1
|
Davis TW, Thompson AN. Begomoviruses associated with okra yellow vein mosaic disease (OYVMD): diversity, transmission mechanism, and management strategies. MOLECULAR HORTICULTURE 2024; 4:36. [PMID: 39497157 DOI: 10.1186/s43897-024-00112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/02/2024] [Indexed: 11/06/2024]
Abstract
Okra yellow vein mosaic disease (OYVMD) is a major constraint to okra production globally. It is caused by several distinct begomoviruses, including okra yellow vein mosaic virus (OYVMV), that are transmitted by the whitefly. This study synthesizes current knowledge on the complex interactions between whiteflies, begomoviruses, and okra plants that enable viral spread and cause OYVMD. The acquisition and transmission cycle involves specific processes including virion ingestion during phloem-feeding, endocytosis and passage across insect tissues, secretion in saliva, and inoculation into plants. Molecular compatibilities between vector coat proteins, midgut proteins, and plant factors modulate virus replication and movement through barrier tissues. Abiotic stresses and host traits also impact whitefly behavior and virus epidemiology. Begomoviruses such as OYVMV have spread globally wherever whitefly vectors and susceptible okra varieties occur. Integrated management of the tripartite pathosystem that incorporates host resistance, cultural tactics, and biological control is required to mitigate the transmission of begomoviruses and OYVMD impact. Finally, resolving vector-virus interactions and developing interference strategies will help contribute to strengthening okra germplasm resistance which can support sustainable food production.
Collapse
Affiliation(s)
- Thomas Wilbur Davis
- Doctor of Plant Health, University of Nebraska - Lincoln, Lincoln, NE, 68508, United States.
| | - Andrew Nasa Thompson
- Resource Utilization and Plant Protection, China Agricultural University, 17 Qinghua Donglu, Beijing, 100083, China
| |
Collapse
|
2
|
Song Y, Liu X, Zhao K, Ma R, Wu W, Zhang Y, Duan L, Li X, Xu H, Cheng M, Qin B, Qi Z. A new endophytic Penicillium oxalicum with aphicidal activity and its infection mechanism. PEST MANAGEMENT SCIENCE 2024; 80:5706-5717. [PMID: 38958097 DOI: 10.1002/ps.8288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Aphid infestation adversely affects the yield and quality of crops. Rapid reproduction and insecticidal resistance have made controlling aphids in the field challenging. Therefore, the present study investigated the insecticidal property of Penicillium oxalicum (QLhf-1) and its mechanism of action against aphids, Hyalopterus arundimis Fabricius. RESULTS Bioassay revealed that the control efficacy of the spores against aphids (86.30% and 89.05% on the third day and fifth day after infection, respectively) were higher than other components, such as the mycelium. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that QLhf-1 invaded the aphid cuticle through spores and used the aphid tissues as a nutrient source for growth and reproduction, causing stiffness and atrophy and a final death. Three extracellular enzymes, lipase, protease, and chitinase had a synergistic effect with spores, and they acted together to complete the infection process by degrading the aphid body wall and accelerating the infection process. CONCLUSION The newly discovered endophytic penicillin strain P. oxalicum 'QLhf-1' can effectively kill aphids. The results provided strong evidence for the biological control of aphids, and lay a foundation for the development and utilization of QLhf-1. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxin Song
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiaoli Liu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Kangbo Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ruyi Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wenjun Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Yuanyuan Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Longfei Duan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xinnuo Li
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hong Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Min Cheng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baofu Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhijun Qi
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| |
Collapse
|
3
|
Cabral MJS, Haseeb M, Soares MA. Major Insect Pests of Sweet Potatoes in Brazil and the United States, with Information on Crop Production and Regulatory Pest Management. INSECTS 2024; 15:823. [PMID: 39452399 PMCID: PMC11508601 DOI: 10.3390/insects15100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
The sweet potato [Ipomoea batatas (L.) Lam] is considered one of the most important crops in the world as food, fodder, and raw material for starch and alcohol production. Sweet potato consumption and demand for its value-added products have increased significantly over the past two decades, leading to new cultivars, expansion in acreage, and increased demand in the United States and its export markets. Due to its health benefits, sweet potato production has multiplied over the past decade in Brazil, promoting food security and economic development in rural areas. Their adaptability and nutritional value make them a food of great importance for Brazil. As pest attacks and disease infection are the main limiting aspects that often cause yield loss and quality degradation in sweet potatoes, there is a great demand to develop effective defense strategies to maintain productivity. There is a critical need for research into non-pesticide control approaches that can provide safe, cost-effective, sustainable, and environmentally friendly pest and disease management techniques. Pests which feed on roots have trade implications worldwide. For example, sweet potato tuber shipments infested with the sweet potato weevil are generally not allowed for trade in North and South America.
Collapse
Affiliation(s)
- Maria J. S. Cabral
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais 39100000, MG, Brazil; (M.J.S.C.); (M.A.S.)
- Center for Biological Control, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Muhammad Haseeb
- Center for Biological Control, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Marcus A. Soares
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais 39100000, MG, Brazil; (M.J.S.C.); (M.A.S.)
| |
Collapse
|
4
|
Passarini MRZ, Robayo MIG, Ottoni JR, Duarte AWF, Rosa LH. Biotechnological potential in agriculture of soil Antarctic microorganisms revealed by omics approach. World J Microbiol Biotechnol 2024; 40:345. [PMID: 39394504 DOI: 10.1007/s11274-024-04114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/17/2024] [Indexed: 10/13/2024]
Abstract
The biotechnological potential for agricultural applications in the soil in the thawing process on Whalers Bay, Deception Island, Antarctica was evaluated using a metagenomic approach through high-throughput sequencing. Approximately 22.70% of the sequences were affiliated to the phyla of the Bacteria dominion, followed by 0.26% to the Eukarya. Proteobacteria (Bacteria) and Ascomycota (Fungi) were the most abundant phyla. Thirty-two and thirty-six bacterial and fungal genera associated with agricultural biotechnological applications were observed. Streptomyces and Pythium were the most abundant genera related to the Bacteria and Oomycota, respectively. The main agricultural application associated with bacteria was nitrogen affixation; in contrast for fungi, was associated with phytopathogenic capabilities. The present study showed the need to use metagenomic technology to understand the dynamics and possible metabolic pathways associated with the microbial communities present in the soil sample in the process of thawing recovered from the Antarctic continent, which presented potential application in processes of agro-industrial interest.
Collapse
Affiliation(s)
- Michel Rodrigo Zambrano Passarini
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino- Americana, Av. Tarquίnio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR 85870-650, Brazil.
| | - Marahia Isabel Guevara Robayo
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino- Americana, Av. Tarquίnio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR 85870-650, Brazil
| | - Júlia Ronzella Ottoni
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino- Americana, Av. Tarquίnio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR 85870-650, Brazil
| | | | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Rosli MAF, Syed Jaafar SN, Azizan KA, Yaakop S, Aizat WM. Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PeerJ 2024; 12:e17843. [PMID: 39247549 PMCID: PMC11380842 DOI: 10.7717/peerj.17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/10/2024] [Indexed: 09/10/2024] Open
Abstract
Bemisia tabaci (Gennadius) whitefly (BtWf) is an invasive pest that has already spread worldwide and caused major crop losses. Numerous strategies have been implemented to control their infestation, including the use of insecticides. However, prolonged insecticide exposures have evolved BtWf to resist these chemicals. Such resistance mechanism is known to be regulated at the molecular level and systems biology omics approaches could shed some light on understanding this regulation wholistically. In this review, we discuss the use of various omics techniques (genomics, transcriptomics, proteomics, and metabolomics) to unravel the mechanism of insecticide resistance in BtWf. We summarize key genes, enzymes, and metabolic regulation that are associated with the resistance mechanism and review their impact on BtWf resistance. Evidently, key enzymes involved in the detoxification system such as cytochrome P450 (CYP), glutathione S-transferases (GST), carboxylesterases (COE), UDP-glucuronosyltransferases (UGT), and ATP binding cassette transporters (ABC) family played key roles in the resistance. These genes/proteins can then serve as the foundation for other targeted techniques, such as gene silencing techniques using RNA interference and CRISPR. In the future, such techniques will be useful to knock down detoxifying genes and crucial neutralizing enzymes involved in the resistance mechanism, which could lead to solutions for coping against BtWf infestation.
Collapse
Affiliation(s)
| | - Sharifah Nabihah Syed Jaafar
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Salmah Yaakop
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Gutiérrez Y, Alarcón KA, Ortiz C, Santos-Holguín JM, García-Riaño JL, Mejía C, Amaya CV, Uribe-Gutiérrez L. Isolation and characterization of a native strain of the entomopathogenic fungus Beauveria bassiana for the control of the palm weevil Dynamis borassi (Coleoptera: Curculionidae) in the neotropics. World J Microbiol Biotechnol 2024; 40:260. [PMID: 38967730 PMCID: PMC11226477 DOI: 10.1007/s11274-024-04044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
This study aimed to isolate and characterize a native strain of Beauveria bassiana, coded as Bv065, showcasing its potential as a biological control agent targeting the palm weevil Dynamis borassi. Originating from a naturally infected D. borassi specimen collected in southwestern Colombia, the fungus underwent molecular identification and was identified as B. bassiana, exhibiting high sequence similarity with known reference strains. The physiological characterization revealed that Bv065 thrived within a temperature range of 25 to 30 °C and a pH range of 6 to 9. Moreover, the key carbon sources that allow optimal growth of the strain were identified through metabolic profiling, including sucrose, D-mannose, and γ-amino-butyric acid. These findings offer strategic insights for scalability and formulation methodologies. Additionally, enzymatic analyses unveiled robust protease activity within Bv065, crucial for catalysing insect cuticle degradation and facilitating host penetration, thus accentuating its entomopathogenic potential. Subsequent evaluations exposed Bv065's pathogenicity against D. borassi, causing significant mortality within nine days of exposure, albeit exhibiting limited effectiveness against Rhynchophorus palmarum. This study underscores the importance of understanding optimal growth conditions and metabolic preferences of B. bassiana strains for developing effective biopesticides. The findings suggest Bv065 as a promising candidate for integrated pest management strategies in neotropical regions, particularly for controlling palm weevil infestations in coconut and peach palm cultivation. Future research avenues include refining mass production methodologies, formulating novel delivery systems, and conducting comprehensive field efficacy trials to unlock the full potential of Bv065 in fostering sustainable pest management practices. Overall, this study contributes to the growing body of knowledge on entomopathogenic fungi and their pivotal role in biological control, offering nuanced perspectives on eco-friendly alternatives to conventional insecticidal interventions.
