (IC50 = 0.143-0.313 nM) were further screened for their anticancer activity against lung (A549) and colon (HCT116) cancer cell lines, in addition to, normal fibroblast cells (WI-38). It was found that, compounds 6c and 13a show a nearly equipotent to superior cytotoxicity towards (A549) (IC50 = 0.020 and 0.006 μM; respectively) and (IC50 = 0.020 and 0.038 μM; respectively) against HCT116 in comparison to afatinib (IC50 = 0.025 and 0.030 μM; respectively). Also, compounds 6c and 13a caused a cell cycle arrest at S phase and induced apoptosis in A549 and HCT116; respectively. Moreover, in silico studies clarified the binding pattern of the potent compounds in EGFR enzyme active site and confirmed their ability to gratify the structural features meted for binding and rationalized their selectivity. Furthermore, the most active candidates possess promising predicted pharmacokinetic properties.
Collapse
Affiliation(s)
- Nermin S Saleh
- Egyptian Drug Authority (EDA), 51 Wezaret El-Zeraa St., Giza, 35521, Egypt
| | - Nahed N E El-Sayed
- Egyptian Drug Authority (EDA), 51 Wezaret El-Zeraa St., Giza, 35521, Egypt
| | - Ola A Saleh
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical Industries Research Institute, National Research Centre, Egypt
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Kasr El-Aini Street, Cairo, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo, Egypt
| | - Safinaz E-S Abbas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Kasr El-Aini Street, Cairo, Egypt
| | - Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Kasr El-Aini Street, Cairo, Egypt.
| |
Collapse
|
2
|
Abdulaziz O, Khan FR, Alharthi NS, Alhuthali HM, Hazazi A, Alzahrani HA, Gharib AF, Alsalmi OA, Hawsawi NM, Alhazmi AY. Computational insights into overcoming resistance mechanisms in targeted therapies for advanced breast cancer: focus on EGFR and HER2 co-inhibition. J Biomol Struct Dyn 2025; 43:4215-4226. [PMID: 38234016 DOI: 10.1080/07391102.2024.2301766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/30/2023] [Indexed: 01/19/2024]
Abstract
In the present study, the formation of a heterodimer involving both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) has been explored as a potential therapeutic mechanism to inhibit the progression of breast cancer. Virtual screening using molecular docking resulted in the three hit compounds (ZINC08382411, ZINC08382438, and ZINC08382292) with minimum binding scores and commonly binding to both receptors. Further, MD simulation analysis of these complexes illustrated the high stability of these compounds with EGFR and HER2. RMSD showed that ZINC08382411 displayed the most stable RMSD of 2 - 3 Å when bound to both receptors, suggesting to have strong compatibility with the active site of the receptor. Hydrogen bond analysis showed that ZINC08382411 forms the maximum number of H-bonds (2 to 3) in both EGFR and HER2 bound complexes, with the highest occupancy of 62% and 79%, respectively. Binding free energy calculation showed that ZINC08382411 possesses maximum affinity towards both the receptors with ΔGbind = -129.628 and -164.063 kJ/mol, respectively. This approach recognizes the significance of EGFR and HER2 in breast cancer development and aims to disrupt their collaborative signaling, which is known to promote the antagonistic behavior of cancer cells. By focusing on this EGFR/HER2 heterodimer, the study offers a promising avenue for identifying a potential candidate (ZINC08382411) that may inhibit breast cancer cell growth and potentially improve patient outcomes. The study's findings may contribute to the ongoing efforts to advance breast cancer treatment strategies.
Collapse
Affiliation(s)
- Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif Province, Kingdom of Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Science,College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Kingdom of Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Hind A Alzahrani
- Department of Basic Sciences, College of Applied of Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ohud A Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Nahed M Hawsawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulfattah Y Alhazmi
- Pharmaceutical Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Topalan E, Büyükgüngör A, Çiğdem M, Güra S, Sever B, Otsuka M, Fujita M, Demirci H, Ciftci H. A Structural Insight Into Two Important ErbB Receptors (EGFR and HER2) and Their Relevance to Non-Small Cell Lung Cancer. Arch Pharm (Weinheim) 2025; 358:e2400992. [PMID: 40194950 PMCID: PMC11975551 DOI: 10.1002/ardp.202400992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
The epidermal growth factor receptor (EGFR) family, comprising receptor tyrosine kinases (RTK) such as EGFR and HER2, plays a critical role in various signaling pathways related to cell proliferation, differentiation, and growth. EGFR overactivation due to aberrant signaling can lead to various cancers, including non-small cell lung cancer (NSCLC). To develop treatment for EGFR-related NSCLC, several tyrosine kinase inhibitors (TKIs) were designed: gefitinib, erlotinib, as first-generation; neratinib, dacomitinib as second-generation; osimertinib, lazertinib as third-generation, as examples. However, due to the acquired resistance by the mutations such as EGFRT790M and EGFRC797S together with the exon 20 insertion mutations, these drugs do not provide promising results for NSCLC patients. The development of fourth-generation inhibitors like EAI045 and further innovative drugs to overcome this resistance problem is a must to cure EGFR-related NSCLC. Among these, pyrazoline-thiazole scaffolds are found effective as EGFR-HER2 inhibitors against NSCLC, making them promising drug candidates. Although structures obtained so far for the EGFR family provide meaningful insights into the mechanisms, the quality and the quantity of the EGFR family structures are insufficient to elucidate the complete structures and functions to overcome NSCLC. This review evaluates the structures of EGFR-HER2 and investigates their relation to NSCLC.
Collapse
Affiliation(s)
- Edanur Topalan
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
| | - Ahmet Büyükgüngör
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityIstanbulTürkiye
| | - Melih Çiğdem
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Sinan Güra
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
- Graduate School of Biology & HealthUniversité Paris SaclayOrsayFrance
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of PharmacyAnadolu UniversityEskisehirTürkiye
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Drug DiscoveryScience Farm Ltd.KumamotoJapan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Hasan Demirci
- Department of Molecular Biology and GeneticsKoc UniversityIstanbulTürkiye
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of Drug DiscoveryScience Farm Ltd.KumamotoJapan
- Department of Molecular Biology and GeneticsMehmet Akif Ersoy UniversityBurdurTürkiye
- Department of Bioengineering SciencesIzmir Katip Celebi UniversityIzmirTürkiye
| |
Collapse
|
4
|
Kashif M. Gene expression profiling to uncover prognostic and therapeutic targets in colon cancer, combined with docking and dynamics studies to discover potent anticancer inhibitor. Comput Biol Chem 2025; 115:108349. [PMID: 39813876 DOI: 10.1016/j.compbiolchem.2025.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Drug resistance poses a major obstacle to the efficient treatment of colorectal cancer (CRC), which is one of the cancers that kill people most often in the United States. Advanced colorectal cancer patients frequently pass away from the illness, even with advancements in chemotherapy and targeted therapies. Developing new biomarkers and therapeutic targets is essential to enhancing prognosis and therapy effectiveness. My goal in this study was to use bioinformatics analysis of microarray data to find possible biomarkers and treatment targets for colorectal cancer. Using an ArrayExpress database, I examined a dataset on colon cancer to find genes that were differentially expressed (DEGs) in tumor versus healthy tissues. Integration of advanced bioinformatics tools provided robust insights into the identification and analysis of EGFR as a key player. STRING and Cytoscape enabled the construction and visualization of protein-protein interaction networks, highlighting EGFR as a hub gene due to its centrality and interaction profile. Functional enrichment analysis through DAVID revealed EGFR's involvement in critical biological pathways, as identified in GO and KEGG analyses. This underscores the power of combining computational tools to uncover significant biomarkers like EGFR. Autodock Vina screening of the NCI diversity dataset identified two potential EGFR inhibitors, ZINC13597410 and ZINC04896472. MD simulation data revealed that ZINC04896472 could be potential anticancer inhibitor. These findings serve as a basis for the creation of novel therapeutic approaches that target EGFR and other discovered pathways in CRC. The suggested strategy may improve the efficacy of CRC therapy and advance personalized medicine.
Collapse
Affiliation(s)
- Mohammad Kashif
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Apalla Z, Freites‐Martinez A, Grafanaki K, Ortiz‐Brugues A, Nikolaou V, Fattore D, Sollena P, Deverapalli S, Babakoohi S, Galimont A, Kluger N, Beylot‐Barry M, Larocca C, Iriarte C, Smith J, Tattersall I, Dodiuk‐Gad R, Sauder M, Carrera C, Kwong B, Whitley M, Leboeuf N, Romano P, Starace M, Mateeva V, Riganti J, Hirner J, Patel AB, Reyes‐Habito CM, Kraehenbuehl L, Kheterpal M, Fida M, Hassel J, Lacouture M, Sibaud V. Management of human epidermal growth factor receptor inhibitors-related acneiform rash: A position paper based on the first Europe/USA Delphi consensus process. J Eur Acad Dermatol Venereol 2025; 39:730-741. [PMID: 39460590 PMCID: PMC11934016 DOI: 10.1111/jdv.20391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND There is a need for unified guidance in the management of acneiform rash induced by epidermal growth factor receptor inhibitors (EGFRi) among dermatologists. OBJECTIVE To establish unified international guidelines for the management of acneiform rash caused by EGFR inhibitors, based on an experts' Delphi consensus. METHODS The initiative was led by five members of the European Academy of Dermatology and Venereology Task Force 'Dermatology for Cancer Patients' who developed a questionnaire that was circulated to a group of 32 supportive oncodermatology experts in Europe, Canada, Argentina, the US States and Asia. The questionnaire consisted of 84 statements in total, regarding diagnosis and treatment of EGFRi-induced acneiform rash. Experts responded to an anonymous 5-point Likert scale survey. The coordinators collected the first-round responses that were checked for consensus (≥75% agreement in positive [agree or strongly agree] or in negative [disagree or strongly disagree] vote). The statements that did not reach strong consensus in the first round were revised, according to experts' feedback, for a second-round survey. RESULTS Strong consensus was reached in 75/84 (89.3%) of the statements, whilst moderate consensus was achieved in 6/84 elements. Key points include consideration of low-dose isotretinoin for refractory grade II/III acneiform rash, use of topical steroid-sparing agents like topical pimecrolimus in the maintenance phase and use of doxycycline in either 100 or 200 mg per day as prophylactic treatment. Interestingly, experts did not recommend topical antibiotics, neither for prevention, nor for treatment. Consensus failure in 3/84 objects is mostly related to the lack of robust data on these topics. CONCLUSION This consensus offers crucial insights often overlooked by radiotherapists, general practitioners, dermatologists and oncologists, and it is expected to improve the management of oncologic patients treated with EGFRi in different settings and continents.
