1
|
Wells AT, Shen MM, Binrouf RH, D'Amico AE, Bossardi Ramos R, Lennartz MR. Identification of Myeloid Protein Kinase C - Epsilon as a Novel Atheroprotective Gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.627650. [PMID: 39713428 PMCID: PMC11661236 DOI: 10.1101/2024.12.09.627650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background Atherosclerosis is a lipid mediated chronic inflammatory disease driven my macrophages (MØ). Protein Kinase C - epsilon (PKCɛ) is is a serine/threonine kinase involved in diverse cellular processes such as migration, growth, differentiation, and survival. PKCɛ is known to act in a context dependent manner within heart, however, its role in atherosclerosis is unknown. Methods Bone marrow derived MØ from global PKCɛ KO mice were examined for impact of lipid metabolism and inflammatory factor secretion. Public geneset analysis assessed raw counts of PKCɛ to determine translational relevance. To determine the function myeloid PKCɛ on atherosclerosis a novel murine model was generated using LysM Cre technology. After its characterization, human-like hypercholesterolemia was induced to assess plaque morphology in WT mice or mice lacking myeloid PKCɛ. Results Public geneset analysis of human atherosclerotic plaque tissue revealed that PKCɛ expression is inversely correlated with plaque size and vulnerability. Similarly, peritoneal MØ from hypercholesterolemic mice have significantly lower PKCɛ expression. As MØ play a major role in atherogenesis, we generated a mouse strain with PKCɛ selectively deleted in the myeloid lineage (mɛKO). qPCR revealed no basal differences between genotypes in the expression of lipid uptake receptors, efflux transporters, or inflammatory markers. However, upon lipid loading, mɛKO MØs retained significantly more cholesterol than WT. Human-like hypercholesterolemia was induced in WT and mɛKO mice and assessed for lesion area and plaque morphology in aortic arches and aortic roots. We found that, compared to WT, the lesion area in mɛKO mice was significantly larger, more necrotic, had larger foam cells, and thinner collagen caps. Conclusions Loss of myeloid PKCɛ promotes atherosclerosis as determined by larger lesions, more necrosis, thinner plaque caps). Together, these data identify myeloid PKCɛ as a novel atheroprotective gene, laying the foundation for mechanistic studies on the signaling networks responsible for the phenotype. Highlights A novel murine model in which PKCɛ is floxed (PKCɛ fl/fl ) on both alleles haas been generated, backcrossed, and deposited into Jackson Laboratories. PKCε fl/fl mice have been crossed with those on the LysM Cre background thereby deleting PKCε from myeloid cells (mεKO). Deletion of PKCε has no basal affects on other PKC isoforms, lipid handling markers, or inflammatory markers.Upon stimulation with lopid loading in vitro or hypercholesterolemia in vivo, mεKO BMDMs retain more cholesterol and mεKO mice develop a more vulnerable plaque phenotype (i.e. larger lesions, more necrosis, thimmer plaque caps).These findings provide a rationale for the need to identify mediators in the PKCε signaling pathway responsible for protection against vulnerable plaques in atherosclerosis; potentially aiding in the development of preventative and therapeutic treatments.
Collapse
|
2
|
Zhai M, Lei Z, Shi Y, Shi J, Zeng Y, Gong S, Jian W, Zhuang J, Yu Q, Feinberg MW, Peng W. TEAD1-Mediated Trans-Differentiation of Vascular Smooth Muscle Cells into Fibroblast-Like Cells Contributes to the Stabilization and Repair of Disrupted Atherosclerotic Plaques. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407408. [PMID: 39665254 DOI: 10.1002/advs.202407408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/24/2024] [Indexed: 12/13/2024]
Abstract
Atherosclerotic plaque rupture mainly contributes to acute coronary syndrome (ACS). Insufficient repair of these plaques leads to thrombosis and subsequent ACS. Central to this process is the modulation of vascular smooth muscle cells (VSMCs) phenotypes, emphasizing their pivotal role in atherosclerotic plaque stability and healing post-disruption. Here, an expansion of FSP1+ cells in a tandem stenosis (TS) model of atherosclerotic mice is unveiled, predominantly originating from VSMCs through single-cell RNA sequencing (scRNA-seq) analyses and VSMC lineage tracing studies. Further investigation identified TEA domain transcription factor 1 (TEAD1) as the key transcription factor driving the trans-differentiation of VSMCs into fibroblast-like cells. In vivo experiments using a TS model of plaque rupture demonstrated that TEAD1 played a crucial role in promoting plaque stability and healing post-rupture through pharmacological or TEAD1-AAV treatments. Mechanistically, it is found that TEAD1 promoted the expression of fibroblast markers through the Wnt4/β-Catenin pathway, facilitating the trans-differentiation. Thus, this study illustrated that TEAD1 played a critical role in promoting the trans-differentiation of VSMCs into fibroblast-like cells and subsequent extracellular matrix production through the Wnt4/β-Catenin pathway. Consequently, this process enhanced the healing mechanisms following plaque rupture, elucidating potential therapeutic avenues for managing atherosclerotic instability.
Collapse
Affiliation(s)
- Ming Zhai
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Zhijun Lei
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yefei Shi
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Jiayun Shi
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yanxi Zeng
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Shiyu Gong
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Weixia Jian
- Department of Endocrinology, School of Medicine, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Jianhui Zhuang
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenhui Peng
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| |
Collapse
|
3
|
Ardinal AP, Wiyono AV, Estiko RI. Unveiling the therapeutic potential of miR-146a: Targeting innate inflammation in atherosclerosis. J Cell Mol Med 2024; 28:e70121. [PMID: 39392102 PMCID: PMC11467738 DOI: 10.1111/jcmm.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Atherosclerosis is the foremost vascular disease, precipitating debilitating complications. Although therapeutic strategies have historically focused on reducing cholesterol deposition, recent insights emphasize the pivotal role of inflammation. Innate inflammation significantly contributes to plaque instability and rupture, underscoring the need for intervention across all disease stages. Numerous studies have highlighted the therapeutic potential of targeting innate immune pathways in atherosclerosis, revealing significant advancements in understanding the molecular mechanisms underlying inflammatory processes within arterial lesions. Notably, research has demonstrated that the modulation of microRNA-146a (miR-146a) expression impacts innate inflammation, effectively halts atherosclerosis progression, and enhances plaque stability by targeting interleukin-1 receptor-associated kinase (IRAK) and activating TNF receptor-associated factor 6 (TRAF6), a signalling pathway involving toll-like receptors (TLRs). Understanding the intricate mechanisms involved is crucial. This study provides a comprehensive analysis of the evidence and underlying mechanisms through which miR-146a exerts its effects. Integrating these findings into clinical practice may herald a transformative era in managing atherosclerotic cardiovascular disease.
