1
|
Terol-Úbeda AC, Fernández-González JF, Roldán-Hernández CA, Martín ML, Morán A, García-Domingo M, García-Pedraza JÁ. Sex influence on serotonergic modulation of the vascular noradrenergic drive in rats. Br J Pharmacol 2024. [PMID: 39489611 DOI: 10.1111/bph.17380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND AND PURPOSE In male rats, the serotonergic system modulates sympathetic outflow at vascular levels, causing sympatho-inhibition and sympatho-excitation, mainly via 5-HT1D/1A and 5-HT3 receptors, respectively. However, sex influence on vascular serotonergic regulation has not yet been elucidated. This study aimed to analyse the 5-HT sympatho-modulatory role in female rats, characterising the 5-HT receptors involved. EXPERIMENTAL APPROACH Female Wistar (14- to 16-week-old) rats were prepared for sympathetic stimulation. Mean blood pressure (MBP) and heart rate (HR) were continuously measured. Vasopressor responses were obtained by electrical stimulation of the sympathetic outflow (0.1-5 Hz) or i.v. noradrenaline (0.01-0.5 μg·kg-1). 5-HT-related drug effects on adrenergic system were determined. Age-matched male rats were used as control. KEY RESULTS Basal MBP in females was lower than in male rats, whereas electrical-induced increases in MBP were similar. In females, 5-HT exerted a dose-dependent inhibition on the sympathetic-evoked vasoconstrictions, that was reproduced by some agonists; 5-CT (5-HT1/5/7) and L-694,247 (5-HT1D), whereas the selective 5-HT2A/2B/2C (α-methyl-5-HT) and 5-HT3 agonist (1-PBG) increased the electrically-produced vasopressor responses. None of the other drugs tested (targeting 5-HT1A/1B/1F, 5-HT2B/2C, 5-HT4, 5-HT5A or 5-HT7) modified these vasoconstrictions. Only 1-PBG (5-HT3) modified the vasoconstrictions induced by exogenous noradrenaline. CONCLUSIONS AND IMPLICATIONS In female rats, vascular serotonergic sympatholytic effects are due to prejunctional 5-HT1D receptor activation, whereas pre and/or postjunctional 5-HT3 and prejunctional 5-HT2A receptor activation is involved in the potentiating effect of vascular sympathetic neurotransmission. These findings may open novel sex-differential therapeutic strategies for treating cardiovascular conditions.
Collapse
Affiliation(s)
- Anaïs Clara Terol-Úbeda
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Juan Francisco Fernández-González
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Andrés Roldán-Hernández
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - María Luisa Martín
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Asunción Morán
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Mónica García-Domingo
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - José Ángel García-Pedraza
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
2
|
Abujrais S, Vallianatou T, Bergquist J. Untargeted Metabolomics and Quantitative Analysis of Tryptophan Metabolites in Myalgic Encephalomyelitis Patients and Healthy Volunteers: A Comparative Study Using High-Resolution Mass Spectrometry. ACS Chem Neurosci 2024; 15:3525-3534. [PMID: 39302151 PMCID: PMC11450765 DOI: 10.1021/acschemneuro.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic, complex illness characterized by severe and often disabling physical and mental fatigue. So far, scientists have not been able to fully pinpoint the biological cause of the illness and yet it affects millions of people worldwide. To gain a better understanding of ME/CFS, we compared the metabolic networks in the plasma of 38 ME/CFS patients to those of 24 healthy control participants. This involved an untargeted metabolomics approach in addition to the measurement of targeted substances including tryptophan and its metabolites, as well as tyrosine, phenylalanine, B vitamins, and hypoxanthine using liquid chromatography coupled to mass spectrometry. We observed significant alterations in several metabolic pathways, including the vitamin B3, arginine-proline, and aspartate-asparagine pathways, in the untargeted analysis. The targeted analysis revealed changes in the levels of 3-hydroxyanthranilic acid, 3-hydroxykynurenine, hypoxanthine, and phenylalanine in ME/CFS patients compared to the control group. These findings suggest potential alterations in immune system response and oxidative stress in ME/CFS patients.