Collapse
Affiliation(s)
- Z. Apalla
- Second Dermatology DepartmentAristotle University of ThessalonikiThessalonikiGreece
| | - A. Freites‐Martinez
- Dermatology ServiceHospital Ruber Juan Bravo, and Universidad EuropeaMadridSpain
| | - K. Grafanaki
- Dermatology DepartmentMedical School of University of PatrasRioGreece
| | - A. Ortiz‐Brugues
- Oncodermatology DepartmentCancer University Institute, Toulouse OncopoleToulouseFrance
| | - V. Nikolaou
- First Dermatology DepartmentNational and Kapodistrian University of AthensAthensGreece
| | - D. Fattore
- Section of Dermatology, Department of Clinical Medicine and SurgeryUniversity of Naples Federico IINaplesItaly
| | - P. Sollena
- Dermatologia, Dipartimento di Scienze Mediche e ChirurgicheFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - S. Deverapalli
- Tufts Medical Center Department of DermatologyBostonMassachusettsUSA
| | - S. Babakoohi
- Atrium Health Levine Cancer InstituteWake Forest School of MedicineCharlotteNorth CarolinaUSA
| | - A. Galimont
- Dermatology DepartmentBravis HospitalBergen op ZoomThe Netherlands
| | - N. Kluger
- Department of Dermatology, Allergology and VenereologyUniversity of HelsinkiHelsinkiFinland
| | - M. Beylot‐Barry
- Department of DermatologyUniversity of BordeauxBordeauxFrance
| | - C. Larocca
- Department of DermatologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - C. Iriarte
- Department of DermatologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - J. Smith
- UC Irvine School of MedicineIrvineCaliforniaUSA
| | - I. Tattersall
- Department of DermatologyNew York UniversityNew YorkUSA
| | - R. Dodiuk‐Gad
- Faculties of MedicineHaifaIsrael
- University of TorontoTorontoCanada
- Dermatology DepartmentEmek Medical CenterAfulaIsrael
| | - M. Sauder
- Princess Margaret Cancer CentreTorontoOntarioCanada
- Division of Dermatology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - C. Carrera
- Dermatology DepartmentHospital Clinic and Fundació Clínic per la Recerca Biomèdica ‐ Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- University of BarcelonaBarcelonaSpain
| | - B. Kwong
- Department of DermatologyStanford UniversityPalo AltoCaliforniaUSA
| | - M. Whitley
- Department of DermatologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of DermatologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - N. Leboeuf
- Department of DermatologyBrigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Center for Cutaneous Oncology, Department of DermatologyDana Farber Cancer InstituteBostonMassachusettsUSA
| | - P. Romano
- Maria Concetta Pucci RomanoAzienda Ospedaliera S.Camillo‐ForlaniniRomaItaly
| | - M. Starace
- Dermatology UnitIRCCS Azienda Ospedaliero‐Universitaria Di BolognaBolognaItaly
| | - V. Mateeva
- Department of Dermatology and VenereologyMedical University – SofiaSofiaBulgaria
| | - J. Riganti
- Department of DermatologyHospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos AiresBuenos AiresArgentina
| | - J. Hirner
- Department of DermatologyUniversity of Missouri Health CareColumbiaUSA
| | - A. B. Patel
- Department of DermatologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | | - L. Kraehenbuehl
- Department of DermatologyUniversity Hospital Zurich (USZ)ZürichSwitzerland
| | - M. Kheterpal
- Department of DermatologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - M. Fida
- Dermatology DepartmentUniversity of Medicine of TiranaTiranaAlbania
| | - J. Hassel
- Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg (A Partnership Between DKFZ and University Hospital Heidelberg, Heidelberg, Germany on behalf of the DECOG Committee Side Effects)Heidelberg UniversityHeidelbergGermany
| | - M. Lacouture
- Dermatology Service, Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - V. Sibaud
- Oncodermatology DepartmentCancer University Institute, Toulouse OncopoleToulouseFrance
| |
Collapse
|
6
|
Ishida S, Sato T, Honma T, Terayama K. Large language models open new way of AI-assisted molecule design for chemists. J Cheminform 2025; 17:36. [PMID: 40128788 PMCID: PMC11934680 DOI: 10.1186/s13321-025-00984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Recent advancements in artificial intelligence (AI)-based molecular design methodologies have offered synthetic chemists new ways to design functional molecules with their desired properties. While various AI-based molecule generators have significantly advanced toward practical applications, their effective use still requires specialized knowledge and skills concerning AI techniques. Here, we develop a large language model (LLM)-powered chatbot, ChatChemTS, that assists users in designing new molecules using an AI-based molecule generator through only chat interactions, including automated construction of reward functions for the specified properties. Our study showcases the utility of ChatChemTS through de novo design cases involving chromophores and anticancer drugs (epidermal growth factor receptor inhibitors), exemplifying single- and multiobjective molecule optimization scenarios, respectively. ChatChemTS is provided as an open-source package on GitHub at https://github.com/molecule-generator-collection/ChatChemTS . Scientific contribution ChatChemTS is an open-source application that assists users in utilizing an AI-based molecule generator, ChemTSv2, solely through chat interactions. This study demonstrates that LLMs possess the potential to utilize advanced software, such as AI-based molecular generators, which require specialized knowledge and technical skills.
Collapse
Affiliation(s)
- Shoichi Ishida
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- MolNavi LLC, #402 Wizard building 1-4-3 Sengen-cho Nishi-ku, Yokohama, Kanagawa, 220-0072, Japan.
| | - Tomohiro Sato
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Teruki Honma
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- MolNavi LLC, #402 Wizard building 1-4-3 Sengen-cho Nishi-ku, Yokohama, Kanagawa, 220-0072, Japan.
- RIKEN Center for Advanced Intelligence Project, 1-4-1, Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.
- MDX Research Center for Element Strategy, Institute of Science Tokyo, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
7
|
Anaya YA, Bracho RP, Chauhan SC, Tripathi MK, Bandyopadhyay D. Small Molecule B-RAF Inhibitors as Anti-Cancer Therapeutics: Advances in Discovery, Development, and Mechanistic Insights. Int J Mol Sci 2025; 26:2676. [PMID: 40141317 PMCID: PMC11942083 DOI: 10.3390/ijms26062676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
B-RAF is a serine/threonine kinase that plays a crucial role in the MAPK signaling pathway, regulating cell proliferation and survival. Mutations in B-RAF, particularly V600E, are associated with several malignancies, including melanoma, colorectal cancer, and non-small cell lung cancer, making it a key therapeutic target. The development of B-RAF inhibitors, such as Vemurafenib, Dabrafenib, and second-generation inhibitors like Encorafenib, has led to significant advancements in targeted cancer therapy. However, acquired resistance, driven by MAPK pathway reactivation, RAF dimerization, and alternative signaling pathways, remains a major challenge. This review explores the molecular mechanisms of B-RAF inhibitors, their therapeutic efficacy, and resistance mechanisms, emphasizing the importance of combination strategies to enhance treatment outcomes. The current standard of care involves B-RAF and MEK inhibitors, with additional therapies such as EGFR inhibitors and immune checkpoint blockades showing potential in overcoming resistance. Emerging pan-RAF and brain-penetrant inhibitors offer new opportunities for treating refractory cancers, while precision medicine approaches, including genomic profiling and liquid biopsies, are shaping the future of B-RAF-targeted therapy.
Collapse
Affiliation(s)
- Yamile Abuchard Anaya
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (Y.A.A.); (R.P.B.)
- Department of Health and Human Performance, College of Health Professions, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Ricardo Pequeno Bracho
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (Y.A.A.); (R.P.B.)
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Manish K. Tripathi
- South Texas Center of Excellence in Cancer Research, McAllen, TX 78504, USA; (S.C.C.); (M.K.T.)
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, 5300 N L St., McAllen, TX 78504, USA
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (Y.A.A.); (R.P.B.)
- School of Earth Environment & Marine Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
8
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
9
|
Steinestel K, Arndt A. Current Biomarkers in Non-Small Cell Lung Cancer-The Molecular Pathologist's Perspective. Diagnostics (Basel) 2025; 15:631. [PMID: 40075878 PMCID: PMC11899415 DOI: 10.3390/diagnostics15050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Advances in tissue-based biomarkers have significantly enhanced diagnostic and therapeutic approaches in NSCLC, enabling precision medicine strategies. This review provides a comprehensive analysis of the molecular pathologist's practical approach to assessing NSCLC biomarkers across various specimen types (liquid biopsy, broncho-alveolar lavage, transbronchial biopsy/endobronchial ultrasound-guided biopsy, and surgical specimen), including challenges such as biological heterogeneity and preanalytical variability. We discuss the role of programmed death ligand 1 (PD-L1) immunohistochemistry in predicting immunotherapy response, the practice of histopathological tumor regression grading after neoadjuvant chemoimmunotherapy, and the application of DNA- and RNA-based techniques for detecting actionable molecular alterations. Finally, we emphasize the critical need for quality management to ensure the reliability and reproducibility of biomarker testing in NSCLC.
Collapse
Affiliation(s)
- Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany;
| | | |
Collapse
|
10
|
Tito C, Masciarelli S, Colotti G, Fazi F. EGF receptor in organ development, tissue homeostasis and regeneration. J Biomed Sci 2025; 32:24. [PMID: 39966897 PMCID: PMC11837477 DOI: 10.1186/s12929-025-01119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
The epidermal growth factor receptor (EGFR) is a protein embedded in the outer membrane of epithelial and mesenchymal cells, bone cells, blood and immune cells, heart cells, glia and stem neural cells. It belongs to the ErbB family, which includes three other related proteins: HER2/ErbB2/c-neu, HER3/ErbB3, and HER4/ErbB4. EGFR binds to seven known signaling molecules, including epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-α). This binding triggers the formation of receptor pairs (dimers), self-phosphorylation of EGFR, and the activation of several signaling pathways within the cell. These pathways influence various cellular processes like proliferation, differentiation, migration, and survival. EGFR plays a critical role in both development and tissue homeostasis, including tissue repair and adult organ regeneration. Altered expression of EGFR is linked to disruption of tissue homeostasis and various diseases, among which cancer. This review focuses on how EGFR contributes to the development of different organs like the placenta, gut, liver, bone, skin, brain, T cell regulation, pancreas, kidneys, mammary glands and lungs along with their associated pathologies. The involvement of EGFR in organ-specific branching morphogenesis process is also discussed. The level of EGFR activity and its impact vary across different organs. Factors as the affinity of its ligands, recycling or degradation processes, and transactivation by other proteins or environmental factors (such as heat stress and smoking) play a role in regulating EGFR activity. Understanding EGFR's role and regulatory mechanisms holds promise for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, C/O Dept. Biochemical Sciences Sapienza University of Rome, Ed. CU027, P.Le A. Moro 5, 00185, Rome, Italy.
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
11
|
Sayyad P, Jha S, Sharma R, Yadav V, Jain S. Unveiling the Potential of Nanosuspension Formulation Strategy for Improved Oral Bioavailability of Gefitinib. AAPS PharmSciTech 2025; 26:59. [PMID: 39930276 DOI: 10.1208/s12249-025-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025] Open
Abstract
Gefitinib (GB), an oral tyrosine kinase inhibitor suffers major setbacks in clinical application due to limited aqueous solubility leading to poor oral bioavailability. Nanosuspension serves as a promising formulation strategy to overcome the above-mentioned drawbacks. Hence, the present study involves the development of gefitinib nanosuspension (GB-NS) using High-pressure homogenization (HPH) to increase its aqueous solubility and maximize oral bioavailability. GB-NS was optimized by utilizing the quality-by-design strategy to optimize independent variables such as homogenization pressure, drug-to-stabilizer ratio, and number of cycles. Lecithin was found to stabilize the nanosuspension with optimal particle size, PDI, and zeta potential of 157 ± 18.77 nm, 0.296 ± 0.040, and -33.25 respectively. Intriguingly, a drug-to-stabilizer ratio significantly influenced (p < 0.005) particle size and PDI, establishing its crucial role in optimization. The morphological characterization by SEM of GB-NS revealed a rod-shaped structure. Thereafter, the thermal and powder X-ray analysis depicted the crystalline nature of gefitinib in GB-NS. Additionally, GB-NS exhibited enhanced saturation solubility (~ 2.4- and ~ 3.4-fold) and dissolution rate (~ 2.5- and ~ 3.5-fold) compared to pure GB in 0.1 N HCl and PBS 6.8 respectively. GB-NS remained stable under both storage conditions ( 25°C and 4°C). Finally, the pharmacokinetic study depicted a considerable increase in Cmax (~ 2.84-fold) and AUC(0-t) (~ 3.87-fold) of GB-NS when compared to free GB. Therefore, developed formulations showed a competent solution for enhancing the oral bioavailability of poor water-soluble drugs.