Collapse
|
4
|
Lieverse TGF, van Praagh GD, Mulder DJ, Lambers Heerspink HJ, Wolterink JM, Slart RHJA. Quantitative aortic Na[ 18F]F positron emission tomography computed tomography as a tool to associate vascular calcification with major adverse cardiovascular events. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06901-9. [PMID: 39297960 DOI: 10.1007/s00259-024-06901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/25/2024] [Indexed: 09/21/2024]
Abstract
PURPOSE Sodium[18F]fluoride (Na[18F]F) used in positron emission tomography (PET) binds to active calcification and correlates consistently with higher cardiovascular risk. This study aims to investigate the feasibility of aortic Na[18F]F-PET in hybrid combination with low-dose computed tomography (CT) as a risk model for major adverse cardiovascular events (MACE). METHODS Patient data and Na[18F]F-PET/CT scans from January 2019 to February 2022 were retrospectively collected at the University Medical Center Groningen (UMCG), the Netherlands. MACE-outcome was a composite of time to first documented myocardial infarction, cerebral vascular accident (CVA), acute heart failure hospitalization, and aortic aneurysms. MACE dates were recorded from the day of the scan until follow-up in December 2023. The aorta was manually segmented in all low-dose CT scans. To minimize spill-over effects from the vertebrae, the vertebrae were automatically segmented using an open-source model, dilated with 10 mm, and subtracted from the aortic mask. The total aortic Na[18F]F corrected maximum standardized uptake value (cSUVmax) and total aortic Agatston score were automatically calculated using SEQUOIA. Kaplan-Meier and Cox regression survival analysis were performed, stratifying patients into high, medium, and low cSUVmax and Agatston categories. Cox regression models were adjusted for age. RESULTS Out of 280 identified scans, 216 scans of unique patients were included. During a median follow-up of 3.9 years, 12 MACE occurred. Kaplan-Meier survival analysis demonstrated a significant difference in MACE-free survival among the high cSUVmax group compared to the medium and low groups (p = 0.03 and p < 0.01, respectively). Similarly, patients with high Agatston scores had a significantly lower MACE-free survival probability compared to those with medium and low scores (both p < 0.01). CONCLUSION This study highlights the potential clinical utility of Na[18F]F-PET/CT as an imaging tool to predict the risk of MACE. Clinical validation of this novel proof-of-concept method is needed to confirm these results and expand the clinical context.
Collapse
Affiliation(s)
- T G F Lieverse
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - G D van Praagh
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H J Lambers Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J M Wolterink
- Department of Applied Mathematics and Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - R H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
5
|
Cai Z, Xu S, Liu C. Cathepsin B in cardiovascular disease: Underlying mechanisms and therapeutic strategies. J Cell Mol Med 2024; 28:e70064. [PMID: 39248527 PMCID: PMC11382359 DOI: 10.1111/jcmm.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Cathepsin B (CTSB) is a member of the cysteine protease family, primarily responsible for degrading unnecessary organelles and proteins within the acidic milieu of lysosomes to facilitate recycling. Recent research has revealed that CTSB plays a multifaceted role beyond its function as a proteolytic enzyme in lysosomes. Importantly, recent data suggest that CTSB has significant impacts on different cardiac pathological conditions, such as atherosclerosis (AS), myocardial infarction, hypertension, heart failure and cardiomyopathy. Especially in the context of AS, preclinical models and clinical sample imaging data indicate that the cathepsin activity-based probe can reliably image CTSB activity in foam cells and atherosclerotic plaques; concurrently, it allows synchronous diagnostic and therapeutic interventions. However, our knowledge of CTSB in cardiovascular disease is still in the early stage. This paper aims to provide a comprehensive review of the significance of CTSB in cardiovascular physiology and pathology, with the objective of laying a theoretical groundwork for the development of drugs targeting CTSB.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing, P.R. China
| | - Shunyao Xu
- Department of Critical Care Medicine, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, P.R. China
| | - Chen Liu
- Department of Geriatrics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| |
Collapse
|
6
|
Munteanu C, Galaction AI, Poștaru M, Rotariu M, Turnea M, Blendea CD. Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression. Biomedicines 2024; 12:1951. [PMID: 39335465 PMCID: PMC11429404 DOI: 10.3390/biomedicines12091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H₂S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H₂S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H₂S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H₂S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H₂S reduces MMP activation, contributing to plaque stability and vascular remodeling. H₂S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H₂S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H₂S-based therapies for clinical application in atherosclerosis.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| |
Collapse
|
7
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
8
|
Lin Y, Xie R, Yu T. Photodynamic Therapy for Atherosclerosis: Past, Present, and Future. Pharmaceutics 2024; 16:729. [PMID: 38931851 PMCID: PMC11206729 DOI: 10.3390/pharmaceutics16060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
This review paper examines the evolution of photodynamic therapy (PDT) as a novel, minimally invasive strategy for treating atherosclerosis, a leading global health concern. Atherosclerosis is characterized by the accumulation of lipids and inflammation within arterial walls, leading to significant morbidity and mortality through cardiovascular diseases such as myocardial infarction and stroke. Traditional therapeutic approaches have primarily focused on modulating risk factors such as hypertension and hyperlipidemia, with emerging evidence highlighting the pivotal role of inflammation. PDT, leveraging a photosensitizer, specific-wavelength light, and oxygen, offers targeted treatment by inducing cell death in diseased tissues while sparing healthy ones. This specificity, combined with advancements in nanoparticle technology for improved delivery, positions PDT as a promising alternative to traditional interventions. The review explores the mechanistic basis of PDT, its efficacy in preclinical studies, and the potential for enhancing plaque stability and reducing macrophage density within plaques. It also addresses the need for further research to optimize treatment parameters, mitigate adverse effects, and validate long-term outcomes. By detailing past developments, current progress, and future directions, this paper aims to highlight PDT's potential in revolutionizing atherosclerosis treatment, bridging the gap from experimental research to clinical application.
Collapse
Affiliation(s)
- Yanqing Lin
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI 53705, USA;
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
9
|
Ji M, Wei Y, Ye Z, Hong X, Yu X, Du R, Li Q, Sun W, Liu D. In Vivo Fluorescent Labeling of Foam Cell-Derived Extracellular Vesicles as Circulating Biomarkers for In Vitro Detection of Atherosclerosis. J Am Chem Soc 2024; 146:10093-10102. [PMID: 38545938 DOI: 10.1021/jacs.4c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Real-time monitoring of the development of atherosclerosis (AS) is key to the management of cardiovascular disease (CVD). However, existing laboratory approaches lack sensitivity and specificity, mostly due to the dearth of reliable AS biomarkers. Herein, we developed an in vivo fluorescent labeling strategy that allows specific staining of the foam cell-derived extracellular vesicles (EVs) in atherosclerotic plaques, which are released into the blood as circulating biomarkers for in vitro detection of AS. This strategy relies on a self-assembled nanoprobe that could recognize foam cells specifically, where the probe is degraded by the intracellular HClO to produce a trifluoromethyl-bearing boron-dipyrromethene fluorophore (termed B-CF3), a lipophilic dye that can be transferred to the exosomal membranes. These circulating B-CF3-stained EVs can be detected directly on a fluorescence spectrometer or microplate reader without resorting to any sophisticated analytical method. This liquid-biopsy format enables early detection and real-time differentiation of lesion vulnerability during AS progression, facilitating effective CVD management.
