1
|
Elsayed DA, Abdu ME, Marzouk MA, Mahmoud EM, El-Shwiniy WH, Spring AM, Shehab WS. Bio-computational modeling, POM analysis and molecular dynamic simulation for novel synthetic quinolone and benzo[d][1,3]oxazine candidates as antimicrobial inhibitors. Sci Rep 2024; 14:28709. [PMID: 39567581 PMCID: PMC11579483 DOI: 10.1038/s41598-024-73972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 11/22/2024] Open
Abstract
The current study offers a metal-free, direct, and successful synthesis technique for a new series of quinolinone and benzo[d][1,3]oxazine, along with an assessment of their biological activities. Heteroannulation of anthranilic acid with carbonyl-containing chemicals (aroyl pyruvate, ethyl acetoacetatete, maleic anhydride, and ethyl cyanoacetate) resulted in the desired quinolones and benzo[d][1,3]oxazines. This technique introduces a number of fundamental breakthroughs in organic synthesis, including metal-free catalysts, smart reaction conditions with column purification, and a wide functional scope. Furthermore, the structure of the newly synthesized chemical series was investigated and validated using spectroscopic techniques. The synthesized series were evaluated for antibacterial (against gram-positive and gram-negative bacterial strains) and antifungal activity. The quinolone and benzo[d][1,3]oxazine candidates had remarkable antibacterial action. Furthermore, molecular docking investigations corroborated the biological studies using the Molecular Operating Environment and Petro Osiris Molinspiration (POM) experiments, which confirmed the activity of compounds 8, 15, and 17. Our studies on the cytotoxic activity of various chemicals have demonstrated that these compounds exhibit minimal toxicity. Specifically, when comparing the cytotoxic effects on human lung fibroblast (WI38) cells to those of Doxorubicin, a well-known chemotherapy agent, compounds 8, 15, and 17 showed weak cytotoxic effects on the normal WI38 cells. This indicates that these compounds may possess some level of selectivity and reduced toxicity towards normal cells, suggesting potential for further exploration as antibacterial agents with a safer profile for normal cells.
Collapse
Affiliation(s)
- Doaa A Elsayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed E Abdu
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Kyushu Universty, Kasuga-KoenKasuga, Fukuoka, 816-8580, Japan
| | - Mohammed A Marzouk
- Department of pharmaceutical organic Chemistry, Faculty of Pharmacy, Zagazig Universty, Zagazig, 44519, Egypt
| | - Elsayed M Mahmoud
- Department of pharmaceutical organic Chemistry, Faculty of Pharmacy, Zagazig Universty, Zagazig, 44519, Egypt
| | - Walaa H El-Shwiniy
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Andrew M Spring
- Kyushu Universty, Kasuga-KoenKasuga, Fukuoka, 816-8580, Japan
| | - Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Alali I, Ibrahim MA, Roushdy N, Badran AS, Alsirhani AM, Farag A. Synthesis, spectral analysis, and DFT studies of the novel pyrano[3,2- c] quinoline-based 1,3,4-thiadiazole for enhanced solar cell performance. Heliyon 2024; 10:e39468. [PMID: 39498074 PMCID: PMC11533592 DOI: 10.1016/j.heliyon.2024.e39468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
In this study, we synthesized a novel compound, 3-(5-amino-1,3,4-thiadiazol-2-yl)-6-ethyl-4-hydroxy-2H-pyrano[3,2-c]quinoline-2,5(6H)-dione (ATEHPQ), through a condensation reaction between 6-ethyl-4-hydroxy-2,5-dioxo-5,6-dihydro-2H-pyrano [3,2-c]quinoline-3-carboxaldehyde and thiosemicarbazide, followed by oxidative cyclization. We characterized ATEHPQ using elemental analysis, IR, 1H and 13C NMR spectroscopy, and mass spectrometry. Density Functional Theory (DFT) calculations with the B3LYP/6-311++G(d,p) basis set were employed to optimize the molecular geometry and analyze global reactivity descriptors, including HOMO-LUMO energies. The Molecular Electrostatic Potential (MEP) map was used to identify reactive sites, and drug-likeness studies indicated potential pharmaceutical applications. Notably, ATEHPQ showed a higher first hyperpolarizability (βtot) compared to urea, suggesting its suitability for nonlinear optical applications. We also determined the Miller indices for ATEHPQ's preferred orientations using a specialized program. Williamson-Hall analysis revealed an average crystal size of 26.08 nm and a lattice strain of 6.3 × 10-3. The thin films exhibited three distinct absorption peaks at 2.8, 3.41, and 4.21 eV, with a direct energy gap of 2.43 eV. Dispersion parameters from the single oscillator model provided oscillator and dispersion energies of 3.12 eV and 14.21 eV, respectively, with a high-frequency dielectric constant of 4.71. The ATEHPQ thin films, when combined with n-Si, demonstrated significant improvements in photovoltaic performance: the open-circuit voltage (Voc) rose from 0.13 V to 0.521 V, the short-circuit current (Isc) increased from 0.253 mA to 2.94 mA, the fill factor (FF) improved from 0.238 to 0.33, and the efficiency (η) grew from 0.71 % to 4.64 % with increased illumination intensity. These results highlight the excellent photovoltaic and photodetection capabilities of ATEHPQ thin films, underscoring their potential for advanced optoelectronic and solar cell applications.