Collapse
Affiliation(s)
- Parvez Sayyad
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India
| | - Shikha Jha
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India
| | - Reena Sharma
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
12
|
Luján-Méndez F, García-López P, Berumen LC, García-Alcocer G, Ferriz-Martínez R, Ramírez-Carrera A, González-Barrón J, García-Gasca T. Phaseolus acutifolius Recombinant Lectin Exerts Differential Proapoptotic Activity on EGFR + and EGFR - Colon Cancer Cells and Provokes T Cell-Assisted Antitumor Responses in Mice. Pharmaceuticals (Basel) 2025; 18:213. [PMID: 40006027 PMCID: PMC11858825 DOI: 10.3390/ph18020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Background:rTBL-1, a recombinant lectin from Phaseolus acutifolius, exhibit proapoptotic activity on colon cancer cells and inhibitory properties on colon tumorigenesis in vivo. Apoptosis has been associated with a phospho-EGFR/phospho-p38/phospho-p53 mechanistic axis. Immunogenicity data have been observed in treated animals, but its possible involvement in the antitumor response remained unexplored. Objective: We investigated whether the cytotoxic activity of rTBL-1 depends on EGFR and its capacity to produce antitumor responses on syngeneic colon cancer in mice, with and without T cells, in order to explore its possible involvement in the process. Results:rTBL-1 exhibited cytotoxic effects in a concentration-dependent manner in both EGFR+ (MC-38) and EGFR- (CT-26) colon cancer cells with LC50 values of 23.50 and 30.01 µg/mL, respectively (p = 0.063). Apoptotic effects were slower and longer-lasting in MC-38 than in CT-26 cells. Significant increases in caspase-3 proteolytic activation and PARP1 cleavage were detected in both cell types, despite PARP1 rheostasis in CT-26 cells. Intralesional treatment with rTBL-1 inhibited the growth of established tumors in immunocompetent BALB/c mice in 27.81% (p = 0.0008) with a benefit in survival (p = 0.022), but not in immunodeficient BALB/c nude mice. Conclusions:rTBL-1 induces apoptosis in colon cancer cells by EGFR independent mechanisms, although its presence could be related to deeper responses. Unresponsiveness in nude mice indicated that rTBL-1 antitumor effect is the synergistic result of apoptosis induction and T cell-mediated cytotoxicity in the tumor. Future studies will focus on the immunogenic effects triggered by the antitumor activity of rTBL-1 in colon cancer.
Collapse
Affiliation(s)
- Francisco Luján-Méndez
- Genetics and Biological Experimentation Laboratory, Faculty of Chemistry, Autonomous University of Querétaro, Querertaro 76010, Mexico; (F.L.-M.); (L.C.B.)
| | - Patricia García-López
- Pharmacology Laboratory, Basic Research Subdirectorate, National Cancer Institute, Mexico City 14080, Mexico;
| | - Laura C. Berumen
- Genetics and Biological Experimentation Laboratory, Faculty of Chemistry, Autonomous University of Querétaro, Querertaro 76010, Mexico; (F.L.-M.); (L.C.B.)
| | - Guadalupe García-Alcocer
- Genetics and Biological Experimentation Laboratory, Faculty of Chemistry, Autonomous University of Querétaro, Querertaro 76010, Mexico; (F.L.-M.); (L.C.B.)
| | - Roberto Ferriz-Martínez
- Cellular and Molecular Biology Laboratory, Faculty of Natural Sciences, Autonomous University of Querétaro, Queretaro 76230, Mexico; (R.F.-M.); (A.R.-C.); (J.G.-B.)
| | - Anette Ramírez-Carrera
- Cellular and Molecular Biology Laboratory, Faculty of Natural Sciences, Autonomous University of Querétaro, Queretaro 76230, Mexico; (R.F.-M.); (A.R.-C.); (J.G.-B.)
| | - Jaqueline González-Barrón
- Cellular and Molecular Biology Laboratory, Faculty of Natural Sciences, Autonomous University of Querétaro, Queretaro 76230, Mexico; (R.F.-M.); (A.R.-C.); (J.G.-B.)
| | - Teresa García-Gasca
- Cellular and Molecular Biology Laboratory, Faculty of Natural Sciences, Autonomous University of Querétaro, Queretaro 76230, Mexico; (R.F.-M.); (A.R.-C.); (J.G.-B.)
| |
Collapse
|
13
|
Thomas NM, Alharbi M, Muripiti V, Banothu J. Quinoline and quinolone carboxamides: A review of anticancer activity with detailed structure-activity relationship analysis. Mol Divers 2025:10.1007/s11030-024-11092-4. [PMID: 39873887 DOI: 10.1007/s11030-024-11092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Quinoline is a highly privileged scaffold with significant pharmacological potential. Introducing a carbonyl group into the quinoline ring generates a quinolone ring, which exhibits promising biological properties. Incorporating a carboxamide linkage at different positions within the quinoline and quinolone frameworks has proven an effective strategy for enhancing pharmacological properties, particularly anticancer potency. Consequently, various scientific communities have explored quinoline and quinolone carboxamides for their anticancer activities, introducing modifications at key positions. This review article aims to compile the anticancer activity of various quinoline and quinolone carboxamide derivatives, accompanied by a detailed structure-activity relationship (SAR) analysis. It also categorizes the data into activities of isolated/fused quinoline and quinolone carboxamide derivatives, which were further subclassified based on the mechanisms of anticancer action. Among the numerous derivatives studied, compounds 8, 19, 31, 34, 40, 68, 108, 116, and 132 have emerged as the most potent anticancer agents, making them strong candidates for further drug design and development. The mechanisms underlying the anticancer activity of these potent compounds have been identified as inhibitors of topoisomerase (8, 19, 31, and 34), protein kinase (40, 108, and 116), human dihydroorotate dehydrogenase (68), and as a cannabinoid receptor 2 agonist (132). We anticipate this review will be valuable to researchers engaged in the structural design and development of quinoline and quinolone carboxamide-based anticancer drugs with high efficacy.
Collapse
Affiliation(s)
- Neethu Mariam Thomas
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Venkanna Muripiti
- Department of Education, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, 671320, Kerala, India
| | - Janardhan Banothu
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India.
| |
Collapse
|
14
|
Thyagarajan A, Sirhan Z, Sahu RP. Impact of the crosstalk between the PTEN and PAFR as well as PAFR and EGFR pathways in cancer. EXPLORATION OF DRUG SCIENCE 2025; 3:100883. [PMID: 40160442 PMCID: PMC11951955 DOI: 10.37349/eds.2025.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/04/2024] [Indexed: 04/02/2025]
Abstract
The integration between the tumor-suppressive and oncogenic signaling pathways controls various cellular activities of cancer cells, including cell growth and apoptosis. While the activation of oncogenes fuels cancer progression and escape mechanisms, tumor suppressors regulate and counterbalance the negative effects of oncogenic signaling. Notably, phosphatase and tensin homolog (PTEN) constitute one of the important family members of tumor suppressor genes, which play critical roles in regulating the activities of tumor cells. Thus, an impaired, mutated, or loss of PTEN is associated with low survival or high tumor recurrence rates in cancer patients. Importantly, high tumor expression of a G-protein coupled platelet-activating factor-receptor (PAFR) is associated with increased tumor progression as well as decreased overall survival and poor prognosis in malignancies such as non-small cell lung cancer (NSCLC). Along similar lines, overactivation or mutations in epidermal growth factor receptor (EGFR) signaling are detected in various human malignancies and associated with poor prognosis. The goal of the current minireview was to highlight the significance of the mechanistic insights between the PTEN and PAFR as well as the PAFR and EGFR pathways in impacting cancer growth and/or efficacy of therapeutic agents in experimental model systems.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435, USA
| | - Zaid Sirhan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
15
|
Panda VK, Mishra B, Mahapatra S, Swain B, Malhotra D, Saha S, Khanra S, Mishra P, Majhi S, Kumari K, Nath AN, Saha S, Jena S, Kundu GC. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:234. [PMID: 39858015 PMCID: PMC11763662 DOI: 10.3390/cancers17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure. These receptors mediate various downstream signaling pathways such as MAPK, including MEK/ERK signaling pathways that promote common pro-oncogenic signaling, whereas dysregulation of PI3K/Akt, Wnt/β-catenin, and JAK/STAT activates key oncogenic events such as drug resistance, CSC enrichment, and metabolic reprogramming. Additionally, these cascades orchestrate an intricate interplay between stromal cells, immune cells, and tumor cells. Metabolic reprogramming and adaptations contribute to aggressive breast cancer and are unresponsive to therapy. Herein, recent insights into the novel signaling pathways operating within the breast TME that aid in their advancement are emphasized and current developments in practices targeting the breast TME to enhance treatment efficacy are reviewed.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Swarnali Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sarmistha Jena
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
16
|
Shetty SR, Kar T, Das A. Epidermal growth factor receptor mutations in breast Cancer: Therapeutic challenges and way forward. Bioorg Chem 2025; 154:108037. [PMID: 39672077 DOI: 10.1016/j.bioorg.2024.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) that is upregulated in aggressive triple-negative breast cancer (TNBC). Ligands such as EGF, TGF-α, epigen, and amphiregulin activate the auto-phosphorylation activity of tyrosine residues on EGFR, which regulates the growth, proliferation, adhesion, migration, and survival of cancer cells. Our prior studies depicted that inhibition of EGFR modulates the chemosensitivity in breast cancer stem cells and, thus, serves as a potent therapeutic target in breast cancer. Small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) specifically targeting EGFR have been clinically approved for breast cancer treatment. However, intrinsic and acquired resistance generated due to EGFR mutations limits the applications of designed EGFR-TKIs in breast cancer patients. This review highlights the therapeutic approaches, and the challenges encountered in targeting EGFR-specific mutations. It suggests the need to develop more advanced higher-generation inhibitors for use in combinatorial therapy along with chemo-or-immune therapeutics in clinics as a breast cancer treatment strategy against relapse of the disease.
