1
|
Yu L, Gao L, Liang B, Zhang L, Wu M, Liu J. Polymer-based nanodrugs enhance sonodynamic therapy through epigenetic reprogramming of the immunosuppressive tumor microenvironment. J Control Release 2025; 380:125-137. [PMID: 39892649 DOI: 10.1016/j.jconrel.2025.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
While sonodynamic therapy (SDT) has shown promise in treating triple-negative breast cancer (TNBC) due to its non-invasive nature, deep tissue penetration, and induction of immunogenic cell death (ICD), its efficacy remains limited by the complex immunosuppressive tumor microenvironment (TME). In this study, we developed tumor microenvironment-responsive nanoparticles (GdNPs) to enhance SDT effectiveness through epigenetic reprogramming of the TME by encapsulating the sonosensitizer chlorin e6 (Ce6) and the histone deacetylase 6 (HDAC6) inhibitor Ricolinostat (Ric) (GdNPs/Ce6-Ric). GdNPs/Ce6-Ric effectively accumulate at tumor sites via the enhanced permeability and retention (EPR) effect and release Ce6 and Ric in response to the acidic TME. Upon ultrasound stimulation, GdNPs/Ce6-Ric induce cancer cell apoptosis and trigger ICD by generating reactive oxygen species (ROS), which activate cytotoxic T cells and promote tumor cell elimination. Notably, the epigenetic modulation by Ric within the immunosuppressive TME increased the proportion of natural killer (NK) cells and cytotoxic T cells while decreasing the population of immunosuppressive regulatory T (Treg) cells. This modulation synergistically enhanced the anti-tumor effects of SDT by downregulating the HDAC6/p-STAT3/PD-L1 pathway. Furthermore, GdNPs/Ce6-Ric minimized lung metastases by not only improving systemic immune responses but also inhibiting TGFβ-induced epithelial-mesenchymal transition (EMT) of tumor cells through the blockade of α-tubulin deacetylation. Thus, GdNPs/Ce6-Ric-based epigenetic modulation of the immunosuppressive TME offers a promising approach to enhance the efficacy of SDT in treating TNBC.
Collapse
Affiliation(s)
- Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Lulu Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Bing Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Lu Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Min Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, PR China.
| |
Collapse
|
2
|
Negi M, Venkatesh V. Near-infrared light-activatable iridium(iii) complexes for synergistic photodynamic and photochemotherapy. Chem Sci 2025; 16:6376-6382. [PMID: 40092598 PMCID: PMC11907644 DOI: 10.1039/d5sc00156k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Near-infrared (NIR) light-activatable photosensitizers (PSs) have garnered tremendous interest as PSs for photodynamic therapy (PDT) due to the deeper tissue penetration ability and lower toxicity of NIR radiation. However, the low reactive oxygen species (ROS) production, poor tumor accumulation, and residual toxicity of these PSs pose major challenges for further development in this regime. In this regard, we have meticulously designed and synthesized two novel mitochondria-targeting iridium(iii)-dithiocarbamate-cyanine complexes, Ir1@hcy and Ir2@hcy. In particular, Ir2@hcy exhibited both type I and type II PDT with excellent singlet oxygen (1O2) and hydroxyl radical (˙OH) generation ability under 637 nm/808 nm irradiation, even at an ultra-low power intensity (2 mW cm-2). Under higher-power irradiation (100 mW cm-2), the reactive oxygen species (ROS) production by Ir2@hcy was augmented. The elevated levels of ROS caused the disintegration of Ir2@hcy to produce cytotoxic oxindole scaffolds through the dioxetane mechanism. The synergistic production of ROS and cytotoxic species effectively induced mitochondria-mediated cancer cell death in both in vitro and 3D tumor spheroid models, offering a new avenue to develop combinational phototherapy (PDT + PACT) for cancer treatment with spatio-temporal precision.
Collapse
Affiliation(s)
- Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee Roorkee 247667 Uttarakhand India
| |
Collapse
|
3
|
Abushahba F, Algahawi A, Areid N, Vallittu PK, Närhi T. Efficacy of biofilm decontamination methods of dental implant surfaces: A systematic review of in vitro studies. Eur J Oral Sci 2025; 133:e70005. [PMID: 39980138 DOI: 10.1111/eos.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
This systematic review examines the decontamination techniques used to clean titanium (Ti) implant surfaces covered with in vitro bacterial biofilms. The selected studies were gathered from the PubMed and Web of Science databases. These include in vitro studies investigating decontamination methods used to clean Ti implant surfaces coated with bacterial biofilms until January 2024. The determined studies were filtered according to the PRISMA guidelines, and the Science in Risk Assessment and Policy (SciRAP) was used to assess the reporting and methodological quality of the included studies. A total of 634 full-length peer-reviewed articles were identified. After excluding duplicate papers between the databases and screening according to the predefined inclusion and exclusion criteria, 13 studies were included. The decontamination methods investigated included mechanical, chemical, and physical methods, either as a single or in a combined approach. Significant variability was observed among the included studies. Combining the mechanical and physical methods with a chemical yielded the most significant reduction in both single- and multiple-species biofilms. The current results do not indicate that any single decontamination technique is more effective than others in eradicating bacterial biofilm from Ti surfaces; the combined approach was more advantageous than the single ones.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ahmed Algahawi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of Southwest Finland, Turku, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of Southwest Finland, Turku, Finland
| |
Collapse
|
4
|
Chen S, Zhang P, Bai H, Yi W. Recent advances in nano-molybdenum oxide for photothermal cancer therapy. Nanomedicine (Lond) 2025; 20:883-901. [PMID: 40063363 DOI: 10.1080/17435889.2025.2476386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Cancer remains a significant global health challenge, driving the search for innovative treatments. Photothermal therapy (PTT) has emerged as a promising approach, using photothermal agents to convert near-infrared (NIR) light into heat for tumor ablation. Among these agents, nano-molybdenum oxide, particularly non-stoichiometric MoO3-x (0 < x < 1), stands out due to its unique defect structure, strong NIR absorption, high photothermal conversion efficiency (PCE), and pH-responsive degradation. This review summarized recent advancements in nano-molybdenum oxide for PTT, covering its classification, synthesis, surface modification, and tumor-targeting mechanisms. Subsequently, we explored its applications in PTT and combination therapies, evaluated biocompatibility and toxicity, and discussed current achievements, challenges, and future perspectives in cancer treatment.
Collapse
Affiliation(s)
- Shihai Chen
- College of Science, Northwest A&F University, Xianyang, China
| | - Ping Zhang
- College of Science, Northwest A&F University, Xianyang, China
| | - Hongmei Bai
- College of Science, Northwest A&F University, Xianyang, China
| | - Wenhui Yi
- Key Laboratory for Information Photonic Technology of ShaanXi Province & Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Chota A, Abrahamse H, George BP. Chemotoxic and phototoxic effects of liposomal co-delivery of green synthesized silver nanoparticles and ZnPcS 4 for enhanced photodynamic therapy in MCF-7 breast cancer cells: An in vitro study. Biomed Pharmacother 2025; 185:117986. [PMID: 40090284 DOI: 10.1016/j.biopha.2025.117986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025] Open
Abstract
Breast cancer remains a significant challenge in oncology, despite notable advances in treatment methods. Traditional therapies such as surgery, chemotherapy, radiation, and hormonal treatments have long been used to manage breast cancer. However, often patients experience treatment failure, resulting in disease recurrence and progression. Therefore, this study explores the therapeutic potential of green-synthesized silver nanoparticles (AgNPs), using the root methanol (MeOH) extract of the African medicinal plant Dicoma anomala (D. anomala) as a reducing agent, to combat breast cancer. AgNPs were synthesized using a bottom-up approach and later modified with liposomes (Lip) loaded with the photosensitizer zinc phthalocyanine tetrasulfonate (Lip@ZnPcS4) through the thin film hydration method. Prior to in vitro cell culture studies, UV-Vis spectroscopy was used to study the in vitro drug release kinetics of nanoparticles (NPs) at pH 5.8 and 7.4 respectively. After a 24 h treatment period, MCF-7 breast cancer cells were evaluated for cell cytotoxicity using lactate dehydrogenase Cyto-Tox96® Non-Radioactive Cytotoxicity Assay Kit LDH and cell viability using the CellTiter-Glo® ATP luminescence assay kit. Cell death studies were analyzed using an inverted light microscope for morphological changes, fluorescence microscopy for reactive oxygen species (ROS) detection and Live/Dead cell viability, human p53 protein analysis using enzyme-linked immunosorbent assay (ELISA), apoptotic and anti-apoptotic protein analysis by immunofluorescence, and gene expression analysis using real-time reverse transcription polymerase chain reaction (RT-PCR) assay. The experiments were conducted in quadruplicate (n = 4), and the results were analyzed using IBM SPSS statistical software version 27, with a 95 % confidence interval. The synthesized NPs and nanocomplexes, including AgNPs, AgNPs-Lip, Lip@ZnPcS4, and AgNPs-Lip@ZnPcS4, demonstrated significant cytotoxicity and therapeutic potential against MCF-7 breast cancer cells. Notably, apoptosis was induced, primarily through the activation of the intrinsic pathway. Given the difficult prognosis associated with breast cancer, these findings highlight the promise of liposomal nanoformulations (NFs) in cancer photodynamic therapy (PDT), supporting further investigation in in vivo settings.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
6
|
Lima E, Ferreira O, Oliveira JM, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Santos AO, Reis LV. "From darkness to radiance": Light-induced type I and II ROS-mediated apoptosis for anticancer effects of dansylpiperazine-bearing squaraine dyes. Bioorg Chem 2025; 159:108379. [PMID: 40179580 DOI: 10.1016/j.bioorg.2025.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Photodynamic therapy relies on the generation of cytotoxic effects triggered by the irradiation of a photosensitizer molecule, resulting in the production of reactive oxygen species at concentrations exceeding physiological levels. In this context, squaraine dyes, a prominent family of second-generation photosensitizers, have gained increasing attention for their remarkable properties, with their photobiological characteristics recently emerging as a key focus of in-depth research. Dansylpiperazine-bearing squaraine dyes exhibited strong absorption in the red visible spectral region, excellent photostability, and a predicted ability to interact with human serum albumin, potentially serving as a transport vehicle to target sites. Benzothiazole derivatives excelled in photodynamic activity, demonstrating 7- to 11-fold increased cytotoxicity upon irradiation against prostate adenocarcinoma PC-3 cells and tumor selectivity indices exceeding 10 when compared to normal NHDF cells. In contrast, the introduction of the dansylpiperazino group in indole-derived compounds unexpectedly declined their photodynamic activity. Concerning benzothiazole-based ones, multiple reactive oxygen species were shown to contribute to the photodynamic effects, with singlet oxygen playing a key role. Squaraine internalization was observed in various cytoplasmic organelles, including mitochondria, endoplasmic reticulum, and lysosomes, without clear evidence of preferential localization to any single organelle. Non-genotoxic in the dark, the squaraines induced cell death by apoptosis upon light activation, as evidenced by significant DNA fragmentation and increased caspase 3/7 activation, particularly for the dye with N-ethyl chains, at concentrations below 1.0 μM, underscoring their potency. Checkpoint arrests in G1 and G2/mitosis were observed for non-irradiated and irradiated conditions, respectively, highlighting the antiproliferative effects of these squaraine dyes.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Octávio Ferreira
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - João M Oliveira
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Renato E Boto
- RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - José R Fernandes
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Paulo Almeida
- RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Samuel M Silvestre
- RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.