Collapse
Affiliation(s)
- Moxuan Ji
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongchun Wei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuo Ye
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaoqin Hong
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxuan Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centers for Cell Responses and New Organic Matter, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Kounatidis D, Vallianou NG, Poulaki A, Evangelopoulos A, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Dalamaga M. ApoB100 and Atherosclerosis: What's New in the 21st Century? Metabolites 2024; 14:123. [PMID: 38393015 PMCID: PMC10890411 DOI: 10.3390/metabo14020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
ApoB is the main protein of triglyceride-rich lipoproteins and is further divided into ApoB48 in the intestine and ApoB100 in the liver. Very low-density lipoprotein (VLDL) is produced by the liver, contains ApoB100, and is metabolized into its remnants, intermediate-density lipoprotein (IDL) and low-density lipoprotein (LDL). ApoB100 has been suggested to play a crucial role in the formation of the atherogenic plaque. Apart from being a biomarker of atherosclerosis, ApoB100 seems to be implicated in the inflammatory process of atherosclerosis per se. In this review, we will focus on the structure, the metabolism, and the function of ApoB100, as well as its role as a predictor biomarker of cardiovascular risk. Moreover, we will elaborate upon the molecular mechanisms regarding the pathophysiology of atherosclerosis, and we will discuss the disorders associated with the APOB gene mutations, and the potential role of various drugs as therapeutic targets.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Second Department of Internal Medicine, Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Aikaterini Poulaki
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (F.P.); (E.G.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
11
|
Mytych W, Bartusik-Aebisher D, Łoś A, Dynarowicz K, Myśliwiec A, Aebisher D. Photodynamic Therapy for Atherosclerosis. Int J Mol Sci 2024; 25:1958. [PMID: 38396639 PMCID: PMC10888721 DOI: 10.3390/ijms25041958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, which currently contributes to 31% of deaths globally, is of critical cardiovascular concern. Current diagnostic tools and biomarkers are limited, emphasizing the need for early detection. Lifestyle modifications and medications form the basis of treatment, and emerging therapies such as photodynamic therapy are being developed. Photodynamic therapy involves a photosensitizer selectively targeting components of atherosclerotic plaques. When activated by specific light wavelengths, it induces localized oxidative stress aiming to stabilize plaques and reduce inflammation. The key advantage lies in its selective targeting, sparing healthy tissues. While preclinical studies are encouraging, ongoing research and clinical trials are crucial for optimizing protocols and ensuring long-term safety and efficacy. The potential combination with other therapies makes photodynamic therapy a versatile and promising avenue for addressing atherosclerosis and associated cardiovascular disease. The investigations underscore the possibility of utilizing photodynamic therapy as a valuable treatment choice for atherosclerosis. As advancements in research continue, photodynamic therapy might become more seamlessly incorporated into clinical approaches for managing atherosclerosis, providing a blend of efficacy and limited invasiveness.
Collapse
Affiliation(s)
- Wiktoria Mytych
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Aleksandra Łoś
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland; (W.M.); (A.Ł.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland; (K.D.); (A.M.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
12
|
Chen J, Wang S, Wang K, Abiri P, Huang Z, Yin J, Jabalera AM, Arianpour B, Roustaei M, Zhu E, Zhao P, Cavallero S, Duarte‐Vogel S, Stark E, Luo Y, Benharash P, Tai Y, Cui Q, Hsiai TK. Machine learning-directed electrical impedance tomography to predict metabolically vulnerable plaques. Bioeng Transl Med 2024; 9:e10616. [PMID: 38193119 PMCID: PMC10771559 DOI: 10.1002/btm2.10616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 10/15/2023] [Indexed: 01/10/2024] Open
Abstract
The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth. We fabricated the EIS sensor by affixing a six-point microelectrode configuration onto a silicone balloon catheter and electroplating the surface with platinum black (PtB) to improve the charge transfer efficiency at the electrochemical interface. To demonstrate clinical translation, we deployed the EIS sensor to the coronary arteries of an explanted human heart from a patient undergoing heart transplant and interrogated the atherosclerotic lesions to reconstruct the 3D EIS profiles of oxLDL-rich atherosclerotic plaques in both right coronary and left descending coronary arteries. To establish effective generalization of our methods, we repeated the reconstruction and training process on the common carotid arteries of an unembalmed human cadaver specimen. Our findings indicated that our DenseNet model achieves the most reliable predictions for metabolically vulnerable plaque, yielding an accuracy of 92.59% after 100 epochs of training.
Collapse
Affiliation(s)
- Justin Chen
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Shaolei Wang
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Parinaz Abiri
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Zi‐Yu Huang
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Alejandro M. Jabalera
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Brian Arianpour
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Mehrdad Roustaei
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Division of Cardiology, Department of MedicineGreater Los Angeles VA Healthcare SystemLos AngelesCaliforniaUSA
| | - Sandra Duarte‐Vogel
- Division of Laboratory Animal Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Elena Stark
- Division of Anatomy, Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yuan Luo
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Peyman Benharash
- Division of Cardiothoracic Surgery, Department of Surgery, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yu‐Chong Tai
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Qingyu Cui
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Tzung K. Hsiai
- Department of Bioengineering, Henry Samueli School of EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Division of Cardiology, Department of Medicine, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
- Division of Cardiology, Department of MedicineGreater Los Angeles VA Healthcare SystemLos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Burke KL, Jennings IG. The Effect of a Dietary Supplement Containing Rhamnan Sulfate from Monostroma nitidum on Carotid Atherosclerotic Plaque: A Case Series. Integr Med (Encinitas) 2024; 22:30-37. [PMID: 38404609 PMCID: PMC10886398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We report on 6 patients in our care who were harboring atherosclerotic plaque in the carotid arteries. This condition poses a risk of acute ischemic stroke and indicates potential atherosclerosis elsewhere in the vascular system. The plaque was revealed by routine ultrasound measurement of carotid intima-medial thickness (CIMT) defined as the distance between the lumen-intima interface and the media-adventitia interface. Recent improvements in image resolution and edge detection algorithms have resulted in improved reliability and clinical usefulness of the technology. The patients were enrolled in a systems-based functional medicine program of cardiology prevention to address root causes. The program provided personalized interventions that included drug therapy, dietary supplements, and lifestyle modification. The 6 patients followed the integrative regimen, which successfully managed existing cardiovascular symptoms and risk factors while keeping various biomarkers under control. However, they continued to exhibit carotid plaque with no improvement. A novel dietary supplement that targets endothelial glycocalyx regeneration was added to the personalized intervention programs. The supplement contains a proprietary extract of rhamnan sulfate from the green seaweed Monostroma nitidum. The 6 participants consumed the supplement daily, and their plaque burden was measured after 6 months using the same CIMT technology. In every case, the total plaque burden was reduced, with an average reduction in the 6 patients of 5.55 mm, which is statistically significant. Significant reductions in maximum carotid plaque thickness were also observed at the end of the 6 months. The study suggests that rhamnan sulfate from Monostroma nitidum may provide a safe and effective intervention for reducing atherosclerotic plaque, and should be evaluated as an adjunct therapy for prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Kristine L. Burke
- Corresponding author: Kristine L. Burke, MD, ABFM, ABoIM, IFMCP E-mail address:
| | | |
Collapse
|
14
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
15
|
Poznyak AV, Sukhorukov VN, Guo S, Postnov AY, Orekhov AN. Sex Differences Define the Vulnerability to Atherosclerosis. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2023; 17:11795468231189044. [PMID: 37529084 PMCID: PMC10387777 DOI: 10.1177/11795468231189044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
For several decades, atherosclerosis has attracted the attention of researchers around the world. Even being a major cause of serious cardiovascular disease and events, atherosclerosis is still not fully understood. Despite the fact that the main players in the pathogenesis of atherosclerosis are well known, many mechanisms of their implementation and interactions remain unknown. The same can be said about the risk factors for atherosclerosis. Many of them are known, but exactly how they work remains to be seen. The main objective of this review is to summarize the latest data on sex as a biological variable in atherosclerosis in humans and animals; to determine what we do not still know about how sex affects the process of growth and complications of atherosclerosis. In this review, we summarized data on sex differences at 3 atherosclerotic aspects: inflammation, vascular remodeling, and plaque morphology. With all overviewed data, we came to the conclusion on the atheroprotective role of female sex.