Collapse
Affiliation(s)
- Yeisson Gutiérrez
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia. Centro de Investigación La Libertad, Km. 17 Vía Puerto López, Villavicencio-Meta, Colombia.
| | - Karen A Alarcón
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia. Centro de Investigación El Mira, Km. 38, Vía Tumaco-Pasto, Tumaco-Nariño, Colombia
| | - Cristian Ortiz
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia. Centro de Investigación El Mira, Km. 38, Vía Tumaco-Pasto, Tumaco-Nariño, Colombia
| | - Jenny M Santos-Holguín
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia. Centro de Investigación Tibaitatá, Sede Tunja-Boyacá, Colombia
| | - Jennifer L García-Riaño
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Tibaitatá, Km 14 Vía Bogotá-Mosquera, Mosquera, Colombia
| | - Cindy Mejía
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Tibaitatá, Km 14 Vía Bogotá-Mosquera, Mosquera, Colombia
| | - Carol V Amaya
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia. Centro de Investigación La Libertad, Km. 17 Vía Puerto López, Villavicencio-Meta, Colombia
| | - Liz Uribe-Gutiérrez
- Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Tibaitatá, Km 14 Vía Bogotá-Mosquera, Mosquera, Colombia
| |
Collapse
|
7
|
Chaithra M, Prameeladevi T, Prasad L, Kundu A, Bhagyasree SN, Kamil D. Metabolomic profiling of virulent and non-virulent Beauveria bassiana strains: insights into the pathogenicity of Tetranychus truncatus. Arch Microbiol 2024; 206:311. [PMID: 38900220 DOI: 10.1007/s00203-024-04046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
In this study, the pathogenicity of local Beauveria bassiana strains was elucidated using molecular and metabolomics methodologies. Molecular verification of the B. bassiana-specific chitinase gene was achieved via phylogenetic analysis of the Bbchit1 region. Subsequent metabolomic analyses employing UPLC-Q-TOF-MS revealed a different number of non-volatile metabolite profiles among the six B. bassiana strains. Bb6 produced the most non-volatile compounds (17) out of a total of 18, followed by Bb15 (16) and Bb12 (15). Similarly, Bb5, Bb8, and Bb21, three non-virulent B. bassiana strains, produced 13, 14, and 14 metabolites, respectively. But unique secondary metabolites like bassianolide and beauvericin, pivotal for virulence and mite management, were exclusively found in the virulent strains (Bb6, Bb12, and Bb15) of B. bassiana. The distinctive non-volatile metabolomic profiles of these strains underscore their pathogenicity against Tetranychus truncatus, suggesting their promise in bio-control applications.
Collapse
Affiliation(s)
- M Chaithra
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Division of Plant Pathology, Research Center, ICAR-Central Plantation Crop Research Institute, Kahikuchi, Guwahati, 781017, India
| | - T Prameeladevi
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - L Prasad
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S N Bhagyasree
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
8
|
Shahbaz M, Palaniveloo K, Tan YS, Palasuberniam P, Ilyas N, Wiart C, Seelan JSS. Entomopathogenic fungi in crops protection with an emphasis on bioactive metabolites and biological activities. World J Microbiol Biotechnol 2024; 40:217. [PMID: 38806748 DOI: 10.1007/s11274-024-04022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between agricultural productivity and environmental conservation.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Advanced Studies Complex, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota kinabalu, Sabah, Malaysia
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
9
|
van Raalte B, Watrous K, Lujan M, Le R, Sun P, Ellis B, Mauck KE. Evaluation of a low-cost staining method for improved visualization of sweet potato whitefly (Bemisia tabaci) eggs on multiple crop plant species. PLANT METHODS 2024; 20:75. [PMID: 38783337 PMCID: PMC11112839 DOI: 10.1186/s13007-024-01209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The sweet potato whitefly (Bemisia tabaci) is a globally important insect pest that damages crops through direct feeding and by transmitting viruses. Current B. tabaci management revolves around the use of insecticides, which are economically and environmentally costly. Host plant resistance is a sustainable option to reduce the impact of whiteflies, but progress in deploying resistance in crops has been slow. A major obstacle is the high cost and low throughput of screening plants for B. tabaci resistance. Oviposition rate is a popular metric for host plant resistance to B. tabaci because it does not require tracking insect development through the entire life cycle, but accurate quantification is still limited by difficulties in observing B. tabaci eggs, which are microscopic and translucent. The goal of our study was to improve quantification of B. tabaci eggs on several important crop species: cassava, cowpea, melon, sweet potato and tomato. RESULTS We tested a selective staining process originally developed for leafhopper eggs: submerging the leaves in McBryde's stain (acetic acid, ethanol, 0.2% aqueous acid Fuchsin, water; 20:19:2:1) for three days, followed by clearing under heat and pressure for 15 min in clearing solution (LGW; lactic acid, glycerol, water; 17:20:23). With a less experienced individual counting the eggs, B. tabaci egg counts increased after staining across all five crops. With a more experienced counter, egg counts increased after staining on melons, tomatoes, and cowpeas. For all five crops, there was significantly greater agreement on egg counts across the two counting individuals after the staining process. The staining method worked particularly well on melon, where egg counts universally increased after staining for both counting individuals. CONCLUSIONS Selective staining aids visualization of B. tabaci eggs across multiple crop plants, particularly species where leaf morphological features obscure eggs, such as melons and tomatoes. This method is broadly applicable to research questions requiring accurate quantification of B. tabaci eggs, including phenotyping for B. tabaci resistance.
Collapse
Affiliation(s)
- Benjamin van Raalte
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg., Citrus Drive, Riverside, CA, 92521, USA
| | - Kristal Watrous
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA, 92697, USA
| | - Miguel Lujan
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg., Citrus Drive, Riverside, CA, 92521, USA
| | - Ricky Le
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg., Citrus Drive, Riverside, CA, 92521, USA
| | - Penglin Sun
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg., Citrus Drive, Riverside, CA, 92521, USA
| | - Benjamin Ellis
- Department of Statistics, University of California, Riverside, 900 University Ave., Olmsted Hall 1337, Riverside, CA, 92521, USA
| | - Kerry E Mauck
- Department of Entomology, University of California, Riverside, 165 Entomology Bldg., Citrus Drive, Riverside, CA, 92521, USA.
| |
Collapse
|
10
|
Quito-Avila DF, Reyes-Proaño E, Armijos-Capa G, Alcalá Briseño RI, Alvarez R, Flores FF. Analysis of a new negevirus-like sequence from Bemisia tabaci unveils a potential new taxon linking nelorpi- and centiviruses. PLoS One 2024; 19:e0303838. [PMID: 38753834 PMCID: PMC11098327 DOI: 10.1371/journal.pone.0303838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
This study presents the complete genome sequence of a novel nege-like virus identified in whiteflies (Bemisia tabaci MEAM1), provisionally designated as whitefly negevirus 1 (WfNgV1). The virus possesses a single-stranded RNA genome comprising 11,848 nucleotides, organized into four open reading frames (ORFs). These ORFs encode the putative RNA-dependent-RNA-polymerase (RdRp, ORF 1), a glycoprotein (ORF 2), a structural protein with homology to those in the SP24 family, (ORF 3), and a protein of unknown function (ORF 4). Phylogenetic analysis focusing on RdRp and SP24 amino acid sequences revealed a close relationship between WfNgV1 and Bemisia tabaci negevirus 1, a negevirus sequence recently discovered in whiteflies from Israel. Both viruses form a clade sharing a most recent common ancestor with the proposed nelorpivirus and centivirus taxa. The putative glycoprotein from ORF 2 and SP24 (ORF 3) of WfNgV1 exhibit the characteristic topologies previously reported for negevirus counterparts. This marks the first reported negevirus-like sequence from whiteflies in the Americas.