Collapse
Affiliation(s)
- Swathi R Shetty
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Trisha Kar
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
17
|
Ahmad I, Patel HM. Repurposing Non-Nucleosidic Reverse Transcriptase Inhibitors (NNRTIs) to Overcome EGFR T790M-Mediated Acquired Resistance in Non-Small Cell Lung Cancer. J Cell Biochem 2025; 126:e30653. [PMID: 39300843 DOI: 10.1002/jcb.30653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
This study investigates the repurposing potential of non-nucleosidic reverse transcriptase inhibitors (NNRTIs), specifically Rilpivirine and Etravirine, as L858R/T790M tyrosine kinase inhibitors for addressing acquired resistance in non-small cell lung cancer (NSCLC). Using in silico molecular docking, Rilpivirine demonstrated a docking score of -7.534 kcal/mol, comparable to established epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) like Osimertinib and WZ4002. Molecular dynamics (MD) simulations over 200 ns revealed the stability of the Rilpivirine-EGFR complex, with RMSD values ranging from 2.5 to 3.5 Å. The in vitro antiproliferative assays showed that Rilpivirine had an IC50 value of 2.3 µM against H1975 cells, while WZ4002 had an IC50 of 0.291 µM, indicating moderate efficacy. Enzymatic assays revealed that Rilpivirine inhibited the double mutant epidermal growth factor receptor tyrosine kinase (EGFR TK) with an IC50 value of 54.22 nM and spared the wild-type EGFR TK with an IC50 of 22.52 nM. These findings suggest Rilpivirine's potential as a therapeutic agent for NSCLC with EGFR L858R/T790M mutations.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
18
|
Mei C, Liu Y, Liu Z, Zhi Y, Jiang Z, Lyu X, Wang H. Dysregulated Signaling Pathways in Canine Mammary Tumor and Human Triple Negative Breast Cancer: Advances and Potential Therapeutic Targets. Int J Mol Sci 2024; 26:145. [PMID: 39796003 PMCID: PMC11720488 DOI: 10.3390/ijms26010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
In 2022, human breast cancer (HBC) and canine mammary tumors (CMTs) remained the most prevalent malignant tumors worldwide, with high recurrence and lethality rates, posing a significant threat to human and dog health. The development of breast cancer involves multiple signaling pathways, highlighting the need for effective inhibitory drugs that target key proteins in these pathways. This article reviews the dysregulation of the EGFR, PI3K/AKT/mTOR, Hippo, pyroptosis, and PD-1/PD-L1 signaling pathways in HBC and CMT, as well as the corresponding drugs used to inhibit tumor growth, with the aim of providing theoretical support for the development of more efficient drugs.
Collapse
Affiliation(s)
- Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Zhenyi Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Zhaoling Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| | - Xueze Lyu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.M.); (Y.L.); (Z.L.); (Y.Z.); (Z.J.)
| |
Collapse
|
19
|
Maylin ZR, Smith C, Classen A, Asim M, Pandha H, Wang Y. Therapeutic Exploitation of Neuroendocrine Transdifferentiation Drivers in Prostate Cancer. Cells 2024; 13:1999. [PMID: 39682746 PMCID: PMC11639977 DOI: 10.3390/cells13231999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC), an aggressive and lethal subtype of prostate cancer (PCa), often arises as a resistance mechanism in patients undergoing hormone therapy for prostate adenocarcinoma. NEPC is associated with a significantly poor prognosis and shorter overall survival compared to conventional prostate adenocarcinoma due to its aggressive nature and limited response to standard of care therapies. This transdifferentiation, or lineage reprogramming, to NEPC is characterised by the loss of androgen receptor (AR) and prostate-specific antigen (PSA) expression, and the upregulation of neuroendocrine (NE) biomarkers such as neuron-specific enolase (NSE), chromogranin-A (CHGA), synaptophysin (SYP), and neural cell adhesion molecule 1 (NCAM1/CD56), which are critical for NEPC diagnosis. The loss of AR expression culminates in resistance to standard of care PCa therapies, such as androgen-deprivation therapy (ADT) which target the AR signalling axis. This review explores the drivers of NE transdifferentiation. Key genetic alterations, including those in the tumour suppressor genes RB1, TP53, and PTEN, and changes in epigenetic regulators, particularly involving EZH2 and cell-fate-determining transcription factors (TFs) such as SOX2, play significant roles in promoting NE transdifferentiation and facilitate the lineage switch from prostate adenocarcinoma to NEPC. The recent identification of several other key novel drivers of NE transdifferentiation, including MYCN, ASCL1, BRN2, ONECUT2, and FOXA2, further elucidates the complex regulatory networks and pathways involved in this process. We suggest that, given the multifactorial nature of NEPC, novel therapeutic strategies that combine multiple modalities are essential to overcome therapeutic resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Zoe R. Maylin
- Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (A.C.); (Y.W.)
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Christopher Smith
- Targeted Cancer Therapy, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.A.); (H.P.)
| | - Adam Classen
- Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (A.C.); (Y.W.)
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Mohammad Asim
- Targeted Cancer Therapy, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.A.); (H.P.)
| | - Hardev Pandha
- Targeted Cancer Therapy, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.A.); (H.P.)
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (A.C.); (Y.W.)
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| |
Collapse
|
20
|
Cuan X, Yang X, Wang J, Sheng J, Wang X, Huang Y. Discovery of flavonoid-containing compound Lupalbigenin as anti-NSCLC cancer agents via suppression of EGFR and ERK1/2 pathway. Bioorg Chem 2024; 153:107808. [PMID: 39288634 DOI: 10.1016/j.bioorg.2024.107808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Epidermal growth factor receptor exon 20 insertions (EGFR Ex20ins) driver mutations in non-small cell lung cancer (NSCLC) is insensitive to EGFR tyrosine kinase inhibitors (TKIs). Therefore, it is necessary to develop more novel strategy to address the limitations of existing therapies targeting EGFR-mutated NSCLC. Lupalbigenin (LB), a flavonoid compound extracted from Derris scandens, has shown preclinical activity in lung cancer. However, the activity of LB in Ex20ins-driven tumors has not yet been elucidated. In this study, a series of stable BaF/3 cell-line that contains a high proportion (>90 %) of EGFR-eGFP Ex20ins were generated using an IL3-deprivation method. Ba/F3 cell models harboring dissimilar Ex20ins were used to characterize the antineoplastic mechanism of LB. Molecular docking confirmed that the LB could effectively bind to key target EGFR. The in vitro anticancer activity of LB was investigated in engineered Ba/F3 cells bearing diverse uncommon EGFR mutations. LB was shown to be more potent in inhibiting the viability of various uncommon EGFR-mutated cell lines. Mechanistic studies disclosed that LB repressed EGFR phosphorylation and downstream survival pathways in Ba/F3 cells expressing EGFR Ex20ins, resulting in caspase activation by activating the intrinsic apoptotic pathway. Further analyses showed that LB significantly induced G0/G1 cell cycle arrest and apoptosis in cells. LB also reduced the protein expression levels of CDK4, CDK6, CDK8, cyclin D1, cyclin A2, and Bcl2 and promoted the expression of cytochrome C, p27, and p53. In summary, we explored the possible potential targets of LB through network pharmacology and verified the target using in vitro experiments. Furthermore, our results demonstrated that LB showed potential anti-Ex20ins cancer activity through suppression of the EGFR and ERK1/2 signaling pathway in Ba/F3 cells bearing two to three amino acid insertion mutations. These findings suggested that LB might be valuable for further investigation as a potential candidate in the treatment of associated diseases.
Collapse
Affiliation(s)
- Xiangdan Cuan
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; Sanmenxia Polytechnic, Sanmenxia, China
| | - Xingying Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinxian Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.
| | - Yanping Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China; College of Science, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
21
|
ÇİFTÇİ H, OTSUKA M, FUJITA M, SEVER B. New naphthalene-linked pyrazoline-thiazole hybrids as prominent antilung and antibreast cancer inhibitors. Turk J Chem 2024; 48:856-866. [PMID: 39780846 PMCID: PMC11706297 DOI: 10.55730/1300-0527.3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/19/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
The epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2), pioneer members of the receptor tyrosine kinase subfamily, are frequently mutated and/or overexpressed in several types of human cancers, including nonsmall cell lung cancer (NSCLC) and breast cancer, which are leading causes of cancer-related deaths worldwide. EGFR and HER2-focused anti-NSCLC and antibreast cancer studies encouraged us to search for new potential agents. For this purpose, in the current work, naphthalene-linked pyrazoline-thiazole hybrids (BTT-1-10 and BTP-1-10) were synthesized and examined for their antiproliferative effects on A549 NSCLC and MCF-7 breast cancer cell lines. According to the results, the MTT assay showed that BTT-5 induced strong toxicity in A549 cells with an IC50 value of 9.51 ± 3.35 μM compared to lapatinib (IC50 = 16.44 ± 3.92 μM). BTT-5 also presented a high selectivity profile between the Jurkat cell line and PBMCs (healthy) (SI = 65.65). Furthermore, BTT-5 augmented apoptosis significantly in A549 cells (18.40%). BTT-5 displayed significant EGFR inhibition (58.32%) and no significant HER2 inhibition at 10 μM concentration, showing its selective kinase inhibitory effects. The molecular docking assessment indicated that BTT-5 showed high affinity with a different binding profile than lapatinib in the ATP binding cleft of EGFR. Consequently, BTT-5 can serve as a lead for future anti-NSCLC studies.
