1
|
Liang YL, Hu YX, Li FF, You HM, Chen J, Liang C, Guo ZF, Jing Q. Adaptor protein Src-homology 2 domain containing E (SH2E) deficiency induces heart defect in zebrafish. Acta Pharmacol Sin 2024:10.1038/s41401-024-01392-8. [PMID: 39313516 DOI: 10.1038/s41401-024-01392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Adaptor proteins play crucial roles in signal transduction across diverse signaling pathways. Src-homology 2 domain-containing E (SH2E) is the adaptor protein highly expressed in vascular endothelial cells and myocardium during zebrafish embryogenesis. In this study we investigated the function and mechanisms of SH2E in cardiogenesis. We first analyzed the spatiotemporal expression of SH2E and then constructed zebrafish lines with SH2E deficiency using the CRISPR-Cas9 system. We showed that homozygous mutants developed progressive pericardial edema (PCE), dilated atrium, abnormal atrioventricular looping and thickened atrioventricular wall from 3 days post fertilization (dpf) until death; inducible overexpression of SH2E was able to partially rescue the PCE phenotype. Using transcriptome sequencing analysis, we demonstrated that the MAPK/ERK and NF-κB signaling pathways might be involved in SH2E-deficiency-caused PCE. This study underscores the pivotal role of SH2E in cardiogenesis, and might help to identify innovative diagnostic techniques and therapeutic strategies for congenital heart disease.
Collapse
Affiliation(s)
- Yu-Lai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yang-Xi Hu
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Fang-Fang Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Hong-Min You
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jian Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chun Liang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Zhi-Fu Guo
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
2
|
Apolínová K, Pérez FA, Dyballa S, Coppe B, Mercader Huber N, Terriente J, Di Donato V. ZebraReg-a novel platform for discovering regulators of cardiac regeneration using zebrafish. Front Cell Dev Biol 2024; 12:1384423. [PMID: 38799508 PMCID: PMC11116629 DOI: 10.3389/fcell.2024.1384423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide with myocardial infarction being the most prevalent. Currently, no cure is available to either prevent or revert the massive death of cardiomyocytes that occurs after a myocardial infarction. Adult mammalian hearts display a limited regeneration capacity, but it is insufficient to allow complete myocardial recovery. In contrast, the injured zebrafish heart muscle regenerates efficiently through robust proliferation of pre-existing myocardial cells. Thus, zebrafish allows its exploitation for studying the genetic programs behind cardiac regeneration, which may be present, albeit dormant, in the adult human heart. To this end, we have established ZebraReg, a novel and versatile automated platform for studying heart regeneration kinetics after the specific ablation of cardiomyocytes in zebrafish larvae. In combination with automated heart imaging, the platform can be integrated with genetic or pharmacological approaches and used for medium-throughput screening of presumed modulators of heart regeneration. We demonstrate the versatility of the platform by identifying both anti- and pro-regenerative effects of genes and drugs. In conclusion, we present a tool which may be utilised to streamline the process of target validation of novel gene regulators of regeneration, and the discovery of new drug therapies to regenerate the heart after myocardial infarction.
Collapse
Affiliation(s)
- Kateřina Apolínová
- ZeClinics SL, Barcelona, Spain
- Biomedicine, Department of Medicine and Life Sciences, Faculty of Health and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | | | | | - Benedetta Coppe
- Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland
| | - Nadia Mercader Huber
- Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern, Switzerland
- Department for Biomedical Research DBMR, University of Bern, Bern, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid, Spain
| | | | | |
Collapse
|
3
|
Vaish AG, Tomizawa Y, Daggett DF, Hoshino K. Optical Elastography for Micropressure Characterization of Zebrafish Embryonic Cardiac Development. Ann Biomed Eng 2024; 52:647-656. [PMID: 38036895 DOI: 10.1007/s10439-023-03413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The proper formation of the vertebrate embryonic heart relies on various mechanical forces which determine its form and function. Measuring these forces at the microscale of the embryo is a challenge. We propose a new tool utilizing high-resolution optical elastography and stiffness measurements of surrounding tissues to non-invasively track the changes in the pressure exerted by the heart on the neighboring yolk, as well as changes in contractile patterns during early cardiac growth in-vivo, using the zebrafish embryo as a model system. Cardiac development was characterized every three hours from 24 hours post-fertilization (hpf) to 30 hpf and compared between wildtype fish and those treated with MS-222, a commonly used fish anesthetic that decreases cardiac contractility. Wildtype embryos from 24 to 30 hpf showed an average yolk indentation pressure of 0.32 mmHg to 0.41 mmHg, respectively. MS-222 treated embryos showed an average yolk indentation pressure of 0.22 mmHg to 0.29 mmHg. Yolk indentation pressure between control and treated embryos at 24 hpf and 30 hpf showed a significant difference (p < 0.05). Our method allowed for contractility and pressure evaluation at these early developmental stages, which have not been previously reported in published literature, regardless of sample or imaging modality. This research could lead to a better understanding of heart development and improved diagnostic tools for congenital heart disease.
Collapse
Affiliation(s)
- Anand G Vaish
- Department of Biomedical Engineering, University of Connecticut, A.B. Bronwell Building, Room 217, 260 Glenbrook Road, Unit 3247, Storrs, CT, USA
| | - Yuji Tomizawa
- Department of Biomedical Engineering, University of Connecticut, A.B. Bronwell Building, Room 217, 260 Glenbrook Road, Unit 3247, Storrs, CT, USA
| | - David F Daggett
- Department of Molecular and Cell Biology, University of Connecticut, Biology Physics Building (BPB) 104, 91 N. Eagleville Road, Unit 3125, Storrs, CT, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, A.B. Bronwell Building, Room 217, 260 Glenbrook Road, Unit 3247, Storrs, CT, USA.
| |
Collapse
|
4
|
Hussen E, Aakel N, Shaito AA, Al-Asmakh M, Abou-Saleh H, Zakaria ZZ. Zebrafish ( Danio rerio) as a Model for the Study of Developmental and Cardiovascular Toxicity of Electronic Cigarettes. Int J Mol Sci 2023; 25:194. [PMID: 38203365 PMCID: PMC10779276 DOI: 10.3390/ijms25010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024] Open
Abstract
The increasing popularity of electronic cigarettes (e-cigarettes) as an alternative to conventional tobacco products has raised concerns regarding their potential adverse effects. The cardiovascular system undergoes intricate processes forming the heart and blood vessels during fetal development. However, the precise impact of e-cigarette smoke and aerosols on these delicate developmental processes remains elusive. Previous studies have revealed changes in gene expression patterns, disruptions in cellular signaling pathways, and increased oxidative stress resulting from e-cigarette exposure. These findings indicate the potential for e-cigarettes to cause developmental and cardiovascular harm. This comprehensive review article discusses various aspects of electronic cigarette use, emphasizing the relevance of cardiovascular studies in Zebrafish for understanding the risks to human health. It also highlights novel experimental approaches and technologies while addressing their inherent challenges and limitations.
Collapse
Affiliation(s)
- Eman Hussen
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Nada Aakel
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.-A.); (H.A.-S.)
| | - Abdullah A. Shaito
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Maha Al-Asmakh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.-A.); (H.A.-S.)
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.-A.); (H.A.-S.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Zain Z. Zakaria
- Medical and Health Sciences Office, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
5
|
Wang W, Yu Y, Chen H, Sun P, Lu L, Yan S, Liu X, Lu T, Li W, Liu J, Chen L. Anti-arrhythmia potential of honey-processed licorice in zebrafish model: Antioxidant, histopathological and tissue distribution. JOURNAL OF ETHNOPHARMACOLOGY 2023:116724. [PMID: 37308027 DOI: 10.1016/j.jep.2023.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Honey-processed licorice (HPL) is the roasted product of licorice. It is recorded in the "Shang Han Lun" that licorice has better protection on heart after honey-processed. However, researches regarding its protective effect on the heart and the distribution of HPL in vivo are still limited. AIM OF THE STUDY To evaluate the cardio-protection of HPL and explore the law of ten main components distribution in vivo under physiological and pathological conditions for an attempt to clarify the pharmacological substance basis of HPL in treating arrhythmia. MATERIALS AND METHODS The adult zebrafish arrhythmia model was established by doxorubicin (DOX). Electrocardiogram (ECG) was used to detect the heart rate changes of zebrafish. SOD and MDA assays were used to evaluate oxidative stress levels in the myocardium. HE staining was used to observe the morphological change of myocardial tissues after HPL treatment. The UPLC-MS/MS was adapted to detect the content of ten main components of HPL in heart, liver, intestine, and brain under normal and heart injury conditions. RESULTS Heart rate of zebrafish was decreased, the SOD activity was attenuated and MDA content was increased in myocardium after administration of DOX. Moreover, tissue vacuolation and inflammatory infiltration were detected in zebrafish myocardium induced by DOX. HPL could ameliorate heart injury and bradycardia induced by DOX to a certain extent by increasing SOD activity and reducing MDA content. In addition, the study of tissue distribution revealed that the content of liquiritin, isoliquiritin, and isoliquiritigenin in the heart was higher in the presence of arrhythmias than those in the normal condition. Under pathological conditions, the heart highly exposed to these three components could elicit anti-arrhythmic effects by regulating immunity and oxidation. CONCLUSION These findings indicate that the HPL is protective against heart injury induced by DOX, and its effect is associated with the alleviation of oxidative stress and tissue injury. And the cardioprotective effect of HPL under pathological conditions may be related to the high distribution of liquiritin, isoliquiritin, and isoliquiritigenin in heart tissue. This study provides an experimental basis for the cardioprotective effects and tissue distribution of HPL.
Collapse
Affiliation(s)
- Wenxin Wang
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yinting Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huixian Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Peijun Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lujie Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shuwei Yan
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, PR China.
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jining Liu
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, PR China.
| | - Lihong Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Sokary S, Zakaria Z, Bawadi H, Al-Asmakh M. Testing the Anticancer Effect of Matcha Using Zebrafish as an Animal Model. Nutrients 2023; 15:nu15102369. [PMID: 37242252 DOI: 10.3390/nu15102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is the second leading cause of death worldwide, and triple-negative breast cancer (TNBC) patients show the poorest prognosis and survival and the highest metastasis prevalence among all breast cancer subtypes. Matcha has recently been associated with multiple health benefits, and in vitro studies showed the potential effect of matcha in inhibiting cancer development and metastasis. We aimed to determine the safe, non-toxic dose of matcha suitable for zebrafish and to investigate the anticancer effect of matcha on the metastasis and growth of human TBNC cells using a zebrafish xenograft model. Wild-type AB zebrafish were used to conduct multiple general toxicity assessments, including developmental, neuromuscular, and cardiovascular toxicities. The safe, non-toxic concentration of matcha was determined to be 50 µg/mL and 100 µg/mL. Afterward, the zebrafish xenograft model was successfully established for MDA-MB-468 and MDA-MB-231 TNBC cells. The tumor size and metastasis of the injected cancer cells were traced through CM-Dil red fluorescent dye. Upon exposure to matcha at the safe doses, MDA-MB-231 and MDA-MB-468 showed a trend toward reduction in tumor size in a dose-dependent manner, indicated by quantified fluorescence. Matcha also visibly suppressed metastasis of cancer cells in the zebrafish body. Our results point to a potential dose-dependent anticancer effect of matcha on TNBC cells; however, more extended observation periods after xenotransplantation are required to confirm the long-term anticancer effect of matcha on tumor growth and metastasis.
