1
|
Grizzell JA, Clarity TT, Rodriguez RM, Marshall ZQ, Cooper MA. Effects of social dominance and acute social stress on morphology of microglia and structural integrity of the medial prefrontal cortex. Brain Behav Immun 2024; 122:353-367. [PMID: 39187049 PMCID: PMC11402560 DOI: 10.1016/j.bbi.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic stress increases activity of the brain's innate immune system and impairs function of the medial prefrontal cortex (mPFC). However, whether acute stress triggers similar neuroimmune mechanisms is poorly understood. Across four studies, we used a Syrian hamster model to investigate whether acute stress drives changes in mPFC microglia in a time-, subregion-, and social status-dependent manner. We found that acute social defeat increased expression of ionized calcium binding adapter molecule 1 (Iba1) in the infralimbic (IL) and prelimbic (PL) and altered the morphology Iba1+ cells 1, 2, and 7 days after social defeat. We also investigated whether acute defeat induced tissue degeneration and reductions of synaptic plasticity 2 days post-defeat. We found that while social defeat increased deposition of cellular debris and reduced synaptophysin immunoreactivity in the PL and IL, treatment with minocycline protected against these cellular changes. Finally, we tested whether a reduced conditioned defeat response in dominant compared to subordinate hamsters was associated with changes in microglia reactivity in the IL and PL. We found that while subordinate hamsters and those without an established dominance relationships showed defeat-induced changes in morphology of Iba1+ cells and cellular degeneration, dominant hamsters showed resistance to these effects of social defeat. Taken together, these findings indicate that acute social defeat alters microglial morphology, increases markers of tissue degradation, and impairs structural integrity in the IL and PL, and that experience winning competitive interactions can specifically protect the IL and reduce stress vulnerability.
Collapse
Affiliation(s)
- J Alex Grizzell
- Neuroscience and Behavioral Biology Program, Emory University, United States; Department of Psychology, University of Tennessee Knoxville, United States; Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Thomas T Clarity
- Department of Psychology, University of Tennessee Knoxville, United States
| | - R Mason Rodriguez
- Department of Psychology, University of Tennessee Knoxville, United States
| | - Zachary Q Marshall
- Department of Psychology and Neurosciences, University of Colorado Boulder, United States
| | - Matthew A Cooper
- Department of Psychology, University of Tennessee Knoxville, United States.
| |
Collapse
|
2
|
Manssen L, Krey I, Gburek-Augustat J, von Hagen C, Lemke JR, Merkenschlager A, Weigand H, Makowski C. Precision Medicine in Angelman Syndrome. Neuropediatrics 2024. [PMID: 39168152 DOI: 10.1055/a-2399-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Angelman syndrome (AS) is a rare neurogenetic disorder caused by a loss of function of UBE3A on the maternal allele. Clinical features include severe neurodevelopmental delay, epilepsy, sleep disturbances, and behavioral disorders. Therapy currently evolves from conventional symptomatic, supportive, and antiseizure treatments toward alteration of mRNA expression, which is subject of several ongoing clinical trials.This article will provide an overview of clinical research and therapeutic approaches on AS.