Collapse
Affiliation(s)
| | - Vasiliy N Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Shuzhen Guo
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese, Beijing, China
| | - Anton Y Postnov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution «Petrovsky National Research Centre of Surgery» (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
16
|
Kronenberg F, Mora S, Stroes ESG, Ference BA, Arsenault BJ, Berglund L, Dweck MR, Koschinsky ML, Lambert G, Mach F, McNeal CJ, Moriarty PM, Natarajan P, Nordestgaard BG, Parhofer KG, Virani SS, von Eckardstein A, Watts GF, Stock JK, Ray KK, Tokgözoğlu LS, Catapano AL. Frequent questions and responses on the 2022 lipoprotein(a) consensus statement of the European Atherosclerosis Society. Atherosclerosis 2023; 374:107-120. [PMID: 37188555 DOI: 10.1016/j.atherosclerosis.2023.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
In 2022, the European Atherosclerosis Society (EAS) published a new consensus statement on lipoprotein(a) [Lp(a)], summarizing current knowledge about its causal association with atherosclerotic cardiovascular disease (ASCVD) and aortic stenosis. One of the novelties of this statement is a new risk calculator showing how Lp(a) influences lifetime risk for ASCVD and that global risk may be underestimated substantially in individuals with high or very high Lp(a) concentration. The statement also provides practical advice on how knowledge about Lp(a) concentration can be used to modulate risk factor management, given that specific and highly effective mRNA-targeted Lp(a)-lowering therapies are still in clinical development. This advice counters the attitude: "Why should I measure Lp(a) if I can't lower it?". Subsequent to publication, questions have arisen relating to how the recommendations of this statement impact everyday clinical practice and ASCVD management. This review addresses 30 of the most frequently asked questions about Lp(a) epidemiology, its contribution to cardiovascular risk, Lp(a) measurement, risk factor management and existing therapeutic options.
Collapse
Affiliation(s)
- Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, and Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Lars Berglund
- Department of Internal Medicine, School of Medicine, University of California-Davis, Davis, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, Edinburgh Heart Centre, University of Edinburgh, Chancellors Building, Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400, Saint-Pierre, La Réunion, France
| | - François Mach
- Department of Cardiology, Geneva University Hospital, Geneva, Switzerland
| | - Catherine J McNeal
- Division of Cardiology, Department of Internal Medicine Baylor Scott & White Health, 2301 S. 31st St., Temple, TX, 76508, USA
| | - Patrick M Moriarty
- Atherosclerosis and Lipoprotein-apheresis Clinic, University of Kansas Medical Center, Kansas City, KS, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; and Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus G Parhofer
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians University Klinikum, Munich, Germany
| | - Salim S Virani
- The Aga Khan University, Karachi, Pakistan; Texas Heart Institute, Baylor College of Medicine, Houston, TX, USA
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerald F Watts
- Medical School, University of Western Australia, and Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, SE-412 51, Gothenburg, Sweden
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
17
|
Yao Y, Zhang P. Novel ultrasound techniques in the identification of vulnerable plaques-an updated review of the literature. Front Cardiovasc Med 2023; 10:1069745. [PMID: 37293284 PMCID: PMC10244552 DOI: 10.3389/fcvm.2023.1069745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Atherosclerosis is an inflammatory disease partly mediated by lipoproteins. The rupture of vulnerable atherosclerotic plaques and thrombosis are major contributors to the development of acute cardiovascular events. Despite various advances in the treatment of atherosclerosis, there has been no satisfaction in the prevention and assessment of atherosclerotic vascular disease. The identification and classification of vulnerable plaques at an early stage as well as research of new treatments remain a challenge and the ultimate goal in the management of atherosclerosis and cardiovascular disease. The specific morphological features of vulnerable plaques, including intraplaque hemorrhage, large lipid necrotic cores, thin fibrous caps, inflammation, and neovascularisation, make it possible to identify and characterize plaques with a variety of invasive and non-invasive imaging techniques. Notably, the development of novel ultrasound techniques has introduced the traditional assessment of plaque echogenicity and luminal stenosis to a deeper assessment of plaque composition and the molecular field. This review will discuss the advantages and limitations of five currently available ultrasound imaging modalities for assessing plaque vulnerability, based on the biological characteristics of the vulnerable plaque, and their value in terms of clinical diagnosis, prognosis, and treatment efficacy assessment.
Collapse
|
18
|
Cimmino G, Conte S, Palumbo D, Sperlongano S, Torella M, Della Corte A, Golino P. The Novel Role of Noncoding RNAs in Modulating Platelet Function: Implications in Activation and Aggregation. Int J Mol Sci 2023; 24:7650. [PMID: 37108819 PMCID: PMC10144470 DOI: 10.3390/ijms24087650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
It is currently believed that plaque complication, with the consequent superimposed thrombosis, is a key factor in the clinical occurrence of acute coronary syndromes (ACSs). Platelets are major players in this process. Despite the considerable progress made by the new antithrombotic strategies (P2Y12 receptor inhibitors, new oral anticoagulants, thrombin direct inhibitors, etc.) in terms of a reduction in major cardiovascular events, a significant number of patients with previous ACSs treated with these drugs continue to experience events, indicating that the mechanisms of platelet remain largely unknown. In the last decade, our knowledge of platelet pathophysiology has improved. It has been reported that, in response to physiological and pathological stimuli, platelet activation is accompanied by de novo protein synthesis, through a rapid and particularly well-regulated translation of resident mRNAs of megakaryocytic derivation. Although the platelets are anucleate, they indeed contain an important fraction of mRNAs that can be quickly used for protein synthesis following their activation. A better understanding of the pathophysiology of platelet activation and the interaction with the main cellular components of the vascular wall will open up new perspectives in the treatment of the majority of thrombotic disorders, such as ACSs, stroke, and peripheral artery diseases before and after the acute event. In the present review, we will discuss the novel role of noncoding RNAs in modulating platelet function, highlighting the possible implications in activation and aggregation.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Lung Diseases, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy
| | - Domenico Palumbo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Simona Sperlongano
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
- Cardiology Unit, Azienda Ospedaliera Universitaria Luigi Vanvitelli, Piazza Miraglia, 80138 Naples, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Alessandro Della Corte
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, L. Bianchi Street, 80131 Naples, Italy (A.D.C.)
| |
Collapse
|
19
|
Mobadersany N, Meshram NH, Kemper P, Sise CV, Karageorgos GM, Liang P, Ateshian GA, Konofagou EE. Pulse wave imaging of a stenotic artery model with plaque constituents of different stiffnesses: Experimental demonstration in phantoms and fluid-structure interaction simulation. J Biomech 2023; 149:111502. [PMID: 36842406 PMCID: PMC10392770 DOI: 10.1016/j.jbiomech.2023.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Vulnerable plaques associated with softer components may rupture, releasing thrombotic emboli to smaller vessels in the brain, thus causing an ischemic stroke. Pulse Wave Imaging (PWI) is an ultrasound-based method that allows for pulse wave visualization while the regional pulse wave velocity (PWV) is mapped along the arterial wall to infer the underlying wall compliance. One potential application of PWI is the non-invasive estimation of plaque's mechanical properties for investigating its vulnerability. In this study, the accuracy of PWV estimation in stenotic vessels was investigated by computational simulation and PWI in validation phantoms to evaluate this modality for assessing future stroke risk. Polyvinyl alcohol (PVA) phantoms with plaque constituents of different stiffnesses were designed and constructed to emulate stenotic arteries in the experiment, and the novel fabrication process was described. Finite-element fluid-structure interaction simulations were performed in a stenotic phantom model that matched the geometry and parameters of the experiment in phantoms. The peak distension acceleration of the phantom wall was tracked to estimate PWV. PWVs of 2.57 ms-1, 3.41 ms-1, and 4.48 ms-1 were respectively obtained in the soft, intermediate, and stiff plaque material in phantoms during the experiment using PWI. PWVs of 2.10 ms-1, 3.33 ms-1, and 4.02 ms-1 were respectively found in the soft, intermediate, and stiff plaque material in the computational simulation. These results demonstrate that PWI can effectively distinguish the mechanical properties of plaque in phantoms as compared to computational simulation.