Collapse
Affiliation(s)
- Halilibrahim ÇİFTÇİ
- Department of Bioengineering Sciences, İzmir Katip Çelebi University, İzmir,
Turkiye
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto,
Japan
- Department of Drug Discovery, Science Farm Ltd., Kumamoto,
Japan
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur,
Turkiye
| | - Masami OTSUKA
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto,
Japan
- Department of Drug Discovery, Science Farm Ltd., Kumamoto,
Japan
| | - Mikako FUJITA
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto,
Japan
| | - Belgin SEVER
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto,
Japan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir,
Turkiye
| |
Collapse
|
22
|
Daram A, Sawant SS, Mehta DA, Sanhueza CA, Kunda NK. Inhalable Anti-EGFR Antibody-Conjugated Osimertinib Liposomes for Non-Small Cell Lung Cancer. Pharmaceutics 2024; 16:1444. [PMID: 39598567 PMCID: PMC11597056 DOI: 10.3390/pharmaceutics16111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is a leading cause of cancer deaths globally. The most extensive treatment is Tyrosine Kinase Inhibitors (TKIs) that target epidermal growth factor receptor (EGFR) overexpression. Osimertinib, a third-generation TKI is approved to target EGFR exon 19 deletions or exon 21 L858R mutations. However, resistance is inevitable due to emergence of triple mutations (sensitizing mutations, T790M and C797S). To overcome this challenge, a combinatorial approach was used wherein Osimertinib liposomes were conjugated with cetuximab (CTX), an anti-EGFR monoclonal antibody, to improve drug efficacy and delivery. Additionally, pulmonary administration was employed to minimize systemic toxicity and achieve high lung concentrations. Methods: Osimertinib liposomes (OB-LPs) were prepared using thin film hydration method and immunoliposomes (CTX-OB-LPs) were prepared by conjugating the OB-LPs surface with CTX. Liposomes were characterized for particle size, zeta-potential, drug loading, antibody conjugation efficiency, in vitro drug release, and aerosolization performance. Further, the in vitro efficacy of immunoliposomes was evaluated in H1975 cell line. Results: Immunoliposomes exhibited a particle size of 150 nm, high antibody conjugation efficiency (87%), efficient drug release, and excellent aerosolization properties with an aerodynamic diameter of 3 μm and fine particle fraction of 88%. Furthermore, in vitro studies in H1975 cells showed enhanced cytotoxicity with CTX-OB-LPs displaying 1.7-fold reduction and 1.2-fold reduction in IC50 compared to Osimertinib and OB-LPs, respectively. The CTX-OB-LPs also significantly reduced tumor cell migration and colonization compared to Osimertinib and OB-LPs. Conclusions: These successful results for EGFR-targeting inhalable immunoliposomes exhibited potential for contributing to greater anti-tumor efficacy for the treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
| | | | | | | | - Nitesh K. Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York City, NY 11439, USA
| |
Collapse
|
23
|
Pal R, Teli G, Sengupta S, Maji L, Purawarga Matada GS. An outlook of docking analysis and structure-activity relationship of pyrimidine-based analogues as EGFR inhibitors against non-small cell lung cancer (NSCLC). J Biomol Struct Dyn 2024; 42:9795-9811. [PMID: 37642992 DOI: 10.1080/07391102.2023.2252082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Almost 80% of lung cancer diagnoses each year correspond to non-small cell lung cancer (NSCLC). The percentage of NSCLC with EGFR overexpression ranges from 40% to 89%, with squamous tumors showing the greatest rates (89%) and adenocarcinomas showing the lowest rates (41%). Therefore, in NSCLC therapy, blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR has exhibited significant improvement. In this view, several small molecules particularly pyrimidine/fused pyrimidine scaffolds were intended for molecular hybridization to develop EGFR-TK inhibitors. However, the associated limitation such as resistance and genetic mutation along with adverse effects, constrained the long-term treatment and effectiveness of such medication. Therefore, in recent years, pyrimidine derivatives were uncovered as potential EGFR TKIs. The present review summarised the research progress of EGFR TKIs to dazed structure-activity relationship, biological evaluation, and comparative docking studies of pyrimidine compounds. We have added the comparative docking analysis followed by the molecular simulation study against the four different PDBs of EGFR to strengthen the already existing research. Docking analysis unfolded that compound 14 resulted as noticeable with all different PDB and managed to interact with some of the crucial amino acid residues. From a future perspective, researchers must develop a more selective inhibitor, that can selectively target the mutation. Our review will support medicinal chemists in the direction of the development of novel pyrimidine-based EGFR TKIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Ghanshyam Teli
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
24
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
25
|
Das A, Biggs MA, Hunt HL, Mahabadi V, Goncalves BG, Phan CAN, Banerjee IA. Design and investigation of novel iridoid-based peptide conjugates for targeting EGFR and its mutants L858R and T790M/L858R/C797S: an in silico study. Mol Divers 2024:10.1007/s11030-024-11007-3. [PMID: 39424745 DOI: 10.1007/s11030-024-11007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
In this work, we designed novel peptide conjugates with plant-based iridoid and lichen-derived depside derivatives to target the wild-type EGFR (WT) and its mutants, L858R and T790M/L858R/C797S triple mutant. These mutations are often expressed in multiple cancers, particularly lung cancer. Specifically, the iridoids included 7-deoxyloganetic acid (7-DGA) and loganic acid (LG), while the depside derivative was sekikaic acid (SK). These compounds are known for their innate anticancer properties and were conjugated with two separate peptide sequences KLPGWSG (K) and YSIPKSS (Y). These sequences have been shown to target EGFR in previous phage display library screening, although the mechanism is unknown. Thus, we created the di-conjugates for dual targeting and investigated their interactions of the di-conjugates and that of the neat peptides with the kinase domain of EGFR (WT) and the two mutants using molecular docking, molecular dynamics (MD) simulations, and MM-GBSA analysis. Docking studies revealed that the (7-DGA)2-K showed the highest binding affinity at - 9.3 kcal/mol with the L858R mutant, while (LG)2-Y displayed the highest binding affinity at - 9.0 kcal/mol for the triple mutant receptor. Our results indicated that several of the conjugates interacted with crucial residues of the kinase domain, including ASP855 and THR854 (activation loop), MET793 and PRO794 (hinge region), ARG841 (catalytic loop), and LYS728 and LEU718 of the glycine-rich P-loop. Interestingly, strong hydrophobic interactions were also observed with the C-terminal tail residues, such as PHE997 and ALA1000 as well as with ARG999 for the YSIPKSS peptide and most of the conjugates. The hydroxyl group of the cyclopentane ring and the oxygen of the pyran ring of the (7-DGA)2-peptide conjugates contributed to binding particularly in the hinge region, while the peptide components formed an extended structure that bound well into the C-lobe. The (SK)2-Y di-conjugate and KLPGWSG peptide formed hydrogen bonds with the SER797 residue of the triple mutant. Overall, our results show that the (7-DGA)2-K, di-conjugate, the (7-DGA)2-Y di-conjugate, and the neat YSIPKSS demonstrated strong and stable binding with the L858R mutant and the highly resistant triple mutant EGFR, respectively. The novel designed conjugates demonstrate potential for further optimization for laboratory studies aimed at developing new therapeutics for targeting specific EGFR mutant expressing cells.
Collapse
Affiliation(s)
- Amrita Das
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Mary A Biggs
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Hannah L Hunt
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Vida Mahabadi
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Beatriz G Goncalves
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Chau Anh N Phan
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
26
|
Mukherjee A, Bandyopadhyay D. Targeted Therapy in Breast Cancer: Advantages and Advancements of Antibody-Drug Conjugates, a Type of Chemo-Biologic Hybrid Drugs. Cancers (Basel) 2024; 16:3517. [PMID: 39456611 PMCID: PMC11505910 DOI: 10.3390/cancers16203517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is a significant health challenge globally, with millions of people affected every year, resulting in high morbidity and mortality. Although other treatment options are available with limitations, chemotherapy, either standalone or combined with other therapeutic procedures, is the most commonly used practice of treating cancer. In chemotherapy, cancer cells/malignant tumors are targeted; however, due to less target specificity, along with malignant cells, normal cells are also affected, which leads to various off-target effects (side effects) that impact the patient quality of life. Out of all the different types of cancers, breast cancer is the most common type of cancer in humans worldwide. Current anticancer drug discovery research aims to develop therapeutics with higher potency and lower toxicity, which is only possible through target-specific therapy. Antibody-drug conjugates (ADCs) are explicitly designed to target malignant tumors and minimize off-target effects by reducing systemic cytotoxicity. Several ADCs have been approved for clinical use and have shown moderate to good efficacy so far. Considering various aspects, chemotherapy and ADCs are useful in treating cancer. However, ADCs provide a more focused and less toxic approach, which is especially helpful in cases where resistance to chemotherapy (drug resistance) occurs and in the type of malignancies in which specific antigens are overexpressed. Ongoing ADC research aims to develop more target-specific cancer treatments. In short, this study presents a concise overview of ADCs specific to breast cancer treatment. This study provides insight into the classifications, mechanisms of action, structural aspects, and clinical trial phases (current status) of these chemo-biologic drugs (ADCs).
Collapse
Affiliation(s)
- Attrayo Mukherjee
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Patia, Bhubaneswar 751024, Odisha, India;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences (SIBCS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- School of Earth, Environmental, and Marine Sciences (SEEMS), University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
27
|
Sameh S, Elissawy AM, Al-Sayed E, Labib RM, Chang HW, Yu SY, Chang FR, Yang SC, Singab ANB. Family Malvaceae: a potential source of secondary metabolites with chemopreventive and anticancer activities supported with in silico pharmacokinetic and pharmacodynamic profiles. Front Pharmacol 2024; 15:1465055. [PMID: 39478959 PMCID: PMC11521888 DOI: 10.3389/fphar.2024.1465055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Cancer is the second most widespread cause of mortality following cardiovascular disorders, and it imposes a heavy global burden. Nowadays, herbal nutraceutical products with a plethora of bioactive metabolites represent a foundation stone for the development of promising chemopreventive and anticancer agents. Certain members of the family Malvaceae have traditionally been employed to relieve tumors. The literature concerning the chemopreventive and anticancer effects of the plant species along with the isolated cytotoxic phytometabolites was reviewed. Based on the findings, comprehensive computational modelling studies were performed to explore the pharmacokinetic and pharmacodynamic profiles of the reported cytotoxic metabolites to present basis for future plant-based anticancer drug discovery. Methods All the available information about the anticancer research in family Malvaceae and its cytotoxic phytometabolites were retrieved from official sources. Extensive search was carried out using the keywords Malvaceae, cancer, cytotoxicity, mechanism and signalling pathway. Pharmacokinetic study was performed on the cytotoxic metabolites using SWISS ADME model. Acute oral toxicity expressed as median lethal dose (LD50) was predicted using Pro Tox 3.0 web tool. The compounds were docked using AutoDock Vina platform against epidermal growth factor receptor (EGFR kinase enzyme) obtained from the Protein Data Bank. Molecular dynamic simulations and MMGBSA calculations were performed using GROMACS 2024.2 and gmx_MMPBSA tool v1.5.2. Results One hundred forty-five articles were eligible in the study. Several tested compounds showed safe pharmacokinetic properties. Also, the molecular docking study showed that the bioactive metabolites possessed agreeable binding affinities to EGFR kinase enzyme. Tiliroside (25), boehmenan (30), boehmenan H (31), and isoquercetin (22) elicited the highest binding affinity toward the enzyme with a score of -10.4, -10.4, -10.2 and -10.1 Kcal/mol compared to the reference drug erlotinib having a binding score equal to -9 Kcal/mol. Additionally, compounds 25 and 31 elicited binding free energies equal to -42.17 and -42.68 Kcal/mol, respectively, comparable to erlotinib. Discussion Overall, the current study presents helpful insights into the pharmacokinetic and pharmacodynamic properties of the reported cytotoxic metabolites belonging to family Malvaceae members. The molecular docking and dynamic simulations results intensify the roles of secondary metabolites from medicinal plants in fighting cancer.
Collapse
Affiliation(s)
- Salma Sameh
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Ahmed M. Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Rola M. Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, and PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Yin Yu
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- School of Pharmacy and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Chyun Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
28
|
Addisu S, Bekele A, Seifu D, Assefa M, Gemechu T, Hoenerhoff MJ, Merajver SD. Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor A (VEGF-A) expressions in Ethiopian female breast cancer and their association with histopathologic features. PLoS One 2024; 19:e0308411. [PMID: 39405290 PMCID: PMC11478813 DOI: 10.1371/journal.pone.0308411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGF) play important role in breast tumor growth, invasion, metastasis, patient survival and drug resistance. The aim of this study was to evaluate the protein expression status of EGFR and VEGF-A, as well as their association with hormone receptor status and histopathological characteristics in the invasive type of female breast cancer among Ethiopians. METHOD The primary breast tumor tissues were obtained from 85 Ethiopian invasive breast cancer cases that underwent modified radical mastectomy (MRM) from June 2014 to June 2015. Their FFPE blocks were analyzed for EGFR and VEGF protein expressions using immunohistochemical techniques. The expressions were also correlated with histopathologic features. RESULT Epidermal growth factor receptor over-expression was observed in 22% of the tumor samples. VEGF-A expression was negative in 13.41%, low in 63.41%, moderate in 20.73%, and high in 2.44%. EGFR expression, but not VEGF-A, showed a significant inverse correlation with both estrogen receptor (ER) (P = 0.01) and progesterone receptor (PR) statuses (P = 0.04). EGFR and VEGF expressions did not show significant association with tumor size, grade, lymph node status or age at diagnosis. CONCLUSION Epidermal growth factor receptor expression was most likely associated with ER and PR negative tumors. Assessments of multiple molecular markers aid to understand the biological behavior of the disease in Ethiopian population. It might also help to predict which group of patients might get more benefit from the selected treatment strategies and which are not.