Collapse
Affiliation(s)
- Lena Manssen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Janina Gburek-Augustat
- Division of Neuropediatrics, Hospital for Children and Adolescents, Department of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Cornelia von Hagen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Kinderzentrum Munchen gemeinnutzige GmbH, kbo, Munich, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Andreas Merkenschlager
- Division of Neuropediatrics, Hospital for Children and Adolescents, Department of Women and Child Health, University of Leipzig, Leipzig, Germany
| | - Heike Weigand
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| | - Christine Makowski
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
| |
Collapse
|
3
|
Seifert R, Schirmer B, Seifert J. How pharmacology can aid in the diagnosis of mental disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03413-z. [PMID: 39230588 DOI: 10.1007/s00210-024-03413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
The precise diagnosis of mental disorders constitutes a formidable problem. Mental disorders are currently diagnosed based on clinical symptoms, which are often subjective. Various drug classes, traditionally referred to as "antidepressants," "antipsychotics" and "mood stabilizers" are then used empirically to treat affected patients. The previous decade has witnessed an increasing extension of the use of drug classes beyond their traditional indications (e.g., "antidepressants" in the treatment of anxiety disorders). Therefore, we would like to initiate a discussion in the pharmacological and psychiatric research communities on an alternative classification of mental disorders: Instead of using the traditional categorical classification of mental disorders physicians should rather diagnose symptoms (e.g., anhedonia) without bias to a traditional categorization (e.g., depression). The appropriate most effective drugs are then selected based on these symptoms. Depending on the responsiveness of the patient towards a given drug X, the disease should be classified, e.g., as drug X-responsive disease. This approach will also help us elucidate the still poorly understood molecular mechanisms underlying mental disorders, i.e., drugs can also be viewed and used as molecular diagnostic tools. In several fields of medicine, drugs are already used as molecular diagnostic tools. Thus, there is already precedence for the concept proposed here for mental disorders.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Cale JA, Chauhan EJ, Cleaver JJ, Fusciardi AR, McCann S, Waters HC, Žavbi J, King MV. GABAergic and inflammatory changes in the frontal cortex following neonatal PCP plus isolation rearing, as a dual-hit neurodevelopmental model for schizophrenia. Mol Neurobiol 2024; 61:6968-6983. [PMID: 38363536 PMCID: PMC11339149 DOI: 10.1007/s12035-024-03987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
The pathogenesis of schizophrenia begins in early neurodevelopment and leads to excitatory-inhibitory imbalance. It is therefore essential that preclinical models used to understand disease, select drug targets and evaluate novel therapeutics encompass similar neurochemical deficits. One approach to improved preclinical modelling incorporates dual-hit neurodevelopmental insults, like neonatal administration of phencyclidine (PCP, to disrupt development of glutamatergic circuitry) then post-weaning isolation (Iso, to mimic adolescent social stress). We recently showed that male Lister-hooded rats exposed to PCP-Iso exhibit reduced hippocampal expression of the GABA interneuron marker calbindin. The current study expanded on this by investigating changes to additional populations of GABAergic interneurons in frontal cortical and hippocampal tissue from the same animals (by immunohistochemistry) as well as levels of GABA itself (via ELISA). Because inflammatory changes are also implicated in schizophrenia, we performed additional immunohistochemical evaluations of Iba-1 positive microglia as well as ELISA analysis of IL-6 in the same brain regions. Single-hit isolation-reared and dual-hit PCP-Iso rats both showed reduced parvalbumin immunoreactivity in the prelimbic/infralimbic region of the frontal cortex. However, this was more widespread in PCP-Iso, extending to the medial/ventral and lateral/dorsolateral orbitofrontal cortices. Loss of GABAergic markers was accompanied by increased microglial activation in the medial/ventral orbitofrontal cortices of PCP-Iso, together with frontal cortical IL-6 elevations not seen following single-hit isolation rearing. These findings enhance the face validity of PCP-Iso, and we advocate the use of this preclinical model for future evaluation of novel therapeutics-especially those designed to normalise excitatory-inhibitory imbalance or reduce neuroinflammation.