| | - Adriana O Santos
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Lucinda V Reis
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal.
| |
Collapse
|
7
|
Esmaeilpour D, Ghomi M, Zare EN, Sillanpää M. Recent advances in DNA nanotechnology for cancer detection and therapy: A review. Int J Biol Macromol 2025; 307:142136. [PMID: 40107552 DOI: 10.1016/j.ijbiomac.2025.142136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Deoxyribonucleic acid (DNA) nanotechnology has rapidly emerged as a transformative field in biomedical research, offering innovative solutions for the detection and treatment of cancer. This review provides a comprehensive analysis of the role of DNA-based nanosystems in oncology, emphasizing their potential to address the limitations of conventional diagnostic and therapeutic approaches. Key advancements in DNA nanotechnology include the development of highly specific and sensitive nanostructures for early cancer detection, as well as precision-targeted delivery systems that enhance the efficacy of cancer therapies while minimizing side effects. The objectives of this review are threefold: first, to summarize the latest advancements in DNA nanotechnology, highlighting innovations in cancer biomarker detection and therapeutic applications; second, to explore the molecular mechanisms that enable these DNA-based nanosystems to interact with cancer cells with remarkable precision, including their design principles, self-assembly processes, and biological interactions; and third, to discuss the future implications of these technologies, considering the challenges, potential breakthroughs, and the steps needed to integrate DNA nanotechnology into clinical practice. By achieving these objectives, the review aims to offer insights into how DNA nanotechnology could revolutionize cancer care, providing new strategies for more personalized and effective treatments, and ultimately improving patient outcomes in the battle against cancer.
Collapse
Affiliation(s)
- Donya Esmaeilpour
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz 71345-1583, Iran.
| | - Matineh Ghomi
- Department of Chemistry, Jundi-Shapur University of Technology, Dezful, Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
8
|
Carman-Esparza CM, Stine CA, Atay N, Kingsmore KM, Wang M, Woodall RT, Rockne RC, Cunningham JJ, Munson JM. Interstitial fluid transport dynamics predict glioblastoma invasion and progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642840. [PMID: 40161666 PMCID: PMC11952461 DOI: 10.1101/2025.03.12.642840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Glioblastoma is characterized by aggressive infiltration into surrounding brain tissue, hindering complete surgical resection and contributing to poor patient outcomes. Identifying tumor-specific invasion patterns is essential for advancing our understanding of glioblastoma progression and improving surgical and radiotherapeutic strategies. Here, we leverage in vivo dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to noninvasively quantify interstitial fluid velocity, direction, and diffusion within and around glioblastomas. We introduce a novel vector-based pathline analysis to trace downstream accumulation of fluid flow originating from the tumor core, providing a spatially explicit perspective on local flow patterns. We find that localized fluid transport metrics predict glioblastoma invasion and progression, offering a new framework to non-invasively identify high-risk regions and guide targeted treatment approaches. One sentence summary Invasion and progression of glioblastoma can be predicted with interstitial fluid flow patterns via magnetic resonance imaging.
Collapse
|
9
|
Farahavar G, Abolmaali SS, Biabanikhankahdani R, Tamaddon AM. Synergistic action of combining photodynamic therapy with immunotherapy for eradicating solid tumors in animal models: A systematic review. Crit Rev Oncol Hematol 2025; 209:104691. [PMID: 40058741 DOI: 10.1016/j.critrevonc.2025.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025] Open
Abstract
Malignancies maintain a high rate of mortality worldwide each year, requiring the development of novel therapeutic platforms. Immunotherapy approaches are considered a revolutionary treatment for overcoming malignancies. Photodynamic therapy (PDT) has attracted significant attention in various cancer types. Recent progress in cancer therapies has underscored the potential of combining PDT with immunotherapy. This approach can improve therapeutic outcomes by directly eliminating tumor cells and boosting immune responses for sustained anti-tumor effects in the whole body. This study aims to determine the relative efficacy of combining PDT with immunotherapy compared to PDT alone. Following the PRISMA guidance, an extensive literature review was conducted utilizing Scopus, Web of Science, and PubMed to identify high-quality preclinical studies exploring various aspects of PDT combined with immunotherapy. The adopted PICO framework included studies with rigorous experimental designs and relevant outcomes. The present review reveals the characteristics of tumor models, delivery systems, photosensitizers, and immunotherapy approaches. Key findings indicate that the combined PDT-immunotherapy approach shows promise in treating multiple tumors according to their size, therapeutic biomarkers, and inhibition of distant tumors. Finally, this integrated therapeutic strategy holds significant promise for advancing cancer treatment paradigms by potentiating each treatment efficacy; however, its clinical utility requires careful consideration of the associated challenges.
Collapse
Affiliation(s)
- Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Nanotechnology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Roya Biabanikhankahdani
- Department of Basic Sciences, College of Dentistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Nanotechnology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Krasilnikov MS, Mazur RV, Chumakov SP, Denisov VS, Goldenberg EA, Nikolaenko YI, Bersenev EA, Nikitin TD, Orinicheva PS, Brylev VA, Gulyak EL, Korshun VA, Alferova VA, Gvozdev DA, Ustinov AV. Donor-Acceptor (Perylenethienyl)Ethylenes as Singlet Oxygen-Photogenerating Viral Inhibitors. Chembiochem 2025:e202401019. [PMID: 40042395 DOI: 10.1002/cbic.202401019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/02/2025] [Indexed: 03/19/2025]
Abstract
The development of broad-spectrum antiviral drugs effective against a wide range of viruses is of significant practical importance. Derivatives of perylene, a pentacyclic aromatic hydrocarbon, demonstrate pronounced antiviral activity. These compounds act primarily as membrane-active singlet oxygen photogenerators, disrupting virions and inhibiting their fusion with the host cell membrane. Modification of the perylene core allows for chemical diversification of antiviral photosensitizers. Additionally, achieving a bathochromic shift of the absorption band is crucial for effective treatment of superficial lesions, as it facilitates deeper tissue penetration of therapeutic light. In this work, donor-acceptor perylenylethylenes and (perylenethienyl)ethylenes were synthesized and evaluated for their spectral properties, singlet oxygen photogeneration, and inhibitory activity against vesicular stomatitis virus (VSV), a representative enveloped virus. Incorporation of a thiophene moiety into the molecule significantly enhanced both the singlet oxygen generation ability and the antiviral activity. These findings provide useful insights into the relationship between the structure, spectral/photochemical properties, and biological activity of perylene-based photosensitizers.
Collapse
Affiliation(s)
- Maxim S Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Roman V Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Stepan P Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Vladislav S Denisov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Efim A Goldenberg
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Yan I Nikolaenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Evgeny A Bersenev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University Leninskie Gory 1-3, 119991, Moscow, Russia
| | - Timofei D Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Polina S Orinicheva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University Trubetskaya Str. 8/2, 119991, Moscow, Russia
| | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Evgeny L Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Daniil A Gvozdev
- Department of Biology, Lomonosov Moscow State University Leninskie Gory 1-12, 119991, Moscow, Russia
| | - Alexey V Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| |
Collapse
|
11
|
Fonseca Teixeira A, Pires BRB, Panis C, Monte-Alto-Costa A, da Fonseca ADS, Mencalha AL. Low-Power Blue LED Modulates NF-κB and Proinflammatory Cytokines in Doxorubicin-Treated MDA-MB-231 Cells. J Biochem Mol Toxicol 2025; 39:e70192. [PMID: 39987519 DOI: 10.1002/jbt.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/08/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Doxorubicin is a crucial chemotherapy used in the treatment of triple-negative breast cancer (TNBC) patients, but elevated doxorubicin doses may induce therapeutic resistance. To overcome this limitation, we have previously established a photodynamic therapeutic (PDT)-like strategy that irradiates doxorubicin-treated cells with a low-power nonionizing blue LED device. This combined treatment increases the production of reactive oxygen species to promote cell death, consequently enabling reduced doxorubicin dosages. Yet, precisely determining the molecular mechanisms that drive this outcome is still required for advancing such PDT-like approach. Here, we aimed to correlate the expression of the inflammatory markers NF-κB, IL-8, IL-6, and IL-1β with the survival of TNBC cells submitted to our PDT-like protocol. Our results show that NF-κB/p65 nuclear levels were enhanced in MDA-MB-231 cells treated with doxorubicin and blue LED. Moreover, this PDT-like strategy increased IL-6 mRNA levels in MDA-MB-231 cells. IL-1β and IL-8 mRNA were upregulated in samples incubated with doxorubicin regardless of concomitant irradiation with blue LED. These results show that our PDT-like protocol is effective in elevating inflammatory signals, shedding light on the molecular mechanisms that underlie the efficacy of this innovative anticancer therapeutic approach.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Panis
- Centro de Ciências da Saúde, Universidade Estadual do Oeste do Paraná, Paraná, Brazil
| | - Andréa Monte-Alto-Costa
- Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Yang Y, Dong C, Ma X, Wang Y, Li Z, Xu Y, Chen T, Gao C, Ye X, Wu A, Zhang X. Advances in cuproptosis harnessing copper-based nanomaterials for cancer therapy. J Mater Chem B 2025; 13:2978-2999. [PMID: 39901728 DOI: 10.1039/d4tb02746a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Cuproptosis, a newly identified programmed cell death form, is characterized by excessive copper accumulation in cells, resulting in mitochondria damage and toxic protein stress, ultimately causing cell death. Given the considerable therapeutic promise of copper toxicity in cancer treatment, copper-based nanomaterials that induce copper death have attracted interest as a promising approach for tumor therapy. This review comprehensively introduces the mechanisms of cuproptosis and the associated regulatory genes, including both positive and negative regulatory regulators, and systematically summarizes the application of various nanoparticles in inducing cuproptosis, ranging from inorganic copper compounds to delivery systems. These nanoparticles offer significant advantages, such as improving copper absorption, extending the duration of effectiveness, enhancing the precision of copper release, increasing biocompatibility, and serving as enhancers in combination therapy. In conclusion, the authors present a detailed overview and insights into the current research directions of nanoplatforms that facilitate copper-induced cancer treatment, establishing a foundation for the future development of effective nanomedicines that induce cuproptosis and offering new possibilities and treatment strategies for tumor therapy.