Collapse
Affiliation(s)
- Sisay Addisu
- Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abebe Bekele
- Department of Surgery, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu
- Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mathewos Assefa
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tufa Gemechu
- Department of Pathology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mark J. Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sofia D. Merajver
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, United States of America
| |
Collapse
|
29
|
Mo X, Rao DP, Kaur K, Hassan R, Abdel-Samea AS, Farhan SM, Bräse S, Hashem H. Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery-An Updated Review on Their Multifaceted Therapeutic Applications (2020-2024). Molecules 2024; 29:4770. [PMID: 39407697 PMCID: PMC11477627 DOI: 10.3390/molecules29194770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Indole derivatives have become an important class of compounds in medicinal chemistry, recognized for their wide-ranging biological activities and therapeutic potential. This review provides a comprehensive overview of recent advances in the evaluation of indole-based compounds in the last five years, highlighting their roles in cancer treatment, infectious disease management, anti-inflammatory therapies, metabolic disorder interventions, and neurodegenerative disease management. Indole derivatives have shown significant efficacy in targeting diverse biological pathways, making them valuable scaffolds in designing new drugs. Notably, these compounds have demonstrated the ability to combat drug-resistant cancer cells and pathogens, a significant breakthrough in the field, and offer promising therapeutic options for chronic diseases such as diabetes and hypertension. By summarizing recent key findings and exploring the underlying biological mechanisms, this review underscores the potential of indole derivatives in addressing major healthcare challenges, thereby instilling hope and optimism in the field of modern medicine.
Collapse
Affiliation(s)
- Xingyou Mo
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China
| | - Devendra Pratap Rao
- Coordination Chemistry Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Kanpur 208001, Uttar Pradesh, India
| | - Kirandeep Kaur
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India
| | - Roket Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Ahmed S. Abdel-Samea
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Sara Mahmoud Farhan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
30
|
Darmadi D, Aminov Z, Hjazi A, R R, Kazmi SW, Mustafa YF, Hosseen B, Sharma A, Alubiady MHS, Al-Abdeen SHZ. Investigation of the regulation of EGF signaling by miRNAs, delving into the underlying mechanism and signaling pathways in cancer. Exp Cell Res 2024; 442:114267. [PMID: 39313176 DOI: 10.1016/j.yexcr.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
The EGF receptors (EGFRs) signaling pathway is essential for tumorigenesis and progression of cancer. Emerging evidence suggests that miRNAs are essential regulators of EGF signaling, influencing various pathway components and tumor behavior. This article discusses the underlying mechanisms and clinical implications of miRNA-mediated regulation of EGF signaling in cancer. miRNAs utilize multiple mechanisms to exert their regulatory effects on EGF signaling. They can target EGF ligands, including EGF and TGF-directly, inhibiting their expression and secretion. In addition, miRNAs can modulate EGF signaling indirectly by targeting EGF receptors, downstream signaling molecules, and transcription factors implicated in regulating the EGF pathway. These miRNAs can disrupt the delicate equilibrium of EGF signaling, resulting in aberrant activation and fostering tumor cell proliferation, survival, angiogenesis, and metastasis. The dysregulation of the expression of specific miRNAs has been linked to clinical outcomes in numerous types of cancer. Specific profiles of miRNA expression have been identified as prognostic markers, reflecting tumor characteristics, invasiveness, metastatic potential, and therapeutic response. These miRNAs can serve as potential therapeutic targets for interventions that modulate EGF signaling and improve patient outcomes. Understanding the intricate relationship between miRNAs and EGF signaling in cancer can transform cancer diagnosis, prognosis, and treatment. The identification of specific miRNAs involved in the regulation of the EGF pathway opens the door to the development of targeted therapies and personalized medicine approaches. In addition, miRNA-based interventions promise to overcome therapeutic resistance and improve the efficacy of existing treatments. miRNAs are crucial regulators of EGF signaling in cancer, affecting tumor behavior and clinical outcomes. Further research is required to decipher the complex network of miRNA-mediated EGF signaling regulation and translate these findings into clinically applicable strategies for enhanced cancer treatment.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Roopashree R
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Beneen Hosseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | | | | |
Collapse
|
31
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
32
|
Zhi L, Li H, Shi B, Yu T, Jia X, Zhang H. Design, synthesis and neuroprotective activity of compound derived from Gastrodia elata Blume and borneol. Front Pharmacol 2024; 15:1437806. [PMID: 39376614 PMCID: PMC11456490 DOI: 10.3389/fphar.2024.1437806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Traditional Chinese medicine Gastrodia elata Blume (GEB) possesses properties that soothe the liver and dispel wind. Its constituents exhibit numerous pharmacological properties, including neuroprotective effects, analgesic properties for headache relief, memory enhancement, and others. Borneol enhances drug absorption by traversing the blood-brain barrier, thereby improving its bioavailability and therapeutic efficacy. The research aimed to design innovative drug molecules and contribute to the beneficial exploration of compound Chinese medicine modernization. Methods This study employed the strategy of "compound Chinese medicine molecular chemistry" to integrate and fuse the effective substances of compound Chinese medicines. An excitotoxic injury model was established by exposing PC12 cells to glutamate. Cell viability was quantitatively evaluated utilizing a colorimetric assay with the CCK-8 reagent kit. Genecards, Disgenet, and OMIM databases were used to identify potential disease-related targets. Molecular docking methods were performed to predict the binding interactions between compounds and core targets. Results We designed and synthesized compounds TB-1 to TB-16. Following the evaluation of their safety, TB-1, TB-2, TB-12, and TB-16 were selected for further investigation of their neuroprotective properties. The compound designed in this study exhibits a dose-dependent protective effect on glutamate-damaged PC12 cells. Further network pharmacology and molecular docking analyses indicate that TB-2 possesses a potential therapeutic effect against cerebral ischemia, and its possible targets were SRC, MAPK1 and KDR. Discussion The results indicated that TB-2 displayed a significant neuroprotective effect against Glu-induced injury in PC12 cells, suggesting potential therapeutic implications for cerebral ischemia.
Collapse
Affiliation(s)
- Lijuan Zhi
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| | - Huan Li
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| | - Baimei Shi
- College of Chemical Engineering, Xi’an University, Xi’an, China
| | - Tao Yu
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| | - Xiaoni Jia
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| | - Hui Zhang
- Center Laboratory, Xi’an Mental Health Center, Xi’an, China
| |
Collapse
|
33
|
Sung JS, Jung J, Kim TH, Kwon S, Bae HE, Kang MJ, Jose J, Lee M, Pyun JC. Epidermal Growth Factor Receptor (EGFR) Inhibitors Screened from Autodisplayed Fv-Antibody Library. Bioconjug Chem 2024; 35:1324-1334. [PMID: 39197031 DOI: 10.1021/acs.bioconjchem.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Inhibitors of the epithermal growth factor receptor (EGFR) were screened from an autodisplayed Fv-antibody library using an anti-EGF antibody. The Fv-antibody library was expressed on the outer membrane of Escherichia coli, which corresponds to the heavy chain VH region of immunoglobulin G. The library was constructed by randomizing the CDR3 region of expressed VH regions (11 amino acid residues) by site-directed mutagenesis. Using an anti-EGF antibody as a screening probe, amino acid sequences (CDR3 region) with antibody binding affinity were screened from the Fv-antibody library. These amino acid sequences were considered to have similar chemical properties to EGF, which can bind to EGFR. Two autodisplayed clones with Fv-antibodies against EGFR were screened from the Fv-antibody library, and the screened Fv-antibodies were expressed as soluble proteins. The binding affinity (KD) was estimated using an SPR biosensor, and the inhibitory activity of expressed Fv-antibodies was observed for PANC-1 pancreatic tumor cells and T98G glioblastoma cells using Western blot analysis of proteins in the EGFR-mediated signaling pathway. The viability of PANC-1 and T98G cells was observed to decrease via the inhibitory activity of expressed Fv-antibodies. Finally, interactions between Fv-antibodies and EGFR were analyzed by using molecular docking simulations.
Collapse
Affiliation(s)
- Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Soonil Kwon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Hyung Eun Bae
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, Universität Münster, Münster 48149, Germany
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| |
Collapse
|
34
|
Farag AB, Othman AH, El-Ashrey MK, Abbas SES, Elwaie TA. New 6-nitro-4-substituted quinazoline derivatives targeting epidermal growth factor receptor: design, synthesis and in vitro anticancer studies. Future Med Chem 2024; 16:2025-2041. [PMID: 39230501 PMCID: PMC11485908 DOI: 10.1080/17568919.2024.2389772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: Twenty compounds of 6-nitro-4-substituted quinazolines were synthesized.Materials & methods: The new derivatives were evaluated for their epidermal growth factor receptor (EGFR) inhibitory activity. The most potent derivatives were assessed for their cytotoxicity against colon cancer and lung cancer cells, in addition to normal fibroblast cells.Results & discussion: compound 6c showed a superior to nearly equal cytotoxicity in comparison to gefitinib, it also revealed a good safety profile. Compound 6c caused a cell cycle arrest at G2/M phase in addition to induction of apoptosis. A molecular docking study was conducted on the most active compounds to gain insights of their binding mode in the active site of EGFR enzyme besides ADME prediction of their physicochemical properties and drug likeness profile.
Collapse
Affiliation(s)
- Ayman B Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Aya H Othman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed K El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| | - Safinaz E-S. Abbas
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
| | - Tamer A Elwaie
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
- Department of Chemistry and Biochemistry, Center for Translational Medicine, University of Montana, Missoula, MT59812, USA
| |
Collapse
|
35
|
Ghosh S, Bhaskar R, Mishra R, Arockia Babu M, Abomughaid MM, Jha NK, Sinha JK. Neurological insights into brain-targeted cancer therapy and bioinspired microrobots. Drug Discov Today 2024; 29:104105. [PMID: 39029869 DOI: 10.1016/j.drudis.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Cancer, a multifaceted and pernicious disease, continuously challenges medicine, requiring innovative treatments. Brain cancers pose unique and daunting challenges due to the intricacies of the central nervous system and the blood-brain barrier. In this era of precision medicine, the convergence of neurology, oncology, and cutting-edge technology has given birth to a promising avenue - targeted cancer therapy. Furthermore, bioinspired microrobots have emerged as an ingenious approach to drug delivery, enabling precision and control in cancer treatment. This Keynote review explores the intricate web of neurological insights into brain-targeted cancer therapy and the paradigm-shifting world of bioinspired microrobots. It serves as a critical and comprehensive overview of these evolving fields, aiming to underscore their integration and potential for revolutionary cancer treatments.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Richa Mishra
- Department of Computer Science and Engineering, Parul University, Vadodara, Gujrat 391760, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
36
|
Hapeman JD, Galwa R, Carneiro CS, Nedelcu AM. In vitro evidence for the potential of EGFR inhibitors to decrease the TGF-β1-induced dispersal of circulating tumour cell clusters mediated by EGFR overexpression. Sci Rep 2024; 14:19980. [PMID: 39198539 PMCID: PMC11358385 DOI: 10.1038/s41598-024-70358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Most cancer-related deaths are due to the spread of tumour cells throughout the body-a process known as metastasis. While in the vasculature, these cells are referred to as circulating tumour cells (CTCs) and can be found as either single cells or clusters of cells (often including platelets), with the latter having the highest metastatic potential. However, the biology of CTC clusters is poorly understood, and there are no therapies that specifically target them. We previously developed an in vitro model system for CTC clusters and proposed a new extravasation model that involves cluster dissociation, adherence, and single-cell invasion in response to TGF-β1 released by platelets. Here, we investigated TGF-β1-induced gene expression changes in this model, focusing on genes for which targeted drugs are available. In addition to the upregulation of the TGF-β1 signalling pathway, we found that (i) genes in the EGF/EGFR pathway, including those coding for EGFR and several EGFR ligands, were also induced, and (ii) Erlotinib and Osimertinib, two therapeutic EGFR/tyrosine kinase inhibitors, decreased the TGF-β1-induced adherence and invasion of the CTC cluster-like line despite the line expressing wild-type EGFR. Overall, we suggest that EGFR inhibitors have the potential to decrease the dispersal of CTC clusters that respond to TGF-β1 and overexpress EGFR (irrespective of its status) and thus could improve patient survival.