Collapse
Affiliation(s)
- Sara Sokary
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Zain Zakaria
- Medical and Health Sciences Office, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Science, QU-Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
7
|
Underwood KL, Walker WJ, Garrett PI, Linch S, Rynes TP, Mruk K. Optimizing spinal cord injury in zebrafish larvae: effects of age on the injury response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541337. [PMID: 37292959 PMCID: PMC10245662 DOI: 10.1101/2023.05.18.541337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zebrafish are an increasingly popular model to study spinal cord injury (SCI) regeneration. The transparency of larval zebrafish makes them ideal to study cellular processes in real time. Standardized approaches, including age of injury, are not readily available making comparisons of the results with other models challenging. In this study, we systematically examined the response to spinal cord transection of larval zebrafish at three different ages (3-7 days post fertilization or dpf) to determine whether the developmental complexity of the central nervous system affects the overall response to SCI. We then used imaging and behavioral analysis to evaluate whether differences existed based on the age of injury. All ages of larval zebrafish upregulated the required genes for glial bridge formation, ctgfa and gfap, at the site of injury, consistent with studies from adult zebrafish. Though all larval ages upregulated factors required to promote glial bridging, young larval zebrafish (3 dpf) were better able to regenerate axons independent of the glial bridge, unlike older zebrafish (7 dpf). Consistent with this data, locomotor experiments demonstrated that some swimming behavior occurs independent of glial bridge formation, further highlighting the need for standardization of this model and recovery assays. Overall, we found subtle cellular differences based on the age of transection in zebrafish, underlining the importance of considering age when designing experiments aimed at understanding regeneration.
Collapse
|
8
|
Vedder VL, Reinberger T, Haider SMI, Eichelmann L, Odenthal N, Abdelilah-Seyfried S, Aherrahrou Z, Breuer M, Erdmann J. pyHeart4Fish: Chamber-specific heart phenotype quantification of zebrafish in high-content screens. Front Cell Dev Biol 2023; 11:1143852. [PMID: 37113769 PMCID: PMC10126419 DOI: 10.3389/fcell.2023.1143852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death. Of CVDs, congenital heart diseases are the most common congenital defects, with a prevalence of 1 in 100 live births. Despite the widespread knowledge that prenatal and postnatal drug exposure can lead to congenital abnormalities, the developmental toxicity of many FDA-approved drugs is rarely investigated. Therefore, to improve our understanding of drug side effects, we performed a high-content drug screen of 1,280 compounds using zebrafish as a model for cardiovascular analyses. Zebrafish are a well-established model for CVDs and developmental toxicity. However, flexible open-access tools to quantify cardiac phenotypes are lacking. Here, we provide pyHeart4Fish, a novel Python-based, platform-independent tool with a graphical user interface for automated quantification of cardiac chamber-specific parameters, such as heart rate (HR), contractility, arrhythmia score, and conduction score. In our study, about 10.5% of the tested drugs significantly affected HR at a concentration of 20 µM in zebrafish embryos at 2 days post-fertilization. Further, we provide insights into the effects of 13 compounds on the developing embryo, including the teratogenic effects of the steroid pregnenolone. In addition, analysis with pyHeart4Fish revealed multiple contractility defects induced by seven compounds. We also found implications for arrhythmias, such as atrioventricular block caused by chloropyramine HCl, as well as (R)-duloxetine HCl-induced atrial flutter. Taken together, our study presents a novel open-access tool for heart analysis and new data on potentially cardiotoxic compounds.
Collapse
Affiliation(s)
- Viviana L. Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Syed M. I. Haider
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Luis Eichelmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Nadine Odenthal
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Salim Abdelilah-Seyfried
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| | - Maximilian Breuer
- Faculty of Mathematics and Natural Sciences, Institute for Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
DeMoya RA, Forman-Rubinsky RE, Fontaine D, Shin J, Watkins SC, Lo C, Tsang M. Sin3a Associated Protein 130kDa, sap130, plays an evolutionary conserved role in zebrafish heart development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534737. [PMID: 37034673 PMCID: PMC10081270 DOI: 10.1101/2023.03.30.534737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hypoplastic left heart syndrome (HLHS) is a congenital heart disease where the left ventricle is reduced in size. A forward genetic screen in mice identified SIN3A associated protein 130kDa ( Sap130 ), a protein in the chromatin modifying SIN3A/HDAC1 complex, as a gene contributing to the digenic etiology of HLHS. Here, we report the role of zebrafish sap130 genes in heart development. Loss of sap130a, one of two Sap130 orthologs, resulted in smaller ventricle size, a phenotype reminiscent to the hypoplastic left ventricle in mice. While cardiac progenitors were normal during somitogenesis, diminution of the ventricle size suggest the Second Heart Field (SHF) was the source of the defect. To explore the role of sap130a in gene regulation, transcriptome profiling was performed after the heart tube formation to identify candidate pathways and genes responsible for the small ventricle phenotype. Genes involved in cardiac differentiation and cell communication were dysregulated in sap130a , but not in sap130b mutants. Confocal light sheet analysis measured deficits in cardiac output in MZsap130a supporting the notion that cardiomyocyte maturation was disrupted. Lineage tracing experiments revealed a significant reduction of SHF cells in the ventricle that resulted in increased outflow tract size. These data suggest that sap130a is involved in cardiogenesis via regulating the accretion of SHF cells to the growing ventricle and in their subsequent maturation for cardiac function. Further, genetic studies revealed an interaction between hdac1 and sap130a , in the incidence of small ventricles. These studies highlight the conserved role of Sap130a and Hdac1 in zebrafish cardiogenesis.
Collapse
Affiliation(s)
- Ricardo A DeMoya
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Rachel E Forman-Rubinsky
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Deon Fontaine
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Joseph Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Simon C Watkins
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh PA 15213, USA
| |
Collapse
|
10
|
Baillie JS, Gendernalik A, Garrity DM, Bark D, Quinn TA. The in vivo study of cardiac mechano-electric and mechano-mechanical coupling during heart development in zebrafish. Front Physiol 2023; 14:1086050. [PMID: 37007999 PMCID: PMC10060984 DOI: 10.3389/fphys.2023.1086050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
In the adult heart, acute adaptation of electrical and mechanical activity to changes in mechanical load occurs via feedback processes known as “mechano-electric coupling” and “mechano-mechanical coupling.” Whether this occurs during cardiac development is ill-defined, as acutely altering the heart’s mechanical load while measuring functional responses in traditional experimental models is difficult, as embryogenesis occurs in utero, making the heart inaccessible. These limitations can be overcome with zebrafish, as larvae develop in a dish and are nearly transparent, allowing for in vivo manipulation and measurement of cardiac structure and function. Here we present a novel approach for the in vivo study of mechano-electric and mechano-mechanical coupling in the developing zebrafish heart. This innovative methodology involves acute in vivo atrial dilation (i.e., increased atrial preload) in larval zebrafish by injection of a controlled volume into the venous circulation immediately upstream of the heart, combined with optical measurement of the acute electrical (change in heart rate) and mechanical (change in stroke area) response. In proof-of-concept experiments, we applied our new method to 48 h post-fertilisation zebrafish, which revealed differences between the electrical and mechanical response to atrial dilation. In response to an acute increase in atrial preload there is a large increase in atrial stroke area but no change in heart rate, demonstrating that in contrast to the fully developed heart, during early cardiac development mechano-mechanical coupling alone drives the adaptive increase in atrial output. Overall, in this methodological paper we present our new experimental approach for the study of mechano-electric and mechano-mechanical coupling during cardiac development and demonstrate its potential for understanding the essential adaptation of heart function to acute changes in mechanical load.
Collapse
Affiliation(s)
| | - Alex Gendernalik
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | | | - David Bark
- Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, United States
| | - T. Alexander Quinn
- Physiology & Biophysics, Dalhousie University, Halifax, NS, Canada
- Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
- *Correspondence: T. Alexander Quinn,
| |
Collapse
|
11
|
Coppola A, Lombari P, Mazzella E, Capolongo G, Simeoni M, Perna AF, Ingrosso D, Borriello M. Zebrafish as a Model of Cardiac Pathology and Toxicity: Spotlight on Uremic Toxins. Int J Mol Sci 2023; 24:ijms24065656. [PMID: 36982730 PMCID: PMC10052014 DOI: 10.3390/ijms24065656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing health care problem. About 10% of the general population is affected by CKD, representing the sixth cause of death in the world. Cardiovascular events are the main mortality cause in CKD, with a cardiovascular risk 10 times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes with a negative effect on every organ, especially on the cardiovascular system. Mammalian models, sharing structural and functional similarities with humans, have been widely used to study cardiovascular disease mechanisms and test new therapies, but many of them are rather expensive and difficult to manipulate. Over the last few decades, zebrafish has become a powerful non-mammalian model to study alterations associated with human disease. The high conservation of gene function, low cost, small size, rapid growth, and easiness of genetic manipulation are just some of the features of this experimental model. More specifically, embryonic cardiac development and physiological responses to exposure to numerous toxin substances are similar to those observed in mammals, making zebrafish an ideal model to study cardiac development, toxicity, and cardiovascular disease.
Collapse
Affiliation(s)
- Annapaola Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariadelina Simeoni
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|
12
|
Salehin N, Teranikar T, Lee J, Chuong CJ. Ventricular anisotropic deformation and contractile function of the developing heart of zebrafish in vivo. Dev Dyn 2023; 252:247-262. [PMID: 36057940 DOI: 10.1002/dvdy.536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The developing zebrafish ventricle generates higher intraventricular pressure (IVP) with increasing stroke volume and cardiac output at different developmental stages to meet the metabolic demands of the rapidly growing embryo (Salehin et al. Ann Biomed Eng, 2021;49(9): 2080-2093). To understand the changing role of the developing embryonic heart, we studied its biomechanical characteristics during in vivo cardiac cycles. By combining changes in wall strains and IVP measurements, we assessed ventricular wall stiffness during diastolic filling and the ensuing systolic IVP-generation capacity during 3-, 4-, and 5-day post fertilization (dpf). We further examined the anisotropy of wall deformation, in different regions within the ventricle, throughout a complete cardiac cycle. RESULTS We found the ventricular walls grow increasingly stiff during diastolic filling with a corresponding increase in IVP-generation capacity from 3- to 4- and 5-dpf groups. In addition, we found the corresponding increasing level of anisotropic wall deformation through cardiac cycles that favor the latitudinal direction, with the most pronounced found in the equatorial region of the ventricle. CONCLUSIONS From 3- to 4- and 5-dpf groups, the ventricular wall myocardium undergoes increasing level of anisotropic deformation. This, in combination with the increasing wall stiffness and IVP-generation capacity, allows the developing heart to effectively pump blood to meet the rapidly growing embryo's needs.
Collapse
Affiliation(s)
- Nabid Salehin
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Tanveer Teranikar
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Cheng-Jen Chuong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
13
|
Ma J, Gu Y, Liu J, Song J, Zhou T, Jiang M, Wen Y, Guo X, Zhou Z, Sha J, He J, Hu Z, Luo L, Liu M. Functional screening of congenital heart disease risk loci identifies 5 genes essential for heart development in zebrafish. Cell Mol Life Sci 2022; 80:19. [PMID: 36574072 PMCID: PMC11073085 DOI: 10.1007/s00018-022-04669-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defect worldwide and a main cause of perinatal and infant mortality. Our previous genome-wide association study identified 53 SNPs that associated with CHD in the Han Chinese population. Here, we performed functional screening of 27 orthologous genes in zebrafish using injection of antisense morpholino oligos. From this screen, 5 genes were identified as essential for heart development, including iqgap2, ptprt, ptpn22, tbck and maml3. Presumptive roles of the novel CHD-related genes include heart chamber formation (iqgap2 and ptprt) and atrioventricular canal formation (ptpn22 and tbck). While deficiency of maml3 led to defective cardiac trabeculation and consequent heart failure in zebrafish embryos. Furthermore, we found that maml3 mutants showed decreased cardiomyocyte proliferation which caused a reduction in cardiac trabeculae due to inhibition of Notch signaling. Together, our study identifies 5 novel CHD-related genes that are essential for heart development in zebrafish and first demonstrates that maml3 is required for Notch signaling in vivo.