Collapse
Affiliation(s)
- Nima Mobadersany
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Nirvedh H Meshram
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Paul Kemper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - C V Sise
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Pengcheng Liang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Mechanical Engineering, Columbia University, New York, NY, United States
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Radiology, Columbia University, New York, New York, NY, United States.
| |
Collapse
|
20
|
Yu Q, Wei P, Xu L, Xia C, Li Y, Liu H, Song X, Tian K, Fu W, Wang R, Wang W, Bai L, Fan J, Liu E, Zhao S. Urotensin II Enhances Advanced Aortic Atherosclerosis Formation and Delays Plaque Regression in Hyperlipidemic Rabbits. Int J Mol Sci 2023; 24:ijms24043819. [PMID: 36835230 PMCID: PMC9963243 DOI: 10.3390/ijms24043819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Accumulated evidence shows that elevated urotensin II (UII) levels are associated with cardiovascular diseases. However, the role of UII in the initiation, progression, and regression of atherosclerosis remains to be verified. Different stages of atherosclerosis were induced in rabbits by a 0.3% high cholesterol diet (HCD) feeding, and either UII (5.4 μg/kg/h) or saline was chronically infused via osmotic mini-pumps. UII promoted atherosclerotic fatty streak formation in ovariectomized female rabbits (34% increase in gross lesion and 93% increase in microscopic lesion), and in male rabbits (39% increase in gross lesion). UII infusion significantly increased the plaque size of the carotid and subclavian arteries (69% increase over the control). In addition, UII infusion significantly enhanced the development of coronary lesions by increasing plaque size and lumen stenosis. Histopathological analysis revealed that aortic lesions in the UII group were characterized by increasing lesional macrophages, lipid deposition, and intra-plaque neovessel formation. UII infusion also significantly delayed the regression of atherosclerosis in rabbits by increasing the intra-plaque macrophage ratio. Furthermore, UII treatment led to a significant increase in NOX2 and HIF-1α/VEGF-A expression accompanied by increased reactive oxygen species levels in cultured macrophages. Tubule formation assays showed that UII exerted a pro-angiogenic effect in cultured endothelial cell lines and this effect was partly inhibited by urantide, a UII receptor antagonist. These findings suggest that UII can accelerate aortic and coronary plaque formation and enhance aortic plaque vulnerability, but delay the regression of atherosclerosis. The role of UII on angiogenesis in the lesion may be involved in complex plaque development.
Collapse
Affiliation(s)
- Qingqing Yu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Panpan Wei
- Laboratory Animal Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Liran Xu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Congcong Xia
- Laboratory Animal Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yafeng Li
- Laboratory Animal Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Xiaojie Song
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Kangli Tian
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Weilai Fu
- Laboratory Animal Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Rong Wang
- Laboratory Animal Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Weirong Wang
- Laboratory Animal Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Tokyo 409-3898, Japan
| | - Enqi Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Sihai Zhao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
- Department of Cardiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
- Correspondence: ; Tel.: +86-29-82655361
| |
Collapse
|
21
|
Meyer-Lindemann U, Moggio A, Dutsch A, Kessler T, Sager HB. The Impact of Exercise on Immunity, Metabolism, and Atherosclerosis. Int J Mol Sci 2023; 24:3394. [PMID: 36834808 PMCID: PMC9967592 DOI: 10.3390/ijms24043394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Physical exercise represents an effective preventive and therapeutic strategy beneficially modifying the course of multiple diseases. The protective mechanisms of exercise are manifold; primarily, they are elicited by alterations in metabolic and inflammatory pathways. Exercise intensity and duration strongly influence the provoked response. This narrative review aims to provide comprehensive up-to-date insights into the beneficial effects of physical exercise by illustrating the impact of moderate and vigorous exercise on innate and adaptive immunity. Specifically, we describe qualitative and quantitative changes in different leukocyte subsets while distinguishing between acute and chronic exercise effects. Further, we elaborate on how exercise modifies the progression of atherosclerosis, the leading cause of death worldwide, representing a prime example of a disease triggered by metabolic and inflammatory pathways. Here, we describe how exercise counteracts causal contributors and thereby improves outcomes. In addition, we identify gaps that still need to be addressed in the future.
Collapse
Affiliation(s)
- Ulrike Meyer-Lindemann
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Alexander Dutsch
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK e.V. (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
22
|
Delfino JG, Pennello GA, Barnhart HX, Buckler AJ, Wang X, Huang EP, Raunig DL, Guimaraes AR, Hall TJ, deSouza NM, Obuchowski N. Multiparametric Quantitative Imaging Biomarkers for Phenotype Classification: A Framework for Development and Validation. Acad Radiol 2023; 30:183-195. [PMID: 36202670 PMCID: PMC9825632 DOI: 10.1016/j.acra.2022.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
This manuscript is the third in a five-part series related to statistical assessment methodology for technical performance of multi-parametric quantitative imaging biomarkers (mp-QIBs). We outline approaches and statistical methodologies for developing and evaluating a phenotype classification model from a set of multiparametric QIBs. We then describe validation studies of the classifier for precision, diagnostic accuracy, and interchangeability with a comparator classifier. We follow with an end-to-end real-world example of development and validation of a classifier for atherosclerotic plaque phenotypes. We consider diagnostic accuracy and interchangeability to be clinically meaningful claims for a phenotype classification model informed by mp-QIB inputs, aiming to provide tools to demonstrate agreement between imaging-derived characteristics and clinically established phenotypes. Understanding that we are working in an evolving field, we close our manuscript with an acknowledgement of existing challenges and a discussion of where additional work is needed. In particular, we discuss the challenges involved with technical performance and analytical validation of mp-QIBs. We intend for this manuscript to further advance the robust and promising science of multiparametric biomarker development.