Collapse
Affiliation(s)
- Diego F. Quito-Avila
- Centro de Investigaciones Biotecnologicas del Ecuador, CIBE, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Guayaquil, Ecuador
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Edison Reyes-Proaño
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States of America
| | - Gerardo Armijos-Capa
- Facultad de Ciencias Exactas, Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | | | - Robert Alvarez
- Department of Plant Pathology, University of Minnesota, St Paul, MN, United States of America
| | - Francisco F. Flores
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Pichincha, Ecuador
- Facultad de Ciencias de la Ingeniería e Industrias, Centro de Investigación de Alimentos, CIAL, Universidad -UTE, Quito, Pichincha, Ecuador
| |
Collapse
|
11
|
Jiménez J, Kemmerer M, King GF, Polston JE, Bonning BC. Coat protein of a whitefly-vectored plant virus as a delivery system to target whitefly. Microb Biotechnol 2024; 17:e14468. [PMID: 38635158 PMCID: PMC11025618 DOI: 10.1111/1751-7915.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The sweet potato whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is responsible for significant crop losses and presents one of the greatest challenges for global agricultural pest management. Management of whitefly populations and associated plant viral diseases is hindered by widespread whitefly resistance to chemical insecticides. An alternative control approach involves the use of insect-specific neurotoxins, but these require delivery from the whitefly gut into the haemocoel. Here we demonstrate that the coat protein (CP) of a begomovirus, Tomato yellow leaf curl virus, is sufficient for delivery of fused proteins into the whitefly haemocoel without virion assembly. Following feeding on the recombinant CP-P-mCherry fusion (where -P- is a proline-rich linker), mCherry fluorescence was detected in the dorsal aorta and pericardial cells of the whitefly, but not in those of whitefly fed on negative control treatments, indicating effective CP-mediated delivery of mCherry into the whitefly haemocoel. Significant mortality was observed in whiteflies fed on a fusion of CP-P to the insect-specific neurotoxin Hv1a, but not in whiteflies fed on CP-P fused to a disarmed Hv1a mutant. Begomovirus coat protein - insect neurotoxin fusions hold considerable potential for transgenic resistance to whitefly providing valuable tools for whitefly management.
Collapse
Affiliation(s)
- Jaime Jiménez
- Department of Entomology and NematologyUniversity of FloridaGainesvilleFloridaUSA
- Present address:
Instituto de Ciencias Agrarias – Consejo Superior de Investigaciones Científicas (ICA‐CSIC)MadridSpain
| | - Mariah Kemmerer
- Department of Entomology and NematologyUniversity of FloridaGainesvilleFloridaUSA
- Present address:
Department of Biological SciencesUniversity of DelawareNewarkDelawareUSA
| | - Glenn F. King
- Centre for Future Medicines, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Jane E. Polston
- Department of Plant PathologyUniversity of FloridaGainesvilleFloridaUSA
| | - Bryony C. Bonning
- Department of Entomology and NematologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
12
|
Schoeller EN, Hogan J, McKenzie CL, Osborne LS. Functional response of Franklinothrips vespiformis (Thysanoptera: Aeolothripidae) to eggs and nymphs of Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:3. [PMID: 38442350 PMCID: PMC10914367 DOI: 10.1093/jisesa/ieae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
The Middle East Asia Minor 1 biotype of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a greenhouse and field crop pest of global significance. The objective of this study was to assess the potential of the generalist predatory thrips, Franklinothrips vespiformis Crawford (Thysanoptera: Aeolothripidae), as a biological control agent for B. tabaci. This was achieved by determining the functional responses of F. vespiformis larvae and adults to the egg and nymphal stages of B. tabaci under laboratory conditions. Analyses consisted of 10 replicates of each predator and prey stage combination on bean leaf discs for a 24-h period. Following logistic regression analyses to determine the functional response type exhibited, response parameters were estimated with nonlinear least squares regression using Roger's equation. Results showed that F. vespiformis larvae and adults exhibited a Type II functional response when feeding on immature B. tabaci. The handling times (Th) of F. vespiformis larvae and adults were magnitudes higher for B. tabaci nymphs than they were for eggs, which were in part driven by the higher attack rates (a) observed on eggs. The maximum attack rate (T/Th) for B. tabaci eggs and nymphs exhibited by first-stage larvae, second-stage larvae, and adult F. vespiformis increased with increasing predator age. Results from this study suggest that F. vespiformis larvae and particularly adults are promising biological control agents for B. tabaci and are efficient predators at both low and high prey densities.
Collapse
Affiliation(s)
- Erich N Schoeller
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA
| | - Joshua Hogan
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, Florida, USA
| | - Cindy L McKenzie
- United States Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, 34945USA
| | - Lance S Osborne
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, Florida, USA
| |
Collapse
|
13
|
Bohatá A, Folorunso EA, Lencová J, Osborne LS, Mraz J. Control of sweet potato whitefly (Bemisia tabaci) using entomopathogenic fungi under optimal and suboptimal relative humidity conditions. PEST MANAGEMENT SCIENCE 2024; 80:1065-1075. [PMID: 37842745 DOI: 10.1002/ps.7837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Sweet potato whitefly (Bemisia tabaci) is one of the most destructive pests to an extensive range of crops and vegetables. Pesticide-dependent management programs have led to severe health problems, including pesticide poisoning and cancer in human beings, as well as pesticide resistance in insect pests. Entomopathogenic fungi (EPF) are considered safe and highly effective against many pests. Therefore, identifying the pathogenicity and virulence of EPFs against Bemisia tabaci is a valuable addition to the management of their infestations. In this study, we investigated the efficacy of conidia suspensions of Aschersonia aleyrodis, Isaria fumosorosea, Beauveria bassiana, and Akanthomyces muscarius (= Lecanicillium muscarium) against nymphal stages of Bemisia tabaci in cucumber seedlings under both optimal and suboptimal conditions. RESULTS All of the EPFs demonstrated significant ovicidal effects, with the highest cumulative mortalities observed in Aschersonia aleyrodis (96.46%) and I. fumosorosea-treated (94.60%) seedlings against host eggs and crawlers. Similarly, in the L4-instars experiment, Aschersonia aleyrodis and I. fumosorosea were the most efficient, resulting in cumulative mortalities of 94.82% and 94.75%, respectively. However, Bemisia tabaci cumulative mortalities on seedlings treated with Akanthomyces muscarius (78.36%) and Beauveria bassiana (85.90%) were also significantly different from untreated seedlings (7.10%). Under suboptimal relative humidity (RH) conditions (≤ 45% RH), Aschersonia aleyrodis exhibited greater tolerance to harsh conditions, causing a significantly higher infection rate in L1-L2 nymphs (~92%) compared to the approximately 32% infected young nymphs observed in I. fumosorosea-treated seedlings. CONCLUSION All the selected EPF were more effective against the young nymphal instars. Our results also highlight the efficacy of Aschersonia aleyrodis under suboptimal conditions. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrea Bohatá
- Department of Plant Protection, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Ewumi Azeez Folorunso
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice, Czech Republic
| | - Jana Lencová
- Department of Plant Protection, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, České Budějovice, Czech Republic
| | - Lance S Osborne
- University of Florida, UF/IFAS Mid-Florida Research & Education Center, Apopka, FL, USA
| | - Jan Mraz
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Karthigai Devi S, Banta G, Jindal V. Knockout of ecdysis triggering hormone receptor (ETHr) gene adversely affects the nymphal molting and adult reproduction in Bemisia tabaci. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105766. [PMID: 38458675 DOI: 10.1016/j.pestbp.2023.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 03/10/2024]
Abstract
Bemisia tabaci (Gennadius) is one of the most dangerous polyphagous pests in the world causing damage to various crops by sucking sap during the nymphal and adult stages. Chemical management of whiteflies is challenging because of the emergence of pesticide resistance. RNA interference has been well established in whitefly to study the functions of various genes. G-protein coupled receptors (GPCRs) are important targets for development of new generation insecticides. In this study, Ecdysis triggering hormone receptor (ETHr) gene expression was recorded in different stages of whitefly and its function has been studied through RNAi. The expression of ETHr is highest in third-instar nymphs followed by other nymphal instars, pupae and newly emerged adults. Silencing of ETHr resulted in significantly higher adult mortality (68.88%), reduced fecundity (4.46 eggs /female), reduced longevity of male and female (1.05 and 1.40 days, respectively) when adults were fed with dsETHr @ 1.0 μg/μl. Silencing of ETHr in nymphs lead to significantly higher mortality (81.35%) as compared to control. This study confirms that ETHr gene is essential for growth and development of whitefly nymphs and adults. Hence, it can be future target for developing dsRNA based insecticides for management of whitefly.
Collapse
Affiliation(s)
- S Karthigai Devi
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Geetika Banta
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vikas Jindal
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
15
|
Naalden D, Dermauw W, Ilias A, Baggerman G, Mastop M, Silven JJM, van Kleeff PJM, Dangol S, Gaertner NF, Roseboom W, Kwaaitaal M, Kramer G, van den Burg HA, Vontas J, Van Leeuwen T, Kant MR, Schuurink RC. Interaction of Whitefly Effector G4 with Tomato Proteins Impacts Whitefly Performance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:98-111. [PMID: 38051229 DOI: 10.1094/mpmi-04-23-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The phloem-feeding insect Bemisia tabaci is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which B. tabaci was salivating. We subsequently studied whether these candidate effectors can play a role in plant immune suppression. Effector G4 was the most robust suppressor of an induced- reactive oxygen species (ROS) response in Nicotiana benthamiana. In addition, G4 was able to suppress ROS production in Solanum lycopersicum (tomato) and Capsicum annuum (pepper). G4 localized predominantly in the endoplasmic reticulum in N. benthamiana leaves and colocalized with two identified target proteins in tomato: REF-like stress related protein 1 (RSP1) and meloidogyne-induced giant cell protein DB141 (MIPDB141). Silencing of MIPDB141 in tomato reduced whitefly fecundity up to 40%, demonstrating that the protein is involved in susceptibility to B. tabaci. Together, our data demonstrate that effector G4 impairs tomato immunity to whiteflies by interfering with ROS production and via an interaction with tomato susceptibility protein MIPDB141. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Aris Ilias
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, 2020 Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Nicolas Frédéric Gaertner
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Winfried Roseboom
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mark Kwaaitaal
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
16
|
Wu D, Wang L, Li W, Li X. Identifying a New Target for BtOBP8: Discovery of a Small Amino Ketone Molecule Containing Benzothiazole Fragments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17635-17645. [PMID: 37651643 DOI: 10.1021/acs.jafc.3c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Insects rely on odorant-binding proteins (OBPs) for chemical perception, making OBPs a promising target for studying attractants and repellents of pests, such as Bemisia tabaci. However, no reports have reported using B. tabaci OBPs (BtOBPs) as pesticide screening targets. To fill this gap, we obtained BtOBP8 through prokaryotic expression and purification. Then, we confirmed its identity using western blotting and mass spectrometry. Next, we used the sitting drop and hanging drop methods to screen its crystal conditions. Using microscale thermophoresis and isothermal titration calorimetry, we identified the highest affinity ligand, 3l, from 30 compounds. Furthermore, point mutation techniques identified Val119 as a key amino acid residue in binding 31 to BtOBP8. Finally, we tested the bioactivity of B. tabaci Mediterranean and found that 3l more effectively inhibits the bioactivity of B. tabaci MED than imidacloprid. This study presents a new approach for developing green insecticides specific to B. tabaci MED by targeting OBPs. Conclusively, identifying and targeting specific OBPs can create more targeted and effective pest control strategies without relying on toxic chemicals.