Collapse
Affiliation(s)
- Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf ,72341, Saudi Arabia
| | - Magdy A. Ibrahim
- Chemistry Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt
| | - N. Roushdy
- Electronics Materials Dep. Advanced Technology& New Materials Research Inst, City of Scientific Research & Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Al-Shimaa Badran
- Chemistry Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf ,72341, Saudi Arabia
| | - A.A.M. Farag
- Thin-film Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo, 11711, Egypt
| |
Collapse
|
3
|
Stoyanova M, Milusheva M, Gledacheva V, Stefanova I, Todorova M, Kircheva N, Angelova S, Pencheva M, Stojnova K, Tsoneva S, Nikolova S. Spasmolytic Activity and Anti-Inflammatory Effect of Novel Mebeverine Derivatives. Biomedicines 2024; 12:2321. [PMID: 39457637 PMCID: PMC11505310 DOI: 10.3390/biomedicines12102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Irritable bowel syndrome (IBS) has a major negative influence on quality of life, causing cramps, stomach pain, bloating, constipation, etc. Antispasmodics have varying degrees of efficacy. Mebeverine, for example, works by controlling bowel movements and relaxing the muscles of the intestines but has side effects. Therefore, more efficient medication is required. Methods: In the current study, we investigated the synthesis of novel mebeverine analogs and determined ex vivo their spasmolytic and in vitro and ex vivo anti-inflammatory properties. The ability to influence both contractility and inflammation provides a dual-action approach, offering a comprehensive solution for the prevention and treatment of both conditions. Results: The results showed that all the compounds have better spasmolytic activity than mebeverine and good anti-inflammatory potential. Among the tested compounds, 3, 4a, and 4b have been pointed out as the most active in all the studies conducted. To understand their mechanism of activity, molecular docking simulation was investigated. The docking analysis explained the biological activities with their calculated Gibbs energies and possibilities for binding both centers of albumin. Moreover, the calculations showed that molecules can bind also the two muscarinic receptors and interleukin-β, hence these structures would exert a positive therapeutic effect owed to interaction with these specific receptors/cytokine. Conclusions: Three of the tested compounds have emerged as the most active and effective in all the studies conducted. Future in vivo and preclinical experiments will contribute to the establishment of these novel mebeverine derivatives as potential drug candidates against inflammatory diseases in the gastrointestinal tract.