Collapse
Affiliation(s)
- Jennifer A Cale
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Ethan J Chauhan
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Joshua J Cleaver
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Anthoio R Fusciardi
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Sophie McCann
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Hannah C Waters
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Juš Žavbi
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, The University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
5
|
Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024; 15:1333717. [PMID: 38979496 PMCID: PMC11228311 DOI: 10.3389/fpsyt.2024.1333717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Autism spectrum disorder (ASD1) is a behaviorally defined syndrome encompassing a markedly heterogeneous patient population. Many ASD subjects fail to respond to the 1st line behavioral and pharmacological interventions, leaving parents to seek out other treatment options. Evidence supports that neuroinflammation plays a role in ASD pathogenesis. However, the underlying mechanisms likely vary for each ASD patient, influenced by genetic, epigenetic, and environmental factors. Although anti-inflammatory treatment measures, mainly based on metabolic changes and oxidative stress, have provided promising results in some ASD subjects, the use of such measures requires the careful selection of ASD subjects based on clinical and laboratory findings. Recent progress in neuroscience and molecular immunology has made it possible to allow re-purposing of currently available anti-inflammatory medications, used for autoimmune and other chronic inflammatory conditions, as treatment options for ASD subjects. On the other hand, emerging anti-inflammatory medications, including biologic and gate-keeper blockers, exert powerful anti-inflammatory effects on specific mediators or signaling pathways. It will require both a keen understanding of the mechanisms of action of such agents and the careful selection of ASD patients suitable for each treatment. This review will attempt to summarize the use of anti-inflammatory agents already used in targeting ASD patients, and then emerging anti-inflammatory measures applicable for ASD subjects based on scientific rationale and clinical trial data, if available. In our experience, some ASD patients were treated under diagnoses of autoimmune/autoinflammatory conditions and/or post-infectious neuroinflammation. However, there are little clinical trial data specifically for ASD subjects. Therefore, these emerging immunomodulating agents for potential use for ASD subjects will be discussed based on preclinical data, case reports, or data generated in patients with other medical conditions. This review will hopefully highlight the expanding scope of immunomodulating agents for treating neuroinflammation in ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers University-Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| |
Collapse
|
6
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
7
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
8
|
Gentile JE, Heiss C, Corridon TL, Mortberg MA, Fruhwürth S, Guzman K, Grötschel L, Chan K, Herring NC, Janicki T, Nhass R, Sarathy JM, Erickson B, Kunz R, Erickson A, Braun C, Henry KT, Bry L, Arnold SE, Minikel EV, Zetterberg H, Vallabh SM. Evidence that minocycline treatment confounds the interpretation of neurofilament as a biomarker. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306384. [PMID: 38746398 PMCID: PMC11092701 DOI: 10.1101/2024.05.01.24306384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Neurofilament light (NfL) concentration in cerebrospinal fluid (CSF) and blood serves as an important biomarker in neurology drug development. Changes in NfL are generally assumed to reflect changes in neuronal damage, while little is known about the clearance of NfL from biofluids. We observed an NfL increase of 3.5-fold in plasma and 5.7-fold in CSF in an asymptomatic individual at risk for genetic prion disease following 6 weeks' treatment with oral minocycline for a dermatologic indication. Other biomarkers remained normal, and proteomic analysis of CSF revealed that the spike was exquisitely specific to neurofilaments. NfL dropped nearly to normal levels 5 weeks after minocycline cessation, and the individual remained free of disease 2 years later. Plasma NfL in dermatology patients was not elevated above normal controls. Dramatically high plasma NfL (>500 pg/mL) was variably observed in some hospitalized individuals receiving minocycline. In mice, treatment with minocycline resulted in variable increases of 1.3- to 4.0-fold in plasma NfL, with complete washout 2 weeks after cessation. In neuron-microglia co-cultures, minocycline increased NfL concentration in conditioned media by 3.0-fold without any visually obvious impact on neuronal health. We hypothesize that minocycline does not cause or exacerbate neuronal damage, but instead impacts the clearance of NfL from biofluids, a potential confounder for interpretation of this biomarker.