Collapse
Affiliation(s)
- Jianlong Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
| | - Juanjuan Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Jingmei Song
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Min Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Yang Wen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211100, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211100, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211100, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211100, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, 400715, China.
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
14
|
Li W, Guo S, Miao N. Transcriptional responses of fluxapyroxad-induced dysfunctional heart in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90034-90045. [PMID: 35864390 DOI: 10.1007/s11356-022-21981-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (FLU) is a succinate dehydrogenase inhibitor (SDHI) fungicide used in controlling crop diseases. Potential toxicity to aquatic organisms is not known. We exposed zebrafish to 1, 2, and 4 μM FLU for 3 days. The embryonic zebrafish showed developmental cardiac defects, including heart malformation, pericardial edema, and heart rate reduction. Compared with the controls, cardiac-specific transcription factors (nkx2.5, myh7, myl7, and myh6) exhibited dysregulated expression patterns after FLU treatment. We next used transcriptome and qRT-PCR analyses to explore the molecular mechanism of FLU cardiotoxicity. The transcriptome analysis and interaction network showed that the downregulated genes were enriched in calcium signaling pathways, adrenergic signaling in cardiomyocytes, and cardiac muscle contraction. FLU exposure repressed the cardio-related calcium signaling pathway, associated with apoptosis in the heart and other manifestations of cardiotoxicity. Thus, the findings provide valuable evidence that FLU exposure causes disruption of cardiac development in zebrafish embryos. Our findings will help to promote a better understanding of the toxicity mechanisms of FLU and act as a reference to explore the rational use and safety of FLU in agriculture.
Collapse
Affiliation(s)
- Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Shanshan Guo
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
15
|
Wang H, Segersvärd H, Siren J, Perttunen S, Immonen K, Kosonen R, Chen YC, Tolva J, Laivuori M, Mäyränpää MI, Kovanen PT, Sinisalo J, Laine M, Tikkanen I, Lakkisto P. Tankyrase Inhibition Attenuates Cardiac Dilatation and Dysfunction in Ischemic Heart Failure. Int J Mol Sci 2022; 23:ijms231710059. [PMID: 36077457 PMCID: PMC9456217 DOI: 10.3390/ijms231710059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperactive poly(ADP-ribose) polymerases (PARP) promote ischemic heart failure (IHF) after myocardial infarction (MI). However, the role of tankyrases (TNKSs), members of the PARP family, in pathogenesis of IHF remains unknown. We investigated the expression and activation of TNKSs in myocardium of IHF patients and MI rats. We explored the cardioprotective effect of TNKS inhibition in an isoproterenol-induced zebrafish HF model. In IHF patients, we observed elevated TNKS2 and DICER and concomitant upregulation of miR-34a-5p and miR-21-5p in non-infarcted myocardium. In a rat MI model, we found augmented TNKS2 and DICER in the border and infarct areas at the early stage of post-MI. We also observed consistently increased TNKS1 in the border and infarct areas and destabilized AXIN in the infarct area from 4 weeks onward, which in turn triggered Wnt/β-catenin signaling. In an isoproterenol-induced HF zebrafish model, inhibition of TNKS activity with XAV939, a TNKSs-specific inhibitor, protected against ventricular dilatation and cardiac dysfunction and abrogated overactivation of Wnt/β-catenin signaling and dysregulation of miR-34a-5p induced by isoproterenol. Our study unravels a potential role of TNKSs in the pathogenesis of IHF by regulating Wnt/β-catenin signaling and possibly modulating miRNAs and highlights the pharmacotherapeutic potential of TNKS inhibition for prevention of IHF.
Collapse
Affiliation(s)
- Hong Wang
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Correspondence: ; Tel.: +358-504487011
| | - Heli Segersvärd
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Juuso Siren
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Katariina Immonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Riikka Kosonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Yu-Chia Chen
- Zebrafish Unit, HiLIFE and Department of Anatomy, University of Helsinki, 00014 Helsinki, Finland
| | - Johanna Tolva
- Transplantation Laboratory, Department of Pathology, University of Helsinki, 00014 Helsinki, Finland
| | - Mirjami Laivuori
- Department of Vascular Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | - Mikko I. Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, 00290 Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Mika Laine
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Ilkka Tikkanen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Päivi Lakkisto
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Oh HN, Yoo D, Park S, Lee S, Kim WK. Developmental neurotoxicity induced by glutaraldehyde in neuron/astrocyte co-cultured cells and zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113891. [PMID: 35868176 DOI: 10.1016/j.ecoenv.2022.113891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The genotoxicity, development toxicity, carcinogenicity, and acute or chronic toxic effects of glutaraldehyde (GA), particularly during occupational exposure through its use as a fixative, disinfectant, and preservative, are well-documented but its effects on neurotoxicity have not been investigated. We performed in vitro and in vivo studies to examine the developmental neurotoxicity (DNT) of GA. Neurite outgrowth was examined in an in vitro co-culture model consisting of SH-SY5Y human neuroblastoma cells and human astrocytes. Cell Counting Kit-8, lactate dehydrogenase assay, and high-content screening revealed that GA significantly inhibited neurite outgrowth at non-cytotoxic concentration. Further studies showed that GA upregulated the mRNA expression of the astrocyte markers GFAP and S100β and downregulated the expression of the neurodevelopmental genes Nestin, βIII-tubulin, GAP43, and MAP2. Furthermore, in vivo zebrafish embryo toxicity tests explored the effects of GA on neural morphogenesis. GA adversely affected the early development of zebrafish embryos, resulting in decreased survival, irregular hatching, and reduced heart rate in a time- and concentration-dependent manner. Furthermore, the width of the brain and spinal cord was reduced, and the myelination of Schwann cells and oligodendrocytes was decreased by GA in transgenic zebrafish lines. These data suggest that GAs have potential DNT in vitro and in vivo, highlighting the need for caution regarding the neurotoxicity of GA.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| | - Donggon Yoo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Seungmin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
17
|
Flex E, Albadri S, Radio FC, Cecchetti S, Lauri A, Priolo M, Kissopoulos M, Carpentieri G, Fasano G, Venditti M, Magliocca V, Bellacchio E, Welch CL, Colombo PC, Kochav SM, Chang R, Barrick R, Trivisano M, Micalizzi A, Borghi R, Messina E, Mancini C, Pizzi S, De Santis F, Rosello M, Specchio N, Compagnucci C, McWalter K, Chung WK, Del Bene F, Tartaglia M. Dominantly acting KIF5B variants with pleiotropic cellular consequences cause variable clinical phenotypes. Hum Mol Genet 2022; 32:473-488. [PMID: 36018820 PMCID: PMC9851748 DOI: 10.1093/hmg/ddac213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Kinesins are motor proteins involved in microtubule (MT)-mediated intracellular transport. They contribute to key cellular processes, including intracellular trafficking, organelle dynamics and cell division. Pathogenic variants in kinesin-encoding genes underlie several human diseases characterized by an extremely variable clinical phenotype, ranging from isolated neurodevelopmental/neurodegenerative disorders to syndromic phenotypes belonging to a family of conditions collectively termed as 'ciliopathies.' Among kinesins, kinesin-1 is the most abundant MT motor for transport of cargoes towards the plus end of MTs. Three kinesin-1 heavy chain isoforms exist in mammals. Different from KIF5A and KIF5C, which are specifically expressed in neurons and established to cause neurological diseases when mutated, KIF5B is an ubiquitous protein. Three de novo missense KIF5B variants were recently described in four subjects with a syndromic skeletal disorder characterized by kyphomelic dysplasia, hypotonia and DD/ID. Here, we report three dominantly acting KIF5B variants (p.Asn255del, p.Leu498Pro and p.Leu537Pro) resulting in a clinically wide phenotypic spectrum, ranging from dilated cardiomyopathy with adult-onset ophthalmoplegia and progressive skeletal myopathy to a neurodevelopmental condition characterized by severe hypotonia with or without seizures. In vitro and in vivo analyses provide evidence that the identified disease-associated KIF5B variants disrupt lysosomal, autophagosome and mitochondrial organization, and impact cilium biogenesis. All variants, and one of the previously reported missense changes, were shown to affect multiple developmental processes in zebrafish. These findings document pleiotropic consequences of aberrant KIF5B function on development and cell homeostasis, and expand the phenotypic spectrum resulting from altered kinesin-mediated processes.
Collapse
Affiliation(s)
- Elisabetta Flex
- To whom correspondence should be addressed at: Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy. Tel: +39 06 4990 2866; ; Marco Tartaglia, Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy. Tel: +39 06 6859 3742;
| | | | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Manuela Priolo
- UOSD Genetica Medica, Grande Ospedale Metropolitano "Bianchi Melacrino Morelli", 89124 Reggio Calabria, Italy
| | - Marta Kissopoulos
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanna Carpentieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Giulia Fasano
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Martina Venditti
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, NY, New York 10032, USA
| | - Paolo C Colombo
- Department of Medicine, Columbia University Irving Medical Center, NY, New York 10032, USA
| | - Stephanie M Kochav
- Department of Medicine, Columbia University Irving Medical Center, NY, New York 10032, USA
| | - Richard Chang
- Division of Metabolic Disorders, Children's Hospital of Orange County (CHOC), CA, Orange 92868, USA
| | - Rebekah Barrick
- Division of Metabolic Disorders, Children's Hospital of Orange County (CHOC), CA, Orange 92868, USA
| | - Marina Trivisano
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Alessia Micalizzi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Rossella Borghi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Elena Messina
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy,Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Flavia De Santis
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215 Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, F-75012 Paris, France
| | - Nicola Specchio
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, NY, New York 10032, USA,Department of Medicine, Columbia University Irving Medical Center, NY, New York 10032, USA
| | | | - Marco Tartaglia
- To whom correspondence should be addressed at: Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy. Tel: +39 06 4990 2866; ; Marco Tartaglia, Genetics and Rare Disease Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy. Tel: +39 06 6859 3742;
| |
Collapse
|
18
|
Halabi R, Cechmanek PB, Hehr CL, McFarlane S. Semaphorin3f as a cardiomyocyte derived regulator of heart chamber development. Cell Commun Signal 2022; 20:126. [PMID: 35986301 PMCID: PMC9389736 DOI: 10.1186/s12964-022-00874-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/05/2022] [Indexed: 01/15/2023] Open
Abstract
Background During development a pool of precursors form a heart with atrial and ventricular chambers that exhibit distinct transcriptional and electrophysiological properties. Normal development of these chambers is essential for full term survival of the fetus, and deviations result in congenital heart defects. The large number of genes that may cause congenital heart defects when mutated, and the genetic variability and penetrance of the ensuing phenotypes, reveals a need to understand the molecular mechanisms that allow for the formation of chamber-specific cardiomyocyte differentiation. Methods We used in situ hybridization, immunohistochemistry and functional analyses to identify the consequences of the loss of the secreted semaphorin, Sema3fb, in the development of the zebrafish heart by using two sema3fb CRISPR mutant alleles. Results We find that in the developing zebrafish heart sema3fb mRNA is expressed by all cardiomyocytes, whereas mRNA for a known receptor Plexina3 (Plxna3) is expressed preferentially by ventricular cardiomyocytes. In sema3fb CRISPR zebrafish mutants, heart chamber development is impaired; the atria and ventricles of mutants are smaller in size than their wild type siblings, apparently because of differences in cell size and not cell numbers. Analysis of chamber differentiation indicates defects in chamber specific gene expression at the border between the ventricular and atrial chambers, with spillage of ventricular chamber genes into the atrium, and vice versa, and a failure to restrict specialized cardiomyocyte markers to the atrioventricular canal (AVC). The hypoplastic heart chambers are associated with decreased cardiac output and heart edema. Conclusions Based on our data we propose a model whereby cardiomyocytes secrete a Sema cue that, because of spatially restricted expression of the receptor, signals in a ventricular chamber-specific manner to establish a distinct border between atrial and ventricular chambers that is important to produce a fully functional heart. Video abstract
Supplementary information The online version contains supplementary material available at 10.1186/s12964-022-00874-8.