Collapse
Affiliation(s)
- Jana G Delfino
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD.
| | - Gene A Pennello
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD
| | - Huiman X Barnhart
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | | | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Erich P Huang
- Biometric Research Program, Division of Cancer Treatment and Diagnosis - National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dave L Raunig
- Data Science Institute, Statistical and Quantitative Sciences, Takeda Pharmaceuticals America Inc, Lexington, MA
| | - Alexander R Guimaraes
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| | - Timothy J Hall
- Department of Medical Physics, University of Wisconsin, Madison, WI
| | - Nandita M deSouza
- Division of Radiotherapy and Imaging, the Insitute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom; European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology (ESR), Vienna, Austria
| | - Nancy Obuchowski
- Department of Quantitative Health Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH
| |
Collapse
|
23
|
Han Y, Ren L, Fei X, Wang J, Chen T, Guo J, Wang Q. Association between Carotid Intraplaque Neovascularization Detected by Contrast-Enhanced Ultrasound and the Progression of Coronary Lesions in Patients Undergoing Percutaneous Coronary Intervention. J Am Soc Echocardiogr 2023; 36:216-223. [PMID: 36307032 DOI: 10.1016/j.echo.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND It is thought that the progression of vulnerable plaque is due in part to neovascularization, and plaque vulnerability is a useful approach for classifying cardiovascular risk. The aim of this retrospective study was to evaluate the correlation between carotid intraplaque neovascularization (IPN) detected on contrast-enhanced ultrasound and the progression of coronary lesions in patients undergoing percutaneous coronary intervention (PCI). METHODS Contrast-enhanced ultrasound and angiography were performed in 131 patients undergoing PCI. All patients had angiograms obtained ≥12 months after PCI, and progression was defined using those angiograms. On the basis of angiographic images, patients were divided into progression and nonprogression groups. IPN was graded from 0 to 3 according to each plaque's microbubble appearance and extent, detected using contrast-enhanced ultrasound. The plaque with the highest IPN was used for analysis. Logistic regression and receiver operating characteristic analyses were applied to evaluate risk factors for predicting the progression of coronary lesions in patients undergoing PCI. RESULTS In the progression group, the numbers of patients with IPN values of 0, 1, 2, and 3 were one (3.3%), nine (30.0%), 16 (53.3%), and four (13.3%), respectively. Significant differences were found in maximum plaque height and IPN between groups. IPN and maximum plaque height were independent risk contributors to coronary lesion progression in patients undergoing PCI. The sensitivity, specificity, positive predictive value, and negative predictive value of IPN of 1.5 and to predict the progression of coronary lesions were 67%, 91%, 68%, and 89%, respectively. The area under the curve was 0.822. CONCLUSIONS Carotid plaque neovascularization was correlated with the progression of coronary lesions in patients undergoing PCI. IPN is a clinically useful tool for detecting the progression of coronary lesions and for risk stratification, especially in patients >60 years old.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Ling Ren
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing, China; The Second Medical College of Lanzhou University, Lanzhou, China
| | - Xiang Fei
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingjing Wang
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Chen
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Guo
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qi Wang
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
24
|
ANGPTL4 stabilizes atherosclerotic plaques and modulates the phenotypic transition of vascular smooth muscle cells through KLF4 downregulation. Exp Mol Med 2023; 55:426-442. [PMID: 36782020 PMCID: PMC9981608 DOI: 10.1038/s12276-023-00937-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 02/15/2023] Open
Abstract
Atherosclerosis, the leading cause of death, is a vascular disease of chronic inflammation. We recently showed that angiopoietin-like 4 (ANGPTL4) promotes cardiac repair by suppressing pathological inflammation. Given the fundamental contribution of inflammation to atherosclerosis, we assessed the role of ANGPTL4 in the development of atherosclerosis and determined whether ANGPTL4 regulates atherosclerotic plaque stability. We injected ANGPTL4 protein twice a week into atherosclerotic Apoe-/- mice and analyzed the atherosclerotic lesion size, inflammation, and plaque stability. In atherosclerotic mice, ANGPTL4 reduced atherosclerotic plaque size and vascular inflammation. In the atherosclerotic lesions and fibrous caps, the number of α-SMA(+), SM22α(+), and SM-MHC(+) cells was higher, while the number of CD68(+) and Mac2(+) cells was lower in the ANGPTL4 group. Most importantly, the fibrous cap was significantly thicker in the ANGPTL4 group than in the control group. Smooth muscle cells (SMCs) isolated from atherosclerotic aortas showed significantly increased expression of CD68 and Krüppel-like factor 4 (KLF4), a modulator of the vascular SMC phenotype, along with downregulation of α-SMA, and these changes were attenuated by ANGPTL4 treatment. Furthermore, ANGPTL4 reduced TNFα-induced NADPH oxidase 1 (NOX1), a major source of reactive oxygen species, resulting in the attenuation of KLF4-mediated SMC phenotypic changes. We showed that acute myocardial infarction (AMI) patients with higher levels of ANGPTL4 had fewer vascular events than AMI patients with lower levels of ANGPTL4 (p < 0.05). Our results reveal that ANGPTL4 treatment inhibits atherogenesis and suggest that targeting vascular stability and inflammation may serve as a novel therapeutic strategy to prevent and treat atherosclerosis. Even more importantly, ANGPTL4 treatment inhibited the phenotypic changes of SMCs into macrophage-like cells by downregulating NOX1 activation of KLF4, leading to the formation of more stable plaques.
Collapse
|
25
|
Ge P, Li H, Ya X, Xu Y, Ma L, He Q, Wang R, Liu Z, Zhang Q, Zhang Y, Wang W, Zhang D, Zhao J. Single-cell atlas reveals different immune environments between stable and vulnerable atherosclerotic plaques. Front Immunol 2023; 13:1085468. [PMID: 36741406 PMCID: PMC9889979 DOI: 10.3389/fimmu.2022.1085468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Regardless of the degree of stenosis, vulnerable plaque is an important cause of ischemic stroke and thrombotic complications. The changes of the immune microenvironment within plaques seem to be an important factor affecting the characteristics of the plaque. However, the differences of immune microenvironment between stable and vulnerable plaques were remained unknown. Methods In this study, RNA-sequencing was performed on superficial temporal arteries from 5 traumatic patients and plaques from 3 atherosclerotic patients to preliminary identify the key immune response processes in plaques. Mass cytometry (CyTOF) technology was used to explore differences in immune composition between 9 vulnerable plaques and 12 stable plaques. Finally, immunofluorescence technique was used to validate our findings in the previous analysis. Results Our results showed that more CD86+CD68+ M1 pro-inflammatory macrophages were found in vulnerable plaques, while CD4+T memory cells were mainly found in stable plaques. In addition, a CD11c+ subset of CD4+T cells with higher IFN-r secretion was found within the vulnerable plaque. In two subsets of B cells, CD19+CD20-B cells in vulnerable plaques secreted more TNF-a and IL-6, while CD19-CD20+B cells expressed more PD-1 molecules. Conclusion In conclusion, our study suggested that M1-like macrophages are the major cell subset affecting plaque stability, while functional B cells may also contribute to plaque stability.