Collapse
Affiliation(s)
- Danxia Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wei Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Dos Santos MSN, Ody LP, Kerber BD, Araujo BA, Oro CED, Wancura JHC, Mazutti MA, Zabot GL, Tres MV. New frontiers of soil fungal microbiome and its application for biotechnology in agriculture. World J Microbiol Biotechnol 2023; 39:287. [PMID: 37632593 DOI: 10.1007/s11274-023-03728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
The fungi-based technology provided encouraging scenarios in the transition from a conventionally based economic system to the potential security of sources closely associated with the agricultural sphere such as the agriculture. In recent years, the intensification of fungi-based processes has generated significant gains, additionally to the production of materials with significant benefits and strong environmental importance. Furthermore, the growing concern for human health, especially in the agriculture scenario, has fostered the investigation of organisms with high biological and beneficial potential for use in agricultural systems. Accordingly, this study offered a comprehensive review of the diversity of the soil fungal microbiome and its main applications in a biotechnological approach aimed at agriculture and food chain-related areas. Moreover, the spectrum of opportunities and the extensive optimization platform for obtaining fungi compounds and metabolites are discussed. Finally, future perspectives regarding the insurgency of innovations and challenges on the broad rise of visionary solutions applied to the biotechnology context are provided.
Collapse
Affiliation(s)
- Maicon S N Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Lissara P Ody
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Bruno D Kerber
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Beatriz A Araujo
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Carolina E D Oro
- Department of Food Engineering, Integrated Regional University of Alto Uruguay and Missions, 1621, Sete de Setembro Av., Fátima, Erechim, RS 99709-910, Brazil
| | - João H C Wancura
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil.
| |
Collapse
|
18
|
Gu Z, Chen L, Zhang W, Su P, Zhang D, Du X, Peng Q, Liu Z, Liao X, Liu Y. A Sensitive Method for Detecting Beauveria bassiana, an Insecticidal Biocontrol Agent, Population Dynamics, and Stability in Different Substrates. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:9933783. [PMID: 37663453 PMCID: PMC10473894 DOI: 10.1155/2023/9933783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Beauveria bassiana is a well-known insecticidal biocontrol agent. Despite its broad field applications, its survival, colonization, and stability under field conditions remained unclear, mainly due to the lack of a quick and reliable detection method. In this study, we developed a quantitative real-time PCR technology to monitor the stability and population dynamics of B. bassiana in different substrates (water, soil, and on the cotton leaves surface), different spores of B. bassiana applied on Chinese cabbage leaves surface, and the lethality of Pieris rapae spraying with different spores of B. bassiana. Our results showed a decreased concentration of B. bassiana DNA in all three substrates from the 1st day till 9th day of post inoculation (dpi) period, possibly due to the death of B. bassiana. After this decrease, a quick and significant rebound of B. bassiana DNA concentration was observed, starting from the 11th dpi in all three substrates. The B. bassiana DNA concentration reached the plateau at about 13th dpi in water and 17th dpi in the soil. On cotton leaves surface, the B. bassiana DNA concentration reached the highest level at the 17th dpi followed by a small decline and then stabilized. This increase of DNA concentration suggested recovery of B. bassiana growth in all three substrates. We found that the most suitable killing effectiveness of P. rapae was the 1.0 × 107 spores/mL of B. bassiana. In summary, we have established a detection technology that allows a fast and reliable monitoring for the concentration and stability of B. bassiana under different conditions. This technology can benefit and help us in the development of proper management strategies for the application of this biocontrol agent in the field.
Collapse
Affiliation(s)
- Zepei Gu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lijie Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Weixing Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Pin Su
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Deyong Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Xiaohua Du
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Qianze Peng
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhuoxin Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Xiaolan Liao
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| |
Collapse
|
19
|
Yu H, Wang K, Yang Z, Li X, Liu S, Wang L, Zhang H. A ferritin protein is involved in the development and reproduction of the whitefly, Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2023; 52:750-758. [PMID: 37318359 DOI: 10.1093/ee/nvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Ferritins are conserved iron-binding proteins that exist in most living organisms and play an essential role in the maintenance of cellular iron homeostasis. Although ferritin has been studied in many species, little is known about its role in the whitefly, Bemisia tabaci. In this study, we identified an iron-binding protein from B. tabaci and named it BtabFer1. The full-length cDNA of BtabFer1 is 1,043 bp and encodes a protein consisting of 224 amino acids with a deduced molecular weight of 25.26 kDa, and phylogenetic analysis shows that BtabFer1 is conserved among Hemiptera insects. The expression levels of BtabFer1 in different developmental stages and tissues were analyzed by real-time PCR, and results showed that BtabFer1 was ubiquitously expressed at all developmental stages and in all examined tissues. The RNAi-mediated knockdown of BtabFer1 caused a significant reduction in survival rate, egg production, and egg hatching rate of whiteflies. Knockdown of BtabFer1 also inhibited the transcription of genes in the juvenile hormone signal transduction pathway. Taken together, these results suggest that BtabFer1 plays a critical role in the development and reproduction of whiteflies. This study can broaden our understanding of ferritin in insect fecundity and development, as well as provide baseline data for future studies.
Collapse
Affiliation(s)
- Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
- College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| |
Collapse
|
20
|
Bihal R, Al-Khayri JM, Banu AN, Kudesia N, Ahmed FK, Sarkar R, Arora A, Abd-Elsalam KA. Entomopathogenic Fungi: An Eco-Friendly Synthesis of Sustainable Nanoparticles and Their Nanopesticide Properties. Microorganisms 2023; 11:1617. [PMID: 37375119 DOI: 10.3390/microorganisms11061617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The agricultural industry could undergo significant changes due to the revolutionary potential of nanotechnology. Nanotechnology has a broad range of possible applications and advantages, including insect pest management using treatments based on nanoparticle insecticides. Conventional techniques, such as integrated pest management, are inadequate, and using chemical pesticides has negative consequences. As a result, nanotechnology would provide ecologically beneficial and effective alternatives for insect pest control. Considering the remarkable traits they exhibit, silver nanoparticles (AgNPs) are recognized as potential prospects in agriculture. Due to their efficiency and great biocompatibility, the utilization of biologically synthesized nanosilver in insect pest control has significantly increased nowadays. Silver nanoparticles have been produced using a wide range of microbes and plants, which is considered an environmentally friendly method. However, among all, entomopathogenic fungi (EPF) have the most potential to be used in the biosynthesis of silver nanoparticles with a variety of properties. Therefore, in this review, different ways to get rid of agricultural pests have been discussed, with a focus on the importance and growing popularity of biosynthesized nanosilver, especially silver nanoparticles made from fungi that kill insects. Finally, the review highlights the need for further studies so that the efficiency of bio-nanosilver could be tested for field application and the exact mode of action of silver nanoparticles against pests can be elucidated, which will eventually be a boon to the agricultural industry for putting a check on pest populations.
Collapse
Affiliation(s)
- Ritu Bihal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - A Najitha Banu
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Natasha Kudesia
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Farah K Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Rudradeb Sarkar
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Akshit Arora
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Kamel A Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
21
|
Zhao D, Ni X, Zhang Z, Niu H, Qiu R, Guo H. Bt protein hasten entomopathogenic fungi-induced death of nontarget pest whitefly by suppressing protective symbionts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158588. [PMID: 36087663 DOI: 10.1016/j.scitotenv.2022.158588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The risk assessment of Bacillus thuringiensis (Bt) crops on nontarget pests has received much attention. Despite the knowledge of various beneficial bacterial symbionts in pests, whether Bt proteins affect these symbionts and subsequently alter the pest's ecology remains largely unknown. The whitefly Bemisia tabaci is one of the most serious nontarget pests in Bt cotton. Here, we explored the Bt Cry1Ac protein-induced changes in whitefly symbiont abundance and the subsequent effects on whitefly response against a naturally prevalent entomopathogenic fungus Cordyceps javanica. The obligate symbiont 'Candidatus Portiera aleyrodidarum' (hereafter P. aleyrodidarum) as well as facultative symbionts 'Candidatus Hamiltonella defensa' (hereafter H. defensa), 'Candidatus Cardinium hertigii' (hereafter C. hertigii) and 'Candidatus Rickettsia bellii' (hereafter R. bellii) dominate the microbial community of whiteflies. The Bt exposure had no effects on H. defensa infected (H) and H. defensa-C. hertigii doubly infected (HC) whiteflies, but decreased the total copy number of symbionts as well as the R. bellii proportion in H. defensa-C. hertigii- R. bellii triply infected whiteflies (HCR). C. javanica caused whitefly adults 100 % mortality within 8 days. Without Bt protein exposure, HCR whiteflies survived significantly longer than H and HC whiteflies sprayed by C. javanica, suggesting that R. bellii confers protection. However, in Bt-exposed groups, C. javanica generated synchronous death of H, HC and HCR whiteflies. Specifically, in H and HC whiteflies, Bt protein-exposure showed no significant difference in progress of death caused by C. javanica. But in HCR whiteflies, Bt exposure hastened death induced by C. javanica, suppressing the R. bellii-conferred protection. This is the first report revealing that Bt protein altered symbiont community conferred adverse effects on nontarget pests, providing a new perspective for Bt risk assessment and biocontrol strategies of nontarget pests.