Collapse
|
9
|
Truong TTT, Liu ZSJ, Panizzutti B, Kim JH, Dean OM, Berk M, Walder K. Network-based drug repurposing for schizophrenia. Neuropsychopharmacology 2024; 49:983-992. [PMID: 38321095 PMCID: PMC11039639 DOI: 10.1038/s41386-024-01805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Despite recent progress, the challenges in drug discovery for schizophrenia persist. However, computational drug repurposing has gained popularity as it leverages the wealth of expanding biomedical databases. Network analyses provide a comprehensive understanding of transcription factor (TF) regulatory effects through gene regulatory networks, which capture the interactions between TFs and target genes by integrating various lines of evidence. Using the PANDA algorithm, we examined the topological variances in TF-gene regulatory networks between individuals with schizophrenia and healthy controls. This algorithm incorporates binding motifs, protein interactions, and gene co-expression data. To identify these differences, we subtracted the edge weights of the healthy control network from those of the schizophrenia network. The resulting differential network was then analysed using the CLUEreg tool in the GRAND database. This tool employs differential network signatures to identify drugs that potentially target the gene signature associated with the disease. Our analysis utilised a large RNA-seq dataset comprising 532 post-mortem brain samples from the CommonMind project. We constructed co-expression gene regulatory networks for both schizophrenia cases and healthy control subjects, incorporating 15,831 genes and 413 overlapping TFs. Through drug repurposing, we identified 18 promising candidates for repurposing as potential treatments for schizophrenia. The analysis of TF-gene regulatory networks revealed that the TFs in schizophrenia predominantly regulate pathways associated with energy metabolism, immune response, cell adhesion, and thyroid hormone signalling. These pathways represent significant targets for therapeutic intervention. The identified drug repurposing candidates likely act through TF-targeted pathways. These promising candidates, particularly those with preclinical evidence such as rimonabant and kaempferol, warrant further investigation into their potential mechanisms of action and efficacy in alleviating the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| |
Collapse
|
10
|
Rezaei A, Moqadami A, Khalaj-Kondori M. Minocycline as a prospective therapeutic agent for cancer and non-cancer diseases: a scoping review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2835-2848. [PMID: 37991540 DOI: 10.1007/s00210-023-02839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Minocycline is an FDA-approved secondary-generation tetracycline antibiotic. It is a synthetic antibiotic having many biological effects, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective functions. This study discusses the pharmacological mechanisms of preventive and therapeutic effects of minocycline. Specifically, it provides a comprehensive overview of the molecular pathways by which minocycline acts on the different cancers, including ovarian, breast, glioma, colorectal, liver, pancreatic, lung, prostate, melanoma, head and neck, leukemia, and non-cancer diseases such as Alzheimer's disease, Parkinson, schizophrenia, multiple sclerosis, Huntington, polycystic ovary syndrome, and coronavirus disease 19. Minocycline may be a potential medication for these disorders due to its strong blood-brain barrier penetrance. It is also widely accepted as a specific medication, has a well-known side-effect characteristic, is reasonably priced, making it appropriate for continuous use in managing diseases, and has been demonstrated as an oral approach because it is effectively absorbed and accomplished almost all of the body's parts.
Collapse
Affiliation(s)
- Abedeh Rezaei
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Moqadami
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
11
|
de Witte LD, Munk Laursen T, Corcoran CM, Munk-Olsen T, Bergink V. Association between doxycycline use and long-term functioning in patients with schizophrenia. Brain Behav Immun 2024; 117:66-69. [PMID: 38169245 PMCID: PMC10932900 DOI: 10.1016/j.bbi.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
IMPORTANCE AND OBJECTIVE The brain-penetrant tetracycline antibiotics, minocycline and doxycycline, have been proposed as potential candidate drugs for treatment of schizophrenia, based on preclinical studies and clinical trials. A potential long-term beneficial effect of these antibiotics for schizophrenia patients has not been investigated. This study was designed to determine if redemption of doxycycline prescription in schizophrenia is associated with decreased incidence of disability pension, a proxy for long-term functioning. DESIGN We performed a population-based cohort study with data from schizophrenia patients available through the Danish registers. Survival analysis models with time-varying covariates were constructed to assess incidence rate ratios (IRR) of disability pension after exposure to doxycycline or a non-brain penetrant tetracycline, defined as at least one filled prescription. The analysis was adjusted for age, sex, calendar year, parental psychiatric status and educational level. RESULTS We used data from 11,157 individuals with schizophrenia (4,945 female and 6,212 male; average age 22.4 years old, standard deviation (std) 4.50). 718 of these were exposed to brain-penetrant doxycycline, and 1,498 individuals redeemed a prescription of one or more of the non-brain-penetrant tetracyclines. The average years at risk per person in this cohort was 4.9, and 2,901 individuals received disability pension in the follow-up period. There was a significantly lower incidence rate of disability pension in schizophrenia patients who had redeemed doxycycline compared to patients who did not redeem a prescription of any tetracycline antibiotics (Incidence rate ratio (IRR) 0.68; 95 % CI 0.56, 0.83). There was also a significant lower rate of disability pension in schizophrenia patients who redeemed doxycycline compared to individuals who redeemed a prescription of one of the non-brain penetrant tetracycline antibiotics (IRR 0.69 95 % CI 0.55, 0.87). CONCLUSIONS In this observational study, doxycycline exposure is associated with a reduced incidence of disability pension. These data support further studies on the potential long term neuroprotective effects of doxycycline and level of functioning in schizophrenia patients.