Collapse
|
19
|
The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci 2022; 23:ijms23137438. [PMID: 35806441 PMCID: PMC9267299 DOI: 10.3390/ijms23137438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has become an excellent model for the study of human diseases because it offers many advantages over other vertebrate animal models. The pineal gland, as well as the biological clock and circadian rhythms, are highly conserved in zebrafish, and melatonin is produced in the pineal gland and in most organs and tissues of the body. Zebrafish have several copies of the clock genes and of aanat and asmt genes, the latter involved in melatonin synthesis. As in mammals, melatonin can act through its membrane receptors, as with zebrafish, and through mechanisms that are independent of receptors. Pineal melatonin regulates peripheral clocks and the circadian rhythms of the body, such as the sleep/wake rhythm, among others. Extrapineal melatonin functions include antioxidant activity, inducing the endogenous antioxidants enzymes, scavenging activity, removing free radicals, anti-inflammatory activity through the regulation of the NF-κB/NLRP3 inflammasome pathway, and a homeostatic role in mitochondria. In this review, we introduce the utility of zebrafish to analyze the mechanisms of action of melatonin. The data here presented showed that the zebrafish is a useful model to study human diseases and that melatonin exerts beneficial effects on many pathophysiological processes involved in these diseases.
Collapse
|
20
|
Vasamsetti BMK, Chon K, Kim J, Oh JA, Yoon CY, Park HH. Developmental Toxic Effects of Thiram on Developing Zebrafish (Danio rerio) Embryos. TOXICS 2022; 10:toxics10070369. [PMID: 35878274 PMCID: PMC9317679 DOI: 10.3390/toxics10070369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Thiram, an oxidized dimer of dithiocarbamate, has fungicidal and ectoparasiticidal roles. This study aimed to determine the effects of thiram on the development of zebrafish (ZF) embryos. The developmental toxicity test was performed in accordance with the OECD 236 test guidelines, and ZF embryos were subjected to several thiram concentrations and a DMSO (0.01%) control. Subsequently, embryo mortalities and developmental anomalies were evaluated at different hours post fertilization (hpf). Thiram was highly toxic to ZF, with calculated median lethal concentrations (LC50) of thiram at 48 and 96 h as 13.10 ± 2.17 and 8.87 ± 2.09 μg/L, respectively. Thiram-treated embryos/larvae exhibited a variety of deformities, such as abnormal somites, reduced eye pigment, abnormal tail shape, yolk sac edema, hatching defects, and curved spines, with a median effective concentration (EC50) of 3.88 ± 1.23, 5.04 ± 1.82, 6.23 ± 0.92, 5.24 ± 2.22, 1.39 ± 0.25, and 2.60 ± 0.82 μg/L, respectively. Teratogenic index (TI) values ranged from 1.42 to 6.66 for the scored deformities. At 48 hpf, the average heartbeat of the control group was 177.20 ± 5.63 per minute, while the highest thiram-treated group (40 μg/L) was 99.50 ± 18.12 per minute. In addition, cardiac-related issues, such as pericardial edema and abnormal blood flow, were observed in thiram-treated ZF embryos. Overall, these findings suggest that thiram is teratogenic to ZF.
Collapse
|
21
|
Giselbrecht J, Pinnapireddy SR, Alioglu F, Sami H, Sedding D, Erdmann F, Janich C, Schulz-Siegmund M, Ogris M, Bakowsky U, Langner A, Bussmann J, Wölk C. Investigating 3R In Vivo Approaches for Bio-Distribution and Efficacy Evaluation of Nucleic Acid Nanocarriers: Studies on Peptide-Mimicking Ionizable Lipid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107768. [PMID: 35355412 DOI: 10.1002/smll.202107768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Formulations based on ionizable amino-lipids have been put into focus as nucleic acid delivery systems. Recently, the in vitro efficacy of the lipid formulation OH4:DOPE has been explored. However, in vitro performance of nanomedicines cannot correctly predict in vivo efficacy, thereby considerably limiting pre-clinical translation. This is further exacerbated by limited access to mammalian models. The present work proposes to close this gap by investigating in vivo nucleic acid delivery within simpler models, but which still offers physiologically complex environments and also adheres to the 3R guidelines (replace/reduce/refine) to improve animal experiments. The efficacy of OH4:DOPE as a delivery system for nucleic acids is demonstrated using in vivo approaches. It is shown that the formulation is able to transfect complex tissues using the chicken chorioallantoic membrane model. The efficacy of DNA and mRNA lipoplexes is tested extensively in the zebra fish (Danio rerio) embryo which allows the screening of biodistribution and transfection efficiency. Effective transfection of blood vessel endothelial cells is seen, especially in the endocardium. Both model systems allow an efficacy screening according to the 3R guidelines bypassing the in vitro-in vivo gap. Pilot studies in mice are performed to correlate the efficacy of in vivo transfection.
Collapse
Affiliation(s)
- Julia Giselbrecht
- Department of Medicinal Chemistry/Department of Pharmacology, Institute of Pharmacy Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
- CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041, Marburg, Germany
| | - Fatih Alioglu
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Haider Sami
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Daniel Sedding
- Internal Medicine III, Medical Faculty of Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Frank Erdmann
- Department of Medicinal Chemistry/Department of Pharmacology, Institute of Pharmacy Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Christopher Janich
- Department of Medicinal Chemistry/Department of Pharmacology, Institute of Pharmacy Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Medical Faculty, University Leipzig, Eilenburger Straße 15a, 04317, Leipzig, Germany
| | - Manfred Ogris
- Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037, Marburg, Germany
| | - Andreas Langner
- Department of Medicinal Chemistry/Department of Pharmacology, Institute of Pharmacy Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Jeroen Bussmann
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Christian Wölk
- Pharmaceutical Technology, Medical Faculty, University Leipzig, Eilenburger Straße 15a, 04317, Leipzig, Germany
| |
Collapse
|
22
|
Al-Ansari DE, Al-Badr M, Zakaria ZZ, Mohamed NA, Nasrallah GK, Yalcin HC, Abou-Saleh H. Evaluation of Metal-Organic Framework MIL-89 nanoparticles toxicity on embryonic zebrafish development. Toxicol Rep 2022; 9:951-960. [PMID: 35875258 PMCID: PMC9301604 DOI: 10.1016/j.toxrep.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/03/2022] Open
Abstract
Metal-Organic Framework MIL-89 nanoparticles garnered remarkable attention for their widespread use in technological applications. However, the impact of these nanomaterials on human and environmental health is still limited, and concerns regarding the potential risk of exposure during manipulation is constantly rising. Therefore, the extensive use of nanomaterials in the medical field necessitates a comprehensive assessment of their safety and interaction with different tissues of the body system. In this study, we evaluated the systemic toxicity of nanoMIL-89 using Zebrafish embryos as a model system to determine the acute developmental effect. Zebrafish embryos were exposed to a range of nanoMIL-89 concentrations (1 - 300 µM) at 4 h post-fertilization (hpf) for up to 120 hpf. The viability and hatching rate were evaluated at 24-72 hpf, whereas the cardiac function was assessed at 72 and 96 hpf, and the neurodevelopment and hepatic steatosis at 120 hpf. Our study shows that nanoMIL-89 exerted no developmental toxicity on zebrafish embryos at low concentrations (1-10 µM). However, the hatching time and heart development were affected at high concentrations of nanoMIL-89 (> 30 µM). Our findings add novel information into the available data about the in vivo toxicity of nanoMIL-89 and demonstrate its innocuity and safe use in biological, environmental, and medical applications.
Collapse
Affiliation(s)
- Dana E. Al-Ansari
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mashael Al-Badr
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Zain Z. Zakaria
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences, Department of Biomedical Sciences, Qatar University, Doha, Qatar
| | | | - Haissam Abou-Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
23
|
Assessment of the Preventive Effect of L-carnitine on Post-statin Muscle Damage in a Zebrafish Model. Cells 2022; 11:cells11081297. [PMID: 35455976 PMCID: PMC9032104 DOI: 10.3390/cells11081297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Statins, such as lovastatin, are lipid-lowering drugs (LLDs) that have been used to treat hypercholesterolaemia, defined as abnormally elevated cholesterol levels in the patient’s blood. Although statins are considered relatively safe and well tolerated, recipients may suffer from adverse effects, including post-statin myopathies. Many studies have shown that supplementation with various compounds may be beneficial for the prevention or treatment of side effects in patients undergoing statin therapy. In our study, we investigated whether L-carnitine administered to zebrafish larvae treated with lovastatin alleviates post-statin muscle damage. We found that exposure of zebrafish larvae to lovastatin caused skeletal muscle disruption observed as a reduction of birefringence, changes in muscle ultrastructure, and an increase in atrogin-1. Lovastatin also affected heart performance and swimming behaviour of larvae. Our data indicated that the muscle-protective effect of L-carnitine is partial. Some observed myotoxic effects, such as disruption of skeletal muscle and increase in atrogin-1 expression, heart contraction could be rescued by the addition of L-carnitine. Others, such as slowed heart rate and reduced locomotion, could not be mitigated by L-carnitine supplementation.
Collapse
|
24
|
Su CH, Chen SP, Chen LY, Yang JJ, Lee YC, Lee SS, Chen HH, Ng YY, Kuan YH. 3-Bromofluoranthene-induced cardiotoxicity of zebrafish and apoptosis in the vascular endothelial cells via intrinsic and extrinsic caspase-dependent pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112962. [PMID: 34775346 DOI: 10.1016/j.ecoenv.2021.112962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Fluoranthene, a high-molecular-weight polycyclic aromatic hydrocarbon (PAH), is widely present in air pollutants, including fine inhalable particulate matter. 3-Bromofluoranthene (3-BrFlu), which is a brominated fluoranthene and halogenated PAH, is generated from waste combustion, metallurgical processes, cement production, e-waste dismantling, and photoreaction. Vascular endothelial cells have key functions in the homeostasis and the development of the cardiovascular system. The zebrafish model has been widely employed to study cardiotoxicity and embryotoxicity. However, no evidence has indicated that 3-BrFlu induces cytotoxicity in vascular endothelial cells, or cardiotoxicity and embryotoxicity in zebrafish. In this study, 3-BrFlu induced concentration-dependent changes in embryo- and cardiotoxicity. Cytotoxicity was also induced by 3-BrFlu in a concentration-dependent manner through apoptosis and necrosis in vascular endothelial cells, SVEC4-10 cells. The activities of caspase-3, -8, and -9 were induced by 3-BrFlu via an intrinsic pathway constituting Bcl-2 downregulation, Bad upregulation, and mitochondrial dysfunction; the extrinsic pathway included the expression of death receptors, including tumour necrosis factor α and Fas receptors. These results indicated that 3-BrFlu caused cardio- and embryotoxicity in zebrafish through vascular endothelial cells cytotoxicity resulting from caspase-dependent apoptosis through intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Chun-Hung Su
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC; Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Shih-Pin Chen
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Li-You Chen
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Jiann-Jou Yang
- Department of BioMedical Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Yi-Chia Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Hsin-Hung Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan, ROC; School of Medicine, Institute of Medicine and public health, Chung Shan Medical University, Taichung, Taiwan, ROC; Chung Sheng Clinic, Nantou, Taiwan, ROC
| | - Yan-Yan Ng
- Department of Pediatric, Chung Kang branch, Cheng Ching Hospital, Taichung City, Taiwan, ROC
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC; Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC.