Collapse
Affiliation(s)
- Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Kirila Stojnova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
| |
Collapse
|
4
|
Andonova V, Nikolova K, Iliev I, Georgieva S, Petkova N, Feizi-Dehnayebi M, Nikolova S, Gerasimova A. Spectral Characteristics, In Silico Perspectives, Density Functional Theory (DFT), and Therapeutic Potential of Green-Extracted Phycocyanin from Spirulina. Int J Mol Sci 2024; 25:9170. [PMID: 39273119 PMCID: PMC11394851 DOI: 10.3390/ijms25179170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Phycocyanin (PC) is a naturally occurring green pigment in Spirulina. It was extracted by ultrasonic extraction using green technology, and its structure was studied using IR- and NMR-spectroscopy. Spectral data confirmed the PC structure. This study also involves an in silico assessment of the diverse applications of green pigment PC. Utilizing QSAR, PreADME/T, SwissADME, and Pro-Tox, this study explores the safety profile, pharmacokinetics, and potential targets of PC. QSAR analysis reveals a favorable safety profile, with the parent structure and most metabolites showing no binding to DNA or proteins. PreADME/T indicates low skin permeability, excellent intestinal absorption, and medium permeability, supporting oral administration. Distribution analysis suggests moderate plasma protein binding and cautious blood-brain barrier permeability, guiding formulation strategies. Metabolism assessments highlight interactions with key cytochrome P450 enzymes, influencing drug interactions. Target prediction analysis unveils potential targets, suggesting diverse therapeutic effects, including cardiovascular benefits, anti-inflammatory activities, neuroprotection, and immune modulation. Based on the in silico analysis, PC holds promise for various applications due to its safety, bioavailability, and potential therapeutic benefits. Experimental validation is crucial to elucidate precise molecular mechanisms, ensuring safe and effective utilization in therapeutic and dietary contexts. DFT calculations, including geometry optimization, MEP analysis, HOMO-LUMO energy surface, and quantum reactivity parameters of the PC compound, were obtained using the B3LYP/6-311G(d,p) level. This integrated approach contributes to a comprehensive understanding of PC's pharmacological profile and informs future research directions.
Collapse
Affiliation(s)
- Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Ivelin Iliev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Svetlana Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria
| | - Mehran Feizi-Dehnayebi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran P.O. Box 19938-93973, Iran
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv Paisii Hilendarski, 4000 Plovdiv, Bulgaria
| | - Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria
| |
Collapse
|
5
|
Majumdar D, Chatterjee A, Feizi-Dehnayebi M, Kiran NS, Tuzun B, Mishra D. 8-Aminoquinoline derived two Schiff base platforms: Synthesis, characterization, DFT insights, corrosion inhibitor, molecular docking, and pH-dependent antibacterial study. Heliyon 2024; 10:e35591. [PMID: 39170410 PMCID: PMC11336723 DOI: 10.1016/j.heliyon.2024.e35591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The current research divulges the synthesis of two new Schiff base (SB) (L NAPH /L O-VAN ) derived from 8-aminoquinoline (8-AMQ) in the presence of 2-hydroxy naphthaldehyde (NAPH) and ortho-vanillin (O-VAN) in CH3OH solvent. They are structurally characterized by spectroscopic methods (IR/Raman/UV-vis/DRS/NMR) and SEM-EDX. SB compounds have a biologically active avenue of azomethine/imine group (H-C=N) that can donate N e's to Mn + ions, showing coordinating flexibility. The -OH and imine (H-C=N) groups are stable in air, light, and alkalis but undergo acidic environments hydrolysis, separating -NH2 and carbonyl compounds. Moreover, buffer solutions with a pH range of 4-6 release aldehyde. Molecular electrostatic potential (MEP), Frontier molecular orbitals (FMO), Fukui function, and Non-linear optical (NLO) were conducted to elucidate SBs chemical potency, optoelectronic significance, and corrosion inhibitor. Accordingly, the calculated ΔE of FMO for L NAPH and L O-VAN is 3.82 and 4.08 eV, ensuring potent biological function. DFT supported the experimental and theoretical IR spectral correlation to enrich better structural insights. NLO-based polarizability (α) and hyperpolarizability (β) factors successfully explore the potential optoelectronic significance. Molecular docking experiments were simulated against DNA, anti-COVID-19, and E. coli. The potential microbiological activity was screened against the bacterial strains E. coli, Klebsiella, Bacillus, and Pseudomonas sp. based on zone of inhibition and MIC values. These experiments also explored the fact that L NAPH and L O-VAN discourage microbial cell biofilms and corrosion. We extensively covered the as-prepared compounds' pH-dependent bacterial effects.