Collapse
Affiliation(s)
- Jorian D Hapeman
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Rakshit Galwa
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Caroline S Carneiro
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
37
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
Tawengi M, Al-Dali Y, Tawengi A, Benter IF, Akhtar S. Targeting the epidermal growth factor receptor (EGFR/ErbB) for the potential treatment of renal pathologies. Front Pharmacol 2024; 15:1394997. [PMID: 39234105 PMCID: PMC11373609 DOI: 10.3389/fphar.2024.1394997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), which is referred to as ErbB1/HER1, is the prototype of the EGFR family of receptor tyrosine kinases which also comprises ErbB2 (Neu, HER2), ErbB3 (HER3), and ErbB4 (HER4). EGFR, along with other ErbBs, is expressed in the kidney tubules and is physiologically involved in nephrogenesis and tissue repair, mainly following acute kidney injury. However, its sustained activation is linked to several kidney pathologies, including diabetic nephropathy, hypertensive nephropathy, glomerulonephritis, chronic kidney disease, and renal fibrosis. This review aims to provide a summary of the recent findings regarding the consequences of EGFR activation in several key renal pathologies. We also discuss the potential interplay between EGFR and the reno-protective angiotensin-(1-7) (Ang-(1-7), a heptapeptide member of the renin-angiotensin-aldosterone system that counter-regulates the actions of angiotensin II. Ang-(1-7)-mediated inhibition of EGFR transactivation might represent a potential mechanism of action for its renoprotection. Our review suggests that there is a significant body of evidence supporting the potential inhibition of EGFR/ErbB, and/or administration of Ang-(1-7), as potential novel therapeutic strategies in the treatment of renal pathologies. Thus, EGFR inhibitors such as Gefitinib and Erlinotib that have an acceptable safety profile and have been clinically used in cancer chemotherapy since their FDA approval in the early 2000s, might be considered for repurposing in the treatment of renal pathologies.
Collapse
Affiliation(s)
- Mohamed Tawengi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yazan Al-Dali
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Ibrahim F Benter
- Faculty of Pharmacy, Final International University, Kyrenia, Cyprus
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
39
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
40
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
41
|
Abd El-Lateef HM, Bafail D, Alhalees NHY, Toson EEM, Abu Almaaty AH, Elsayed EH, Zaki I, Youssef MM. Synthesis, characterization and biological research of novel 2-(quinoline-4-carbonyl)hydrazide-acrylamide hybrids as potential anticancer agents on MCF-7 breast carcinoma cells by targeting EGFR-TK. RSC Adv 2024; 14:23495-23504. [PMID: 39071480 PMCID: PMC11273260 DOI: 10.1039/d4ra03963g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Novel derivatives of the 2-(quinoline-4-carbonyl)hydrazide scaffold carrying the acrylamide moiety were synthesized and tested for their cytotoxic efficacy against the breast carcinoma MCF-7 cell line. The most active members 6a, 6b and 6h revealed significant antiproliferative action with an IC50 value of 3.39, 5.94 and 2.71 μM, respectively, which were more potent than the reference drug Dox (IC50 = 6.18 μM). Aiming to enlighten the antiproliferative activity, compounds 6a and 6h were examined for their inhibitory potential against EGFR kinase. The results demonstrated that compound 6h displayed potent inhibitory activity, as concluded from the IC50 value (IC50 = 0.22 μM) compared to the standard drug Lapatinib (IC50 value of 0.18 μM). Compound 6h was found to induce significant cellular cycle arrest at the G1 phase and provoke apoptosis. Besides, compound 6h triggered apoptosis via upregulating p53 and initiator caspase 9 by 7.4- and 8.7-fold, respectively, compared to DMSO controls.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University Sohag 82524 Egypt
| | - Duaa Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University Jeddah Saudi Arabia
| | | | - Eslam E M Toson
- Chemistry Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Ali H Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Elsherbiny H Elsayed
- Chemistry Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University Port Said Egypt
| | - Magdy M Youssef
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| |
Collapse
|
42
|
Kaynar A, Ozcan M, Li X, Turkez H, Zhang C, Uhlén M, Shoaie S, Mardinoglu A. Discovery of a Therapeutic Agent for Glioblastoma Using a Systems Biology-Based Drug Repositioning Approach. Int J Mol Sci 2024; 25:7868. [PMID: 39063109 PMCID: PMC11277330 DOI: 10.3390/ijms25147868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma (GBM), a highly malignant tumour of the central nervous system, presents with a dire prognosis and low survival rates. The heterogeneous and recurrent nature of GBM renders current treatments relatively ineffective. In our study, we utilized an integrative systems biology approach to uncover the molecular mechanisms driving GBM progression and identify viable therapeutic drug targets for developing more effective GBM treatment strategies. Our integrative analysis revealed an elevated expression of CHST2 in GBM tumours, designating it as an unfavourable prognostic gene in GBM, as supported by data from two independent GBM cohorts. Further, we pinpointed WZ-4002 as a potential drug candidate to modulate CHST2 through computational drug repositioning. WZ-4002 directly targeted EGFR (ERBB1) and ERBB2, affecting their dimerization and influencing the activity of adjacent genes, including CHST2. We validated our findings by treating U-138 MG cells with WZ-4002, observing a decrease in CHST2 protein levels and a reduction in cell viability. In summary, our research suggests that the WZ-4002 drug candidate may effectively modulate CHST2 and adjacent genes, offering a promising avenue for developing efficient treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Ali Kaynar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
| | - Mehmet Ozcan
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bülent Ecevit University, Zongudak TR-67100, Turkey
| | - Xiangyu Li
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Medical Biology Department, Faculty of Medicine, Atatürk University, Erzurum TR-25240, Turkey;
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| |
Collapse
|
43
|
Ding Y, Li H, Cao S, Yu Y. Effects of catechin on the malignant biological behavior of gastric cancer cells through the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 2024; 490:117036. [PMID: 39009138 DOI: 10.1016/j.taap.2024.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Catechin is a kind of flavonoids, mainly derived from the plant Camellia sinensis. It has a strong antioxidant effect, and it also has significant therapeutic effects on anti-cancer, anti-diabetes, and anti-infection. This study was intended to look at how catechin affected the malignant biological activity of gastric cancer cells. We used databases to predict the targets of catechin and the pathogenic targets of gastric cancer. Venn diagram was used to find the intersection genes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were performed on intersection genes. Using the STRING database, the Protein-Protein Interaction (PPI) network was built. The top 8 genes were screened by Cytoscape 3.9.1, then their binding was verified by molecular docking. The proliferation ability, cell cycle, apoptosis and migration of gastric cancer cells were detected, as well as the protein expression levels of PI3K, p-AKT, and AKT and the mRNA expression levels of AKT1, VEGFA, EGFR, HRAS, and HSP90AA1 in gastric cancer cells. Our research revealed that different concentrations of catechin could effectively inhibit the proliferation and migration of gastric cancer cells, regulate the cell cycle, and promote the death of these cells, and it's possible that the PI3K/Akt pathway was crucial in mediating this impact. Moreover, adding the PI3K/Akt pathway agonist significantly reduced the promoting effect of catechin on the apoptosis of gastric cancer cells. This study suggested that catechin was a potential drug for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ye Ding
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hao Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Saisai Cao
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yong Yu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China; Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.
| |
Collapse
|
44
|
Liu HM, Yu ZL, Xia HF, Zhang LZ, Fu QY, Wang Y, Gong HY, Chen G. EGFR Mutation and TKI Treatment Promote Secretion of Small Extracellular Vesicle PD-L1 and Contribute to Immunosuppression in NSCLC. Biomolecules 2024; 14:820. [PMID: 39062533 PMCID: PMC11274907 DOI: 10.3390/biom14070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
In Asian populations with non-small-cell lung cancer (NSCLC), EGFR mutations are highly prevalent, occurring in roughly half of these patients. Studies have revealed that individuals with EGFR mutation typically fare worse with immunotherapy. In patients who received EGFR tyrosine kinase inhibitor (TKI) treatment followed by anti-PD-1 therapy, poor results were observed. The underlying mechanism remains unclear. We used high-resolution flow cytometry and ELISA to detect the circulating level of small extracellular vesicle (sEV) PD-L1 in NSCLC individuals with EGFR mutations before and after receiving TKIs. The secretion amount of sEV PD-L1 of lung cancer cell lines with EGFR mutations under TKI treatment or not were detected using high-resolution flow cytometry and Western blotting. The results revealed that patients harboring EGFR mutations exhibit increased levels of sEV PD-L1 in circulation, which inversely correlated with the presence of CD8+ T cells in tumor tissues. Furthermore, tumor cells carrying EGFR mutations secrete a higher quantity of PD-L1-positive sEVs. TKI treatment appeared to amplify the levels of PD-L1-positive sEVs in the bloodstream. Mutation-induced and TKI-induced sEVs substantially impaired the functionality of CD8+ T cells. Importantly, our findings indicated that EGFR mutations and TKI therapies promote secretion of PD-L1-positive sEVs via distinct molecular mechanisms, namely the HRS and ALIX pathways, respectively. In conclusion, the increased secretion of PD-L1-positive sEVs, prompted by genetic alterations and TKI administration, may contribute to the limited efficacy of immunotherapy observed in EGFR-mutant patients and patients who have received TKI treatment.
Collapse
Affiliation(s)
- Hai-Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hou-Fu Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lin-Zhou Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qiu-Yun Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hong-Yun Gong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
45
|
Allawi MM, Razzak Mahmood AA, Tahtamouni LH, Saleh AM, Kanaan SI, Saleh KM, AlSakhen MF, Himsawi N, Yasin SR. Anti-proliferation evaluation of new derivatives of indole-6-carboxylate ester as receptor tyrosine kinase inhibitors. Future Med Chem 2024; 16:1313-1331. [PMID: 39109434 PMCID: PMC11318749 DOI: 10.1080/17568919.2024.2347084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/10/2024] [Indexed: 08/10/2024] Open
Abstract
Aim: The main goal was to create two new groups of indole derivatives, hydrazine-1-carbothioamide (4a and 4b) and oxadiazole (5, and 6a-e) that target EGFR (4a, 4b, 5) or VEGFR-2 (6a-e). Materials & methods: The new derivatives were characterized using various spectroscopic techniques. Docking studies were used to investigate the binding patterns to EGFR/VEGFR-2, and the anti-proliferative properties were tested in vitro. Results: Compounds 4a (targeting EGFR) and 6c (targeting VEGFR-2) were the most effective cytotoxic agents, arresting cancer cells in the G2/M phase and inducing the extrinsic apoptosis pathway. Conclusion: The results of this study show that compounds 4a and 6c are promising cytotoxic compounds that inhibit the tyrosine kinase activity of EGFR and VEGFR-2, respectively.