Collapse
Affiliation(s)
- Yanqiang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Chen Dong
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Yanan Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Zhouhua Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Yuan Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
13
|
Macri N, Dias LM, Pavarina AC, Siqueira WL, Sperandio FF. Saliva-derived components can enhance the performance of toluidine blue in photodynamic therapy. Front Pharmacol 2025; 16:1538520. [PMID: 40017593 PMCID: PMC11865188 DOI: 10.3389/fphar.2025.1538520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/08/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Oral Squamous Cell Carcinoma (OSCC) is the most common type of head and neck cancer worldwide. Currently, the most common treatment for OSCC includes a combination of surgery, radiation, and chemotherapy. However, despite the advances made in therapeutic strategies, the prognosis for patients diagnosed with OSCC remains poor, especially at later stages, which emphasizes the need for a novel treatment approach. Photodynamic therapy (PDT) has been employed as stand-alone or adjuvant therapy for OSCC. Methods This study investigated the potential of using salivary proteins such as histatin-5 (Hst5) or derived peptides (RR14, DR9/RR14) to perform histatin-mediated PDT. The current literature has shown that histatins have the capacity to increase cellular membrane permeability, which indicates a potential synergistic effect when combined with a photosensitive agent. Toluidine Blue O (TBO) was used as the photosensitizer (PS) singularly combined with salivary peptides RR14, DR9/RR14, and Hst5 protein, and experiments were conducted to assess its biocompatibility and photodynamic effects on human gingival fibroblasts (FGH) and oral squamous cell carcinoma (SCC-25) cell lines. Results The results showed that TBO concentrations below 4 μg/mL were non-cytotoxic to FGH cells, whereas concentrations up to 8 μg/mL were non-cytotoxic to SCC-25 cells. Also, the presence of histatins did not modify the absorption spectrum or photobleaching of TBO, enabling consistent production of reactive oxygen species (ROS) over time and rendering it as a stable and suitable PS for PDT. Further experiments also showed that when TBO was combined with Hst5, the ROS production increased by 186% compared to TBO alone. Conclusion Results suggest that the use of histatin-enhanced PS offer a promising alternative to conventional PDT, potentially improving its outcomes.
Collapse
Affiliation(s)
- Nicolas Macri
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Ana Claudia Pavarina
- Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | | | | |
Collapse
|
14
|
Yin WH, Liu Y, Huang HH, Li PY, Liu X, Bai FQ. Construction of Photosensitizer Candidates in Photodynamic Therapy: Computer Aided Design, Calculation, and Screening. J Org Chem 2025; 90:1825-1834. [PMID: 39877937 DOI: 10.1021/acs.joc.4c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Thiophene and pyrrole units are extensively utilized in light-responsive materials and have significantly advanced the field of organic photovoltaics (OPV). This progress has inspired our exploration of photosensitizers (PS) for photodynamic therapy (PDT). Currently, traditional PS face limitations in clinical application, including a restricted variety and narrow applicability. Drawing upon molecular design concepts from OPV, we aim to transcend these limitations in PDT. Given the abundance of candidate molecules, effective screening is crucial. Theoretical calculations and electronic structure analyses serve as precise and practical screening methods. In this study, we adopted strategies successfully employed in OPV molecular design, focusing on donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) structures. Using density functional theory (DFT) and time-dependent density functional theory (TDDFT), we systematically designed combinations of promising organic fragments. These fragments include polythiophene and polypyrrole-dominated donor structures, paired with five electron acceptors: indene (Ind), diketopyrrole (DPP), naphthalimide (Ni), benzothiazole (Btd), and dithiazolyl diketopyrrole (Tbo). Through meticulous calculations, we obtained electronic structures and spectral properties for all candidate molecules, facilitating an efficient screening process. Our findings highlight that those combinations of polypyrrole-based frameworks with DPP, Ni, and Btd show significant promise for PS applications. Approximately 13% of candidates were selected through comprehensive comparison, markedly reducing molecular design time and experimental costs. This interdisciplinary approach holds potential to pave the way for more targeted and successful PS designs.
Collapse
Affiliation(s)
- Wei-Huang Yin
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Yang Liu
- Department of Orthopedics, Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hou-Hou Huang
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Peng-Yuan Li
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China
| | - Xin Liu
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun 130023, P.R. China
| |
Collapse
|
15
|
Goujani SM, Koopaie M, Safarian FH, Hakimiha N, Younespour S. Comparative analysis of combined methylene blue photodynamic therapy and doxorubicin treatment of oral squamous cell carcinoma cell line: In vitro study on apoptosis. Photodiagnosis Photodyn Ther 2025; 51:104457. [PMID: 39732188 DOI: 10.1016/j.pdpdt.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION Squamous cell carcinoma (SCC) is the most common malignancy of the head and neck region. Combination therapy potentially enhances the effectiveness beyond that of each treatment alone. This study aimed to assess whether photodynamic therapy (PDT), using methylene blue as a photosensitizer in conjunction with doxorubicin, produces synergistic effects on the apoptosis of the oral squamous cell carcinoma (OSCC) cell line. MATERIALS AND METHODS The human oral epidermal carcinoma cell line (KB cell line, NCBI Code: C152) was cultured in Dulbecco's modified Eagle's medium. Following at least 24 hours of incubation, the OSCC cells were distributed into six groups, with groups 1-3 and 5 performed in the dark to prevent any light interference. 1: control group; 2: treated with 3.2 μg/mL methylene blue; 3: exposed to various concentrations of doxorubicin; 4: PDT group (methylene blue + 660 nm light); 5: treated with both doxorubicin and methylene blue; and finally, 6: treated with PDT (methylene blue + 660 nm light) in conjunction with doxorubicin. Flow cytometry methods were used to assess apoptosis. Analysis of variance (ANOVA) was used to compare quantitative variables between groups, and Tukey's test was applied for pairwise group comparisons. RESULTS Flow cytometry analysis revealed that the highest level of cellular apoptosis occurred in the group treated with PDT in conjunction with doxorubicin. CONCLUSIONS PDT using the photosensitizer methylene blue, in combination with doxorubicin, can serve as an effective agent for inducing apoptosis in OSCC cells.
Collapse
Affiliation(s)
- Shayan Momeni Goujani
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fateme Hamta Safarian
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Hakimiha
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Younespour
- Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ghanbari Z, Makhdoumi A. In vitro photodynamic therapy of Candida albicans, the cause of vulvovaginal candidiasis, is enhanced by Bacillus and Enterococcus probiotics. Photodiagnosis Photodyn Ther 2025; 51:104483. [PMID: 39818406 DOI: 10.1016/j.pdpdt.2025.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Candida albicans is the primary cause of vulvovaginal candidiasis, a worldwide health concern for women. The use of supplemental methods, such as antimicrobial photodynamic therapy (aPDT) and probiotics, was promoted by the ineffectiveness of the existing antifungal drugs. METHODS This study examines the combined effects of probiotics (Bacillus and Enterococcus isolated from the fermented pickles) and PDT (using red laser (655 nm, 18 J/cm2) as a light source and methylene blue dye (30 mg/mL) as a photosensitizer) on the in vitro virulence activity of C. albicans including growth, biofilm formation, antifungal resistance, biofilm elimination, and biofilm dispersion. RESULTS The probiotic strains demonstrated a higher resistance to PDT compared to the fungal cell. Bacillus and Enterococcus enhanced the antifungal effects of PDT on planktonic Candida cells in both pre-PDT and post-PDT interactions. The inhibition of biofilm formation by PDT was improved upon interaction with Bacillus (70 %) and Enterococcus (58 %). The eradication of Candida biofilm using PDT was increased after a combination with Bacillus (67 %) and Enterococcus (46 %). The nystatin resistance of the fungal biofilm following PDT treatment was decreased from (µg/ml) 25 to 6.25 due to the interaction with both probiotic strains. Fungal cell dispersion from the biofilm after PDT treatment diminished by 18 % and 25 % in the presence of Bacillus and Enterococcus strains. Galleria mellonella mortality was significantly changed following the PDT of the fungi/probiotic-injected larvae. CONCLUSIONS This synergistic activity suggests the use of probiotics/PDT as a supplemental treatment for vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Zeinab Ghanbari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Makhdoumi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
17
|
Benjamin AS, Nayak S. Iron oxide nanoparticles coated with bioactive materials: a viable theragnostic strategy to improve osteosarcoma treatment. DISCOVER NANO 2025; 20:18. [PMID: 39883285 PMCID: PMC11782756 DOI: 10.1186/s11671-024-04163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment. Iron oxide nanoparticles stand out in both therapeutic and diagnostic applications, offering a versatile platform for targeted drug delivery, hyperthermia, magneto-thermal therapy, and combinational therapy using modulation of ferroptosis pathways. These nanoparticles are easy to synthesize, non-toxic, biocompatible, and display enhanced circulation time within the system. They can also be easily conjugated to anti-cancer drugs, targeting agents, or genetic vectors that respond to specific stimuli or pH changes. The surface functionalization of these nanoparticles using bioactive molecules unveils a promising and effective nanoparticle system for assisting osteosarcoma therapy. This review will summarize the current conventional therapies for osteosarcoma and their disadvantages, the synthesis and modification of iron oxide nanoparticles documented in the literature, cellular targeting and uptake mechanism, with focus on their functionalization using natural biomaterials and application strategies towards management of osteosarcoma. The review also compiles the translational challenges and future prospects that must be addressed for clinical advancements of iron oxide based osteosarcoma treatment in the future.
Collapse
Affiliation(s)
- Amy Sarah Benjamin
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sunita Nayak
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
18
|
Bondon N, Charlot C, Ali LMA, Barras A, Richy N, Durand D, Molard Y, Taupier G, Oliviero E, Gary-Bobo M, Paul F, Szunerits S, Bettache N, Durand JO, Nguyen C, Boukherroub R, Mongin O, Charnay C. FRET-based mesoporous organosilica nanoplatforms for in vitro and in vivo anticancer two-photon photodynamic therapy. J Mater Chem B 2025; 13:1767-1780. [PMID: 39717882 DOI: 10.1039/d4tb02103g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET. Next, the cellular uptake and toxicities of pristine and functionalized NPs were evaluated on breast cancer cell lines upon TPEF and TPE-PDT. Notably, the use of TPE-PDT treatment led to high levels of phototoxicity on MCF-7 and MDA-MB-231 cancer cells with substantial effects when compared to one-photon excitation (OPE)-PDT treatment. Preliminary in vivo data on selective and biodegradable NPs showed a significant phototoxicity towards MDA-MB-231 on zebrafish xenograft embryos, making these advanced nanoplatforms promising candidates for future TPE-PDT-based cancer treatments.