Collapse
Affiliation(s)
- Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Thomas Munk Laursen
- The National Center for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Cheryl M Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Trine Munk-Olsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Shamabadi A, Karimi H, Arabzadeh Bahri R, Motavaselian M, Akhondzadeh S. Emerging drugs for the treatment of irritability associated with autism spectrum disorder. Expert Opin Emerg Drugs 2024; 29:45-56. [PMID: 38296815 DOI: 10.1080/14728214.2024.2313650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is an early-onset disorder with a prevalence of 1% among children and reported disability-adjusted life years of 4.31 million. Irritability is a challenging behavior associated with ASD, for which medication development has lagged. More specifically, pharmacotherapy effectiveness may be limited against high adverse effects (considering side effect profiles and patient medication sensitivity); thus, the possible benefits of pharmacological interventions must be balanced against potential adverse events in each patient. AREAS COVERED After reviewing the neuropathophysiology of ASD-associated irritability, the benefits and tolerability of emerging medications in its treatment based on randomized controlled trials were detailed in light of mechanisms and targets of action. EXPERT OPINION Succeeding risperidone and aripiprazole, monotherapy with memantine may be beneficial. In addition, N-acetylcysteine, galantamine, sulforaphane, celecoxib, palmitoylethanolamide, pentoxifylline, simvastatin, minocycline, amantadine, pregnenolone, prednisolone, riluzole, propentofylline, pioglitazone, and topiramate, all adjunct to risperidone, and clonidine and methylphenidate outperformed placebo. These effects were through glutamatergic, γ-aminobutyric acidergic, inflammatory, oxidative, cholinergic, dopaminergic, and serotonergic systems. All medications were reported to be safe and tolerable. Considering sample size, follow-up, and effect size, further studies are necessary. Along with drug development, repositioning and combining existing drugs supported by the mechanism of action is recommended.
Collapse
Affiliation(s)
- Ahmad Shamabadi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Razman Arabzadeh Bahri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Suprunowicz M, Tomaszek N, Urbaniak A, Zackiewicz K, Modzelewski S, Waszkiewicz N. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients 2024; 16:549. [PMID: 38398873 PMCID: PMC10891846 DOI: 10.3390/nu16040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut-brain-microbiome axis in the pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement of bacterial molecules in neuroinflammation and brain development disruptions. Concurrently, attention is directed towards the role of short-chain fatty acids (SCFAs) and impaired intestinal tightness. This comprehensive review emphasizes the potential impact of maternal gut microbiota changes on the development of autism in children, especially considering maternal immune activation (MIA). The following paper evaluates the impact of the birth route on the colonization of the child with bacteria in the first weeks of life. Furthermore, it explores the role of pro-inflammatory cytokines, such as IL-6 and IL-17a and mother's obesity as potentially environmental factors of ASD. The purpose of this review is to advance our understanding of ASD pathogenesis, while also searching for the positive implications of the latest therapies, such as probiotics, prebiotics or fecal microbiota transplantation, targeting the gut microbiota and reducing inflammation. This review aims to provide valuable insights that could instruct future studies and treatments for individuals affected by ASD.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Modzelewski
- Department of Psychiatry, Medical University of Bialystok, pl. Wołodyjowskiego 2, 15-272 Białystok, Poland; (M.S.); (N.T.); (A.U.); (K.Z.); (N.W.)