Collapse
Affiliation(s)
- Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yiqiao Xu
- Capital Medical University, Beijing, China
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zechen Liu
- Department of Biostatistics, Harvard School of Public Health, Huntington Avenue, Boston, MA, United States
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China,*Correspondence: Wenjing Wang, ; Dong Zhang, ; Jizong Zhao,
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,Department of Neurosurgery, Beijing Hospital, Beijing, China,*Correspondence: Wenjing Wang, ; Dong Zhang, ; Jizong Zhao,
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,*Correspondence: Wenjing Wang, ; Dong Zhang, ; Jizong Zhao,
| |
Collapse
|
26
|
Chen J, Zhao F, Lei C, Qi T, Xue X, Meng Y, Zhang W, Zhang H, Wang J, Zhu H, Cheng C, Wang Q, Bi C, Song B, Jin C, Niu Q, An F, Li B, Huo X, Zhao Y, Li B. Effect of evolocumab on the progression of intraplaque neovascularization of the carotid based on contrast-enhanced ultrasonography (EPIC study): A prospective single-arm, open-label study. Front Pharmacol 2023; 13:999224. [PMID: 36686711 PMCID: PMC9846542 DOI: 10.3389/fphar.2022.999224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background and Purpose: The aim of this study was to explore the effect of half a year of evolocumab plus moderate-intensity statin treatment on carotid intraplaque neovascularization (IPN) and blood lipid levels. Methods: A total of 31 patients with 33 carotid plaques who received evolocumab plus statin treatment were included. Blood lipid levels, B-mode ultrasound and contrast-enhanced ultrasonography (CEUS) at baseline and after half a year of evolocumab plus statin therapy were collected. The area under the curve (AUC) reflected the total amount of acoustic developer entering the plaque or lumen within the 180 s measurement period. The enhanced intensity reflected the peak blood flow intensity during the monitoring period, and the contrast agent area reflected the area of vessels in the plaques. Results: Except for high-density lipoprotein cholesterol (HDL-c), all other lipid indices decreased. Compared with baseline, low-density lipoprotein cholesterol (LDL-c) decreased by approximately 57% (p < 0.001); total cholesterol (TC) decreased by approximately 34% (p < 0.001); small dense low-density lipoprotein (sd-LDL) decreased by approximately 52% (p < 0.001); and HDL-c increased by approximately 20% (p < 0.001). B-mode ultrasonography showed that the length and thickness of the plaque and the hypoechoic area ratio were reduced (p < 0.05). The plaque area, calcified area ratio, and lumen cross-sectional area changed little (p > 0.05). CEUS revealed that the area under the curve of plaque/lumen [AUC (P/L)] decreased from 0.27 ± 0.13 to 0.19 ± 0.11 (p < 0.001). The enhanced intensity ratio of plaque/lumen [intensity ratio (P/L)] decreased from 0.37 ± 0.16 to 0.31 ± 0.14 (p = 0.009). The contrast agent area in plaque/area of plaque decreased from 19.20 ± 13.23 to 12.66 ± 9.59 (p = 0.003). The neovascularization score decreased from 2.64 ± 0.54 to 2.06 ± 0.86 (p < 0.001). Subgroup analysis based on statin duration (<6 months and ≥6 months) showed that there was no significant difference in the AUC (P/L) or intensity ratio (P/L) at baseline or after half a year of evolocumab treatment. Conclusion: This study found that evolocumab combined with moderate-intensity statins significantly improved the blood lipid profile and reduced carotid IPN. Clinical Trial Registration: https://www.clinicaltrials.gov; identifier: NCT04423406.
Collapse
Affiliation(s)
- Ju Chen
- Department of Medical Ultrasonics, Zibo Central Hospital, Zibo, China
| | - Faming Zhao
- Department of Cardiology, Zibo Central Hospital, Zibo, China
- Department of Infectious Disease, Zibo Infectious Disease Hospital, Zibo, China
| | - Chengbin Lei
- Laboratory Department, Zibo Central Hospital, Zibo, China
| | - Tianjun Qi
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Xin Xue
- Laboratory Department, Zibo Central Hospital, Zibo, China
| | - Yuan Meng
- Laboratory Department, Zibo Central Hospital, Zibo, China
| | - Wenzhong Zhang
- Department of Medical Ultrasonics, Zibo Central Hospital, Zibo, China
| | - Hui Zhang
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Jian Wang
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Haijun Zhu
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Cheng Cheng
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Qilei Wang
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Chenglong Bi
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Beibei Song
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Chengwei Jin
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Qiang Niu
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Fengshuang An
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoguang Huo
- Department of Medical Ultrasonics, Zibo Central Hospital, Zibo, China
| | - Yunhe Zhao
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
27
|
Liu X, He W, Hong X, Li D, Chen Z, Wang Y, Chen Z, Luan Y, Zhang W. New insights into fibrous cap thickness of vulnerable plaques assessed by optical coherence tomography. BMC Cardiovasc Disord 2022; 22:484. [DOI: 10.1186/s12872-022-02896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Objective
Vulnerable plaques with fibrous cap thickness (FCT) of ≤65 μm are prone to rupture and/or thrombosis. However, plaques with FCT > 65 μm cause acute myocardial infarction and even sudden death. We aimed to investigate the relationship between 65 < FCT ≤ 80 μm and plaque rupture and/or thrombosis using optical coherence tomography (OCT).
Methods
OCT was performed on culprit lesions in 502 consecutively enrolled patients to identify FCT. Patients were classified into three groups according to FCT: Group A (FCT ≤ 65 μm, n = 147), Group B (65 < FCT ≤ 80 μm, n = 84) and Group C (FCT > 80 μm, n = 271). Clinical and laboratory data was collected from the inpatient medical record system.
Results
Plaques with thinner FCT, especially < 65 μm, were more susceptible to rupture and/or thrombosis (P < 0.001). Plaques with FCT between 65 and 80 μm had a higher probability of rupture and/or thrombosis than those with FCT > 80 μm (P < 0.001). In multivariable analysis, FCT ≤ 65 μm and 65 < FCT ≤ 80 μm were independent predictors for plaque rupture ([FCT ≤ 65 μm vs. FCT > 80 μm]: OR = 8.082, 95% CI = 4.861 to 13.435, P < 0.001; [65 < FCT ≤ 80 μm vs. FCT > 80 μm]: OR = 2.463, 95% CI = 1.370 to 4.430, P = 0.003), thrombosis ([FCT ≤ 65 μm vs. FCT > 80 μm]: OR = 25.224, 95% CI = 13.768 to 46.212, P < 0.001; [65 < FCT ≤ 80 μm vs. FCT > 80 μm]: OR = 3.675, 95% CI = 2.065 to 6.542, P < 0.001) and plaque rupture with thrombosis ([FCT ≤ 65 μm vs. FCT > 80 μm]: OR = 22.593, 95% CI = 11.426 to 44.674, P < 0.001; [65 < FCT ≤ 80 μm vs. FCT > 80 μm]: OR = 4.143, 95% CI = 1.869 to 9.184, P < 0.001).
Conclusions
OCT-assessed 65 < FCT ≤ 80 μm was independently associated with increased risk of plaque rupture and/or thrombosis compared with FCT > 80 μm.