Collapse
Affiliation(s)
- Sandy Abujrais
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
- The
ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| | - Theodosia Vallianatou
- Spatial
Mass Spectrometry, Department of Pharmaceutical Biosciences, Uppsala University, Box
591, 751 24 Uppsala, Sweden
| | - Jonas Bergquist
- Analytical
Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
- The
ME/CFS Collaborative Research Centre at Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Visser K, Ciubotariu D, de Koning ME, Jacobs B, van Faassen M, van der Ley C, Mayer AR, Meier TB, Bourgonje AR, Kema IP, van Goor H, van der Naalt J, van der Horn HJ. Exploring the kynurenine pathway in mild traumatic brain injury: A longitudinal study. J Neurochem 2024; 168:2710-2721. [PMID: 38770668 DOI: 10.1111/jnc.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
A potential source of novel biomarkers for mTBI is the kynurenine pathway (KP), a metabolic pathway of tryptophan (Trp), that is up-regulated by neuroinflammation and stress. Considering that metabolites of the KP (kynurenines) are implicated in various neuropsychiatric diseases, exploration of this pathway could potentially bridge the gap between physiological and psychological factors in the recovery process after mTBI. This study, therefore, set out to characterize the KP after mTBI and to examine associations with long-term outcome. Patients were prospectively recruited at the emergency department (ED), and blood samples were obtained in the acute phase (<24 h; N = 256) and at 1-month follow-up (N = 146). A comparison group of healthy controls (HC; N = 32) was studied at both timepoints. Trp, kynurenines, and interleukin (IL)-6 and IL-10 were quantified in plasma. Clinical outcome was measured at six months post-injury. Trp, xanthurenic acid (XA), and picolinic acid (PA) were significantly reduced in patients with mTBI relative to HC, corrected for age and sex. For Trp (d = -0.57 vs. d = -0.29) and XA (d = -0.98 vs. d = -0.32), larger effects sizes were observed during the acute phase compared to one-month follow-up, while for PA (d = -0.49 vs. d = -0.52) effect sizes remained consistent. Findings for other kynurenines (e.g., kynurenine, kynurenic acid, and quinolinic acid) were non-significant after correction for multiple testing. Within the mTBI group, lower acute Trp levels were significantly related to incomplete functional recovery and higher depression scores at 6 months post-injury. No significant relationships were found for Trp, XA, and PA with IL-6 or IL-10 concentrations. In conclusion, our findings indicate that perturbations of the plasma KP in the hyperacute phase of mTBI and 1 month later are limited to the precursor Trp, and glutamate system modulating kynurenines XA and PA. Correlations between acute reductions of Trp and unfavorable outcomes may suggest a potential substrate for pharmacological intervention.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana Ciubotariu
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Myrthe E de Koning
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands
| | - Bram Jacobs
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Claude van der Ley
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew R Mayer
- The Mind Research Network and LBERI, Albuquerque, New Mexico, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Arno R Bourgonje
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Division of Pathology of the Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harm J van der Horn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- The Mind Research Network and LBERI, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
Sardari M, Mohammadpourmir F, Hosseinzadeh Sahafi O, Rezayof A. Neuronal biomarkers as potential therapeutic targets for drug addiction related to sex differences in the brain: Opportunities for personalized treatment approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111068. [PMID: 38944334 DOI: 10.1016/j.pnpbp.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Biological sex disparities manifest at various stages of drug addiction, including craving, substance abuse, abstinence, and relapse. These discrepancies are underpinned by notable distinctions in neurobiological substrates, encompassing brain structures, functions, and neurotransmitter systems implicated in drug addiction. Neuronal biomarkers, such as neurotransmitters, signaling proteins, and genes may be associated with the diagnosis, prognosis, and treatment outcomes in both biological sexes afflicted by drug abuse. Sex differences in the neural reward system, mainly through dopaminergic transmission during drug abuse, can be attributed to modifications in neurotransmitter systems and signaling pathways. This results in distinct patterns of neural activation and responsiveness to addictive substances in males and females. Sex hormones, the estrus/menstrual cycle, and cerebral neurochemistry contribute to the progression of psychological and physiological dependence in both male and female individuals grappling with addiction. Moreover, the alteration of sex hormone balance and neurotransmitter release plays a pivotal role in substance use disorders, subsequently modulating cognitive functions pertinent to reward, including memory formation, decision-making, and locomotor activity. Comparative investigations reveal distinctions in brain region volume, gene expression, neuronal firing, and circuitry in substance use disorders affecting individuals of both biological sexes. This review examines prevalent substance use disorders to elucidate the impact of sex hormones as therapeutic biomarkers on the mesocorticolimbic neurotransmitter systems via diverse mechanisms within the addicted brain. We underscore the imperative necessity of considering these variations to gain a deeper comprehension of addiction mechanisms and potentially discern sex-specific neuronal biomarkers for tailored therapeutic interventions.