| | | |
Collapse
|
14
|
Bhatt S, Anitha K, Chellappan DK, Mukherjee D, Shilpi S, Suttee A, Gupta G, Singh TG, Dua K. Targeting inflammatory signaling in obsessive compulsive disorder: a promising approach. Metab Brain Dis 2024; 39:335-346. [PMID: 37950815 DOI: 10.1007/s11011-023-01314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Approximately, around 2% to 3% percent of the general population experience symptoms of OCD over the course of their lifetime. OCD can lead to economic burden, poor quality of life, and disability. The characteristic features exhibited generally in OCD are continuous intrusive thoughts and periodic ritualized behaviours. Variations in genes, pathological function of Cortico-Striato-Thalamo-Cortical (CSTC) circuits and dysregulation in the synaptic conduction have been the major factors involved in the pathological progression of OCD. However, the basic mechanisms still largely unknown. Current therapies for OCD largely target monoaminergic neurotransmitters (NTs) in specific dopaminergic and serotonergic circuits. However, such therapies have limited efficacy and tolerability. Drug resistance has been one of the important reasons reported to critically influence the effectiveness of the available drugs. Inflammation has been a crucial factor which is believed to have a significant importance in OCD progression. A significant number of proinflammatory cytokines have been reportedly amplified in patients with OCD. Mechanisms of drug treatment involve attenuation of the symptoms via modulation of inflammatory signalling pathways, modification in brain structure, and synaptic plasticity. Hence, targeting inflammatory signaling may be considered as a suitable approach in the treatment of OCD. The present review focuses mainly on the significant findings from the animal and human studies conducted in this area, that targets inflammatory signaling in neurological conditions. In addition, it also focusses on the therapeutic approaches that target OCD via modification of the inflammatory signaling pathways.
Collapse
Affiliation(s)
- Shvetank Bhatt
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India.
| | - Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy & Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, 425405, Maharashtra, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, School of Pharmacy & Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, Maharashtra, 425405, India
| | - Satish Shilpi
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Kanchipuram - Chennai Rd, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
15
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
16
|
Kopera AF, Khiew YC, Amer Alsamman M, Mattar MC, Olsen RS, Doman DB. Depression and the Aberrant Intestinal Microbiome. Gastroenterol Hepatol (N Y) 2024; 20:30-40. [PMID: 38405047 PMCID: PMC10885418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Depression is one of the most common mental health disorders affecting adults in the United States. The current treatment is the combination of pharmacotherapy and psychotherapy. Recently, the evidence linking gut microbiome dysregulation to the development of depression has grown. The pathophysiology is currently poorly understood, although leading hypotheses include involvement of the hypothalamic-pituitary-adrenal axis, a bidirectional relationship between the gut microbiome and the central nervous system, and production of signaling molecules by the gut microbiome. Available and emerging treatments of the aberrant microbiome include antidepressants, antibiotics, diet modification, probiotics, and fecal microbiota transplant. This article explores the interconnectivity of gut microbiota and depression and treatments targeted toward the gut, reviews the gastroenterologist's potential role in managing gut dysbiosis in patients with depression, and highlights research topics to be addressed to create evidence-based guidelines.
Collapse
Affiliation(s)
- Ann F. Kopera
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC
| | - Yii Chun Khiew
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Mohd Amer Alsamman
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Mark C. Mattar
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC
| | - Raena S. Olsen
- Department of Gastroenterology, MedStar Health Gastroenterology at Silver Spring, Silver Spring, Maryland
| | - David B. Doman
- Department of Gastroenterology, MedStar Health Gastroenterology at Silver Spring, Silver Spring, Maryland
| |
Collapse
|
17
|
Raghib MF, Bernitsas E. From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment. Biomedicines 2023; 11:3069. [PMID: 38002068 PMCID: PMC10668955 DOI: 10.3390/biomedicines11113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Microbes, including bacteria and certain viruses, particularly Epstein-Barr virus (EBV), have been linked to the pathogenesis of MS. While there is currently no cure for MS, antibiotics and antivirals have been studied as potential treatment options due to their immunomodulatory ability that results in the regulation of the immune process. The current issue addressed in this systematic review is the effect of antimicrobials, including antibiotics, antivirals, and antiparasitic agents in animals and humans. We performed a comprehensive search of PubMed, Google Scholar, and Scopus for articles on antimicrobials in experimental autoimmune encephalomyelitis animal models of MS, as well as in people with MS (pwMS). In animal models, antibiotics tested included beta-lactams, minocycline, rapamycin, macrolides, and doxycycline. Antivirals included acyclovir, valacyclovir, and ganciclovir. Hydroxychloroquine was the only antiparasitic that was tested. In pwMS, we identified a total of 24 studies, 17 of them relevant to antibiotics, 6 to antivirals, and 1 relevant to antiparasitic hydroxychloroquine. While the effect of antimicrobials in animal models was promising, only minocycline and hydroxychloroquine improved outcome measures in pwMS. No favorable effect of the antivirals in humans has been observed yet. The number and size of clinical trials testing antimicrobials have been limited. Large, multicenter, well-designed studies are needed to further evaluate the effect of antimicrobials in MS.