Collapse
Affiliation(s)
- Mustafa M Allawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Uruk university, Baghdad, Iraq
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Al-Mouadam, 10001, Baghdad, Iraq
| | - Lubna H Tahtamouni
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry & Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Abdulrahman M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11884, Egypt
- Aweash El-Hagar Family Medicine Center, Epidemiological Surveillance Unit, MOHP, Mansoura, 35711, Egypt
| | - Sana I Kanaan
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Khaled M Saleh
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mai F AlSakhen
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology & Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Salem R Yasin
- Department of Biology & Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
46
|
Khabibulina LR, Garifullin BF, Aznagulov RF, Andreeva OV, Strobykina IY, Belenok MG, Voloshina AD, Abramova DF, Vyshtakalyuk AB, Lyubina AP, Amerhanova SK, Sharipova RR, Kataev VE. Synthesis, cytotoxicity and antioxidant activity of new conjugates of N-acetyl-d-glucosamine with α-aminophosphonates. Carbohydr Res 2024; 541:109146. [PMID: 38788561 DOI: 10.1016/j.carres.2024.109146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
A series of the first conjugates of N-acetyl-d-glucosamine with α-aminophosphonates was synthesized using the Kabachnik-Fields reaction, the Pudovik reaction, a copper(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC) and evaluated for the in vitro cytotoxicity against human cancer cell lines M - HeLa, HuTu-80, A549, PANC-1, MCF-7, T98G and normal lung fibroblast cells WI-38. The tested conjugates, with exception of compound 21b, considered as a lead compound, were either inactive against the used cancer cells or showed moderate cytotoxicity in the range of IC50 values 33-80 μM. The lead compound 21b, being non cytotoxic against normal human cells WI-38 (IC50 = 90 μM), demonstrated good activity (IC50 = 17 μM) against breast adenocarcinoma cells (MCF-7) which to be 1.5 times higher than the activity of the used reference anticancer drug tamoxifen (IC50 = 25.0 μM). A flexible receptor molecular docking simulation showed that the cytotoxicity of the synthesized conjugates of N-acetyl-d-glucosamine with α-aminophosphonates against breast adenocarcinoma MCF-7 cell line is due to their ability to inhibit EGFR kinase domain. In addition, it was found that conjugates 22a and 22b demonstrated antioxidant activity that was not typical for α-aminophosphonates.
Collapse
Affiliation(s)
- Leysan R Khabibulina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation.
| | - Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation
| | - Ravil F Aznagulov
- Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation
| | - Olga V Andreeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Dinara F Abramova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation; Kazan National Research Technological University, Karl Marx str., 68, Kazan, 420015, Russian Federation
| | - Alexandra B Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Radmila R Sharipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation
| |
Collapse
|
47
|
Tardito S, Matis S, Zocchi MR, Benelli R, Poggi A. Epidermal Growth Factor Receptor Targeting in Colorectal Carcinoma: Antibodies and Patient-Derived Organoids as a Smart Model to Study Therapy Resistance. Int J Mol Sci 2024; 25:7131. [PMID: 39000238 PMCID: PMC11241078 DOI: 10.3390/ijms25137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Therefore, the need for new therapeutic strategies is still a challenge. Surgery and chemotherapy represent the first-line interventions; nevertheless, the prognosis for metastatic CRC (mCRC) patients remains unacceptable. An important step towards targeted therapy came from the inhibition of the epidermal growth factor receptor (EGFR) pathway, by the anti-EGFR antibody, Cetuximab, or by specific tyrosine kinase inhibitors (TKI). Cetuximab, a mouse-human chimeric monoclonal antibody (mAb), binds to the extracellular domain of EGFR thus impairing EGFR-mediated signaling and reducing cell proliferation. TKI can affect the EGFR biochemical pathway at different steps along the signaling cascade. Apart from Cetuximab, other anti-EGFR mAbs have been developed, such as Panitumumab. Both antibodies have been approved for the treatment of KRAS-NRAS wild type mCRC, alone or in combination with chemotherapy. These antibodies display strong differences in activating the host immune system against CRC, due to their different immunoglobulin isotypes. Although anti-EGFR antibodies are efficient, drug resistance occurs with high frequency. Resistant tumor cell populations can either already be present before therapy or develop later by biochemical adaptations or new genomic mutations in the EGFR pathway. Numerous efforts have been made to improve the efficacy of the anti-EGFR mAbs or to find new agents that are able to block downstream EGFR signaling cascade molecules. Indeed, we examined the importance of analyzing the anti-EGFR antibody-drug conjugates (ADC) developed to overcome resistance and/or stimulate the tumor host's immunity against CRC growth. Also, patient-derived CRC organoid cultures represent a useful and feasible in vitro model to study tumor behavior and therapy response. Organoids can reflect tumor genetic heterogeneity found in the tissue of origin, representing a unique tool for personalized medicine. Thus, CRC-derived organoid cultures are a smart model for studying the tumor microenvironment and for the preclinical assay of anti-EGFR drugs.
Collapse
Affiliation(s)
- Samuele Tardito
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC 20010, USA;
| | - Serena Matis
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Department of Immunology, Transplant and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy;
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
48
|
Binjawhar DN, Katouah HA, Alshaye NA, Alharthi J, Alsharif G, Elsaid FG, Fayad E, Abu Almaaty AH. Synthesis and biological research of new imidazolone-sulphonamide-pyrimidine hybrids as potential EGFR-TK inhibitors and apoptosis-inducing agents. RSC Adv 2024; 14:20120-20129. [PMID: 38915323 PMCID: PMC11194663 DOI: 10.1039/d4ra03157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024] Open
Abstract
Development of new effective EGFR-targeted antitumor agents is needed because of their clinical significance. A new series of imidazolone-sulphonamide-pyrimidine hybrids was designed and synthesized as modified analogs of some reported EGFR inhibitors. The cytotoxic activity of all the synthesized hybrids was investigated against the breast MCF-7 cancerous cell line using doxorubicin (Dox) as a positive control. 4-(Furan-2-ylmethylene)imidazolone-sulphonamide-pyrimidine 6b had the best potent activity against MCF-7 cells with IC50 result of 1.05 μM, which was better than Dox (IC50 = 1.91 μM). In addition, mechanistic studies revealed the ability of compounds 5g, 5h and 6b to inhibit EGFR kinase. Cell cycle analysis revealed that compound 6b can halt MCF-7 cells at the G1 phase with a concomitant decrease in cellular percentage at the S and G2/M phases. This compound produced a noticeable rise in the proportion of apoptotic cells with regard to the untreated control. Furthermore, the effects of hybrid 6b on the expression levels of pro-apoptotic Bax and pro-survival Bcl2 were assessed. The results showed that this compound upregulated the level of Bax expression as well as declined the expression value of Bcl-2 with regard to the untreated control.
Collapse
Affiliation(s)
- Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Hanadi A Katouah
- Chemistry Department, College of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Jawaher Alharthi
- Department of Biotechnology, College of Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences P.O.Box 9515 Jeddah 21423 Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Center 21423 Jeddah Saudi Arabia
| | - Fahmy G Elsaid
- Department of Biology, College of Science, King Khalid University PO Box 960 Abha Asir 61421 Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ali H Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| |
Collapse
|
49
|
James N, Owusu E, Rivera G, Bandyopadhyay D. Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action. Int J Mol Sci 2024; 25:6285. [PMID: 38892472 PMCID: PMC11172743 DOI: 10.3390/ijms25116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10-15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and a higher risk of metastasis and recurrence. Still, chemotherapy is one of the widely used options for treating TNBC. This study reviewed the histological and molecular characterization of TNBC subtypes, signaling pathways that are aberrantly expressed, and small molecules targeting these pathways, as either single agents or in combination with other therapeutic agents like chemotherapeutics, immunotherapeutics, and antibody-drug conjugates; their mechanisms of action, challenges, and future perspectives were also reviewed. A detailed analytical review was carried out using the literature collected from the SciFinder, PubMed, ScienceDirect, Google Scholar, ACS, Springer, and Wiley databases. Several small molecule inhibitors were found to be therapeutics for treating TNBC. The mechanism of action and the different signaling pathways through which the small molecules exert their effects were studied, including clinical trials, if reported. These small molecule inhibitors include buparlisib, everolimus, vandetanib, apatinib, olaparib, salidroside, etc. Some of the signaling pathways involved in TNBC, including the VEGF, PARP, STAT3, MAPK, EGFR, P13K, and SRC pathways, were discussed. Due to the absence of these biomarkers, drug development for treating TNBC is challenging, with chemotherapy being the main therapeutic agent. However, chemotherapy is associated with chemoresistance and a high toxicity to healthy cells as side effects. Hence, there is a continuous demand for small-molecule inhibitors that specifically target several signaling pathways that are abnormally expressed in TNBC. We attempted to include all the recent developments in this field. Any omission is truly unintentional.
Collapse
Affiliation(s)
- Nneoma James
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Esther Owusu
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
50
|
Faris A, Hadni H, Saleh BA, Khelfaoui H, Harkati D, Ait Ahsaine H, Elhallaoui M, El-Hiti GA. In silico screening of a series of 1,6-disubstituted 1 H-pyrazolo[3,4- d]pyrimidines as potential selective inhibitors of the Janus kinase 3. J Biomol Struct Dyn 2024; 42:4456-4474. [PMID: 37317996 DOI: 10.1080/07391102.2023.2220829] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Rheumatoid arthritis is a common chronic disabling inflammatory disease that is characterized by inflammation of the synovial membrane and leads to discomfort. In the current study, twenty-seven 1,6-disubstituted 1H-pyrazolo[3,4-d]pyrimidines were tested as potential selective inhibitors of the tyrosine-protein kinase JAK3 using a number of molecular modeling methods. The activity of the screened derivatives was statistically quantified using multiple linear regression and artificial neural networks. To assess the quality, robustness, and predictability of the generated models, the leave-one-out cross-validation method was applied with favorable results (Q2 = 0.75) and Y-randomization. In addition, the evaluation of the predictive ability of the established model was confirmed by means of an external validation using a composite test set and an applicability domain approach. The covalent docking indicated that the tested 1H-pyrazolo[3,4-d]pyrimidines containing the acrylic aldehyde moiety had irreversible interaction with the residue Cys909 in the active sites of the tyrosine-protein kinase JAK3 by Michael addition. The molecular dynamics for three selected derivatives (compounds 9, 12, and 18) were used to verify the covalent docking by determining the stability of hydrogen bonding interactions with active sites, which are needed to stop tyrosine-protein kinase JAK3. The results obtained showed that the tested compounds containing acrylic aldehyde moiety had favorable binding free energies, indicating a strong affinity for the JAK3 enzyme. Overall, this current study suggests that the tested compounds containing the acrylic aldehyde moiety have the potential to act as anti-JAK3 inhibitors. They could be explored further to be used as treatment options for rheumatoid arthritis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Basil A Saleh
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | - Hadjer Khelfaoui
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, Faculty of Exact and Natural Sciences, Department of Matter Sciences, University of Biskra, Biskra, Algeria
| | - Dalal Harkati
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, Faculty of Exact and Natural Sciences, Department of Matter Sciences, University of Biskra, Biskra, Algeria
| | - Hassan Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Menana Elhallaoui
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|