| |
Collapse
|
25
|
Piechowski JM, Bagatto B. Cardiovascular function during early development is suppressed by cinnamon flavored, nicotine-free, electronic cigarette vapor. Birth Defects Res 2021; 113:1215-1223. [PMID: 34487432 DOI: 10.1002/bdr2.1951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/20/2021] [Accepted: 08/21/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Vaping products continue to remain popular among teens and young adults despite an overall lack of research regarding their potential health effects. While much research focuses on respiratory effects associated with electronic cigarette use, their effects on other systems, including embryonic cardiovascular function and development due to maternal use during pregnancy, also needs to be evaluated. Here, we assessed the impact of nicotine-free, cinnamon and chocolate flavored, electronic cigarette vapor on cardiovascular function during early development by exposing wild-type zebrafish embryos to electronic cigarette vapor. METHODS Vapor was produced from a second-generation style vape pen and was incorporated into dechlorinated water at 0.6, 12, and 25 puffs/L, where one puff equals 55 ml of vapor. Vapor infused water was distributed among flasks to which zebrafish embryos were added. Exposures lasted for 24 hours and cardiovascular videos were recorded. Videos were analyzed and end systolic volume, end diastolic volume, stroke volume, heart rate, cardiac output, red blood cell density, and arterial and venous blood vessel diameters were measured. RESULTS Here, it was found that embryonic exposure to nicotine free, cinnamon, and not chocolate, flavored electronic cigarette vapor at 25 puffs/L significantly decreased all cardiovascular parameters measured, with the exception of blood vessel diameter. No significant effect on any measured parameter was observed at 0.6 or 12 puffs/L with either flavor. CONCLUSION These results indicate that cinnamon flavored electronic cigarette vapor can affect cardiovascular function during early development, even in the absence of nicotine, particularly at elevated exposure concentrations.
Collapse
Affiliation(s)
- Jennifer M Piechowski
- Program in Integrated Bioscience, Department of Biology, The University of Akron, Akron, Ohio, USA
| | - Brian Bagatto
- Program in Integrated Bioscience, Department of Biology, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
26
|
Advances in Cardiac Development and Regeneration Using Zebrafish as a Model System for High-Throughput Research. J Dev Biol 2021; 9:jdb9040040. [PMID: 34698193 PMCID: PMC8544412 DOI: 10.3390/jdb9040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Heart disease is the leading cause of death in the United States and worldwide. Understanding the molecular mechanisms of cardiac development and regeneration will improve diagnostic and therapeutic interventions against heart disease. In this direction, zebrafish is an excellent model because several processes of zebrafish heart development are largely conserved in humans, and zebrafish has several advantages as a model organism. Zebrafish transcriptomic profiles undergo alterations during different stages of cardiac development and regeneration which are revealed by RNA-sequencing. ChIP-sequencing has detected genome-wide occupancy of histone post-translational modifications that epigenetically regulate gene expression and identified a locus with enhancer-like characteristics. ATAC-sequencing has identified active enhancers in cardiac progenitor cells during early developmental stages which overlap with occupancy of histone modifications of active transcription as determined by ChIP-sequencing. CRISPR-mediated editing of the zebrafish genome shows how chromatin modifiers and DNA-binding proteins regulate heart development, in association with crucial signaling pathways. Hence, more studies in this direction are essential to improve human health because they answer fundamental questions on cardiac development and regeneration, their differences, and why zebrafish hearts regenerate upon injury, unlike humans. This review focuses on some of the latest studies using state-of-the-art technology enabled by the elegant yet simple zebrafish.
Collapse
|
27
|
Vicente M, Salgado-Almario J, Collins MM, Martínez-Sielva A, Minoshima M, Kikuchi K, Domingo B, Llopis J. Cardioluminescence in Transgenic Zebrafish Larvae: A Calcium Imaging Tool to Study Drug Effects and Pathological Modeling. Biomedicines 2021; 9:biomedicines9101294. [PMID: 34680411 PMCID: PMC8533351 DOI: 10.3390/biomedicines9101294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
Zebrafish embryos and larvae have emerged as an excellent model in cardiovascular research and are amenable to live imaging with genetically encoded biosensors to study cardiac cell behaviours, including calcium dynamics. To monitor calcium ion levels in three to five days post-fertilization larvae, we have used bioluminescence. We generated a transgenic line expressing GFP-aequorin in the heart, Tg(myl7:GA), and optimized a reconstitution protocol to boost aequorin luminescence. The analogue diacetylh-coelenterazine enhanced light output and signal-to-noise ratio. With this cardioluminescence model, we imaged the time-averaged calcium levels and beat-to-beat calcium oscillations continuously for hours. As a proof-of-concept of the transgenic line, changes in ventricular calcium levels were observed by Bay K8644, an L-type calcium channel activator and with the blocker nifedipine. The β-adrenergic blocker propranolol decreased calcium levels, heart rate, stroke volume, and cardiac output, suggesting that larvae have a basal adrenergic tone. Zebrafish larvae treated with terfenadine for 24 h have been proposed as a model of heart failure. Tg(myl7:GA) larvae treated with terfenadine showed bradycardia, 2:1 atrioventricular block, decreased time-averaged ventricular calcium levels but increased calcium transient amplitude, and reduced cardiac output. As alterations of calcium signalling are involved in the pathogenesis of heart failure and arrhythmia, the GFP-aequorin transgenic line provides a powerful platform for understanding calcium dynamics.
Collapse
Affiliation(s)
- Manuel Vicente
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (M.V.); (J.S.-A.); (A.M.-S.)
| | - Jussep Salgado-Almario
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (M.V.); (J.S.-A.); (A.M.-S.)
| | - Michelle M. Collins
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Antonio Martínez-Sielva
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (M.V.); (J.S.-A.); (A.M.-S.)
| | - Masafumi Minoshima
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; (M.M.); (K.K.)
| | - Kazuya Kikuchi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; (M.M.); (K.K.)
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Beatriz Domingo
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (M.V.); (J.S.-A.); (A.M.-S.)
- Correspondence: (B.D.); (J.L.); Tel.: +34-967-599-315 (J.L.); +34-967-599-200 (ext. 2686) (B.D.)
| | - Juan Llopis
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (M.V.); (J.S.-A.); (A.M.-S.)
- Correspondence: (B.D.); (J.L.); Tel.: +34-967-599-315 (J.L.); +34-967-599-200 (ext. 2686) (B.D.)
| |
Collapse
|
28
|
Li B, Chen K, Liu F, Zhang J, Chen X, Chen T, Chen Q, Yao Y, Hu W, Wang L, Wu Y. Developmental Angiogenesis Requires the Mitochondrial Phenylalanyl-tRNA Synthetase. Front Cardiovasc Med 2021; 8:724846. [PMID: 34540921 PMCID: PMC8440837 DOI: 10.3389/fcvm.2021.724846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Mitochondrial aminoacyl-tRNA synthetases (mtARSs) catalyze the binding of specific amino acids to their cognate tRNAs and play an essential role in the synthesis of proteins encoded by mitochondrial DNA. Defects in mtARSs have been linked to human diseases, but their tissue-specific pathophysiology remains elusive. Here we examined the role of mitochondrial phenylalanyl-tRNA synthetase (FARS2) in developmental angiogenesis and its potential contribution to the pathogenesis of cardiovascular disease. Methods: Morpholinos were injected into fertilized zebrafish ova to establish an in vivo fars2 knock-down model. A visualization of the vasculature was achieved by using Tg (fli1: EGFP)y1 transgenic zebrafish. In addition, small interference RNAs (siRNAs) were transferred into human umbilical vein endothelial cells (HUVECs) to establish an in vitro FARS2 knock-down model. Cell motility, proliferation, and tubulogenesis were determined using scratch-wound CCK8, transwell-based migration, and tube formation assays. In addition, mitochondria- and non-mitochondria-related respiration were evaluated using a Seahorse XF24 analyzer and flow cytometry assays. Analyses of the expression levels of transcripts and proteins were performed using qRT-PCR and western blotting, respectively. Results: The knock-down of fars2 hampered the embryonic development in zebrafish and delayed the formation of the vasculature in Tg (fli1: EGFP)y1 transgenic zebrafish. In addition, the siRNA-mediated knock-down of FARS2 impaired angiogenesis in HUVECs as indicated by decreased cell motility and tube formation capacity. The knock-down of FARS2 also produced variable decreases in mitochondrial- and non-mitochondrial respiration in HUVECs and disrupted the regulatory pathways of angiogenesis in both HUVECs and zebrafish. Conclusion: Our current work offers novel insights into angiogenesis defects and cardiovascular diseases induced by FARS2 deficiency.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Kun Chen
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Fangfang Liu
- Department of Neurosciences, Air Force Medical University, Xi'an, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xihui Chen
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Tangdong Chen
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Qi Chen
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| | - Yan Yao
- Department of Clinical Medicine, Yan'an University, Yan'an, China
| | - Weihong Hu
- Department of Clinical Medicine, Yan'an University, Yan'an, China
| | - Li Wang
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China.,School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, China.,Shaanxi Provincial Key Laboratory of Clinic Genetics, Air Force Medical University, Xi'an, China
| |
Collapse
|
29
|
El-Nahhal Y, El-Nahhal I. Cardiotoxicity of some pesticides and their amelioration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44726-44754. [PMID: 34231153 DOI: 10.1007/s11356-021-14999-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Pesticides are used to control pests that harm plants, animals, and humans. Their application results in the contamination of the food and water systems. Pesticides may cause harm to the human body via occupational exposure or the ingestion of contaminated food and water. Once a pesticide enters the human body, it may create health consequences such as cardiotoxicity. There is not enough information about pesticides that cause cardiotoxicity in the literature. Currently, there are few reports that summarized the cardiotoxicity due to some pesticide groups. This necessitates reviewing the current literature regarding pesticides and cardiotoxicity and to summarize them in a concrete review. The objectives of this review article were to summarize the advances in research related to pesticides and cardiotoxicity, to classify pesticides into certain groups according to cardiotoxicity, to discuss the possible mechanisms of cardiotoxicity, and to present the agents that ameliorate cardiotoxicity. Approximately 60 pesticides were involved in cardiotoxicity: 30, 13, and 17 were insecticides, herbicides, and fungicides, respectively. The interesting outcome of this study is that 30 and 13 pesticides from toxicity classes II and III, respectively, are involved in cardiotoxicity. The use of standard antidotes for pesticide poisoning shows health consequences among users. Alternative safe medical management is the use of cardiotoxicity-ameliorating agents. This review identifies 24 ameliorating agents that were successfully used to manage 60 cases. The most effective agents were vitamin C, curcumin, vitamin E, quercetin, selenium, chrysin, and garlic extract. Vitamin C showed ameliorating effects in a wide range of toxicities. The exposure mode to pesticide residues, where 1, 2, 3, and 4 are aerial exposure to pesticide drift, home and/or office exposure, exposure due to drinking contaminated water, and consumption of contaminated food, respectively. General cardiotoxicity is represented by 5, whereas 6, 7, 8 and 9 are electrocardiogram (ECG) of hypotension due to exposure to OP residues, ECG of myocardial infraction due to exposure to OPs, ECG of hypertension due to exposure to OC and/or PY, and normal ECG respectively.