Collapse
Affiliation(s)
- Muhammad Faraz Raghib
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Sastry Neuroimaging Laboratory, Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
18
|
Shamim MA, Manna S, Dwivedi P, Swami MK, Sahoo S, Shukla R, Srivastav S, Thaper K, Saravanan A, Anil A, Varthya SB, Singh S, Shamim MA, Satapathy P, Chattu SK, Chattu VK, Padhi BK, Sah R. Minocycline in depression not responding to first-line therapy: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35937. [PMID: 37960804 PMCID: PMC10637431 DOI: 10.1097/md.0000000000035937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Major depressive disorder is often resistant to first-line treatment, with around 30% failing to respond to traditional therapy. Treatment-resistant depression results in prolonged hospitalization and healthcare costs. Anti-inflammatory drugs have shown promising results in depression not responding to initial therapy. Minocycline has anti-inflammatory properties and crosses the blood-brain barrier. It has demonstrated varied results in several randomized controlled trials (RCTs). METHODS We assessed the efficacy of minocycline compared to placebo in depression not responding to one first-line antidepressant via a systematic review and meta-analysis. We performed a comprehensive literature search across PubMed, Cochrane, and Scopus for RCTs. We visualized the results using forest plots and drapery plots. We assessed and explored heterogeneity using I2, prediction interval, and meta-regression. Then, we rated the certainty of the evidence. RESULTS Four RCTs revealed a non-significant difference in depression severity [-3.93; 95% CI: -16.14 to 8.28], rate of response [1.15; 0.33-4.01], and rate of remission [0.94; 0.44-2.01]. However, the reduction in depression severity is significant at a trend of P < .1. The high between-study heterogeneity (I2 = 78%) for depression severity could be answered by meta-regression (P = .02) for the duration of therapy. CONCLUSION There is no significant difference with minocycline compared to placebo for depression not responding to first-line antidepressant therapy. However, the treatment response varies with treatment duration and patients' neuroinflammatory state. Thus, larger and longer RCTs, especially in diverse disease subgroups, are needed for further insight. This is needed to allow greater precision medicine in depression and avoid elevated healthcare expenditure associated with hit-and-trial regimens. REGISTRATION CRD42023398476 (PROSPERO).
Collapse
Affiliation(s)
| | | | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
- Centre of Excellence for Tribal Health, All India Institute of Medical Sciences, Jodhpur, India
| | - Mukesh Kumar Swami
- Department of Psychiatry, All India Institute of Medical Sciences, Jodhpur, India
| | - Swapnajeet Sahoo
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravindra Shukla
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, Jodhpur, India
| | - Shival Srivastav
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Kashish Thaper
- Department of Psychiatry, All India Institute of Medical Sciences, Jodhpur, India
| | - Aswini Saravanan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhishek Anil
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Shoban Babu Varthya
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Surjit Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Muhammad Aasim Shamim
- Department of Hospital Administration, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prakisini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Soosanna Kumary Chattu
- Center for Evidence-Based Research, Global Health Research and Innovations Canada Inc. (GHRIC), Toronto, ON, Canada
| | - Vijay Kumar Chattu
- ReSTORE Lab, Department of Occupational Science & Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technological Sciences, Saveetha University, Chennai, India
- Department of Community Medicine, Faculty of Medicine, Datta Meghe Institute of Medical Sciences, Wardha, India
| | - Bijaya K. Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|