Collapse
Affiliation(s)
- Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farina Mohammadpourmir
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Shorer EF, Dastgheyb RM, French AL, Daubert E, Morack R, Yohannes T, Clish C, Gustafson D, Sharma A, Rogando A, Qi Q, Burgess H, Rubin LH, Weber KM. Tryptophan-Kynurenine Pathway Activation and Cognition in Virally Suppressed Women With HIV. J Acquir Immune Defic Syndr 2024; 96:494-500. [PMID: 38985447 PMCID: PMC11236271 DOI: 10.1097/qai.0000000000003454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/22/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Immune and cognitive dysfunction persists even in virally suppressed women with HIV (VS-WWH). Since inflammation and HIV proteins induce the enzyme indoleamine 2,3-dioxygenase (IDO), converting tryptophan (T) to kynurenine (K) while producing downstream neurotoxic metabolites, we investigated IDO activation (KT ratio) in relation to cognition in VS-WWH and demographically similar women without HIV (WWoH). METHODS Ninety-nine VS-WWH on stable antiretroviral therapy and 102 WWoH (median age 52 vs 54 years; 73% vs 74% Black, respectively) from the New York and Chicago sites of the Women's Interagency HIV Study (WIHS) completed a neuropsychological test battery assessing motor function, processing speed, attention/working memory, verbal fluency, verbal learning and memory, and executive function and had plasma measured for tryptophan-kynurenine metabolites through liquid chromatography-tandem mass spectrometry and monocyte-derived [soluble cluster of differentiation-14 (sCD14), soluble cluster of differentiation-163 (sCD163), monocyte chemoattractant protein-1 (MCP-1)] plus general inflammatory markers [tumor necrosis factor alpha-2 receptor (TNF-R2), high-sensitivity C-reactive protein, high-sensitivity interleukin-6] through enzyme-linked immunosorbent assays between 2017 and 2020. RESULTS VS-WWH had a higher KT ratio (P < 0.01) and higher sCD14 levels (P < 0.05) compared with WWoH. Higher sCD163 was associated with higher KT ratio (R = 0.29, P < 0.01) and worse fine motor function in VS-WWH; after adjusting for sCD163 and sCD14 in multivariable regressions, higher KT ratio remained significantly associated with impaired fine motor function in VS-WWH only (standardized β = -0.29, P < 0.05). IDO activation was not associated with cognition in WWoH. CONCLUSIONS IDO activation (K:T) was associated with worse fine motor control in VS-WWH independent of measured systemic inflammation. Further studies investigating biological mechanisms linking IDO activation to fine motor function among VS-WWH are warranted.