Collapse
Affiliation(s)
- Nicolas Bondon
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Clément Charlot
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
| | - Lamiaa M A Ali
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Alexandre Barras
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000 Lille, France
| | - Nicolas Richy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Denis Durand
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | - Yann Molard
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Grégory Taupier
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Erwan Oliviero
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
| | - Magali Gary-Bobo
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | - Frédéric Paul
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000 Lille, France
| | - Nadir Bettache
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | | | - Christophe Nguyen
- IBMM, University of Montpellier, UMR-CNRS 5247, 34293 Montpellier, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, 59000 Lille, France
| | - Olivier Mongin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, ScanMAT - UAR 2025, F-35000, Rennes, France.
| | - Clarence Charnay
- ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
| |
Collapse
|
19
|
Parvin N, Joo SW, Mandal TK. Biodegradable and Stimuli-Responsive Nanomaterials for Targeted Drug Delivery in Autoimmune Diseases. J Funct Biomater 2025; 16:24. [PMID: 39852580 PMCID: PMC11766201 DOI: 10.3390/jfb16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Autoimmune diseases present complex therapeutic challenges due to their chronic nature, systemic impact, and requirement for precise immunomodulation to avoid adverse side effects. Recent advancements in biodegradable and stimuli-responsive nanomaterials have opened new avenues for targeted drug delivery systems capable of addressing these challenges. This review provides a comprehensive analysis of state-of-the-art biodegradable nanocarriers such as polymeric nanoparticles, liposomes, and hydrogels engineered for targeted delivery in autoimmune therapies. These nanomaterials are designed to degrade safely in the body while releasing therapeutic agents in response to specific stimuli, including pH, temperature, redox conditions, and enzymatic activity. By achieving localized and controlled release of anti-inflammatory and immunosuppressive agents, these systems minimize systemic toxicity and enhance therapeutic efficacy. We discuss the underlying mechanisms of stimuli-responsive nanomaterials, recent applications in treating diseases such as rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease, and the design considerations essential for clinical translation. Additionally, we address current challenges, including biocompatibility, scalability, and regulatory hurdles, as well as future directions for integrating advanced nanotechnology with personalized medicine in autoimmune treatment. This review highlights the transformative potential of biodegradable and stimuli-responsive nanomaterials, presenting them as a promising strategy to advance precision medicine and improve patient outcomes in autoimmune disease management.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas K. Mandal
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
20
|
Soko GF, Kosgei BK, Meena SS, Ng YJ, Liang H, Zhang B, Liu Q, Xu T, Hou X, Han RPS. Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses. Front Immunol 2025; 15:1535647. [PMID: 39845957 PMCID: PMC11751056 DOI: 10.3389/fimmu.2024.1535647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
Immunologically inert or cold tumors pose a substantial challenge to the effectiveness of immunotherapy. The use of oncolytic viruses (OVs) to induce immunogenic cell death (ICD) in tumor cells is a well-established strategy for initiating the cancer immunity cycle (CIC). This process promotes the trafficking and infiltration of CD8+ T cells into tumors, thereby eliciting a tumor-specific immune response. Despite the potential of OVs for handling cold tumors, clinical outcomes have fallen short of expectations. To better understand the obstacles faced by oncolytic virus immunotherapy (OVI), we would like to revisit the OV issue. Growing evidence indicates that limited intratumoral penetration and inadequate intratumoral distribution of OVs are critical factors contributing to the suboptimal response to OVI. Aberrant expressions of matrix proteins by cancer-associated fibroblasts (CAFs) alter the mechanical properties of the tumor extracellular matrix (ECM). This results in increased ECM desmoplasia and elevated intratumoral interstitial fluid pressure (IFP), creating physical barriers that impede the penetration and dissemination of OVs within tumors. This review explores the latest advancements in strategies designed to improve the intratumoral penetration of OVs to facilitate the penetration of tumor-infiltrating lymphocytes (TILs) into cold tumors. Additionally, we investigated current clinical trials and challenges associated with translating these strategies into clinical practice to improve patient outcomes.
Collapse
Affiliation(s)
- Geofrey F. Soko
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Benson K. Kosgei
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Stephene S. Meena
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Ying Jing Ng
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Huihui Liang
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Bing Zhang
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qingjun Liu
- Biosensor National Special Laboratory & Key Laboratory for Biomedical Engineering of Education Ministry, Dept. of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Tielong Xu
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xinju Hou
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
- Dept. of Rehabilitation, Nanchang Hongdu Hospital of Chinese Medicine, Nanchang, China
| | - Ray P. S. Han
- Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China & Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
21
|
Clementi R, Vargas MA, Cid M, Salvatierra N, Comín R, Tempesti T. Biocompatible Zn-Phthalocyanine/Gelatin Nanofiber Membrane for Antibacterial Therapy. Macromol Biosci 2025; 25:e2400334. [PMID: 39470704 DOI: 10.1002/mabi.202400334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Indexed: 10/30/2024]
Abstract
In this study, the fabrication and characterization of Zn-phthalocyanine/gelatin nanofibrous membranes is reported using the electrospinning technique. The membranes exhibit a homogeneous distribution of Zn-phthalocyanine within the gelatin matrix, maintaining the structural integrity and photosensitizing properties of the phthalocyanine. Scanning electron microscopy revealed that the electrospun fibers possess diameters ranging results as 100-300, 200-700, and 300-800 nm for Gel, ZnPc/Gel 1, and ZnPc/Gel 2, respectively. The addition of ZnPc does not decrease the hydrophilicity of the Gel membrane. The nanofibrous membranes showed good cytocompatibility, as indicated by the high viability of Vero cells exposed to membrane extracts. Furthermore, these composites supported cell adhesion and proliferation on their surfaces. The two Zn-phthalocyanine/gelatin nanofiber formulations exhibited significant antimicrobial activity toward Escherichia Coli (E. Coli) and Staphylococcus Aureus (S. Aureus) under visible light illumination, achieving reductions of 3.4 log10 and 3.6 log10 CFU mL-1 for E. coli, and 3.9 log10 and 4.1 log10 CFU mL-1 for S. aureus. These results demonstrate the potential of Zn-phthalocyanine/gelatin nanofibrous membranes as effective agents in antibacterial photodynamic therapy, providing a promising solution to control bacterial infections and antibiotic resistance.
Collapse
Affiliation(s)
- Romina Clementi
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Maria Angela Vargas
- Laboratorio de Microbiología, Hospital Provincial Florencio Diaz, Córdoba, Argentina
| | - Mariana Cid
- Facultad Ciencias Exactas, Físicas y Naturales, Departamento de Química, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5016, Argentina
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Nancy Salvatierra
- Facultad Ciencias Exactas, Físicas y Naturales, Departamento de Química, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5016, Argentina
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Romina Comín
- Facultad Ciencias Exactas, Físicas y Naturales, Departamento de Química, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5016, Argentina
- CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Tomas Tempesti
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
- INFIQC-CONICET, Instituto de Investigaciones en Físico-Química de Córdoba, Córdoba, Argentina
| |
Collapse
|
22
|
Rastegar-Pouyani N, Zafari J, Nasirpour A, Vazini H, Najjar N, Azarshin SZ, Javani Jouni F. Methylene Blue-Mediated Photodynamic Therapy in Combination With Doxorubicin: A Novel Approach in the Treatment of HT-29 Colon Cancer Cells. J Lasers Med Sci 2024; 15:e64. [PMID: 39949472 PMCID: PMC11822234 DOI: 10.34172/jlms.2024.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/07/2024] [Indexed: 02/16/2025]
Abstract
Introduction: With an alarmingly growing number of patients diagnosed with colorectal cancer, adopting innovative anti-cancer approaches has recently garnered great attention. One interesting concept is the co-administration of cytotoxic agents and safer modalities such as photodynamic therapy (PDT), which can subsequently improve therapeutic efficacy and potentially reduce the risks of severe adverse effects and drug resistance. In the course of PDT, a locally injected photosensitizer (PS) is irradiated with a light source, which subsequently generates reactive oxygen species (ROS) and induces programmed cell death in tumor cells. Methods: In this study, to evaluate the potential anti-cancer effects of chemotherapy combined with PDT, in comparison to each alone, we employed PDT, comprising methylene blue (MB) and diode lasers at 630 and 810 nm wavelengths, in conjunction with the chemotherapeutic agent doxorubicin (DOX). Results: The MTT assay showed that the viability of colorectal cancer HT-29 cells decreased significantly following DOX+PDT treatment. Similarly, lactate dehydrogenase (LDH) release and lipid peroxidation rates were substantially higher in DOX+PDT treatment groups. Lastly, the catalase (CAT) assay indicated that the combination reduced the ability of CAT in the detoxification of H2 O2. Conclusion: Our study suggests that MB-mediated PDT combined with chemotherapy might provide a promising avenue to improve therapeutic efficacy and potentially reduce the risk of adverse effects and drug resistance. Without a doubt, further investigations need to delve into the pharmacological advantages and disadvantages of PTD-based combination therapy and optimize its administered doses along with other modalities.
Collapse
Affiliation(s)
- Nima Rastegar-Pouyani
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jaber Zafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Nasirpour
- Department of Electrical and Computer Engineering, Batten College of Engineering, Old Dominion University, Norfolk, VA, United States
| | - Hossein Vazini
- Nursing Department, Basic Sciences Faculty, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Nabaa Najjar
- Basic Medical Science Research Center, Zist Pajooh Afra Company, Tehran, Iran
| | - Seyedeh Zohreh Azarshin
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Javani Jouni
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Lafi Z, Matalqah S, Abu-Saleem E, Asha N, Mhaidat H, Asha S, Al-Nashash L, Janabi HS. Metal-organic frameworks as nanoplatforms for combination therapy in cancer treatment. Med Oncol 2024; 42:26. [PMID: 39653960 DOI: 10.1007/s12032-024-02567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
The integration of nanotechnology into cancer treatment has revolutionized chemotherapy, boosted its effectiveness while reduced side effects. Among the various nanotherapeutic approaches, metal-organic frameworks (MOFs) stand out as promising carriers for targeted chemotherapy, with the added benefit of enabling combination therapies. MOFs, composed of metal ions or clusters linked by coordination bonds, tackle critical issues in traditional cancer treatments, such as poor stability, limited efficacy, and severe side effects. Their key advantages include customizable size and shape, diverse compositions, controlled porosity, large surface areas, ease of modification, and biocompatibility. This review highlights recent advancements in the use of MOFs for cancer therapy, showcasing their role in both monotherapies and combination strategies. Additionally, it explores the future potential and challenges of MOF-based platforms in tumor treatment.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan.
| | - Sina Matalqah
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Ebaa Abu-Saleem
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Nisreen Asha
- The University of Oklahoma Health Sciences, Oklahoma, USA
| | - Hala Mhaidat
- King Abdullah University Hospital, Irbid, Jordan
| | | | - Lara Al-Nashash
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| | - Hussein S Janabi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, PO Box: 19328, Amman, Jordan
| |
Collapse
|
24
|
Werłos M, Barzowska-Gogola A, Pucelik B, Repetowski P, Warszyńska M, Dąbrowski JM. One Change, Many Benefits: A Glycine-Modified Bacteriochlorin with NIR Absorption and a Type I Photochemical Mechanism for Versatile Photodynamic Therapy. Int J Mol Sci 2024; 25:13132. [PMID: 39684841 DOI: 10.3390/ijms252313132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Difluorinated sulfonamide porphyrin (F2PGly) and bacteriochlorin (F2BGly), modified by glycine residues, were synthesized and evaluated for photodynamic therapy (PDT). F₂PGly exhibits superior stability and singlet oxygen generation efficiency but features a low-intensity band in the red range (λmax = 639 nm). In contrast, F2BGly shows a favorable, red-shifted absorption spectrum (λmax = 746 nm) that aligns well with phototherapeutic window, facilitating deeper tissue penetration. Moreover, it demonstrates reasonable photostability, necessary for the efficient generation of both singlet oxygen (type II) and oxygen-centered radicals (type I mechanism) which contributes to enhanced therapeutic efficacy. Importantly, the glycine modifications in F2BGly enhance its uptake in MCF-7 cells, known for their resistance to PDT due to efflux transport proteins like LAT1, showing great potential in the cancer cell-targeted PDT. The glycine groups potentially enable F2BGly to bypass these barriers, resulting in increased intracellular accumulation and more effective Reactive Oxygen Species (ROS) generation under illumination. In vivo studies indicated promising vascular-targeted PDT results, with real-time fluorescence imaging used to monitor photosensitizer distribution prior to irradiation. These findings suggest that F2BGly is a promising photosensitizer candidate with enhanced cancer cell selectivity and photodynamic efficiency, meriting further exploration in targeted PDT applications for multiple types of cancers.