Collapse
Affiliation(s)
- Yasser El-Nahhal
- Department of Earth and Environmental Science Faculty of Science, The Islamic University-Gaza, Gaza, Palestine.
| | | |
Collapse
|
30
|
Ma J, Huang Y, Jiang P, Liu Z, Luo Q, Zhong K, Yuan W, Meng Y, Lu H. Pyridaben induced cardiotoxicity during the looping stages of zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105870. [PMID: 34107429 DOI: 10.1016/j.aquatox.2021.105870] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Pyridaben is a widely used acaricide in agriculture and reaches a high concentration (97 μg/L) in paddy water for a short time when pyridaben was applied to rice. However, its toxicity to aquatic organisms is still poorly understood. Therefore, we assessed the pyridaben cardiotoxicity to aquatic organisms using the zebrafish (Danio rerio) model. We found that pyridaben is highly toxic to aquatic organisms, and LC50 of pyridaben for zebrafish at 72 hpf was 100.6 μg/L. Pyridaben caused severe cardiac malformations and functional abnormalities. Morphologic abnormity included severe pericardial edema, cardiomegaly, decreased cardiomyocytes, thinning of the myocardial layer, linear heart, and increased the distance between sinus venous and bulbus arteriosus (SV-BA). Functional failure included arrhythmia, heart failure, and reduced pumping efficiency. The genes involved in heart development, WNT signaling, BMP signaling, ATPase, and cardiac troponin C were abnormally expressed in the pyridaben treatment group. Exposure to pyridaben increased oxidative stress and induced cell apoptosis. The above causes may lead to cardiac toxicity. The results suggest that pyridaben exposure induced elevated oxidative stress through the WNT signaling pathway, which in turn led to apoptosis in the heart and cardiotoxicity. Besides, pyridaben exposure at the critical stage of cardiac looping (24-36 hpf) resulted in the greatest cardiotoxicity. The chorion reduced the entry of pyridaben and protected zebrafish embryos, resulting in cardiotoxicity second only to the stage of cardiac looping. The study should provide valuable information that pyridaben exposure causes cardiotoxicity in zebrafish embryos and have potential health risks for other aquatic organisms and humans.
Collapse
Affiliation(s)
- Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Ping Jiang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Zhou Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Qiang Luo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
31
|
Yuan M, Li W, Xiao P. Bixafen causes cardiac toxicity in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36303-36313. [PMID: 33694115 DOI: 10.1007/s11356-021-13238-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Bixafen (BIX) is a succinate dehydrogenase inhibitor (SDHI)-class fungicide that is used to control crop diseases. However, data on the toxicity of BIX to zebrafish are limited. Here, zebrafish embryos were exposed to 0.1, 0.3, and 0.9 μM BIX. After BIX exposure, zebrafish embryos exhibited cardiac dysplasia and dysfunction, including pericardial edema, reduced heart rate, and drastically decreased erythrocytes in the cardiac area; the severity of these negative effects increased with BIX concentration and the duration of BIX exposure. In addition, the transcription levels of erythropoiesis-related genes decreased significantly in BIX-treated embryos, as compared to untreated control embryos. Similarly, compared with the control, key genes responsible for cardiac development (myh6, nkx2.5, and myh7) also exhibited dysregulated expression patterns in response to BIX treatment, suggesting that BIX might specifically affect cardiac development. Finally, cell apoptosis was induced in embryos after BIX treatment. In combination, our results suggested that exposure to BIX induced cardiac toxicity in zebrafish. These data will be valuable for future evaluations of the environmental risks of BIX.
Collapse
Affiliation(s)
- Mingrui Yuan
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, China.
| | - Peng Xiao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
32
|
Saputra F, Lai YH, Fernandez RAT, Macabeo APG, Lai HT, Huang JC, Hsiao CD. Acute and Sub-Chronic Exposure to Artificial Sweeteners at the Highest Environmentally Relevant Concentration Induce Less Cardiovascular Physiology Alterations in Zebrafish Larvae. BIOLOGY 2021; 10:548. [PMID: 34207293 PMCID: PMC8233861 DOI: 10.3390/biology10060548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022]
Abstract
Artificial sweeteners are widely used food ingredients in beverages and drinks to lower calorie intake which in turn helps prevent lifestyle diseases such as obesity. However, as their popularity has increased, the release of artificial sweetener to the aquatic environment has also increased at a tremendous rate. Thus, our study aims to systematically explore the potential cardiovascular physiology alterations caused by eight commercial artificial sweeteners, including acesulfame-K, alitame, aspartame, sodium cyclamate, dulcin, neotame, saccharine and sucralose, at the highest environmentally relevant concentration on cardiovascular performance using zebrafish (Danio rerio) as a model system. Embryonic zebrafish were exposed to the eight artificial sweeteners at 100 ppb and their cardiovascular performance (heart rate, ejection fraction, fractional shortening, stroke volume, cardiac output, heartbeat variability, and blood flow velocity) was measured and compared. Overall, our finding supports the safety of artificial sweetener exposure. However, several finding like a significant increase in the heart rate and heart rate variability after incubation in several artificial sweeteners are noteworthy. Biomarker testing also revealed that saccharine significantly increase the dopamine level in zebrafish larvae, which is might be the reason for the cardiac physiology changes observed after saccharine exposure.
Collapse
Affiliation(s)
- Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan;
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Rey Arturo T. Fernandez
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana St., Manila 1015, Philippines; (R.A.T.F.); (A.P.G.M.)
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana St., Manila 1015, Philippines; (R.A.T.F.); (A.P.G.M.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
33
|
Zhang Q, He X, Yao S, Lin T, Zhang L, Chen D, Chen C, Yang Q, Li F, Zhu YM, Guan MX. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res 2021; 49:4689-4704. [PMID: 33836087 PMCID: PMC8096277 DOI: 10.1093/nar/gkab228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Deficient maturations of mitochondrial transcripts are linked to clinical abnormalities but their pathophysiology remains elusive. Previous investigations showed that pathogenic variants in MTO1 for the biosynthesis of τm5U of tRNAGlu, tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR) were associated with hypertrophic cardiomyopathy (HCM). Using mto1 knock-out(KO) zebrafish generated by CRISPR/Cas9 system, we demonstrated the pleiotropic effects of Mto1 deficiency on mitochondrial RNA maturations. The perturbed structure and stability of tRNAs caused by mto1 deletion were evidenced by conformation changes and sensitivity to S1-mediated digestion of tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR). Notably, mto1KO zebrafish exhibited the global decreases in the aminoacylation of mitochondrial tRNAs with the taurine modification. Strikingly, ablated mto1 mediated the expression of MTPAP and caused the altered polyadenylation of cox1, cox3, and nd1 mRNAs. Immunoprecipitation assay indicated the interaction of MTO1 with MTPAP related to mRNA polyadenylation. These alterations impaired mitochondrial translation and reduced activities of oxidative phosphorylation complexes. These mitochondria dysfunctions caused heart development defects and hypertrophy of cardiomyocytes and myocardial fiber disarray in ventricles. These cardiac defects in the mto1KO zebrafish recapitulated the clinical phenotypes in HCM patients carrying the MTO1 mutation(s). Our findings highlighted the critical role of MTO1 in mitochondrial transcript maturation and their pathological consequences in hypertrophic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/physiopathology
- Gene Expression Profiling
- Heart/embryology
- Heart/physiopathology
- In Situ Hybridization
- Microscopy, Electron, Transmission
- Mitochondria/enzymology
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation
- Polyadenylation/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transfer RNA Aminoacylation/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiao He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingxian Yang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feng Li
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi-Min Zhu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
34
|
Basnet RM, Zizioli D, Muscò A, Finazzi D, Sigala S, Rossini E, Tobia C, Guerra J, Presta M, Memo M. Caffeine Inhibits Direct and Indirect Angiogenesis in Zebrafish Embryos. Int J Mol Sci 2021; 22:ijms22094856. [PMID: 34063734 PMCID: PMC8124397 DOI: 10.3390/ijms22094856] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we report the effects of caffeine on angiogenesis in zebrafish embryos both during normal development and after exposure to Fibroblast Growth Factor 2 (FGF2). As markers of angiogenesis, we measured the length and width of intersegmental vessels (ISVs), performed whole-mount in situ hybridization with fli1 and cadh5 vascular markers, and counted the number of interconnecting vessels (ICVs) in sub-intestinal venous plexus (SIVP). In addition, we measured angiogenesis after performing zebrafish yolk membrane (ZFYM) assay with microinjection of fibroblast growth factor 2 (FGF2) and perivitelline tumor xenograft assay with microinjection of tumorigenic FGF2-overexpressing endothelial (FGF2-T-MAE) cells. The results showed that caffeine treatment causes a shortening and thinning of ISVs along with a decreased expression of the vascular marker genes and a decrease in the number of ICVs in the SIVP. Caffeine was also able to block angiogenesis induced by exogenous FGF2 or FGF2-producing cells. Overall, our results are suggestive of the inhibitory effect of caffeine in both direct and indirect angiogenesis.
Collapse
Affiliation(s)
- Ram Manohar Basnet
- Unit of Pharmacology, DMMT, University of Brescia, 25123 Brescia, Italy; (R.M.B.); (A.M.); (S.S.); (E.R.)
| | - Daniela Zizioli
- Unit of Biotechnology, DMMT, University of Brescia, 25123 Brescia, Italy; (D.Z.); (D.F.)
| | - Alessia Muscò
- Unit of Pharmacology, DMMT, University of Brescia, 25123 Brescia, Italy; (R.M.B.); (A.M.); (S.S.); (E.R.)
| | - Dario Finazzi
- Unit of Biotechnology, DMMT, University of Brescia, 25123 Brescia, Italy; (D.Z.); (D.F.)
- Laboratorio Centrale Analisi Chimico-Cliniche, ASST Spedali Civili, 25123 Brescia, Italy
| | - Sandra Sigala
- Unit of Pharmacology, DMMT, University of Brescia, 25123 Brescia, Italy; (R.M.B.); (A.M.); (S.S.); (E.R.)
| | - Elisa Rossini
- Unit of Pharmacology, DMMT, University of Brescia, 25123 Brescia, Italy; (R.M.B.); (A.M.); (S.S.); (E.R.)
| | - Chiara Tobia
- Unit of Experimental Oncology and Immunology, DMMT, University of Brescia, 25123 Brescia, Italy; (C.T.); (J.G.); (M.P.)
| | - Jessica Guerra
- Unit of Experimental Oncology and Immunology, DMMT, University of Brescia, 25123 Brescia, Italy; (C.T.); (J.G.); (M.P.)
| | - Marco Presta
- Unit of Experimental Oncology and Immunology, DMMT, University of Brescia, 25123 Brescia, Italy; (C.T.); (J.G.); (M.P.)
| | - Maurizio Memo
- Unit of Pharmacology, DMMT, University of Brescia, 25123 Brescia, Italy; (R.M.B.); (A.M.); (S.S.); (E.R.)