Collapse
Affiliation(s)
| | | | - Audrey L. French
- Department of Medicine, Stroger Hospital of Cook County, Chicago IL
| | | | | | | | - Clary Clish
- Metabolomics Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Medical Center, Brooklyn, NY
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Andre Rogando
- Hektoen Institute of Medicine, Chicago, IL
- College of Science and Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Helen Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI; and
| | - Leah H. Rubin
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD
- Departments of Psychiatry and Behavioral Sciences
- Molecular and Comparative Pathobiology; and
- Epidemiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
6
|
Boroń A, Suchanecka A, Chmielowiec K, Chmielowiec J, Lachowicz M, Strońska-Pluta A, Trybek G, Wach T, González Domenech PJ, Grzywacz A. Association Study of Serotonin 1A Receptor Gene, Personality, and Anxiety in Women with Alcohol Use Disorder. Int J Mol Sci 2024; 25:6563. [PMID: 38928270 PMCID: PMC11203476 DOI: 10.3390/ijms25126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Alcohol use disorder is considered a chronic and relapsing disorder affecting the central nervous system. The serotonergic system, mainly through its influence on the mesolimbic dopaminergic reward system, has been postulated to play a pivotal role in the underlying mechanism of alcohol dependence. The study aims to analyse the association of the rs6295 polymorphism of the 5HTR1A gene in women with alcohol use disorder and the association of personality traits with the development of alcohol dependence, as well as the interaction of the rs6295, personality traits, and anxiety with alcohol dependence in women. The study group consisted of 213 female volunteers: 101 with alcohol use disorder and 112 controls. NEO Five-Factor and State-Trait Anxiety Inventories were applied for psychometric testing. Genotyping of rs6295 was performed by real-time PCR. We did not observe significant differences in 5HTR1A rs6295 genotypes (p = 0.2709) or allele distribution (p = 0.4513). The AUD subjects scored higher on the anxiety trait (p < 0.0001) and anxiety state (p < 0.0001) scales, as well as on the neuroticism (p < 0.0001) and openness (p = 0134) scales. Significantly lower scores were obtained by the AUD subjects on the extraversion (p < 0.0001), agreeability (p < 0.0001), and conscientiousness (p < 0.0001) scales. Additionally, we observed a significant effect of 5HTR1A rs6295 genotype interaction and alcohol dependency, or lack thereof, on the openness scale (p = 0.0016). In summary, this study offers a comprehensive overview of alcohol dependence among women. It offers valuable insights into this complex topic, contributing to a more nuanced understanding of substance use among this specific demographic. Additionally, these findings may have implications for developing prevention and intervention strategies tailored to individual genetic and, most importantly, personality and anxiety differences.
Collapse
Affiliation(s)
- Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Str., 70-111 Szczecin, Poland;
| | - Aleksandra Suchanecka
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Str., 70-111 Szczecin, Poland; (A.S.); (A.S.-P.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty Str., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty Str., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Milena Lachowicz
- Department of Psychology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Str., 70-111 Szczecin, Poland; (A.S.); (A.S.-P.)
| | - Grzegorz Trybek
- Department of Oral Surgery, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
- Maxillofacial Surgery Clinic, 4th Military Clinical Hospital in Wroclaw, ul. Rudolfa Weigla 5, 50-981 Wroclaw, Poland
| | - Tomasz Wach
- Department of Maxillofacial Surgery, Medical University of Lodz, 113 Żeromskiego Str., 90-549 Lodz, Poland;
| | | | - Anna Grzywacz
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Str., 70-111 Szczecin, Poland; (A.S.); (A.S.-P.)
| |
Collapse
|
7
|
Ye Z, Yang S, Lu L, Zong M, Fan L, Kang C. Unlocking the potential of the 3-hydroxykynurenine/kynurenic acid ratio: a promising biomarker in adolescent major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01815-x. [PMID: 38819463 DOI: 10.1007/s00406-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
Metabolites disruptions in tryptophan (TRP) and kynurenine pathway (KP) are believed to disturb neurotransmitter homeostasis and contribute to depressive symptoms. This study aims to investigate serum levels of KP metabolites in adolescent major depressive disorder (AMDD), and examine their relationship with depression severities. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze serum levels of TRP, kynurenic acid (KYNA), kynurenine (KYN), and 3-hydroxy-kynurenine (3-HK) in 143 AMDD participants and 98 healthy controls (HC). Clinical data, including Children's Depression Inventory (CDI) scores, were collected and analyzed using statistical methods, such as ANOVA, logistic regression, Receiver operating characteristic curve analysis and a significance level of p < 0.05 was used for all analyses. AMDD showed significantly decreased serum levels of KYNA (-25.5%), KYN (-14.2%), TRP (-11.0%) and the KYNA/KYN ratio (-11.9%) compared to HC (p < 0.01). Conversely, significant increases were observed in 3-HK levels (+50.4%), the 3-HK/KYNA ratio (+104.3%) and the 3-HK/KYN ratio (+93.0%) (p < 0.01). Logistic regression analysis identified increased level of 3-HK as a contributing factor to AMDD, while increased level of KYNA acted as a protective factor against AMDD. The 3-HK/KYNA ratio demonstrated an area under the curve (AUC) of 0.952. This study didn't explore AMDD's inflammatory status and its metabolites relationship explicitly. These findings indicate that metabolites of TRP and KP may play a crucial role in the pathogenesis of AMDD, emphasizing the potential of the 3-HK/KYNA ratio as a laboratory biomarker for early detection and diagnosis of AMDD.