Collapse
Affiliation(s)
- Mateusz Werłos
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Chemistry Department, Selvita, Podole 69, 30-394 Kraków, Poland
| | - Agata Barzowska-Gogola
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Łukasiewicz Research Network, Kraków Institute of Technology, 30-418 Kraków, Poland
| | - Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Łukasiewicz Research Network, Kraków Institute of Technology, 30-418 Kraków, Poland
| | - Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
25
|
Tian S, Chen M. Global research progress of nanomedicine and colorectal cancer: a bibliometrics and visualization analysis. Front Oncol 2024; 14:1460201. [PMID: 39711965 PMCID: PMC11660184 DOI: 10.3389/fonc.2024.1460201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Background Surgery and chemoradiotherapy are the main clinical treatment methods for colorectal cancer (CRC), but the prognosis is poor. The emergence of nanomedicine brings bright light to the treatment of CRC. However, there has not been a comprehensive and systematic analysis of CRC and nanomedicine by bibliometrics. Methods We searched the Web of Science Core Collection database (WOSCC) for relevant literature published from 2011 to 2024. We used VOSviewer and Citespace to analyze countries, institutions, authors, keywords, highly cited references, and co-cited references. Results 3105 pieces of literatures were included in the research analysis, and PEOPLES R CHINA and the USA took the leading position in the number of papers published and had academic influence. The Chinese Academy of Sciences posted the most papers. The most prolific scholar was Abnous Khalil. The level of economic development is inversely proportional to the number of cases and deaths of colorectal cancer. Nanoparticles (NPs), the nanomedical drug delivery system (NDDS) is a hot topic in the field. Photodynamic therapy (PDT), immunogenic cell death (ICD), tumor microenvironment (TEM), folic acid, and pH are the cutting edge of the field. Conclusion This paper introduces the research hotspot, emphasis, and frontier of CRC and nanomedicine, and points out the direction for this field.
Collapse
Affiliation(s)
| | - Min Chen
- Proctology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Hiep Tran T, Thu Phuong Tran T. Current status of nanoparticle-mediated immunogenic cell death in cancer immunotherapy. Int Immunopharmacol 2024; 142:113085. [PMID: 39276455 DOI: 10.1016/j.intimp.2024.113085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Immunogenic cell death (ICD) encompasses various forms of cell death modalities, including apoptosis, necroptosis, ferroptosis, and pyroptosis. It arises from a harmonious interplay of adjuvant (damage-associated molecular patterns-DAMPs and chemokines/cytokines) and antigenicity (tumor-associated antigens-TAA) to induce immune-reaction toward cancer cells. Inducing ICD stands out as a promising approach in cancer immunotherapy, capable of directly eliminating cancer cells and of eliciting enduring antitumor immune responses. Conventional tumor therapies like radiation therapy, photodynamic therapy, and chemotherapy can also induce ICD which could amplify their activities. The development of effective ICD inducers like nano-systems is crucial for ensuring safe and efficacious immunotherapy. Nanoparticles hold considerable promise in cancer therapy, offering enhanced therapeutic outcomes and mitigated side effects. They could be the capacity to adjust systemic biodistribution, augment the accumulation of therapeutic agents at the intended site and protect active agents from the complexity of human biofluid. This review aims to outline the role of nanoparticles in triggering ICD for cancer immunotherapy that potentially pave the way for cancer treatment.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
| | - Thi Thu Phuong Tran
- Department of Life Sciences, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
27
|
Yang F, Zhang S, Zhang X, Xu C, Hou X, Shang J, Sun B, Shu X, Liu Y, Li Y, Wang H. Liposomal chlorin e6-mediated photodynamic therapy induces cell pyroptosis and promotes anti-tumor immune effects in breast cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113047. [PMID: 39504926 DOI: 10.1016/j.jphotobiol.2024.113047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Pyroptosis is a form of inflammatory cell death that has been demonstrated to trigger anti-tumor immune responses. Photodynamic therapy (PDT) is an innovative non-invasive treatment for tumors that effectively destroys tumor cells and boosts anti-tumor immune response. The ability of PDT to trigger pyroptosis and its mechanism of action are yet uncertain. In this study, we firstly verified that PDT effectively eliminates tumor cells. TEM and Western blot analysis demonstrated that tumor cells underwent pyroptosis following PDT therapy. Lipo-Ce6 mostly accumulates in the mitochondria of 4 T1 cells, and abundant ROS generated during PDT severely damage cell mitochondria, leading to the release of mitochondrial DNA, triggering the inflammasome caspase-1 signaling cascade, and ultimately causing cell pyroptosis, in addition NAC (a scavenger of ROS) and EB (a scavenger of mitochondrial DNA) can effectively prevent cell pyroptosis by PDT, which indicated the key role of ROS in PDT induced pyroptosis. Moreover, we also found PDT tiggered immunogenic cell death (ICD). Fourthermore, PDT can efficiently suppress tumor growth, trigger ICD and induce cell pyroptosis in mice. The introducing of immune checkpoint inhibitor BMS202 significantly boosts the tumor inhibition rate and promotes the infiltration of immune cells into the tumor. The body weight and HE. staining of normal organs primarily indicated the safety of this combined strategy. Our study demonstrated that PDT induced cell pyroptosis through mitochondrial oxidative damage and PDT induced pyroptosis effectively boost anti-cancer immunity, the combination of PDT and immune checkpoint inhibitor may be a promising clinical tumor treatment approaches.
Collapse
Affiliation(s)
- Fang Yang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Medical College of Guangxi University, Nanning 530004, China
| | - Song Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Xiao Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan 430070, Hubei, China
| | - Chenchen Xu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Xiaoying Hou
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Jinting Shang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Binlian Sun
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China.
| | - Yixiang Li
- Medical College of Guangxi University, Nanning 530004, China.
| | - Haiping Wang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China; Hubei Key Laboratory of Cognitive and Affective Disorders, Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, Hubei, China.
| |
Collapse
|
28
|
Berbigier JF, da Luz LC, Rodembusch FS. Recent Advances in Thermally Activated Delayed Fluorescent Materials in Type II Photodynamic Therapy. CHEM REC 2024; 24:e202400146. [PMID: 39593265 DOI: 10.1002/tcr.202400146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Indexed: 11/28/2024]
Abstract
Photodynamic therapy (PDT) represents a novel, dual-stage cancer treatment approach that combines light energy and photosensitizers to destroy cancerous and precancerous cells through the generation of radicals (Type I) or singlet oxygen (Type II). Since the early 2010s, PDT has advanced significantly, with the focus shifting toward the exploration of molecules capable of thermally activated delayed fluorescence (TADF) as viable alternatives to traditional metallic complexes and organometallic compounds for producing the necessary active species. TADF molecules exhibit higher energy conversion efficiency, long-lived triplet excitons, tunable photophysical properties, and a small singlet-triplet energy gap, facilitating efficient intersystem crossing and enhanced singlet oxygen generation. As metal-free luminophores, they offer benefits such as reduced health risks, high structural flexibility, and biocompatibility, which can significantly enhance PDT treatment efficacy. Notably, in 2019, a pivotal shift occurred, with researchers concentrating their efforts on identifying and investing in potential molecules specifically for Type II PDT applications. This review presents the innovative use of materials characterized by closely spaced S1 and T1 orbitals, crucial for the efficient generation of singlet oxygen in PDT. Exploring these materials opens new avenues for enhancing the efficacy and specificity of PDT, offering promising for future cancer treatments.
Collapse
Affiliation(s)
- Jônatas F Berbigier
- Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories, Toronto, Ontario, M5S3H6, Canada
| | - Lilian C da Luz
- Department of Organic Chemistry, Chemistry Institute Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| | - Fabiano S Rodembusch
- Department of Organic Chemistry, Chemistry Institute Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
29
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
30
|
Cui J, Makita Y, Okamura T, Ikeda C, Fujiwara SI, Tominaga K. Near-Infrared Light Photodynamic Therapy with PEI-Capped Up-Conversion Nanoparticles and Chlorin e6 Induces Apoptosis of Oral Cancer Cells. J Funct Biomater 2024; 15:333. [PMID: 39590537 PMCID: PMC11595556 DOI: 10.3390/jfb15110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy in the oral cavity. Photodynamic therapy (PDT) is a new alternative for the treatment of diseases using photosensitizers (PS) and light. In this study, we used a photosensitizer complex (Ce6-MnNPs-Chlorin e6 combined with up-conversion nanoparticles NaYF4:Yb/Er/Mn) to investigate the therapeutic effectiveness of this treatment against oral cancer cells. We also investigated the mechanism of action of near-infrared light PDT (NIR-PDT) combined with the Ce6-MnNPs. After determining a suitable concentration of Ce6-MnNPs using an MTT assay, human oral squamous cell carcinoma cells (HSC-3) were treated with NIR-PDT with Ce6-MnNPs. We examined the characteristics of Ce6-MnNPs by transmission electron microscopy (TEM); a zeta potential and particle size analyzer; Fourier-transform infrared spectroscopy (FTIR); cell viability by MTT assay; and apoptosis by FITC-Annexin V/PI assay. The mitochondrial membrane potential (MMP), apoptosis-related mRNA level (Bax and Bcl-2) and p53 protein were also researched. NIR-PDT with 0.5 ng/µL Ce6-MnNPs inhibited the proliferation of HSC-3 (p < 0.05). After treatment with NIR-PDT, changes in the mitochondrial membrane potential and apoptosis occurred (p < 0.01). The ratio of Bax/Bcl-2 and p53-positive cells increased (p < 0.01). These results suggest that this treatment can induce apoptosis of oral cancer cells.
Collapse
Affiliation(s)
- Jinhao Cui
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Yoshimasa Makita
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.M.); (S.-i.F.)
| | - Tomoharu Okamura
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Chihoko Ikeda
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Shin-ichi Fujiwara
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.M.); (S.-i.F.)
| | - Kazuya Tominaga
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| |
Collapse
|
31
|
Ziental D, Czarczynska-Goslinska B, Wysocki M, Ptaszek M, Sobotta Ł. Advances and perspectives in use of semisolid formulations for photodynamic methods. Eur J Pharm Biopharm 2024; 204:114485. [PMID: 39255919 DOI: 10.1016/j.ejpb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Although nearly 30 years have passed since the introduction of the first clinically approved photosensitizer for photodynamic therapy, progress in developing new pharmaceutical formulations remains unsatisfactory. This review highlights that despite years of research, many recurring challenges and issues remain unresolved. The paper includes an analysis of selected essential studies involving aminolevulinic acid and its derivatives, as well as other photosensitizers with potential for development as medical products. Among various possible vehicles, special attention is given to gelatin, alginates, poly(ethylene oxide), polyacrylic acid, and chitosan. The focus is particularly on infectious and cancerous diseases. Key aspects of developing new semi-solid drug forms should prioritize the creation of easily manufacturable and biocompatible preparations for clinical use. At the same time, new formulations should preserve the primary function of photosensitizers, which is the generation of reactive oxygen species capable of destroying pathogenic cells or tumors. Additionally, the use of adjuvant properties of carriers, which can enhance the effectiveness of macrocycles, is emphasized, especially in chitosan-based antibacterial formulations. Current research indicates that many promising dyes and macrocyclic compounds with high potential as photosensitizers in photodynamic therapy remain unexplored in formulation and development work. This review outlines potential new and previously explored pathways for advancing photosensitizers as active pharmaceutical ingredients (APIs).