Collapse
Affiliation(s)
- Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Ni
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ruiting Qiu
- College of Arts and Sciences, The Ohio State University, Columbus 43201, United States of America
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
22
|
Domingues MM, Dos Santos PL, Gêa BCC, de Carvalho VR, de Oliveira FN, Soliman EP, Serrão JE, Zanuncio JC, Zanetti R, Wilcken CF. Entomopathogenic Fungi, Isolated From Soils and Bemisia tabaci (Hemiptera: Aleyrodidae) Adults, to Manage the Eucalyptus Red Gum Lerp Psyllid Glycaspis brimblecombei (Hemiptera: Aphalaridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1886-1893. [PMID: 36300524 DOI: 10.1093/jee/toac165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 06/16/2023]
Abstract
The parasitoid Psyllaephagus bliteus Riek (Hymenoptera: Encyrtidae), entomopathogenic fungi, and chemical insecticides are the main strategies to manage the eucalypts pest Glycaspis brimblecombei Moore. The objective of this study was to isolate and to identify entomopathogenic fungi, collected from Bemisia tabaci Gennadius adults in soybean and tomato crops, and from soil samples in eucalypts, soybean, and native forest areas to evaluate their potential to manage G. brimblecombei. Twelve Beauveria and Cordyceps isolates were selected and compared with the commercial products Boveril Beauveria bassiana Bals. (Hypocreales: Cordycipitaceae), Metarril Metarhizium anisopliae Metschn. (Hypocreales: Clavicipitaceae), and Octane Cordyceps fumosorosea Wize (Hypocreales: Cordycipitaceae) and their respective strains. The fungal isolates were diluted in 0.1% aqueous Tween 80 at a concentration of 1.0 × 108 conidia/ml and sprayed on the G. brimblecombei nymphs with or without lerps. Pest mortality was higher and the TL50 and TL90 lower with the isolates LCBPF 11 C. javanica Frieder. & Bally (Hypocreales: Cordycipitaceae), LCBPF 12 (C. fumosorosea), and LCBPF 67 (C. fumosorosea) from B. tabaci adults. Fungi of the genera Beauveria and Cordyceps developed and caused high mortality of G. brimblecombei nymphs with lerps. The B. bassiana, C. cateniannulata Liang (Hypocreales: Cordycipitaceae), C. fumosorosea, C. javanica, and M. anisopliae isolates showed potential to manage G. brimblecombei. The lerp of this insect enhances entomopathogenic fungus development as a source of inoculum accelerating G. brimblecombei nymph mortality. Entomopathogenic fungi isolated from insects and soils are effective against G. brimblecombei and the presence of the lerp of this insect increases the effectiveness of its control.
Collapse
Affiliation(s)
- Maurício Magalhães Domingues
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Paula Leite Dos Santos
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Bianca Cristina Costa Gêa
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Vanessa Rafaela de Carvalho
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Fabricio Naka de Oliveira
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| | - Everton Pires Soliman
- Suzano Papel e Celulose/Tecnologia Florestal, Av. Dr. José Lembo, 1010, 18207-78 - Itapetininga, São Paulo, Brasil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - Ronald Zanetti
- Departamento de Entomologia, Universidade Federal de Lavras, 37200-900, Lavras, Minas Gerais, Brasil
| | - Carlos Frederico Wilcken
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista (UNESP), Campus de Botucatu, Av. Universitária, nº 3780, 18610-034, Botucatu, São Paulo, Brasil
| |
Collapse
|
23
|
Paradza VM, Khamis FM, Yusuf AA, Subramanian S, Akutse KS. Efficacy of Metarhizium anisopliae and ( E)-2-hexenal combination using autodissemination technology for the management of the adult greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). FRONTIERS IN INSECT SCIENCE 2022; 2:991336. [PMID: 38646071 PMCID: PMC11027017 DOI: 10.3389/finsc.2022.991336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/24/2022] [Indexed: 04/23/2024]
Abstract
The efficiency of an autodissemination technique in controlling adult whiteflies, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae) on tomato, Solunum lycopersicum was investigated with previously identified potent fungal isolates of Metarhizium anisopliae ICIPE 18, ICIPE 62 and ICIPE 69 under screenhouse or semi-field conditions. The autodissemination device was inoculated with dry conidia of the M. anisopliae isolates, while control insects were exposed to a fungus-free device. Sampling for conidia uptake, conidial viability and persistence, and insect mortality was done at 1, 2, 3, 5 and 8 days post-exposure, and collected insects were monitored for mortality over ten days. Overall, mortality was higher in insects exposed to ICIPE 18 (62.8%) and ICIPE 69 (61.8%) than in those exposed to ICIPE 62 (42.6%), with median lethal times, (LT50) ranging between 6.73-8.54 days. The control group recorded the lowest mortality rates (18.9%). A general linear reduction in conidial viability with exposure time was observed, although this was more pronounced with M. anisopliae ICIPE 62. Insects exposed to M. anisopliae ICIPE 69 also recorded the highest conidia uptake, hence selected for further evaluation with a T. vaporariorum attractant volatile organic compound, (E)-2-hexenal. The volatile inhibited fungal germination in laboratory compatibility tests, therefore, spatial separation of M. anisopliae ICIPE 69 and (E)-2-hexenal in the autodissemination device was conducted. The inhibitory effects of the volatile were significantly reduced by spatial separation at a distance of 5 cm between the fungus and the volatile, which was found to be more suitable and chosen for the subsequent experiments. Results showed that (E)-2-hexenal did not influence conidia uptake by the insects, while fungal viability and the subsequent mortality variations were more related to duration of exposure. The fungus-volatile compatibility demonstrated with spatial separation provides a basis for the optimisation of the volatile formulation to achieve better T. vaporariorum suppression with an excellent autodissemination efficiency when used in the management of whiteflies under screenhouse conditions.
Collapse
Affiliation(s)
- Vongai M. Paradza
- Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Fathiya M. Khamis
- Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Hatfield, South Africa
| | - Sevgan Subramanian
- Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Komivi S. Akutse
- Plant Health Theme, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
24
|
Schultz DL, Selberherr E, Stouthamer CM, Doremus MR, Kelly SE, Hunter MS, Schmitz-Esser S. Sex-based de novo transcriptome assemblies of the parasitoid wasp Encarsia suzannae, a host of the manipulative heritable symbiont Cardinium hertigii. GIGABYTE 2022; 2022:gigabyte68. [PMID: 36824530 PMCID: PMC9693781 DOI: 10.46471/gigabyte.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Parasitoid wasps in the genus Encarsia are commonly used as biological pest control agents of whiteflies and armored scale insects in greenhouses or the field. They are also hosts of the bacterial endosymbiont Cardinium hertigii, which can cause reproductive manipulation phenotypes, including parthenogenesis, feminization, and cytoplasmic incompatibility (the last is mainly studied in Encarsia suzannae). Despite their biological and economic importance, there are no published Encarsia genomes and only one public transcriptome. Here, we applied a mapping-and-removal approach to eliminate known contaminants from previously-obtained Illumina sequencing data. We generated de novo transcriptome assemblies for both female and male E. suzannae which contain 45,986 and 54,762 final coding sequences, respectively. Benchmarking Single-Copy Orthologs results indicate both assemblies are highly complete. Preliminary analyses revealed the presence of homologs of sex-determination genes characterized in other insects and putative venom proteins. Our male and female transcriptomes will be valuable tools to better understand the biology of Encarsia and their evolutionary relatives, particularly in studies involving insects of only one sex.
Collapse
Affiliation(s)
- Dylan L. Schultz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | - Matthew R. Doremus
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Suzanne E. Kelly
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Martha S. Hunter
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
25
|
Li J, Chen Y, He Y, Zheng L, Fu J, Shi M. Infection of Metarhizium anisopliae Ma6 and defense responses of host Phyllotreta striolata adults. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21908. [PMID: 35470484 DOI: 10.1002/arch.21908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Entomopathogenic fungus as biological control agent plays a crucial role in the integrated management of insect pests. Metarhizium anisopliae Ma6 has been identified as a highly pathogenic strain against Phyllotreta striolata (Fabricius) (Coleoptera: Chrysomelidae), one of the most economically important and dominant insect pests damaging Brassica plants. The infection of M. anisopliae Ma6 on P. striolata was observed under stereomicroscopy and scanning electron microscopy (SEM), and biochemical defense responses of P. striolata adults after infection were investigated. The changes in total amino acids and free fatty acids, and the activities of protective enzymes, including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), in P. striolata adults were measured. In stereomicroscopy and SEM observations, a large number of mycelia were observed on the body surface of P. striolata on the 5th day after treatment by M. anisopliae. Many conidia were germinated and covered the body of P. striolata on the 7th day after treatment. The free fatty acid, total amino acid, CAT, POD, and SOD activities all showed an increased and then decreased trend. These results suggest that entomopathogenic fungal infection triggers the defense response of hosts, which induces changes in nutrients and antioxidant enzymes in P. striolata adults. Our findings provide useful information for understanding the potential for using M. anisopliae Ma6 as a biocontrol agent.