Collapse
Affiliation(s)
- Dhrubajyoti Majumdar
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk, 721636, West Bengal, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka, India, 560064
| | | | - Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka, India, 560064
| | - Burak Tuzun
- Sivas Cumhuriyet University, Sivas Vocational School, Department of Plant and Animal Production, TR-58140, Sivas, Turkey
| | - Dipankar Mishra
- Department of Chemistry, Tamralipta Mahavidyalaya, Tamluk, 721636, West Bengal, India
| |
Collapse
|
6
|
Milusheva M, Stoyanova M, Gledacheva V, Stefanova I, Todorova M, Pencheva M, Stojnova K, Tsoneva S, Nedialkov P, Nikolova S. 2-Amino- N-Phenethylbenzamides for Irritable Bowel Syndrome Treatment. Molecules 2024; 29:3375. [PMID: 39064953 PMCID: PMC11280360 DOI: 10.3390/molecules29143375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal (GI) disorder characterized by abdominal pain or discomfort. Mebeverine is an antispasmodic that has been widely used in clinical practice to relieve the symptoms of IBS. However, its systemic use usually leads to side effects. Therefore, the current paper aimed to synthesize more effective medicines for IBS treatment. We used ring opening of isatoic anhydride for the synthesis in reaction with 2-phenylethylamine. In silico simulation predicted spasmolytic activity for 2-amino-N-phenethylbenzamides. The newly synthesized compounds demonstrated a relaxation effect similar to mebeverine but did not affect the serotonin or Ca2+-dependent signaling pathway of contractile activity (CA) in contrast. Having in mind the anti-inflammatory potential of antispasmodics, the synthesized molecules were tested in vitro and ex vivo for their anti-inflammatory effects. Four of the newly synthesized compounds demonstrated very good activity by preventing albumin denaturation compared to anti-inflammatory drugs/agents well-established in medicinal practice. The newly synthesized compounds also inhibited the expression of interleukin-1β and stimulated the expression of neuronal nitric oxide synthase (nNOS), and, consequently, nitric oxide (NO) synthesis by neurons of the myenteric plexus. This characterizes the newly synthesized compounds as biologically active relaxants, offering a cleaner and more precise application in pharmacological practice, thereby enhancing their potential therapeutic value.
Collapse
Affiliation(s)
- Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Kirila Stojnova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.S.); (M.T.)
| |
Collapse
|
7
|
Milusheva M, Stoyanova M, Gledacheva V, Stefanova I, Todorova M, Nikolova S. Spasmolytic Activity of 1,3-Disubstituted 3,4-Dihydroisoquinolines. Biomedicines 2024; 12:1556. [PMID: 39062129 PMCID: PMC11275145 DOI: 10.3390/biomedicines12071556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This article concerns the spasmolytic activities of some novel 1,3-disubstituted 3,4-dihydroisoquinolines. These compounds can be evaluated as potential therapeutic candidates according to Lipinski's rule of five, showing high gastrointestinal absorption and the ability to cross the blood-brain barrier, which is a very important parameter in the drug discovery processes. In silico simulation predicted smooth muscle relaxant activity for all the compounds. Since smooth muscle contractile failure is a characteristic feature of many disorders, in the current paper, we concentrate on the parameters of the spontaneous contractile responses of smooth muscle (SM) cells compared to the well-known drug mebeverine. Two of the newly synthesized substances can be identified as essential modulating regulators and potentially used as therapeutic molecules. One of these molecules also showed significant DPPH antioxidant activity compared to rutin.
Collapse
Affiliation(s)
- Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria (M.S.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria (M.S.); (M.T.)
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria (M.S.); (M.T.)
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria (M.S.); (M.T.)