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Łukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
32
|
Al-Shemri MI, Aliannezhadi M, Ghaleb RA, Al-Awady MJ. Au-H 2Ti 3O 7 nanotubes for non-invasive anticancer treatment by simultaneous photothermal and photodynamic therapy. Sci Rep 2024; 14:25998. [PMID: 39472598 PMCID: PMC11522396 DOI: 10.1038/s41598-024-75862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Treating lung and prostate cancer cells is a major health problem that may be solved through the interactions of laser beams with nanoparticles. In the paper, Au-H2Ti3O7 nanotubes (NTs) are proposed as a treatment agent and the interactions of different laser beams with the nanostructure are considered to solve the mentioned health problem. Also, the NTs are employed to treat the cancers in dark conditions. The results are motivating because Au-H2Ti3O7 NPs do not affect healthy cells, while they strongly affect cancer cells, and the viability percentage of LNCap cells reaches 16% for incubation times of 48 h. Furthermore, treating LNCap cells using the irradiated Au-H2Ti3O7 NTs by NIR beam at 808 nm has no cytotoxicity, while cytotoxicity of 92% is obtained using an irradiation laser beam at 532 nm. Also, applying the laser beam at 635 nm to the NTs leads to a cytotoxicity of ∼53% in lung cancer (A549 cells). In total, the Au-H2Ti3O7 NTs have a selective effect on cancer cells and greatly reduce the viability in the given dark and irradiation conditions, leading to the introduction of them as a promising agent for the non-invasive treatment of prostate cancer and a moderate candidate for lung cancer therapy.
Collapse
Affiliation(s)
- Maher I Al-Shemri
- Faculty of Physics, Semnan University, PO Box: 35195-363, Semnan, Iran
| | | | - Rana A Ghaleb
- Department of Anatomy and Histology, College of Medicine, University of Babylon, Babylon, Iraq
| | - Mohammed J Al-Awady
- Department of Medical Biotechnology, College of Biotechnology, Al Qasim Green University, Babylon, 51013, Iraq
| |
Collapse
|
33
|
Babajani A, Eftekharinasab A, Bekeschus S, Mehdian H, Vakhshiteh F, Madjd Z. Reactive oxygen species from non-thermal gas plasma (CAP): implication for targeting cancer stem cells. Cancer Cell Int 2024; 24:344. [PMID: 39438918 PMCID: PMC11515683 DOI: 10.1186/s12935-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains a major global health challenge, with the persistence of cancer stem cells (CSCs) contributing to treatment resistance and relapse. Despite advancements in cancer therapy, targeting CSCs presents a significant hurdle. Non-thermal gas plasma, also known as CAP, represents an innovative cancer treatment. It has recently gained attention for its often found to be selective, immunogenic, and potent anti-cancer properties. CAP is composed of a collection of transient, high-energy, and physically and chemically active entities, such as reactive oxygen species (ROS). It is acknowledged that the latter are responsible for a major portion of biomedical CAP effects. The dynamic interplay of CAP-derived ROS and other components contributes to the unique and versatile properties of CAP, enabling it to interact with biological systems and elicit various therapeutic effects, including its potential in cancer treatment. While CAP has shown promise in various cancer types, its application against CSCs is relatively unexplored. This review assesses the potential of CAP as a therapeutic strategy for targeting CSCs, focusing on its ability to regulate cellular states and achieve redox homeostasis. This is done by providing an overview of CSC characteristics and demonstrating recent findings on CAP's efficacy in targeting these cells. By contributing insights into the unique attributes of CSCs and the potential of CAP, this work contributes to an advanced understanding of innovative oncology strategies.
Collapse
Affiliation(s)
- Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Hassan Mehdian
- Plasma Medicine Group, Plasma Research Institute, Kharazmi University, Tehran, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
34
|
Hosik J, Hosikova B, Binder S, Lenobel R, Kolarikova M, Malina L, Dilenko H, Langova K, Bajgar R, Kolarova H. Effects of Zinc Phthalocyanine Photodynamic Therapy on Vital Structures and Processes in Hela Cells. Int J Mol Sci 2024; 25:10650. [PMID: 39408981 PMCID: PMC11476877 DOI: 10.3390/ijms251910650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
This work presents results on the efficiency of newly designed zinc phthalocyanine-mediated photodynamic therapy of both tumoral and nontumoral cell models using the MTT assay. Further detailed examinations of mechanistic and cell biological effects were focused on the HELA cervical cancer cell model. Here, ROS production, changes in the mitochondrial membrane potential, the determination of genotoxicity, and protein changes determined by capillary chromatography and tandem mass spectrometry with ESI were analyzed. The results showed that, in vitro, 5 Jcm-2 ZnPc PDT caused a significant increase in reactive oxygen species. Still, except for superoxide dismutase, the levels of proteins involved in cell response to oxidative stress did not increase significantly. Furthermore, this therapy damaged mitochondrial membranes, which was proven by a more than 70% voltage-dependent channel protein 1 level decrease and by a 65% mitochondrial membrane potential change 24 h post-therapy. DNA impairment was assessed by an increased level of DNA fragmentation, which might be related to the decreased level of DDB1 (decrease in levels of more than 20% 24 h post-therapy), a protein responsible for maintaining genomic integrity and triggering the DNA repair pathways. Considering these results and the low effective concentration (LC50 = 30 nM), the therapy used is a potentially very promising antitumoral treatment.
Collapse
Affiliation(s)
- Jakub Hosik
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.H.); (S.B.); (M.K.); (L.M.); (H.D.); (K.L.); (R.B.); (H.K.)
| | - Barbora Hosikova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.H.); (S.B.); (M.K.); (L.M.); (H.D.); (K.L.); (R.B.); (H.K.)
| | - Svatopluk Binder
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.H.); (S.B.); (M.K.); (L.M.); (H.D.); (K.L.); (R.B.); (H.K.)
| | - Rene Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacky University and Institute of Experimental Botany of the Czech Academy of Sciences, 77900 Olomouc, Czech Republic;
| | - Marketa Kolarikova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.H.); (S.B.); (M.K.); (L.M.); (H.D.); (K.L.); (R.B.); (H.K.)
| | - Lukas Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.H.); (S.B.); (M.K.); (L.M.); (H.D.); (K.L.); (R.B.); (H.K.)
| | - Hanna Dilenko
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.H.); (S.B.); (M.K.); (L.M.); (H.D.); (K.L.); (R.B.); (H.K.)
| | - Katerina Langova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.H.); (S.B.); (M.K.); (L.M.); (H.D.); (K.L.); (R.B.); (H.K.)
| | - Robert Bajgar
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.H.); (S.B.); (M.K.); (L.M.); (H.D.); (K.L.); (R.B.); (H.K.)
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic; (J.H.); (S.B.); (M.K.); (L.M.); (H.D.); (K.L.); (R.B.); (H.K.)
| |
Collapse
|
35
|
Sharma A, Virmani T, Kumar G, Sharma A, Virmani R, Gugulothu D, Singh K, Misra SK, Pathak K, Chitranshi N, Coutinho HDM, Jain D. Mitochondrial signaling pathways and their role in cancer drug resistance. Cell Signal 2024; 122:111329. [PMID: 39098704 DOI: 10.1016/j.cellsig.2024.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria, traditionally known as cellular powerhouses, now emerge as critical signaling centers influencing cancer progression and drug resistance. The review highlights the role that apoptotic signaling, DNA mutations, mitochondrial dynamics and metabolism play in the development of resistance mechanisms and the advancement of cancer. Targeted approaches are discussed, with an emphasis on managing mitophagy, fusion, and fission of the mitochondria to make resistant cancer cells more susceptible to traditional treatments. Additionally, metabolic reprogramming can be used to effectively target metabolic enzymes such GLUT1, HKII, PDK, and PKM2 in order to avoid resistance mechanisms. Although there are potential possibilities for therapy, the complex structure of mitochondria and their subtle role in tumor development hamper clinical translation. Novel targeted medicines are put forth, providing fresh insights on combating drug resistance in cancer. The study also emphasizes the significance of glutamine metabolism, mitochondrial respiratory complexes, and apoptotic pathways as potential targets to improve treatment effectiveness against drug-resistant cancers. Combining complementary and nanoparticle-based techniques to target mitochondria has demonstrated encouraging results in the treatment of cancer, opening doors to reduce resistance and enable individualized treatment plans catered to the unique characteristics of each patient. Suggesting innovative approaches such as drug repositioning and mitochondrial drug delivery to enhance the efficacy of mitochondria-targeting therapies, presenting a pathway for advancements in cancer treatment. This thorough investigation is a major step forward in the treatment of cancer and has the potential to influence clinical practice and enhance patient outcomes.
Collapse
Affiliation(s)
- Ashwani Sharma
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Anjali Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India.
| | - Dalapathi Gugulothu
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| | - Nitin Chitranshi
- Macquarie Medical School, Macquarie University, New South Wales, Australia; School of Science and Technology, the University of New England, Armidale, New South Wales, Australia.
| | | | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
36
|
Sun F, Chen Y, Lam KWK, Du W, Liu Q, Han F, Li D, Lam JWY, Sun J, Kwok RTK, Tang BZ. Glutathione-responsive Aggregation-induced Emission Photosensitizers for Enhanced Photodynamic Therapy of Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401334. [PMID: 38804884 DOI: 10.1002/smll.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Lung cancer, a highly prevalent and lethal form of cancer, is often associated with oxidative stress. Photodynamic therapy (PDT) has emerged as a promising alternative therapeutic tool in cancer treatments, but its efficacy is closely correlated to the photosensitizers generating reactive oxygen species (ROS) and the antioxidant capacity of tumor cells. In particular, glutathione (GSH) can reduce the ROS and thus compromise PDT efficacy. In this study, a GSH-responsive near-infrared photosensitizer (TBPPN) based on aggregation-induced emission for real-time monitoring of GSH levels and enhanced PDT for lung cancer treatment is developed. The strategic design of TBPPN, consisting of a donor-acceptor structure and incorporation of dinitrobenzene, enables dual functionality by not only the fluorescence being activated by GSH but also depleting GSH to enhance the cytotoxic effect of PDT. TBPPN demonstrates synergistic PDT efficacy in vitro against A549 lung cancer cells by specifically targeting different cellular compartments and depleting intracellular GSH. In vivo studies further confirm that TBPPN can effectively inhibit tumor growth in a mouse model with lung cancer, highlighting its potential as an integrated agent for the diagnosis and treatment of lung cancer. This approach enhances the effectiveness of PDT for lung cancer and deserves further exploration of its potential for clinical application.