Collapse
Affiliation(s)
- Jianyu Li
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Science, Fuzhou, China
| | - Yanting Chen
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Science, Fuzhou, China
| | - Yuechao He
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Science, Fuzhou, China
| | - Lizhen Zheng
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Science, Fuzhou, China
| | - Jianwei Fu
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou, China
| | - Mengzhu Shi
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Science, Fuzhou, China
- Institute of Quality Standards & Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou, China
| |
Collapse
|
26
|
Kaur R, Singh S, Joshi N. Pervasive Endosymbiont Arsenophonus Plays a Key Role in the Transmission of Cotton Leaf Curl Virus Vectored by Asia II-1 Genetic Group of Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2022; 51:564-577. [PMID: 35485184 DOI: 10.1093/ee/nvac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Insects often coevolved with their mutualistic partners such as gut endosymbionts, which play a key in the physiology of host. Studies on such interactions between Bemisia tabaci and its primary and secondary endosymbionts have gained importance due to their indispensable roles in the biology of this insect. Present study reports the predominance of two secondary endosymbionts, Arsenophonus and Cardinium in the Asia II-1 genetic group of whitefly and elucidates their role in the transmission of its vectored Cotton leaf curl virus. Selective elimination of endosymbionts was optimized using serial concentration of ampicillin, chloramphenicol, kanamycin, tetracycline, and rifampicin administered to viruliferous whiteflies through sucrose diet. Primary endosymbiont, Portiera was unresponsive to all the antibiotics, however, rifampicin and tetracycline at 90 μg/ml selectively eliminated Arsenophonus from the whitefly. Elimination of Arsenophonus resulted in significant decrease in virus titer from viruliferous whitefly, further the CLCuV transmission efficiency of these whiteflies was significantly reduced compared to the control flies. Secondary endosymbiont, Cardinium could not be eliminated completely even with higher concentrations of antibiotics. Based on the findings, Arsenophonus plays a key role in the retention and transmission of CLCuV in the Asia II-1 genetic group of B. tabaci, while the role of Cardinium could not be established due to its unresponsiveness to antibiotics.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, Faridkot, Punjab, India
| | - Neelam Joshi
- Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
27
|
Campos-Esquivel L, Hanson PE, Escudero-Leyva E, Chaverri P. Virulence of native isolates of entomopathogenic fungi (Hypocreales) against the "sweetpotato whitefly" Bemisia tabaci (Hemiptera: Aleyrodidae), including the effects of temperature and fungicides. J Invertebr Pathol 2022; 192:107787. [PMID: 35697117 DOI: 10.1016/j.jip.2022.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
Hypocrella, Moelleriella and related species in the Hypocreales (Ascomycota, Sordariomycetes) cause epizootics of whiteflies and scale insects in nature. However, studies on their host specificity, virulence, infection cycles, optimal development under laboratory conditions, and compatibility with other control methods, are unexplored for most species. Under laboratory conditions, the virulence of several isolates of field-collected hypocrealean fungi (Hypocrella, Moelleriella, Regiocrella, and Verticillium) was determined on Bemisia tabaci eggs and 4th instar nymphs. In addition to virulence, the effect of temperature and two commercial fungicides on growth rates and germination of the isolates was evaluated. None of the isolates infected the eggs, while M. libera, M. ochracea, and M. turbinata caused high nymphal mortality. Moelleriella libera was the most virulent isolate. At all temperatures, M. libera, Regiocrella sp. (P17H20), and Verticillium cf. pseudohemipterigenum had the highest germination and growth rates. The optimal growth temperature depended on the isolate, but at 23 °C and 25 °C, the probability of spore germination was higher for most isolates. Finally, the fungicides azoxystrobin and chlorothalonil inhibited growth rates and conidial germination at 24 and 48 h of exposure. This research produces vital knowledge on the virulence and infection cycles of poorly studied native species of entomopathogenic fungi. In addition, the results provide information on the optimal temperature for development in laboratory conditions and susceptibility to fungicides, which could contribute to future biological control strategies.
Collapse
Affiliation(s)
| | - Paul E Hanson
- Escuela de Biología, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Efraín Escudero-Leyva
- Escuela de Biología, Universidad de Costa Rica, 11501-2060 San José, Costa Rica; Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Priscila Chaverri
- Escuela de Biología, Universidad de Costa Rica, 11501-2060 San José, Costa Rica; Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica.
| |
Collapse
|
28
|
Lu Q, Wang P, Ali A, Zang LS. Molecular Identification and Virulence of Four Strains of Entomopathogenic Fungi Against the Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:731-738. [PMID: 35348695 DOI: 10.1093/jee/toac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The whitefly, Bemisia tabaci (Gennadius), is a key pest of many economically important crops grown in the field and in greenhouses throughout the world. Because entomopathogenic fungi (EPF) are potential biological control agents for B. tabaci, however, minimal research has been conducted on using fungal strains to control B. tabaci. In this study, four EPF strains were isolated and identified as Lecanicillium attenuatum (Zare & Gams) JL-003, Beauveria bassiana Balsamo (Vuillemin) JL-005, Lecanicillium longisporum (Petch) JL-006, and Akanthomyces lecanii (Zimmerman) JL-007, based on rDNA-ITS sequence analysis. In comparing the virulence of the four fungi against the different life stages (i.e., eggs, 1st-, 2nd-, 3rd-, 4th-instar nymphs, and adults) of B. tabaci the mortality of B. tabaci decreased and LT50 values increased as the conidia concentration decreased in a series of conidia concentrations (1 × 105, 106, 107, and 108 conidia/mL). The fungal strains L. attenuatum JL-003 (LC50: 1.31 × 106) and B. bassiana JL-005 (LC50: 0.92 × 106) were found to be more effective than L. longisporum JL-006 (LC50: 4.97 × 107) and A. lecanii JL-007 (LC50: 6.46 × 106). Fourth-instar nymphs, eggs, and adult stages of B. tabaci were less susceptible to all fungal strains compared to 1st-, 2nd-, and 3rd-instar nymphs. The virulence of L. attenuatum, which was tested for the first time on B. tabaci, was found to be more toxic to early-stage nymphs. Our data will be useful in biological control programs that are considering using EPF against B. tabaci.
Collapse
Affiliation(s)
- Qian Lu
- Institute of Biological Control, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Peng Wang
- Institute of Biological Control, College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Asad Ali
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
| | - Lian-Sheng Zang
- Institute of Biological Control, College of Plant Protection, Jilin Agricultural University, Changchun, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
29
|
Aslam MQ, Naqvi RZ, Zaidi SSEA, Asif M, Akhter KP, Scheffler BE, Scheffler JA, Liu SS, Amin I, Mansoor S. Analysis of a tetraploid cotton line Mac7 transcriptome reveals mechanisms underlying resistance against the whitefly Bemisia tabaci. Gene 2022; 820:146200. [PMID: 35131368 DOI: 10.1016/j.gene.2022.146200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023]
Abstract
Whitefly inflicts both direct and indirect losses to cotton crop. Whitefly resistant cotton germplasm is a high priority and considered among the best possible solutions to mitigate this issue. In this study, we evaluated cotton leaf curl disease (CLCuD) resistant cotton line Mac7 under whitefly stress. Furthermore, we utilized the already available transcriptome data of Mac7 concerning whitefly stress to elucidate associated mechanisms and identify functionally important genes in cotton. In transcriptomic data analysis, differentially expressed genes (DEGs) were found involved in complex relay pathways, activated on whitefly exposure. The response implicates signalling through resistance genes (R-genes), MAPK, ROS, VQs or RLKs, transcription factors, which leads to the activation of defence responses including, Ca2+messengers, phytohormonal cross-talk, gossypol, flavonoids, PhasiRNA and susceptibility genes (S-genes). The qRT-PCR assay of 10 functionally important genes also showed their involvement in differential responses at 24 and 48 h post whitefly infestation. Briefly, our study helps in understanding the resistant nature of Mac7 under whitefly stress.
Collapse
Affiliation(s)
- Muhammad Qasim Aslam
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | | | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | | | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 141 Experimental Station Road, Stoneville, MS, United States
| | - Jodi A Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 141 Experimental Station Road, Stoneville, MS, United States
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan.
| |
Collapse
|
30
|
The Effects of Spray Volume on the Management of Bemisia tabaci (Hemiptera: Aleyrodidae) in the Greenhouse. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is a major insect pest of poinsettias (Euphorbia pulcherrima Willd. ex Klotzsch; Family: Euphorbiaceae) in the greenhouse. Currently, neonicotinoids are widely used for B.tabaci management in the greenhouse, which is less favored by the consumers because of the potential nontarget effects of these insecticides on beneficial insects. Little is known on how the high spray volumes of spinetoram (20%) + sulfoxaflor (20%) (XXpire®) affect the B.tabaci population in the greenhouse. The objective of the study was to determine the efficacy of spinetoram + sulfoxaflor and dinotefuran (Zylam®) applied as foliar-spray volumes (high, referred to as spench, and low, referred to as foliar) and soil drench against B.tabaci. The high foliar-spray volume application (spench) of both insecticides reduced the B.tabaci immature densities, compared with low foliar-spray volume (foliar) and soil drench applications. The soil drench application did not provide adequate B.tabaci control regardless of insecticide type. Spinetoram + sulfoxaflor applied as a high-spray volume treatment was moderately effective in controlling B.tabaci nymphs relative to nontreated control.