- Correspondence:
| |
Collapse
|
35
|
Majumdar U, Yasuhara J, Garg V. In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a036764. [PMID: 31818859 DOI: 10.1101/cshperspect.a036764] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital cardiovascular malformations represent the most common type of birth defect and encompass a spectrum of anomalies that range from mild to severe. The etiology of congenital heart disease (CHD) is becoming increasingly defined based on prior epidemiologic studies that supported the importance of genetic contributors and technological advances in human genome analysis. These have led to the discovery of a growing number of disease-contributing genetic abnormalities in individuals affected by CHD. The ever-growing population of adult CHD survivors, which are the result of reductions in mortality from CHD during childhood, and this newfound genetic knowledge have led to important questions regarding recurrence risks, the mechanisms by which these defects occur, the potential for novel approaches for prevention, and the prediction of long-term cardiovascular morbidity in adult CHD survivors. Here, we will review the current status of genetic models that accurately model human CHD as they provide an important tool to answer these questions and test novel therapeutic strategies.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
36
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
37
|
Zabihihesari A, Khalili A, Hilliker AJ, Rezai P. Open access tool and microfluidic devices for phenotypic quantification of heart function of intact fruit fly and zebrafish larvae. Comput Biol Med 2021; 132:104314. [PMID: 33774273 DOI: 10.1016/j.compbiomed.2021.104314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
In this paper, the heartbeat parameters of small model organisms, i.e. Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish), were quantified in-vivo in intact larvae using microfluidics and a novel MATLAB-based software. Among different developmental stages of flies and zebrafish, the larval stage is privileged due to biological maturity, optical accessibility, and the myogenic nature of the heart. Conventional methods for parametric quantification of heart activities are complex and mostly done on dissected, irreversibly immobilized, or anesthetized larvae. Microfluidics has helped with reversible immobilization without the need for anesthesia, but heart monitoring is still done manually due to challenges associated with the movement of floating organs and cardiac interruptions. In our MATLAB software applied to videos recorded in microfluidic-based whole-organism assays, we have used image segmentation to automatically detect the heart and extract the heartbeat signal based on pixel intensity variations of the most contractile region of the heart tube. The smoothness priors approach (SPA) was applied to remove the undesired low-frequency noises caused by environmental light changes or heart movement. Heart rate and arrhythmicity were automatically measured from the detrended heartbeat signal while other parameters including end-diastolic and end-systolic diameters, shortening distance, shortening time, fractional shortening, and shortening velocity were quantified for the first time in intact larvae, using M-mode images under bright field microscopy. The software was able to detect more than 94% of the heartbeats and the cardiac arrests in intact Drosophila larvae. Our user-friendly software enables in-vivo quantification of D. melanogaster and D. rerio larval heart functions in microfluidic devices, with the potential to be applied to other biological models and used for automatic screening of drugs and alleles that affect their heart.
Collapse
Affiliation(s)
| | - Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada.
| |
Collapse
|
38
|
Martin KE, Waxman JS. Atrial and Sinoatrial Node Development in the Zebrafish Heart. J Cardiovasc Dev Dis 2021; 8:jcdd8020015. [PMID: 33572147 PMCID: PMC7914448 DOI: 10.3390/jcdd8020015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Proper development and function of the vertebrate heart is vital for embryonic and postnatal life. Many congenital heart defects in humans are associated with disruption of genes that direct the formation or maintenance of atrial and pacemaker cardiomyocytes at the venous pole of the heart. Zebrafish are an outstanding model for studying vertebrate cardiogenesis, due to the conservation of molecular mechanisms underlying early heart development, external development, and ease of genetic manipulation. Here, we discuss early developmental mechanisms that instruct appropriate formation of the venous pole in zebrafish embryos. We primarily focus on signals that determine atrial chamber size and the specialized pacemaker cells of the sinoatrial node through directing proper specification and differentiation, as well as contemporary insights into the plasticity and maintenance of cardiomyocyte identity in embryonic zebrafish hearts. Finally, we integrate how these insights into zebrafish cardiogenesis can serve as models for human atrial defects and arrhythmias.
Collapse
Affiliation(s)
- Kendall E. Martin
- Molecular Genetics, Biochemistry, and Microbiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
39
|
Rattka M, Westphal S, Gahr BM, Just S, Rottbauer W. Spen deficiency interferes with Connexin 43 expression and leads to heart failure in zebrafish. J Mol Cell Cardiol 2021; 155:25-35. [PMID: 33549680 DOI: 10.1016/j.yjmcc.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies identified Spen as a putative modifier of cardiac function, however, the precise function of Spen in the cardiovascular system is not known yet. Here, we analyzed for the first time the in vivo role of Spen in zebrafish and found that targeted Spen inactivation led to progressive impairment of cardiac function in the zebrafish embryo. In addition to diminished cardiac contractile force, Spen-deficient zebrafish embryos developed bradycardia, atrioventricular block and heart chamber fibrillation. Assessment of cardiac-specific transcriptional profiles identified Connexin 43 (Cx43), a cardiac gap junction protein and crucial regulator of cardiomyocyte-to-cardiomyocyte communication, to be significantly diminished in Spen-deficient zebrafish embryos. Similar to the situation in Spen-deficient embryos, Morpholino-mediated knockdown of cx43 in zebrafish resulted in cardiac contractile dysfunction, bradycardia, atrioventricular block and fibrillation of the cardiac chambers. Furthermore, ectopic overexpression of cx43 in Spen deficient embryos led to the reconstitution of cardiac contractile function and suppression of cardiac arrhythmia. Additionally, sensitizing experiments by simultaneously injecting sub-phenotypic concentrations of spen- and cx43-Morpholinos into zebrafish embryos resulted in pathological supra-additive effects. In summary, our findings highlight a crucial role of Spen in controlling cx43 expression and demonstrate the Spen-Cx43 axis to be a vital regulatory cascade that is indispensable for proper heart function in vivo.
Collapse
Affiliation(s)
- Manuel Rattka
- Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, Ulm 89081, Germany; Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Sören Westphal
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Bernd M Gahr
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany.
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, Ulm 89081, Germany.
| |
Collapse
|
40
|
Chernick M, Burke T, Lieberman N, Brown DR, Di Giulio RT, Hinton DE. Heart development in two populations of Atlantic killifish (Fundulus heteroclitus) following exposure to a polycyclic aromatic hydrocarbon mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111580. [PMID: 33396103 PMCID: PMC7837385 DOI: 10.1016/j.ecoenv.2020.111580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Historic industrial pollution of the Elizabeth River, Virginia resulted in polycyclic aromatic hydrocarbon (PAH) contamination in sediments. Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood (AW) industrial site adapted to complex PAH mixture at this Superfund site. Their embryos have proved highly resistant to cardiac abnormalities indicative of PAH toxicity. In this study, embryos spawned from adults collected at AW and King's Creek (KC), a reference site, were exposed at 24 h post fertilization (hpf) to Elizabeth River Sediment Extract (ERSE), a complex PAH mixture, in a range of concentrations (0, 5.04, 50.45, 100.90, 151.35, or 252.25 µg/L total PAHs). Embryos were processed for histology at 144 hpf to enable evaluations of hearts at tissue and cellular levels. Morphometry and severity scoring were used to evaluate the extent of alterations. Unexposed embryos were similar in both populations. ERSE exposure resulted in multiple changes to hearts of KC embryos but not AW. Alterations were particularly evident in KC embryos exposed to concentrations above 1% ERSE (50.45 µg/L), which had thinner ventricular walls and larger pericardial edema. Individuals with moderate pericardial edema maintained arrangement and proximity of heart chambers, but changes were seen in ventricular myocytes. Severe pericardial edema was prevalent in exposed KC embryos and typically resulted in tube heart formation. Ventricles of tube hearts had very thin walls composed of small, basophilic cells and lacked trabeculae. Edematous pericardial fluid contained small amounts of proteinaceous material, as did controls, and was free of cells. This fluid was primarily unstained, suggesting water influx due to increased permeability. The use of histological approaches provided more specific detail for tissue and cellular effects in hearts of embryos exposed to PAHs and enabled understanding of potential links to later life effects of early life exposure.
Collapse
Affiliation(s)
- Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham 27708, NC, USA
| | | | - Noah Lieberman
- Nicholas School of the Environment, Duke University, Durham 27708, NC, USA
| | - Daniel R Brown
- Nicholas School of the Environment, Duke University, Durham 27708, NC, USA; Department of Biology Western Carolina University Cullowhee, 28723, NC, USA
| | | | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham 27708, NC, USA.
| |
Collapse
|
41
|
van de Venter M, Didloff J, Reddy S, Swanepoel B, Govender S, Dambuza NS, Williams S, Koekemoer TC, Venables L. Wild-Type Zebrafish ( Danio rerio) Larvae as a Vertebrate Model for Diabetes and Comorbidities: A Review. Animals (Basel) 2020; 11:E54. [PMID: 33396883 PMCID: PMC7824285 DOI: 10.3390/ani11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish have become a popular alternative to higher animals in biomedical and pharmaceutical research. The development of stable mutant lines to model target specific aspects of many diseases, including diabetes, is well reported. However, these mutant lines are much more costly and challenging to maintain than wild-type zebrafish and are simply not an option for many research facilities. As an alternative to address the disadvantages of advanced mutant lines, wild-type larvae may represent a suitable option. In this review, we evaluate organ development in zebrafish larvae and discuss established methods that use wild-type zebrafish larvae up to seven days post fertilization to test for potential drug candidates for diabetes and its commonly associated conditions of oxidative stress and inflammation. This provides an up to date overview of the relevance of wild-type zebrafish larvae as a vertebrate antidiabetic model and confidence as an alternative tool for preclinical studies. We highlight the advantages and disadvantages of established methods and suggest recommendations for future developments to promote the use of zebrafish, specifically larvae, rather than higher animals in the early phase of antidiabetic drug discovery.
Collapse
Affiliation(s)
- Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Jenske Didloff
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Shanika Reddy
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Sharlene Govender
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Ntokozo Shirley Dambuza
- Department of Pharmacy, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa;
| | - Saralene Williams
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Trevor Craig Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| |
Collapse
|
42
|
Nikam VS, Singh D, Takawale R, Ghante MR. Zebrafish: An emerging whole-organism screening tool in safety pharmacology. Indian J Pharmacol 2020; 52:505-513. [PMID: 33666192 PMCID: PMC8092182 DOI: 10.4103/ijp.ijp_482_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/14/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
During the last two decades, the development in drug discovery is slackening due to drug withdrawal from the market or reported to have postmarket safety events. The vital organ toxicities, especially cardiotoxicity, hepatotoxicity, pulmonary toxicity, and neurotoxicity are the major concerns for high drug attrition rates. The pharmaceutical industry is looking for high throughput, high content analysis based novel assays that would be fast, efficient, reproducible, and cost-effective; would address toxicity, the safety of lead molecules, and complement currently used cell-based assays in preclinical testing. The use of zebrafish, a vertebrate screening model, for preclinical testing is increasing owing to the number of advantages and striking similarities with the mammal. The zebrafish embryo development is fast and all vital organs such as the heart, liver, brain, pancreas, and kidneys in zebrafish are functional within 96-120hpf. The maintenance cost of zebrafish is reasonably low as compared to mammalian systems. Due to these features, zebrafish has arisen as a potential experimental screening model in lead identification and validation in the drug efficacy, toxicity, and safety evaluation. Numbers of drugs and chemicals are screened using zebrafish embryos, and results were found to show 100% concordance with mammalian screening data. The application of zebrafish, being a whole-organism screening model, would show a significant reduction in the cost and time required in the drug development process. The present challenge includes complete automation of the zebrafish screening model, i.e., from sorting, imaging of embryos to data analysis to accelerate the therapeutic target identification, and validation process.