Collapse
Affiliation(s)
- Zhihan Ye
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Shuran Yang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Liu Lu
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China
| | - Chuanyuan Kang
- Department of Psychosomatic Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai, 200120, China.
| |
Collapse
|
8
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Blonska A, Chojnacki M, Macieja A, Blasiak J, Majsterek I, Chojnacki J, Poplawski T. Tryptophan Metabolism in Postmenopausal Women with Functional Constipation. Int J Mol Sci 2023; 25:273. [PMID: 38203444 PMCID: PMC10778582 DOI: 10.3390/ijms25010273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Constipation belongs to conditions commonly reported by postmenopausal women, but the mechanism behind this association is not fully known. The aim of the present study was to determine the relationship between some metabolites of tryptophan (TRP) and the occurrence and severity of abdominal symptoms (Rome IV) in postmenopausal women with functional constipation (FC, n = 40) as compared with age-adjusted postmenopausal women without FC. All women controlled their TRP intake in their daily diet. Urinary levels of TRP and its metabolites, 5-hydroxyindoleacetic acid (5-HIAA), kynurenine (KYN), and 3-indoxyl sulfate (indican, 3-IS), were determined by liquid chromatography/tandem mass spectrometry. Dysbiosis was assessed by a hydrogen-methane breath test. Women with FC consumed less TRP and had a lower urinary level of 5-HIAA, but higher levels of KYN and 3-IS compared with controls. The severity of symptoms showed a negative correlation with the 5-HIAA level, and a positive correlation with the 3-IS level. In conclusion, changes in TRP metabolism may contribute to FC in postmenopausal women, and dysbiosis may underlie this contribution.
Collapse
Affiliation(s)
- Aleksandra Blonska
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (A.B.); (M.C.)
| | - Marcin Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (A.B.); (M.C.)
| | - Anna Macieja
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (A.B.); (M.C.)
| | - Tomasz Poplawski
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
10
|
Huang D, Yang Y, Song W, Jiang C, Zhang Y, Zhang A, Lin Z, Ke X. Untargeted metabonomic analysis of a cerebral stroke model in rats: a study based on UPLC-MS/MS. Front Neurosci 2023; 17:1084813. [PMID: 37614341 PMCID: PMC10442664 DOI: 10.3389/fnins.2023.1084813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Brain tissue damage caused by ischemic stroke can trigger changes in the body's metabolic response, and understanding the changes in the metabolic response of the gut after stroke can contribute to research on poststroke brain function recovery. Despite the increase in international research on poststroke metabolic mechanisms and the availability of powerful research tools in recent years, there is still an urgent need for poststroke metabolic studies. Metabolomic examination of feces from a cerebral ischemia-reperfusion rat model can provide new insights into poststroke metabolism and identify key metabolic pathways, which will help reveal diagnostic and therapeutic targets as well as inspire pathophysiological studies after stroke. Methods We randomly divided 16 healthy adult pathogen-free male Sprague-Dawley (SD) rats into the normal group and the study group, which received middle cerebral artery occlusion/reperfusion (MCAO/R). Ultra-performance liquid chromatography-tandem mass spectrometry (UPLCMS/MS) was used to determine the identities and concentrations of metabolites across all groups, and filtered high-quality data were analyzed for differential screening and differential metabolite functional analysis. Results After 1 and 14 days of modeling, compared to the normal group, rats in the study group showed significant neurological deficits (p < 0.001) and significantly increased infarct volume (day 1: p < 0.001; day 14: p = 0.001). Mass spectra identified 1,044 and 635 differential metabolites in rat feces in positive and negative ion modes, respectively, which differed significantly between the normal and study groups. The metabolites with increased levels identified in the study group were involved in tryptophan metabolism (p = 0.036678, p < 0.05), arachidonic acid metabolism (p = 0.15695), cysteine and methionine metabolism (p = 0.24705), and pyrimidine metabolism (p = 0.3413), whereas the metabolites with decreased levels were involved in arginine and proline metabolism (p = 0.15695) and starch and sucrose metabolism (p = 0.52256). Discussion We determined that UPLC-MS/MS could be employed for untargeted metabolomics research. Moreover, tryptophan metabolic pathways may have been disordered in the study group. Alterations in the tryptophan metabolome may provide additional theoretical and data support for elucidating stroke pathogenesis and selecting pathways for intervention.