| |
Collapse
|
8
|
Gerasimova A, Nikolova K, Petkova N, Ivanov I, Dincheva I, Tumbarski Y, Yanakieva V, Todorova M, Gentscheva G, Gavrilova A, Yotkovska I, Nikolova S, Slavov P, Harbaliev N. Metabolic Profile of Leaves and Pulp of Passiflora caerulea L. (Bulgaria) and Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1731. [PMID: 38999571 PMCID: PMC11243431 DOI: 10.3390/plants13131731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
At present, there are no data in the scientific literature on studies aimed at characterizing Passiflora caerulea L. growing in Bulgaria. The present study aimed to investigate the metabolic profile and elemental composition of the leaves and pulp of this Passiflora, as well as to evaluate the antioxidant, antimicrobial and anti-inflammatory activities of its leaf and pulp extracts. The results showed that the pulp predominantly contained the essential amino acid histidine (7.81 mg g-1), while it was absent in the leaves, with the highest concentration being tryptophan (8.30 mg g-1). Of the fatty acids, palmitoleic acid predominated both in the pulp and in the leaves. A major sterol component was β-sitosterol. Fructose (7.50%) was the predominant sugar in the pulp, while for the leaves, it was glucose-1.51%. Seven elements were identified: sodium, potassium, iron, magnesium, manganese, copper and zinc. The highest concentrations of K and Mg were in the pulp (23,946 mg kg-1 and 1890 mg kg-1) and leaves (36,179 mg kg-1 and 5064 mg kg-1). According to the DPPH, FRAP and CUPRAC methods, the highest values for antioxidant activity were found in 70% ethanolic extracts of the leaves, while for the ABTS method, the highest value was found in 50% ethanolic extracts. In the pulp, for all four methods, the highest values were determined at 50% ethanolic extracts. Regarding the antibacterial activity, the 50% ethanolic leaf extracts were more effective against the Gram-positive bacteria. At the same time, the 70% ethanolic leaf extract was more effective against Gram-negative bacteria such as Salmonella enteritidis ATCC 13076. The leaf extracts exhibited higher anti-inflammatory activity than the extracts prepared from the pulp. The obtained results revealed that P. caerulea is a plant that can be successfully applied as an active ingredient in various nutritional supplements or cosmetic products.
Collapse
Affiliation(s)
- Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University—Varna, 9000 Varna, Bulgaria;
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University—Varna, 9000 Varna, Bulgaria
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria; (N.P.); (I.I.)
| | - Ivan Ivanov
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 4002 Plovdiv, Bulgaria; (N.P.); (I.I.)
| | - Ivayla Dincheva
- Department of Agrobiotechnologies, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria;
| | - Yulian Tumbarski
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Velichka Yanakieva
- Department of Microbiology, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Anna Gavrilova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Ina Yotkovska
- Department of Chemistry and Biochemistry, Medical University—Pleven, 5800 Pleven, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.T.); (S.N.)
| | - Pavlo Slavov
- Faculty of Medicine, Medical University—Varna, 9000 Varna, Bulgaria; (P.S.); (N.H.)
| | - Nikolay Harbaliev
- Faculty of Medicine, Medical University—Varna, 9000 Varna, Bulgaria; (P.S.); (N.H.)
| |
Collapse
|
9
|
Jiang M, Wu R, Liu D, Wang X. Utilizing Ni(II) complex for metal drug-gel particles in cervical cancer treatment and designing novel drugs through machine learning methods. Sci Rep 2024; 14:5421. [PMID: 38443412 PMCID: PMC10914818 DOI: 10.1038/s41598-024-55897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
In the present study, a novel coordination polymer (CP) based on Ni(II), namely, [Ni(L)(D-CAM)(H2O)]n (1) (H2D-CAM = (1R,3S)-1,2,2-trimethylcyclopentane-1,3-dicarboxylic acid and L = 3,6-bis(benzimidazol-1-yl)pyridazine), has been produced successfully through applying a mixed ligand synthesis method via reacting Ni(NO3)2·6H2O with 3,6-bis(benzimidazol-1-yl)pyridazine ligand in the presence of a carboxylic acid co-ligand. Hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) are representatives of natural polysaccharides and have good biocompatibility. Based on the chemical synthesis method, HA/CMCS hydrogel was successfully prepared. SEM showed that the lyophilized gel presented a typical macroporous structure with three-dimensional connected pores, which had unique advantages as a drug carrier. Using paclitaxel as a drug model, we further synthesized a novel paclitaxel-loaded metal gel and evaluated its therapeutic effect on cervical cancer. Finally, novel drugs from the reinforcement learning simulation are suggested to have better biological activity against ovarian cancer due to low affinity energy and stronger interaction strength towards the protein receptor.