Collapse
Affiliation(s)
- Vandana S. Nikam
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Deeksha Singh
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rohan Takawale
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Minal R. Ghante
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
43
|
Machikhin AS, Volkov MV, Burlakov AB, Khokhlov DD, Potemkin AV. Blood Vessel Imaging at Pre-Larval Stages of Zebrafish Embryonic Development. Diagnostics (Basel) 2020; 10:diagnostics10110886. [PMID: 33143148 PMCID: PMC7692510 DOI: 10.3390/diagnostics10110886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
The zebrafish (Danio rerio) is an increasingly popular animal model biological system. In cardiovascular research, it has been used to model specific cardiac phenomena as well as to identify novel therapies for human cardiovascular disease. While the zebrafish cardiovascular system functioning is well examined at larval stages, the mechanisms by which vessel activity is initiated remain a subject of intense investigation. In this research, we report on an in vivo stain-free blood vessel imaging technique at pre-larval stages of zebrafish embryonic development. We have developed the algorithm for the enhancement, alignment and spatiotemporal analysis of bright-field microscopy images of zebrafish embryos. It enables the detection, mapping and quantitative characterization of cardiac activity across the whole specimen. To validate the proposed approach, we have analyzed multiple data cubes, calculated vessel images and evaluated blood flow velocity and heart rate dynamics in the absence of any anesthesia. This non-invasive technique may shed light on the mechanism of vessel activity initiation and stabilization as well as the cardiovascular system’s susceptibility to environmental stressors at early developmental stages.
Collapse
Affiliation(s)
- Alexander S. Machikhin
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia;
| | - Mikhail V. Volkov
- Department of Applied Optics, University ITMO, 190000 Saint Petersburg, Russia; (M.V.V.); (A.V.P.)
| | - Alexander B. Burlakov
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Demid D. Khokhlov
- Laboratory of Acousto-optical Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia;
- Correspondence:
| | - Andrey V. Potemkin
- Department of Applied Optics, University ITMO, 190000 Saint Petersburg, Russia; (M.V.V.); (A.V.P.)
| |
Collapse
|
44
|
Mapping Calcium Dynamics in the Heart of Zebrafish Embryos with Ratiometric Genetically Encoded Calcium Indicators. Int J Mol Sci 2020; 21:ijms21186610. [PMID: 32927644 PMCID: PMC7555812 DOI: 10.3390/ijms21186610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Zebrafish embryos have been proposed as a cost-effective vertebrate model to study heart function. Many fluorescent genetically encoded Ca2+ indicators (GECIs) have been developed, but those with ratiometric readout seem more appropriate to image a moving organ such as the heart. Four ratiometric GECIs based on troponin C, TN-XXL, Twitch-1, Twitch-2B, and Twitch-4 were expressed transiently in the heart of zebrafish embryos. Their emission ratio reported the Ca2+ levels in both the atrium and the ventricle. We measured several kinetic parameters of the Ca2+ transients: systolic and diastolic ratio, the amplitude of the systolic Ca2+ rise, the heart rate, as well as the rise and decay times and slopes. The systolic ratio change decreased in cells expressing high biosensor concentration, possibly caused by Ca2+ buffering. The GECIs were able to report the effect of nifedipine and propranolol on the heart, which resulted in changes in heart rate, diastolic and systolic Ca2+ levels, and Ca2+ kinetics. As a result, Twitch-1 and Twitch-4 (Kd 0.25 and 2.8 µM, respectively) seem the most promising GECIs for generating transgenic zebrafish lines, which could be used for modeling heart disorders, for drug screening, and for cardiotoxicity assessment during drug development.
Collapse
|
45
|
Santoso F, Farhan A, Castillo AL, Malhotra N, Saputra F, Kurnia KA, Chen KHC, Huang JC, Chen JR, Hsiao CD. An Overview of Methods for Cardiac Rhythm Detection in Zebrafish. Biomedicines 2020; 8:E329. [PMID: 32899676 PMCID: PMC7554775 DOI: 10.3390/biomedicines8090329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
The heart is the most important muscular organ of the cardiovascular system, which pumps blood and circulates, supplying oxygen and nutrients to peripheral tissues. Zebrafish have been widely explored in cardiotoxicity research. For example, the zebrafish embryo has been used as a human heart model due to its body transparency, surviving several days without circulation, and facilitating mutant identification to recapitulate human diseases. On the other hand, adult zebrafish can exhibit the amazing regenerative heart muscle capacity, while adult mammalian hearts lack this potential. This review paper offers a brief description of the major methodologies used to detect zebrafish cardiac rhythm at both embryonic and adult stages. The dynamic pixel change method was mostly performed for the embryonic stage. Other techniques, such as kymography, laser confocal microscopy, artificial intelligence, and electrocardiography (ECG) have also been applied to study heartbeat in zebrafish embryos. Nevertheless, ECG is widely used for heartbeat detection in adult zebrafish since ECG waveforms' similarity between zebrafish and humans is prominent. High-frequency ultrasound imaging (echocardiography) and modern electronic sensor tag also have been proposed. Despite the fact that each method has its benefits and limitations, it is proved that zebrafish have become a promising animal model for human cardiovascular disease, drug pharmaceutical, and toxicological research. Using those tools, we conclude that zebrafish behaviors as an excellent small animal model to perform real-time monitoring for the developmental heart process with transparent body appearance, to conduct the in vivo cardiovascular performance and gene function assays, as well as to perform high-throughput/high content drug screening.
Collapse
Affiliation(s)
- Fiorency Santoso
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
| | - Ali Farhan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Punjab 38000, Pakistan;
| | - Agnes L. Castillo
- Faculty of Pharmacy, The Graduate School and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines;
| | - Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Ferry Saputra
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jung-Ren Chen
- Department of Biological Science & Technology College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Der Hsiao
- Master Program in Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (F.S.); (K.A.K.)
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
46
|
Mousavi SE, Patil JG. Light-cardiogram, a simple technique for heart rate determination in adult zebrafish, Danio rerio. Comp Biochem Physiol A Mol Integr Physiol 2020; 246:110705. [DOI: 10.1016/j.cbpa.2020.110705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022]
|
47
|
Liu X, Gao Q, Feng Z, Tang Y, Zhao X, Chen D, Feng X. Protective Effects of Spermidine and Melatonin on Deltamethrin-Induced Cardiotoxicity and Neurotoxicity in Zebrafish. Cardiovasc Toxicol 2020; 21:29-41. [PMID: 32651933 DOI: 10.1007/s12012-020-09591-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Increased application of the pyrethroid insecticide deltamethrin has adverse effects on the cardiac system and neurobehavior on the non-target organisms, which has raised the public's attention. Because of spermidine and melatonin considered to have cardioprotective and neuroprotective characteristics, zebrafish were utilized as the model organism to explore the protective effects of spermidine and melatonin against deltamethrin-induced toxicity. We tested the neurobehavior of zebrafish larvae through a rest/wake behavior assay, and evaluated the levels of the expression of Scn5lab, gata4, nkx2.5, hcrt, hcrtr, and aanat2 by qRT-PCR. Besides that cmlc2 was evaluated by whole-mount in situ hybridization. Results have shown that compared with control group, 0.025 mg/L deltamethrin could significantly disturb the cardiac development, downregulating the expression of Scn5lab and transcriptional factors gata4 and nkx2.5, disturbing cardiac looping, resulting in defects in cardiac morphology and function. Moreover, deltamethrin could alter the expression levels of rest/wake genes and cause hyperactivity in zebrafish larvae. Besides, compared with deltamethrin group, the exogenous 0.01 mg/L spermidine and 0.232 mg/L melatonin could significantly rescue the adverse effects of deltamethrin on the cardiac system and neurobehavior in zebrafish. This indicated that spermidine and melatonin have neuroprotective and cardioprotective effects against deltamethrin-induced adverse effects in zebrafish.
Collapse
Affiliation(s)
- Xingyu Liu
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qian Gao
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Zeyang Feng
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Yaqiu Tang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Dongyan Chen
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
48
|
Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020; 7:109. [PMID: 32714944 PMCID: PMC7344238 DOI: 10.3389/fcvm.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, such as atherosclerosis, are the leading cause of death worldwide. Although mice are currently the most commonly used model for atherosclerosis, zebrafish are emerging as an alternative, especially for inflammatory and lipid metabolism studies. Here, we review the history of in vivo atherosclerosis models and highlight the potential for future studies on inflammatory responses in lipid deposits in zebrafish, based on known immune reactions in humans and mice, in anticipation of new zebrafish models with more advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Viviana L Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
49
|
Benslimane FM, Zakaria ZZ, Shurbaji S, Abdelrasool MKA, Al-Badr MAHI, Al Absi ESK, Yalcin HC. Cardiac function and blood flow hemodynamics assessment of zebrafish (Danio rerio) using high-speed video microscopy. Micron 2020; 136:102876. [PMID: 32512409 DOI: 10.1016/j.micron.2020.102876] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the last few decades, zebrafish (Danio rerio) were introduced as a model organism to investigate human diseases including cardiovascular and neuronal disorders. In most zebrafish investigations, cardiac function and blood flow hemodynamics need to be assessed to study the effects of the interference on the cardiovascular system. For heart function assessment, most important parameters include heart rate, cardiac output, ejection fraction, fractional area change, and fractional shortening. METHODS A 10 s high-speed video of beating heart and flowing blood within major vessels of zebrafish that are less than 5 days post fertilization (dpf) were recorded via a stereo microscope equipped with a high speed camera. The videos were analyzed using MicroZebraLab and image J software for the assessment of cardiac function. RESULTS Using the technique described here, we were able to simply yet effectively assess cardiac function and blood flow dynamics of normal zebrafish embryos. We believe that the practical method presented here will help cardiac researchers using the zebrafish as a model to examine cardiac function by using tools that could be available in their laboratory.
Collapse
Affiliation(s)
| | - Zain Z Zakaria
- Biomedical Research Center, Qatar University, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | | | | |
Collapse
|
50
|
Arjmand B, Tayanloo-Beik A, Foroughi Heravani N, Alaei S, Payab M, Alavi-Moghadam S, Goodarzi P, Gholami M, Larijani B. Zebrafish for Personalized Regenerative Medicine; A More Predictive Humanized Model of Endocrine Disease. Front Endocrinol (Lausanne) 2020; 11:396. [PMID: 32765420 PMCID: PMC7379230 DOI: 10.3389/fendo.2020.00396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a multidisciplinary field that aims to determine different factors and develop various methods to regenerate impaired tissues, organs, and cells in the disease and impairment conditions. When treatment procedures are specified according to the individual's information, the leading role of personalized regenerative medicine will be revealed in developing more effective therapies. In this concept, endocrine disorders can be considered as potential candidates for regenerative medicine application. Diabetes mellitus as a worldwide prevalent endocrine disease causes different damages such as blood vessel damages, pancreatic damages, and impaired wound healing. Therefore, a global effort has been devoted to diabetes mellitus investigations. Hereupon, the preclinical study is a fundamental step. Up to now, several species of animals have been modeled to identify the mechanism of multiple diseases. However, more recent researches have been demonstrated that animal models with the ability of tissue regeneration are more suitable choices for regenerative medicine studies in endocrine disorders, typically diabetes mellitus. Accordingly, zebrafish has been introduced as a model that possesses the capacity to regenerate different organs and tissues. Especially, fine regeneration in zebrafish has been broadly investigated in the regenerative medicine field. In addition, zebrafish is a suitable model for studying a variety of different situations. For instance, it has been used for developmental studies because of the special characteristics of its larva. In this review, we discuss the features of zebrafish that make it a desirable animal model, the advantages of zebrafish and recent research that shows zebrafish is a promising animal model for personalized regenerative diseases. Ultimately, we conclude that as a newly introduced model, zebrafish can have a leading role in regeneration studies of endocrine diseases and provide a good perception of underlying mechanisms.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Foroughi Heravani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, Toxicology and Poisoning Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Bagher Larijani
| |
Collapse
|