Collapse
Affiliation(s)
- Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yihan Yang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wei Song
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cai Jiang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Second Rehabilitation Department, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- Fujian Key Laboratory of Geriatrics Diseases, Fujian Provincial Hospital, Fuzhou, China
- Department of Complementary Medicine, University of Johannesburg, Johannesburg, South Africa
| | - Yuhao Zhang
- Department of Rehabilitation Medicine, Nanjing Lishui District Hospital of Traditional Chinese medicine, Nanjing, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonghua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Second Rehabilitation Department, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, China
- Fujian Key Laboratory of Geriatrics Diseases, Fujian Provincial Hospital, Fuzhou, China
- Department of Complementary Medicine, University of Johannesburg, Johannesburg, South Africa
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Sun Y, Wang S, Liu B, Hu W, Zhu Y. Host-Microbiome Interactions: Tryptophan Metabolism and Aromatic Hydrocarbon Receptors after Traumatic Brain Injury. Int J Mol Sci 2023; 24:10820. [PMID: 37445997 DOI: 10.3390/ijms241310820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Traumatic brain injury refers to the damage caused to intracranial tissues by an external force acting on the head, leading to both immediate and prolonged harmful effects. Neuroinflammatory responses play a critical role in exacerbating the primary injury during the acute and chronic phases of TBI. Research has demonstrated that numerous neuroinflammatory responses are mediated through the "microbiota-gut-brain axis," which signifies the functional connection between the gut microbiota and the brain. The aryl hydrocarbon receptor (AhR) plays a vital role in facilitating communication between the host and microbiota through recognizing specific ligands produced directly or indirectly by the microbiota. Tryptophan (trp), an indispensable amino acid in animals and humans, represents one of the key endogenous ligands for AhR. The metabolites of trp have significant effects on the functioning of the central nervous system (CNS) through activating AHR signalling, thereby establishing bidirectional communication between the gut microbiota and the brain. These interactions are mediated through immune, metabolic, and neural signalling mechanisms. In this review, we emphasize the co-metabolism of tryptophan in the gut microbiota and the signalling pathway mediated by AHR following TBI. Furthermore, we discuss the impact of these mechanisms on the underlying processes involved in traumatic brain injury, while also addressing potential future targets for intervention.
Collapse
Affiliation(s)
- Yanming Sun
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Bingwei Liu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
12
|
Herselman MF, Lin L, Luo S, Yamanaka A, Zhou XF, Bobrovskaya L. Sex-Dependent Effects of Chronic Restraint Stress on Mood-Related Behaviours and Neurochemistry in Mice. Int J Mol Sci 2023; 24:10353. [PMID: 37373499 DOI: 10.3390/ijms241210353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Anxiety and depressive disorders are closely associated; however, the pathophysiology of these disorders remains poorly understood. Further exploration of the mechanisms involved in anxiety and depression such as the stress response may provide new knowledge that will contribute to our understanding of these disorders. Fifty-eight 8-12-week-old C57BL6 mice were separated into experimental groups by sex as follows: male controls (n = 14), male restraint stress (n = 14), female controls (n = 15) and female restraint stress (n = 15). These mice were taken through a 4-week randomised chronic restraint stress protocol, and their behaviour, as well as tryptophan metabolism and synaptic proteins, were measured in the prefrontal cortex and hippocampus. Adrenal catecholamine regulation was also measured. The female mice showed greater anxiety-like behaviour than their male counterparts. Tryptophan metabolism was unaffected by stress, but some basal sex characteristics were noted. Synaptic proteins were reduced in the hippocampus in stressed females but increased in the prefrontal cortex of all female mice. These changes were not found in any males. Finally, the stressed female mice showed increased catecholamine biosynthesis capability, but this effect was not found in males. Future studies in animal models should consider these sex differences when evaluating mechanisms related to chronic stress and depression.
Collapse
Affiliation(s)
- Mauritz Frederick Herselman
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Liying Lin
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Shayan Luo
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|