Collapse
Affiliation(s)
- Feiyi Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yuyang Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Kristy W K Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Wutong Du
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Qingqing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Fei Han
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Li
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
37
|
Li Z, Song Y, Luo Q, Liu Z, Man Y, Liu J, Lu Y, Zheng L. Carrier cascade target delivery of 5-aminolevulinic acid nanoplatform to enhance antitumor efficiency of photodynamic therapy against lung cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112999. [PMID: 39126752 DOI: 10.1016/j.jphotobiol.2024.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a prodrug of porphyrin IX (PpIX). Disadvantages of 5-ALA include poor stability, rapid elimination, poor bioavailability, and weak cell penetration, which greatly reduce the clinical effect of 5-ALA based photodynamic therapy (PDT). Presently, a novel targeting nanosystem was constructed using gold nanoparticles (AuNPs) as carriers loaded with a CSNIDARAC (CC9)-targeting peptide and 5-ALA via Au-sulphur and ionic bonds, respectively, and then wrapped in polylactic glycolic acid (PLGA) NPs via self-assembly to improve the antitumor effects and reduce the side effect. The successful preparation of ALA/CC9@ AuNPs-PLGA NPs was verified using ultraviolet-visible, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The analyses revealed good sphericity with a particle size of approximately140 nm, Zeta potential of 10.11 mV, and slow-controlled release characteristic in a weak acid environment. Confocal microscopy revealed targeting of NCL-H460 cells by NPs by actively internalising CC9 and avoiding the phagocytic action of RAW264.7 cells, and live fluorescence imaging revealed targeting of tumours in tumour-bearing mice. Compared to free 5-ALA, the nanosystem displayed amplified anticancer activity by increasing production of PpIX and reactive oxygen species to induce mitochondrial pathway apoptosis. Antitumor efficacy was consistently observed in three-dimensionally cultured cells as the loss of integrity of tumour balls. More potent anti-tumour efficacy was demonstrated in xenograft tumour models by decreased growth rate and increased tumour apoptosis. Histological analysis showed that this system was not toxic, with lowered liver toxicity of 5-ALA. Thus, ALA/CC9@AuNPs-PLGA NPs deliver 5-ALA via a carrier cascade, with excellent effects on tumour accumulation and PDT through passive enhanced permeability and retention action and active targeting. This innovative strategy for cancer therapy requires more clinical trials before being implemented.
Collapse
Affiliation(s)
- Ze Li
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuxuan Song
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Qiang Luo
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yuze Lu
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Liqing Zheng
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, Hebei Province, China.
| |
Collapse
|
38
|
Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci 2024; 352:122899. [PMID: 38992574 DOI: 10.1016/j.lfs.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
This comprehensive review provides an in-depth analysis of how nanotechnology has revolutionized cancer theragnostic, which combines diagnostic and therapeutic methods to customize cancer treatment. The study examines the unique attributes, uses, and difficulties linked to different types of nanoparticles, including gold, iron oxide, silica, Quantum dots, Carbon nanotubes, and liposomes, in the context of cancer treatment. In addition, the paper examines the progression of nanotheranostics, emphasizing its uses in precise medication administration, photothermal therapy, and sophisticated diagnostic methods such as MRI, CT, and fluorescence imaging. Moreover, the article highlights the capacity of nanoparticles to improve the effectiveness of drugs, reduce the overall toxicity in the body, and open up new possibilities for treating cancer by releasing drugs in a controlled manner and targeting specific areas. Furthermore, it tackles concerns regarding the compatibility of nanoparticles and their potential harmful effects, emphasizing the significance of continuous study to improve nanotherapeutic methods for use in medical treatments. The review finishes by outlining potential future applications of nanotechnology in predictive oncology and customized medicine.
Collapse
Affiliation(s)
- Alshayma N Al-Thani
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Asma Ghafoor Jan
- College of Arts and Sciences, Department of Biological and Environmental Science, Qatar
| | - Mohamed Abbas
- Centre for Advanced Materials, Qatar University, Qatar.
| | - Mithra Geetha
- Centre for Advanced Materials, Qatar University, Qatar
| | - Kishor Kumar Sadasivuni
- Centre for Advanced Materials, Qatar University, Qatar; Centre for Advanced Materials, Qatar University, Qatar Department of Mechanical and Industrial Engineering, Qatar
| |
Collapse
|
39
|
Mohanaraman SP, Chidambaram R. A holistic review on red fluorescent graphene quantum dots, its synthesis, unique properties with emphasis on biomedical applications. Heliyon 2024; 10:e35760. [PMID: 39220916 PMCID: PMC11365325 DOI: 10.1016/j.heliyon.2024.e35760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Graphene quantum dots (GQDs) are an evolving class of carbon-based nanomaterial, seizing tremendous attention owing to their intense optical property, engineered shapes and structures, and good photostability. Being a zero-dimensional form of carbon structure, GQDs have superior photoluminescent behavior, tunable emission and absorption, excellent biocompatibility, low cytotoxicity, hydrophilic nature, modifying surface states. Their water dispersibility and functionalized surface structure, involving heteroatoms and various functional groups onto the surface of GQDs, make them particularly suitable for biological applications. Based on their absolute luminescence properties, GQDs emit blue, green, yellow, and red light under ultraviolet irradiation. Amongst the three colors, red luminescence can achieve deeper penetration of light into tissues, good cellular distribution, bio-sensing property, cell imaging, drug delivery, and serves as a better candidate for photodynamic therapy. The overall objective of this review is to provide a comprehensive overview of the synthesis methods for red fluorescence graphene quantum dots (RF-GQDs), critical comparative analyses of spectral techniques used for their characterization, the tunable photoluminescence mechanisms underpinning red emission, and the significance of chemically functionalizing GQDs' surface edges in achieving red fluorescence are discussed in depth. This review also discusses the effective biological applications and critical challenges associated with RF-GQDs are examined, providing insights into their future potential in clinical and industrial applications.
Collapse
Affiliation(s)
- Shanmuga Priya Mohanaraman
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Ramalingam Chidambaram
- Instrumental and Food Analysis Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
40
|
Kazemi KS, Kazemi P, Mivehchi H, Nasiri K, Eshagh Hoseini SS, Nejati ST, Pour Bahrami P, Golestani S, Nabi Afjadi M. Photodynamic Therapy: A Novel Approach for Head and Neck Cancer Treatment with Focusing on Oral Cavity. Biol Proced Online 2024; 26:25. [PMID: 39154015 PMCID: PMC11330087 DOI: 10.1186/s12575-024-00252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Oral cancers, specifically oral squamous cell carcinoma (OSCC), pose a significant global health challenge, with high incidence and mortality rates. Conventional treatments such as surgery, radiotherapy, and chemotherapy have limited effectiveness and can result in adverse reactions. However, as an alternative, photodynamic therapy (PDT) has emerged as a promising option for treating oral cancers. PDT involves using photosensitizing agents in conjunction with specific light to target and destroy cancer cells selectively. The photosensitizers accumulate in the cancer cells and generate reactive oxygen species (ROS) upon exposure to the activating light, leading to cellular damage and ultimately cell death. PDT offers several advantages, including its non-invasive nature, absence of known long-term side effects when administered correctly, and cost-effectiveness. It can be employed as a primary treatment for early-stage oral cancers or in combination with other therapies for more advanced cases. Nonetheless, it is important to note that PDT is most effective for superficial or localized cancers and may not be suitable for larger or deeply infiltrating tumors. Light sensitivity and temporary side effects may occur but can be managed with appropriate care. Ongoing research endeavors aim to expand the applications of PDT and develop novel photosensitizers to further enhance its efficacy in oral cancer treatment. This review aims to evaluate the effectiveness of PDT in treating oral cancers by analyzing a combination of preclinical and clinical studies.
Collapse
Affiliation(s)
- Kimia Sadat Kazemi
- Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Kamyar Nasiri
- Faculty of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | | | | | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
41
|
Sandhanam K, Tamilanban T, Manasa K, Bhattacharjee B. Unlocking novel therapeutic avenues in glioblastoma: Harnessing 4-amino cyanine and miRNA synergy for next-gen treatment convergence. Neuroscience 2024; 553:1-18. [PMID: 38944146 DOI: 10.1016/j.neuroscience.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Glioblastoma (GBM) poses a formidable challenge in oncology due to its aggressive nature and dismal prognosis, with average survival rates around 15 months despite conventional treatments. This review proposes a novel therapeutic strategy for GBM by integrating microRNA (miRNA) therapy with 4-amino cyanine molecules possessing near-infrared (NIR) properties. miRNA holds promise in regulating gene expression, particularly in GBM, making it an attractive therapeutic target. 4-amino cyanine molecules, especially those with NIR properties, have shown efficacy in targeted tumor cell degradation. The combined approach addresses gene expression regulation and precise tumor cell degradation, offering a breakthrough in GBM treatment. Additionally, the review explores noncoding RNAs classification and characteristics, highlighting their role in GBM pathogenesis. Advanced technologies such as antisense oligonucleotides (ASOs), locked nucleic acids (LNAs), and peptide nucleic acids (PNAs) show potential in targeting noncoding RNAs therapeutically, paving the way for precision medicine in GBM. This synergistic combination presents an innovative approach with the potential to advance cancer therapy in the challenging landscape of GBM.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu 603203, Tamil Nadu, India.
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy 502294, Telangana, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501 Assam, India
| |
Collapse
|
42
|
Akhtar F, Misba L, Khan AU. The dual role of photodynamic therapy to treat cancer and microbial infection. Drug Discov Today 2024; 29:104099. [PMID: 39002771 DOI: 10.1016/j.drudis.2024.104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment showing promise against cancer and microbial infections. PDT targets tumor cells while sparing healthy tissue, reducing side effects. It induces immunogenic cell death, potentially stimulating antitumor immune responses and reducing cancer recurrence. In microbial treatment, PDT effectively combats bacteria, fungi and viruses. Combining PDT with chemotherapy, radiotherapy and immunotherapy enhances its efficacy. However, challenges such as tumor hypoxia, limited tissue penetration and phototoxicity necessitate ongoing research efforts to optimize PDT protocols and overcome limitations. Overall, PDT is versatile and continually advancing with refined protocols to improve its clinical utility against cancer and microbial infections.
Collapse
Affiliation(s)
- Farheen Akhtar
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Lama Misba
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asad U Khan
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
43
|
Chen K, Zhai Y, Wang Y, Xu Z, Chen X, Zhang Y, Zhou Z, Zheng X, Lin F. H 2O 2 promotes photodynamic efficacy of TMPyP4 against ovarian cancer in vitro by downregulating HIF-1α expression. Biomed Pharmacother 2024; 177:117110. [PMID: 39002439 DOI: 10.1016/j.biopha.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Photodynamic therapy (PDT), employing photosensitizers to induce formation of reactive oxygen species (ROS) for tumor elimination, is emerging as a promising treatment modality in oncology due to its unique benefits. However, the PDT application in ovarian cancer, the most prevalent and lethal type of gynecological malignancy with a severe hypoxic microenvironment, remains unknown. This study revealed that photosensitizer TMPyP4 exhibited enhanced efficacy under H2O2 stimulation, with minimal change in cytotoxicity compared to TMPyP4 alone. The results showed that H2O2 increased ROS production induced by TMPyP4, leading to exacerbated mitochondrial dysfunction and DNA damage, ultimately inhibiting proliferation and inducing apoptosis in ovarian cancer cells. Mechanistically, H2O2 primarily enhanced the therapeutic efficacy of PDT with TMPyP4 against ovarian cancer cells by degrading HIF-1α, which subsequently modulated the HIF-1 signaling pathway, thereby alleviating the hypoxic environment in ovarian cancer cells. Our findings underscore the therapeutic potential of targeting HIF-1α within the hypoxic microenvironment for PDT in ovarian cancer and propose a novel integrated strategy for PDT treatment of this malignancy in vitro.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yihui Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanqiu Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zichuang Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yixin Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou Medical University Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhengyi Zhou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou Medical University Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
44
|
Luo Y, Bai XY, Zhang L, Hu QQ, Zhang N, Cheng JZ, Hou MZ, Liu XL. Ferroptosis in Cancer Therapy: Mechanisms, Small Molecule Inducers, and Novel Approaches. Drug Des Devel Ther 2024; 18:2485-2529. [PMID: 38919962 PMCID: PMC11198730 DOI: 10.2147/dddt.s472178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ferroptosis, a unique form of programmed cell death, is initiated by an excess of iron accumulation and lipid peroxidation-induced damage. There is a growing body of evidence indicating that ferroptosis plays a critical role in the advancement of tumors. The increased metabolic activity and higher iron levels in tumor cells make them particularly vulnerable to ferroptosis. As a result, the targeted induction of ferroptosis is becoming an increasingly promising approach for cancer treatment. This review offers an overview of the regulatory mechanisms of ferroptosis, delves into the mechanism of action of traditional small molecule ferroptosis inducers and their effects on various tumors. In addition, the latest progress in inducing ferroptosis using new means such as proteolysis-targeting chimeras (PROTACs), photodynamic therapy (PDT), sonodynamic therapy (SDT) and nanomaterials is summarized. Finally, this review discusses the challenges and opportunities in the development of ferroptosis-inducing agents, focusing on discovering new targets, improving selectivity, and reducing toxic and side effects.