Collapse
|
31
|
Ferreira AL, de Faria JC, da Costa Moura M, de Mendonça Zaidem AL, Pizetta CSR, de Oliveira Freitas E, Coelho GRC, Silva JFAE, Barrigossi JAF, Hoffmann LV, de Souza TLPO, Aragão FJL, Pinheiro PV. Whitefly-tolerant transgenic common bean ( Phaseolus vulgaris) line. FRONTIERS IN PLANT SCIENCE 2022; 13:984804. [PMID: 36092396 PMCID: PMC9453422 DOI: 10.3389/fpls.2022.984804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/25/2022] [Indexed: 05/14/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a staple food in Brazil with both nutritional and socioeconomic importance. As an orphan crop, it has not received as much research attention as the commodity crops. Crop losses are strongly related to virus diseases transmitted by the whitefly Bemisia tabaci, one of the most important agricultural pests in the world. The main method of managing whitefly-transmitted viruses has been the application of insecticides to reduce vector populations. Compared to chemical vector control, a more sustainable strategy for managing insect-borne viruses is the development of resistant/tolerant cultivars. RNA interference has been applied to develop plant lines resistant to the whitefly in other species, such as tomato, lettuce and tobacco. Still, no whitefly-resistant plant has been made commercially available to date. Common bean is a recalcitrant species to in vitro regeneration; therefore, stable genetic transformation of this plant has been achieved only at low frequencies (<1%) using particle bombardment. In the present work, two transgenic common bean lines were obtained with an intron-hairpin construct to induce post-transcriptional gene silencing against the B. tabaci vATPase (Bt-vATPase) gene, with stable expression of siRNA. Northern blot analysis revealed the presence of bands of expected size for siRNA in leaf samples of the line Bt-22.5, while in the other line (11.5), the amount of siRNA produced was significantly smaller. Bioassays were conducted with both lines, but only the line Bt-22.5 was associated with significant mortality of adult insects (97% when insects were fed on detached leaves and 59% on the whole plant). The expression of the Bt-vATPase gene was 50% lower (p < 0.05) in insects that fed on the transgenic line Bt-22.5, when compared to non-transgenic controls. The transgenic line did not affect the virus transmission ability of the insects. Moreover, no effect was observed on the reproduction of non-target organisms, such as the black aphid Aphis craccivora, the leafminer Liriomyza sp. and the whitefly parasitoid Encarsia formosa. The results presented here serve as a basis for the development of whitefly-tolerant transgenic elite common bean cultivars, with potential to contribute to the management of the whitefly and virus diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Elínea de Oliveira Freitas
- Laboratory of Genetic Engineering Applied to Tropical Agriculture, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | | | | | | | | | | | - Francisco José Lima Aragão
- Laboratory of Genetic Engineering Applied to Tropical Agriculture, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Patricia Valle Pinheiro
- Laboratory of Entomology, Embrapa Arroz e Feijão, Santo Antônio de Goiás, Brazil
- Laboratory of Biotechnology, Embrapa Arroz e Feijão, Santo Antônio de Goiás, Brazil
- *Correspondence: Patricia Valle Pinheiro,
| |
Collapse
|
32
|
DOMINGUES MAURÍCIOM, SANTOS PAULAL, GÊA BIANCAC, CARVALHO VANESSAR, OLIVEIRA FABRICION, SOLIMAN EVERTONP, PEREIRA FABRICIOF, ZANUNCIO JOSÉC, WILCKEN CARLOSF. Cordyceps cateniannulata and Cordyceps javanica: first report of pathogenicity to Glycaspis brimblecombei (Hemiptera: Aphalaridae). AN ACAD BRAS CIENC 2022; 94:e20211566. [DOI: 10.1590/0001-3765202220211566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
|
33
|
Davis RI, Jones LM, Pease B, Perkins SL, Vala HR, Kokoa P, Apa M, Dale CJ. Plant Virus and Virus-like Disease Threats to Australia's North Targeted by the Northern Australia Quarantine Strategy. PLANTS 2021; 10:plants10102175. [PMID: 34685987 PMCID: PMC8537380 DOI: 10.3390/plants10102175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
The Northern Australia Quarantine Strategy (NAQS) is a biosecurity initiative operated by the Australian federal government’s Department of Agriculture, Water and the Environment (DAWE). It is unique worldwide because it deals specifically with the potential arrival via unregulated pathways of exotic threats from overseas in a vast and sparsely populated region. It aims to protect the nation’s animal- and plant-based production industries, as well as the environment, from incursions of organisms from countries that lie immediately to the north. These are diseases, pests, and weeds present in these countries that are currently either absent from, or under active containment in, Australia and may arrive by natural or human-assisted means. This review article focuses on the plant viruses and virus-like diseases that are most highly targeted by the NAQS program. It presents eight pathogen species/group entries in the NAQS A list of target pathogens, providing an overview of the historical and current situation, and collates some new data obtained from surveillance activities conducted in northern Australia and collaborative work overseas.
Collapse
Affiliation(s)
- Richard I. Davis
- Northern Australia Quarantine Strategy, Department of Agriculture Water and Environment, GPO Box 858, Canberra, ACT 2601, Australia; (L.M.J.); (B.P.); (S.L.P.); (H.R.V.)
- Correspondence:
| | - Lynne M. Jones
- Northern Australia Quarantine Strategy, Department of Agriculture Water and Environment, GPO Box 858, Canberra, ACT 2601, Australia; (L.M.J.); (B.P.); (S.L.P.); (H.R.V.)
| | - Bradley Pease
- Northern Australia Quarantine Strategy, Department of Agriculture Water and Environment, GPO Box 858, Canberra, ACT 2601, Australia; (L.M.J.); (B.P.); (S.L.P.); (H.R.V.)
| | - Sandy L. Perkins
- Northern Australia Quarantine Strategy, Department of Agriculture Water and Environment, GPO Box 858, Canberra, ACT 2601, Australia; (L.M.J.); (B.P.); (S.L.P.); (H.R.V.)
| | - Harshitsinh R. Vala
- Northern Australia Quarantine Strategy, Department of Agriculture Water and Environment, GPO Box 858, Canberra, ACT 2601, Australia; (L.M.J.); (B.P.); (S.L.P.); (H.R.V.)
| | - Pere Kokoa
- National Agriculture Quarantine and Inspection Authority (NAQIA), P.O. Box 741, Port Moresby 121, Papua New Guinea; (P.K.); (M.A.)
| | - Marilyn Apa
- National Agriculture Quarantine and Inspection Authority (NAQIA), P.O. Box 741, Port Moresby 121, Papua New Guinea; (P.K.); (M.A.)
| | - Christopher J. Dale
- International Plant Health Surveillance Program, Department of Agriculture Water and Environment, GPO Box 858, Canberra, ACT 2601, Australia;
| |
Collapse
|
34
|
Broumandnia F, Rajabpour A, Hamed Ghodoum Parizipour M, Yarahmadi F. Morphological and molecular identification of four isolates of the entomopathogenic fungal genus Akanthomyces and their effects against Bemisia tabaci on cucumber. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:628-636. [PMID: 34001296 DOI: 10.1017/s0007485321000298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cotton whitefly, Bemisia tabaci Gen. (Hem., Aleyrodidae), is a key pest of many vegetables. Entomopathogenic fungi are promising microbial control agents against B. tabaci, but limited information is available concerning indigenous Iranian isolates. In this study, three isolates of Akanthomyces lecanii (PAL6, PAL7, and PAL8) and one isolate of A. muscarius (AGM5) were obtained from citrus hemipteran pests, Pulvinaria aurantii Cock. and Aphis gossypii Glover, in Mazandaran province, northern Iran. The isolates were then morphologically and molecularly identified. The efficacies of five different agar media for vegetative growth and conidiation of each isolate were determined. Potato dextrose agar was the medium on which the fungal mycelia developed at a relatively high rate. However, the highest rate of conidiation was found on Sabouraud dextrose agar. To determine the effects of the isolates on B. tabaci, a dose-response bioassay was carried out to estimate lethal concentration (LC50) and lethal time (LT50) values of each fungal isolate to second instar nymphs. The mean LC50 values of A. lecanii isolates ranged from 4.22 × 106 to 7.35 × 1013 conidia ml-1 at 5 to 7 days after the treatment. For A. muscarius, the values varied from 9.2 × 104 to 8.7 × 1010 conidia ml-1 at 5 to 7 days after the treatment. The lowest and the highest mean LC50 values were observed for A. mucarius (AGM5) and A. lecanii (isolate PAL6), respectively. The mean LT50 values of A. lecanii and A. muscarius isolates were 7.1-9.0 and 4.9-7.2 days, respectively. The LT50 values of A. muscarius were significantly lower than the other isolates. Overall, all isolates, especially A. muscarius (AGM5), exhibited appropriate potential as a biological control agent against B. tabaci.
Collapse
Affiliation(s)
- Fereshteh Broumandnia
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Ali Rajabpour
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Mohamad Hamed Ghodoum Parizipour
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Fatemeh Yarahmadi
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| |
Collapse
|
35
|
Kahveci E, Devran Z, Özkaynak E, Hong Y, Studholme DJ, Tör M. Genomic-Assisted Marker Development Suitable for CsCvy-1 Selection in Cucumber Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:691576. [PMID: 34489994 PMCID: PMC8416629 DOI: 10.3389/fpls.2021.691576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 06/02/2023]
Abstract
Cucumber is a widely grown vegetable crop plant and a host to many different plant pathogens. Cucumber vein yellowing virus (CVYV) causes economic losses on cucumber crops in Mediterranean countries and in some part of India such as West Bengal and in African countries such as Sudan. CVYV is an RNA potyvirus transmitted mechanically and by whitefly (Bemisia tabaci) in a semipersistent manner. Control of this virus is heavily dependent on the management of the insect vector and breeding virus-resistant lines. DNA markers have been used widely in conventional plant breeding programs via marker-assisted selection (MAS). However, very few resistance sources against CVYV in cucumber exist, and also the lack of tightly linked molecular markers to these sources restricts the rapid generation of resistant lines. In this work, we used genomics coupled with the bulked segregant analysis method and generated the MAS-friendly Kompetitive allele specific PCR (KASP) markers suitable for CsCvy-1 selection in cucumber breeding using a segregating F2 mapping population and commercial plant lines. Variant analysis was performed to generate single-nucleotide polymorphism (SNP)-based markers for mapping the population and genotyping the commercial lines. We fine-mapped the region by generating new markers down to 101 kb with eight genes. We provided SNP data for this interval, which could be useful for breeding programs and cloning the candidate genes.