Collapse
Affiliation(s)
- Meiping Jiang
- Departments of Radiotherapy, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ruiping Wu
- Departments of Radiotherapy, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongqin Liu
- Departments of Radiotherapy, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoli Wang
- Departments of Radiotherapy, Tumor Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
10
|
Zinatloo-Ajabshir S, Rakhshani S, Mehrabadi Z, Farsadrooh M, Feizi-Dehnayebi M, Rakhshani S, Dušek M, Eigner V, Rtimi S, Aminabhavi TM. Novel rod-like [Cu(phen) 2(OAc)]·PF 6 complex for high-performance visible-light-driven photocatalytic degradation of hazardous organic dyes: DFT approach, Hirshfeld and fingerprint plot analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119545. [PMID: 37995482 DOI: 10.1016/j.jenvman.2023.119545] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
A novel octahedral distorted coordination complex was formed from a copper transition metal with a bidentate ligand (1,10-Phenanthroline) and characterized by Ultraviolet-visible spectroscopy, Ultraviolet-visible diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller, Field emission scanning electron microscopy, and Single-crystal X-ray diffraction. The Hirshfeld surface and fingerprint plot analyses were conducted to determine the interactions between atoms in the Cu(II) complex. DFT calculations showed that the central copper ion and its coordinated atoms have an octahedral geometry. The Molecular electrostatic potential (MEP) map indicated that the copper (II) complex is an electrophilic compound that can interact with negatively charged macromolecules. The HOMO-LUMO analysis demonstrated the π nature charge transfer from acetate to phenanthroline. The band gap of [Cu(phen)2(OAc)]·PF6 photocatalyst was estimated to be 2.88 eV, confirming that this complex is suitable for environmental remediation. The photocatalytic degradation of erythrosine, malachite green, methylene blue, and Eriochrome Black T as model organic pollutants using the prepared complex was investigated under visible light. The [Cu(phen)2(OAc)]·PF6 photocatalyst exhibited degradation 94.7, 90.1, 82.7, and 74.3 % of malachite green, methylene blue, erythrosine, and Eriochrome Black T, respectively, under visible illumination within 70 min. The results from the Langmuir-Hinshelwood kinetic analysis demonstrated that the Cu(II) complex has a higher efficiency for the degradation of cationic pollutants than the anionic ones. This was attributed to surface charge attraction between photocatalyst and cationic dyes promoting removal efficiency. The reusability test indicated that the photocatalyst could be utilized in seven consecutive photocatalytic degradation cycles with an insignificant decrease in efficiency.
Collapse
Affiliation(s)
| | - Sajjad Rakhshani
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, P.O. Box 98135-674, Iran
| | - Zohreh Mehrabadi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
| | - Majid Farsadrooh
- Renewable Energies Research Laboratory, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, P.O. Box 98135 674, Zahedan, Iran.
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, P.O. Box 98135-674, Iran.
| | - Saleh Rakhshani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michal Dušek
- Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21, Praha 8, Czech Republic
| | - Václav Eigner
- Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21, Praha 8, Czech Republic
| | - Sami Rtimi
- Global Institute for Water, Environment and Health, 1201, Geneva, Switzerland.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| |
Collapse
|
11
|
Sarma S, Dowerah D, Basumatary M, Phonglo A, Deka RC. Inhibitory potential of furanocoumarins against cyclin dependent kinase 4 using integrated docking, molecular dynamics and ONIOM methods. J Biomol Struct Dyn 2024:1-30. [PMID: 38189343 DOI: 10.1080/07391102.2023.2300755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
Cyclin Dependent Kinase 4 (CDK4) is vital in the process of cell-cycle and serves as a G1 phase checkpoint in cell division. Selective antagonists of CDK4 which are in use as clinical chemotherapeutics cause various side-effects in patients. Furanocoumarins induce anti-cancerous effects in a range of human tumours. Therefore, targeting these compounds against CDK4 is anticipated to enhance therapeutic effectiveness. This work intended to explore the CDK4 inhibitory potential of 50 furanocoumarin molecules, using a comprehensive approach that integrates the processes of docking, drug-likeness, pharmacokinetic analysis, molecular dynamics simulations and ONIOM (Our own N-layered Integrated molecular Orbital and Molecular mechanics) methods. The top five best docked compounds obtained from docking studies were screened for subsequent analysis. The molecules displayed good pharmacokinetic properties and no toxicity. Epoxybergamottin, dihydroxybergamottin and notopterol were found to inhabit the ATP-binding zone of CDK4 with substantial stability and negative binding free energy forming hydrogen bonds with key catalytic residues of the protein. Notopterol exhibiting the highest binding energy was subjected to ONIOM calculations wherein the hydrogen bonding interactions were retained with significant negative interaction energy. Hence, through these series of computerised methods, notopterol was screened as a potent CDK4 inhibitor and can act as a starting point in successive processes of drug design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Srutishree Sarma