Collapse
Affiliation(s)
- YiLin Luo
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xin Yue Bai
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Lei Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Qian Qian Hu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ning Zhang
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Jun Zhi Cheng
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Ming Zheng Hou
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| | - Xiao Long Liu
- Yan ‘an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan’an University, Yan’an, People’s Republic of China
| |
Collapse
|
45
|
Tarvirdipour S, Skowicki M, Maffeis V, Abdollahi SN, Schoenenberger CA, Palivan CG. Peptide nanocarriers co-delivering an antisense oligonucleotide and photosensitizer elicit synergistic cytotoxicity. J Colloid Interface Sci 2024; 664:338-348. [PMID: 38479270 DOI: 10.1016/j.jcis.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Combination therapies demand co-delivery platforms with efficient entrapment of distinct payloads and specific delivery to cells and possibly organelles. Herein, we introduce the combination of two therapeutic modalities, gene and photodynamic therapy, in a purely peptidic platform. The simultaneous formation and cargo loading of the multi-micellar platform is governed by self-assembly at the nanoscale. The multi-micellar architecture of the nanocarrier and the positive charge of its constituent micelles offer controlled dual loading capacity with distinct locations for a hydrophobic photosensitizer (PS) and negatively charged antisense oligonucleotides (ASOs). Moreover, the nuclear localization signal (NLS) sequence built-in the peptide targets PS + ASO-loaded nanocarriers to the nucleus. Breast cancer cells treated with nanocarriers demonstrated photo-triggered enhancement of radical oxygen species (ROS) associated with increased cell death. Besides, delivery of ASO payloads resulted in up to 90 % knockdown of Bcl-2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. Simultaneous delivery of PS and ASO elicited synergistic apoptosis to an extent that could not be reached by singly loaded nanocarriers or the free form of the drugs. Both, the distinct location of loaded compounds that prevents them from interfering with each other, and the highly efficient cellular delivery support the great potential of this versatile peptide platform in combination therapy.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland; NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel 4058, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland; NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel 4058, Switzerland
| | - S Narjes Abdollahi
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | | | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland; NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel 4058, Switzerland.
| |
Collapse
|
46
|
D’Antonio DL, Marchetti S, Pignatelli P, Umme S, De Bellis D, Lanuti P, Piattelli A, Curia MC. Effect of 5-Aminolevulinic Acid (5-ALA) in "ALADENT" Gel Formulation and Photodynamic Therapy (PDT) against Human Oral and Pancreatic Cancers. Biomedicines 2024; 12:1316. [PMID: 38927525 PMCID: PMC11201195 DOI: 10.3390/biomedicines12061316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Oral squamous-cell and pancreatic carcinomas are aggressive cancers with a poor outcome. Photodynamic therapy (PDT) consists of the use of photosensitizer-induced cell and tissue damage that is activated by exposure to visible light. PDT selectively acts on cancer cells, which have an accumulation of photosensitizer superior to that of the normal surrounding tissues. 5-aminolevulinic acid (5-ALA) induces the production of protoporphyrin IX (PpIX), an endogenous photosensitizer activated in PDT. This study aimed to test the effect of a new gel containing 5% v/v 5-ALA (ALAD-PDT) on human oral CAL-27 and pancreatic CAPAN-2 cancer cell lines. The cell lines were incubated in low concentrations of ALAD-PDT (0.05%, 0.10%, 0.20%, 0.40%, 0.75%, 1.0%) for 4 h or 8 h, and then irradiated for 7 min with 630 nm RED light. The cytotoxic effects of ALAD-PDT were measured using the MTS assay. Apoptosis, cell cycle, and ROS assays were performed using flow cytometry. PpIX accumulation was measured using a spectrofluorometer after 10 min and 24 and 48 h of treatment. The viability was extremely reduced at all concentrations, at 4 h for CAPAN-2 and at 8 h for CAL-27. ALAD-PDT induced marked apoptosis rates in both oral and pancreatic cancer cells. Elevated ROS production and appreciable levels of PpIX were detected in both cell lines. The use of ALA-PDT as a topical or intralesional therapy would permit the use of very low doses to achieve effective results and minimize side effects. ALAD-PDT has the potential to play a significant role in complex oral and pancreatic anticancer therapies.
Collapse
Affiliation(s)
- Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
| | - Simona Marchetti
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
| | - Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Jonio, 74122 Taranto, Italy;
| | - Samia Umme
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
| | - Domenico De Bellis
- Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.D.B.); (P.L.)
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.D.B.); (P.L.)
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (S.M.); (S.U.)
| |
Collapse
|
47
|
Dilenko H, Bartoň Tománková K, Válková L, Hošíková B, Kolaříková M, Malina L, Bajgar R, Kolářová H. Graphene-Based Photodynamic Therapy and Overcoming Cancer Resistance Mechanisms: A Comprehensive Review. Int J Nanomedicine 2024; 19:5637-5680. [PMID: 38882538 PMCID: PMC11179671 DOI: 10.2147/ijn.s461300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapy that has made significant progress in treating different diseases, including cancer, by utilizing new nanotechnology products such as graphene and its derivatives. Graphene-based materials have large surface area and photothermal effects thereby making them suitable candidates for PDT or photo-active drug carriers. The remarkable photophysical properties of graphene derivates facilitate the efficient generation of reactive oxygen species (ROS) upon light irradiation, which destroys cancer cells. Surface functionalization of graphene and its materials can also enhance their biocompatibility and anticancer activity. The paper delves into the distinct roles played by graphene-based materials in PDT such as photosensitizers (PS) and drug carriers while at the same time considers how these materials could be used to circumvent cancer resistance. This will provide readers with an extensive discussion of various pathways contributing to PDT inefficiency. Consequently, this comprehensive review underscores the vital roles that graphene and its derivatives may play in emerging PDT strategies for cancer treatment and other medical purposes. With a better comprehension of the current state of research and the existing challenges, the integration of graphene-based materials in PDT holds great promise for developing targeted, effective, and personalized cancer treatments.
Collapse
Affiliation(s)
- Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kateřina Bartoň Tománková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Válková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hošíková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Markéta Kolaříková
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukáš Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolářová
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
48
|
Lin Y, Xie R, Yu T. Photodynamic Therapy for Atherosclerosis: Past, Present, and Future. Pharmaceutics 2024; 16:729. [PMID: 38931851 PMCID: PMC11206729 DOI: 10.3390/pharmaceutics16060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
This review paper examines the evolution of photodynamic therapy (PDT) as a novel, minimally invasive strategy for treating atherosclerosis, a leading global health concern. Atherosclerosis is characterized by the accumulation of lipids and inflammation within arterial walls, leading to significant morbidity and mortality through cardiovascular diseases such as myocardial infarction and stroke. Traditional therapeutic approaches have primarily focused on modulating risk factors such as hypertension and hyperlipidemia, with emerging evidence highlighting the pivotal role of inflammation. PDT, leveraging a photosensitizer, specific-wavelength light, and oxygen, offers targeted treatment by inducing cell death in diseased tissues while sparing healthy ones. This specificity, combined with advancements in nanoparticle technology for improved delivery, positions PDT as a promising alternative to traditional interventions. The review explores the mechanistic basis of PDT, its efficacy in preclinical studies, and the potential for enhancing plaque stability and reducing macrophage density within plaques. It also addresses the need for further research to optimize treatment parameters, mitigate adverse effects, and validate long-term outcomes. By detailing past developments, current progress, and future directions, this paper aims to highlight PDT's potential in revolutionizing atherosclerosis treatment, bridging the gap from experimental research to clinical application.
Collapse
Affiliation(s)
- Yanqing Lin
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53705, USA;
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
49
|
Girotti AW, Korytowski W. Upregulation of iNOS/NO in Cancer Cells That Survive a Photodynamic Challenge: Role of No in Accelerated Cell Migration and Invasion. Int J Mol Sci 2024; 25:5697. [PMID: 38891885 PMCID: PMC11171770 DOI: 10.3390/ijms25115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Anti-tumor photodynamic therapy (PDT) is a unique modality that employs a photosensitizer (PS), PS-exciting light, and O2 to generate cytotoxic oxidants. For various reasons, not all malignant cells in any given tumor will succumb to a PDT challenge. Previous studies by the authors revealed that nitric oxide (NO) from inducible NO synthase (iNOS/NOS2) plays a key role in tumor cell resistance and also stimulation of migratory/invasive aggressiveness of surviving cells. iNOS was the only NOS isoform implicated in these effects. Significantly, NO from stress-upregulated iNOS was much more important in this regard than NO from preexisting enzymes. Greater NO-dependent resistance, migration, and invasion was observed with at least three different cancer cell lines, and this was attenuated by iNOS activity inhibitors, NO scavengers, or an iNOS transcriptional inhibitor. NO diffusing from PDT-targeted cells also stimulated migration/invasion potency of non-targeted bystander cells. Unless counteracted by appropriate measures, all these effects could seriously compromise clinical PDT efficacy. Here, we will review specific examples of these negative side effects of PDT and how they might be suppressed by adjuvants such as NO scavengers or inhibitors of iNOS activity or expression.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold Korytowski
- Department of Biophysics, Jagiellonian University, 31-007 Krakow, Poland;
| |
Collapse
|
50
|
Chang Q, Wang P, Zeng Q, Wang X. A review on ferroptosis and photodynamic therapy synergism: Enhancing anticancer treatment. Heliyon 2024; 10:e28942. [PMID: 38601678 PMCID: PMC11004815 DOI: 10.1016/j.heliyon.2024.e28942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death modality, which has showed great potential in anticancer treatment. Photodynamic therapy (PDT) is widely used in clinic as an anticancer therapy. PDT combined with ferroptosis-promoting therapy has been found to be a promising strategy to improve anti-cancer therapy efficacy. Fenton reaction in ferroptosis can provide oxygen for PDT, and PDT can produce reactive oxygen species for Fenton reaction to enhance ferroptosis. In this review, we briefly present the importance of ferroptosis in anticancer treatment, mechanism of ferroptosis, researches on PDT induced ferroptosis, and the mechanism of the synergistic effect of PDT and ferroptosis on cancer killing.
Collapse
Affiliation(s)
- Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|