Collapse
Affiliation(s)
- Erdem Kahveci
- M.Y. Genetik Tarim Tek. Lab. Tic. Ltd. Sti., Antalya, Turkey
| | - Zübeyir Devran
- Department of Plant Protection, Faculty of Agriculture, University of Akdeniz, Antalya, Turkey
| | | | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - David J. Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
36
|
Naalden D, van Kleeff PJM, Dangol S, Mastop M, Corkill R, Hogenhout SA, Kant MR, Schuurink RC. Spotlight on the Roles of Whitefly Effectors in Insect-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:661141. [PMID: 34276723 PMCID: PMC8283192 DOI: 10.3389/fpls.2021.661141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 05/30/2023]
Abstract
The Bemisia tabaci species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects. Substantial research has begun to unravel how phloem feeders modulate plant processes, such as defense pathways, and the central roles of effector proteins, which are deposited into the plant along with the saliva during feeding. Here, we review the current literature on whitefly effectors in light of what is known about the effectors of phloem-feeding insects in general. Further analysis of these effectors may improve our understanding of how these insects establish compatible interactions with plants, whereas the subsequent identification of plant defense processes could lead to improved crop resistance to insects. We focus on the core concepts that define the effectors of phloem-feeding insects, such as the criteria used to identify candidate effectors in sequence-mining pipelines and screens used to analyze the potential roles of these effectors and their targets in planta. We discuss aspects of whitefly effector research that require further exploration, including where effectors localize when injected into plant tissues, whether the effectors target plant processes beyond defense pathways, and the properties of effectors in other insect excretions such as honeydew. Finally, we provide an overview of open issues and how they might be addressed.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paula J. M. van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Rebecca Corkill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Saskia A. Hogenhout
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C. Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Bhadani RV, Gajera HP, Hirpara DG, Kachhadiya HJ, Dave RA. Metabolomics of extracellular compounds and parasitic enzymes of Beauveria bassiana associated with biological control of whiteflies (Bemisia tabaci). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104877. [PMID: 34119221 DOI: 10.1016/j.pestbp.2021.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The Beauveria spp. were isolated from soil and insect cadavers of crop rhizosphere and characterized for parasitic enzyme activity and virulence against whiteflies (Bemisia tabaci). The colony morphology and molecular identification using ITS specific marker were carried out and confirmed entomopathogenic fungi as Beauveria bassiana. The bioefficacy of B. bassiana against whiteflies demonstrated highest corrected mortality and lowest LC50 in isolate B. bassiana JAU2 (SEM morphology) followed by JAU1 on 6th days. Parasitic enzymes chitinase and lipase were determined highest in JAU2 and protease activity examined higher in isolate JAU4 followed by JAU2 isolate on 6th days after inoculation. Comparative extracellular metabolomics carried out from potent (JAU1 and JAU2), moderate (JAU4 and JAU14) and weak (JAU6) B. bassiana isolates in normal suborder dextrose agar with yeast extrect (SDAY) and chitin induced media. Results illustrated that total 105 metabolites identified common for all five B. bassiana isolates differing in virulence. However, the color intensity of the metabolites changes in heat map showing differential concentration of that extracellular compound compared to other isolates. The volcano plot analysis illustrated 58 compounds significanlty diverse between potent JAU1 and JAU2 under two different culture conditions of which 34 compounds recognized up regulated in most potent JAU2 under chitin induced media. Out of 34 metabolites, ten compounds viz., fumaricine, resazurin, N-methyldioctylamine, penaresidun B, tetralin, squamocin B, oligomycin C, pubesenolide, epirbuterol and gentamicin C1a were recognized significantly upregulated in most potent JAU2 and reported for antimicrobial, nematicidal, larvicidalor insecticidal activities. The mass spectra and fragment structure were elucidated under LCMS-QTOF for some novel and unique compounds recognized in most potent B. bassiana JAU2, involved in parasitic activity against whiteflies.
Collapse
Affiliation(s)
- Rushita V Bhadani
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India
| | - H P Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India.
| | - Darshna G Hirpara
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India
| | - Harshita J Kachhadiya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India
| | - R A Dave
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh 362 001, Gujarat, India
| |
Collapse
|
38
|
Devendran R, Kumar M, Ghosh D, Yogindran S, Karim MJ, Chakraborty S. Capsicum-infecting begomoviruses as global pathogens: host-virus interplay, pathogenesis, and management. Trends Microbiol 2021; 30:170-184. [PMID: 34215487 DOI: 10.1016/j.tim.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Whitefly-transmitted begomoviruses are among the major threats to the cultivation of Capsicum spp. (Family: Solanaceae) worldwide. Capsicum-infecting begomoviruses (CIBs) have a broad host range and are commonly found in mixed infections, which, in turn, fuels the emergence of better-adapted species through intraspecies and interspecies recombination. Virus-encoded proteins hijack host factors to breach the well-coordinated antiviral response of plants. Epigenetic modifications of histones associated with viral minichromosomes play a critical role in this molecular arms race. Moreover, the association of DNA satellites further enhances the virulence of CIBs as the subviral agents aid the helper viruses to circumvent plant antiviral defense and facilitate expansion of their host range and disease development. The objective of this review is to provide a comprehensive overview on various aspects of CIBs such as their emergence, epidemiology, mechanism of pathogenesis, and the management protocols being employed for combating them.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneha Yogindran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
39
|
Saurabh S, Mishra M, Rai P, Pandey R, Singh J, Khare A, Jain M, Singh PK. Tiny Flies: A Mighty Pest That Threatens Agricultural Productivity-A Case for Next-Generation Control Strategies of Whiteflies. INSECTS 2021; 12:insects12070585. [PMID: 34203297 PMCID: PMC8307429 DOI: 10.3390/insects12070585] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023]
Abstract
Simple Summary Despite being a pest of global importance, effective management of whiteflies by the implication of environmentally friendly approaches is still a far-reaching task. In this review, we have tried to bring the readers’ attention to next-generation control strategies such as RNA interference and genetic modifications of plants for the expression of anti-whitefly proteins. These strategies offer huge promise to provide an effective and sustainable solution to the problem of whiteflies, either in isolation or in combination with other widely used practices under the regimes of integrated pest management. Focus has also been given to advanced technologies such as nanotechnology and genome editing, with promising prospects for field applications. The importance, applicability, and demand of these technologies for the control of whiteflies have been highlighted. We have also attempted to present the holistic picture of challenges in the path of commercial application of these promising technologies. To underline the pest status of whiteflies concisely, we have enlisted all economically important species of the pest along with their host plants/crops across the world. A comprehensive list of various insecticides of chemical, microbial, and botanical origin, applied in the field for the control of sweetpotato whitefly along with their resistance status, ecotoxicities, and effects on biological control agents, has been provided for readers. Abstract Whiteflies are a group of universally occurring insects that are considered to be a serious pest in their own way for causing both direct and indirect damages to crops. A few of them serve as vectors of plant viruses that are detrimental to the crop in question and cause an actual loss in productivity. A lot of attention is focused on pest control measures under the umbrella of IPM. In this review, we attempt to summarize the existing literature on how and why whiteflies are a serious concern for agriculture and society. We reviewed why there could be a need for fresh insight into the ways and means with which the pest can be combated. Here, we have emphasized next-generation strategies based on macromolecules, i.e., RNA interference and genetic engineering (for the expression of anti-whitefly proteins), as these strategies possess the greatest scope for research and improvement in the future. Recent scientific efforts based on nanotechnology and genome editing, which seem to offer great potential for whitefly/crop pest control, have been discussed. Comprehensive apprehensions related to obstacles in the path of taking lab-ready technologies into the farmers’ field have also been highlighted. Although the use of RNAi, GM crops, nanotechnologies, for the control of whiteflies needs to be evaluated in the field, there is an emerging range of possible applications with promising prospects for the control of these tiny flies that are mighty pests.
Collapse
Affiliation(s)
- Sharad Saurabh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Manisha Mishra
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (M.M.); (R.P.)
| | - Preeti Rai
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Rashmi Pandey
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (M.M.); (R.P.)
| | - Jyoti Singh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Akansha Khare
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
| | - Meeta Jain
- School of Biochemistry, Khandwa Rd., D.A.V.V., Bhawarkuwa, DAVV Takshila Parisar, Indore 452001, Madhya Pradesh, India;
| | - Pradhyumna Kumar Singh
- Insect Defense Laboratory, Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, 435, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.); (P.R.); (J.S.); (A.K.)
- CSIR-Human Resource Development Centre, Academy of Scientific and Innovative Research (AcSIR), (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: ; Tel.: +91-7080844111
| |
Collapse
|
40
|
Shah R, Al-Sadi AM, Nasser Al-Sabahi J, Al-Raeesi AA, Khamis Said Al-Rawahi K, Saud Al-Rashdi A, Fadhil Madad Al-Hinai S, Velazhahan R. Efficacy of an Omani strain of Cordyceps javanica and its culture filtrate against whitefly ( Bemisia tabaci) under laboratory conditions. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1835742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Riaz Shah
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Jamal Nasser Al-Sabahi
- Central Instrument Laboratory, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ali Ahmed Al-Raeesi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Khalid Khamis Said Al-Rawahi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ahad Saud Al-Rashdi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Sahar Fadhil Madad Al-Hinai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Rethinasamy Velazhahan
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|