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Dikshita Dowerah
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Moumita Basumatary
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Ambalika Phonglo
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| | - Ramesh Ch Deka
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Sonitpur, Assam, India
| |
Collapse
|
12
|
Milusheva M, Todorova M, Gledacheva V, Stefanova I, Feizi-Dehnayebi M, Pencheva M, Nedialkov P, Tumbarski Y, Yanakieva V, Tsoneva S, Nikolova S. Novel Anthranilic Acid Hybrids-An Alternative Weapon against Inflammatory Diseases. Pharmaceuticals (Basel) 2023; 16:1660. [PMID: 38139787 PMCID: PMC10747134 DOI: 10.3390/ph16121660] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Anti-inflammatory drugs are used to relieve pain, fever, and inflammation while protecting the cardiovascular system. However, the side effects of currently available medications have limited their usage. Due to these adverse effects, there is a significant need for new drugs. The current trend of research has shifted towards the synthesis of novel anthranilic acid hybrids as anti-inflammatory agents. Phenyl- or benzyl-substituted hybrids exerted very good anti-inflammatory effects in preventing albumin denaturation. To confirm their anti-inflammatory effects, additional ex vivo tests were conducted. These immunohistochemical studies explicated the same compounds with better anti-inflammatory potential. To determine the binding affinity and interaction mode, as well as to explain the anti-inflammatory activities, the molecular docking simulation of the compounds was investigated against human serum albumin. The biological evaluation of the compounds was completed, assessing their antimicrobial activity and spasmolytic effect. Based on the experimental data, we can conclude that a collection of novel hybrids was successfully synthesized, and they can be considered anti-inflammatory drug candidates-alternatives to current therapeutics.
Collapse
Affiliation(s)
- Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan P.O. Box 98135-674, Iran;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Yulian Tumbarski
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Velichka Yanakieva
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| |
Collapse
|
13
|
Desai V, Panchal M, Parikh J, Modi K, Vora M, Panjwani F, Jain VK. Fluorescence Quenching and the Chamber of Nitroaromatics: A Dinaphthoylated Oxacalix[4]arene's (DNOC) Adventure Captured through Computational and Experimental Study. J Fluoresc 2023:10.1007/s10895-023-03505-8. [PMID: 37995071 DOI: 10.1007/s10895-023-03505-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
This research presents the application of Dinaphthoylated Oxacalix[4]arene (DNOC) as a novel fluorescent receptor for the purpose of selectively detecting nitroaromatic compounds (NACs). The characterization of DNOC was conducted through the utilization of spectroscopic methods, including 1H-NMR, 13C-NMR, and ESI-MS. The receptor demonstrated significant selectivity in acetonitrile towards several nitroaromatic analytes, such as MNA, 2,4-DNT, 2,3-DNT, 1,3-DNB, 2,6-DNT, and 4-NT. This selectivity was validated by the measurement of emission spectra. The present study focuses on the examination of binding constants, employing Stern-Volmer analysis, as well as the determination of the lowest detection limit (3σ/Slope) and fluorescence quenching. These investigations aim to provide insights into the inclusion behavior of DNOC with each of the six analytes under fluorescence spectra investigation. Furthermore, the selectivity trend of the ligand DNOC for NAC detection is elucidated using Density Functional Theory (DFT) calculations conducted using the Gaussian 09 software. The examination of energy gaps existing between molecular orbitals, namely the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), provides a valuable understanding of electron-transfer processes and electronic interactions. Smaller energy gaps are indicative of heightened selectivity resulting from favorable electron-transfer processes, whereas bigger gaps suggest less selectivity attributable to weaker electronic contacts. This work integrates experimental and computational methodologies to provide a full understanding of the selective binding behavior of DNOC. As a result, DNOC emerges as a viable chemical sensor for detecting nitroaromatic explosives.
Collapse
Affiliation(s)
- Vishv Desai
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Manthan Panchal
- Department of Chemistry, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, Gujarat, India.
| | - Jaymin Parikh
- Department of Chemistry, Faculty of Science, Ganpat University, Kherva, 384012, Mehsana, Gujarat, India
| | - Krunal Modi
- Department of Humanities and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India.
| | - Manoj Vora
- Chemical Engineering Department, Institute of Technology, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Falak Panjwani
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vinod Kumar Jain
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|