Collapse
|
28
|
Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci 2022; 23:13638. [PMID: 36362423 PMCID: PMC9656166 DOI: 10.3390/ijms232113638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine, 400349 Cluj-Napoca, Romania
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Andreea Paula Buda
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| | - Sonia Irina Vlaicu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
29
|
Kamato D, Ilyas I, Xu S, Little PJ. Non-Mouse Models of Atherosclerosis: Approaches to Exploring the Translational Potential of New Therapies. Int J Mol Sci 2022; 23:12964. [PMID: 36361754 PMCID: PMC9656683 DOI: 10.3390/ijms232112964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 09/26/2023] Open
Abstract
Cardiovascular disease is the largest single cause of disease-related mortality worldwide and the major underlying pathology is atherosclerosis. Atherosclerosis develops as a complex process of vascular lipid deposition and retention by modified proteoglycans, endothelial dysfunction and unresolved chronic inflammation. There are a multitude of current therapeutic agents, most based on lowering plasma lipid levels, but, overall, they have a lower than optimum level of efficacy and many deaths continue to arise from cardiovascular disease world-wide. To identify and evaluate potential novel cardiovascular drugs, suitable animal models that reproduce human atherosclerosis with a high degree of fidelity are required as essential pre-clinical research tools. Commonly used animal models of atherosclerosis include mice (ApoE-/-, LDLR-/- mice and others), rabbits (WHHL rabbits and others), rats, pigs, hamster, zebrafish and non-human primates. Models based on various wild-type and genetically modified mice have been extensively reviewed but mice may not always be appropriate. Thus, here, we provide an overview of the advantages and shortcomings of various non-mouse animal models of atherosclerotic plaque formation, and plaque rupture, as well as commonly used interventional strategies. Taken together, the combinatorial selection of suitable animal models readily facilitates reproducible and rigorous translational research in discovering and validating novel anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Iqra Ilyas
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Suowen Xu
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| |
Collapse
|
30
|
Ma X, Wang J, Li Z, Zhou X, Liang X, Wang J, Duan Y, Zhao P. Early Assessment of Atherosclerotic Lesions and Vulnerable Plaques in vivo by Targeting Apoptotic Macrophages with AV Nanobubbles. Int J Nanomedicine 2022; 17:4933-4946. [PMID: 36275481 PMCID: PMC9581080 DOI: 10.2147/ijn.s382738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Background The early detection of atherosclerotic lesions is particularly important for risk prediction of acute cardiovascular events. Macrophages apoptosis was significantly associated with the degree of AS lesions and especially contributed to plaque vulnerability. In this research, we mainly sought to explore the feasibility of a home-made AV-nanobubbles (NBAV) for visualization of apoptotic macrophages and assessment of atherosclerosis (AS) lesions by contrast-enhanced ultrasound (CEUS) imaging. Methods NBAV were prepared by “Optimized Thin-Film Hydration” and “Biotin-Avidin-Biotin” methods. Then, the characterization and echogenicity of NBAV were measured and analyzed in vitro. The targeting ability of NBAV to ox-LDL–induced apoptotic macrophages was observed by laser scanning confocal microscope. The ApoE−/− mice mode fed with high fat diet were observed by high-frequency ultrasound, microanatomy and oil red O staining. CEUS imaging in vivo was performed on AS plaques with NBAV and NBCtrl injection through the tail vein in turn in ApoE−/− mice. After CEUS imaging, the plaques were confirmed and analyzed by histopathological and immunological assessment. Results The prepared NBAV had a nano-scale size distribution with a low PDI and a negative zeta potential. Moreover, NBAV showed an excellent stability and exhibited a significantly echogenic signal than saline in vitro. In addition, we found that NBAV could target apoptotic macrophages induced by ox-LDL. Compared with NBCtrl, CEUS imaging of NBAV showed strong and sustained echo enhancement in plaque area of aortic arch in vivo. Further research showed that NBAV sensitive plaques presented more significant pathological changes with several vulnerable plaque features and abundant TUNEL-positive area. Conclusion NBAV displayed a sensitive indicator to evaluate apoptotic macrophages, indicating a promising CEUS molecular probe for AS lesions and vulnerable plaques identification.
Collapse
Affiliation(s)
- Xiaoju Ma
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China,Ultrasonic Department, Lin Tong Rehabilitation and Convalescent Center, Lintong, 710600, People’s Republic of China
| | - Jia Wang
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Zhelong Li
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Xueying Zhou
- Ultrasonic Department, Air Force Hospital of Central Theater, Datong, 037006, People’s Republic of China
| | - Xiao Liang
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Junyan Wang
- Department of Nuclear Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Yunyou Duan
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China
| | - Ping Zhao
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, Xi’an, 710038, People’s Republic of China,Correspondence: Ping Zhao; Yunyou Duan, Email ;
| |
Collapse
|
31
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Molecular Mechanisms Underlying Pathological and Therapeutic Roles of Pericytes in Atherosclerosis. Int J Mol Sci 2022; 23:11663. [PMID: 36232962 PMCID: PMC9570222 DOI: 10.3390/ijms231911663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Alexander M. Markin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Elena R. Andreeva
- Laboratory of Cell Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | | |
Collapse
|
32
|
Wang B, Hou X, Sun Y, Lei C, Yang S, Zhu Y, Jiang Y, Song L. Interleukin-17A influences the vulnerability rather than the size of established atherosclerotic plaques in apolipoprotein E-deficient mice. Open Life Sci 2022; 17:1104-1115. [PMID: 36133421 PMCID: PMC9462543 DOI: 10.1515/biol-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Interleukin (IL)-17A plays a role in the development of atherosclerotic plaques; however, the mechanism remains unclear. In this study, apolipoprotein E-deficient (ApoE–/–) mice were fed a high-fat diet to induce atherosclerosis, followed by the treatment with exogenous recombinant IL-17A or the neutralizing antibody to confirm the impact of IL-17A on the established atherosclerotic plaques. We found that both the stimulation of IL-17A and blockage of endogenous IL-17 via antibody did not affect the size of the established plaques. However, IL-17A significantly increased the vulnerability of plaques characterized by the accumulation of lipids and T cells with a concurrent decrease in the number of smooth muscle cells. In addition, the blockage by IL-17 neutralizing antibody attenuated plaque vulnerability. Furthermore, we found that although IL-17A did not affect the efferocytosis of macrophages to apoptotic cells, it promoted the apoptosis of macrophages in the presence of oxidized low-density lipoprotein in vitro. Also, IL-17A upregulated chemokines MCP-1 and CXCL-10 expression in the plaques. Our data indicated that IL-17A controlled both SMC and macrophage accumulation and the apoptosis within the plaque, which may further weaken the aorta wall. This study suggests that IL-17A may be a potential therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Yaning Sun
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Chao Lei
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Sha Yang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Yao Zhu
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Yingming Jiang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining City, 272067, Shandong Province, China
| | - Li Song
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining City, 272067, Shandong Province, China
| |
Collapse
|
33
|
Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists. Nutrients 2022; 14:nu14183775. [PMID: 36145148 PMCID: PMC9503433 DOI: 10.3390/nu14183775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
The increasing prevalence of obesity and type 2 diabetes (T2DM) is provoking an important socioeconomic burden mainly in the form of cardiovascular disease (CVD). One successful strategy is the so-called metabolic surgery whose beneficial effects are beyond dietary restrictions and weight loss. One key underlying mechanism behind this surgery is the cooperative improved action of the preproglucagon-derived hormones, glucagon, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) which exert their functions through G protein-coupled receptors (GPCR). Great success has been reached with therapies based on the GLP-1 receptor monoagonism; therefore, a logical and rational approach is the use of the dual and triagonism of GCPC to achieve complete metabolic homeostasis. The present review describes novel findings regarding the complex biology of the preproglucagon-derived hormones, their signaling, and the drug development of their analogues, especially those acting as dual and triagonists. Moreover, the main investigations into animal models and ongoing clinical trials using these unimolecular dual and triagonists are included which have demonstrated their safety, efficacy, and beneficial effects on the CV system. These therapeutic strategies could greatly impact the treatment of CVD with unprecedented benefits which will be revealed in the next years.
Collapse
|
34
|
韩 艳, 费 翔, 任 玲, 汪 晶, 陈 韬, 郭 军, 汪 奇. [Carotid intraplaque neovascularization is correlated with the risk of revascularization following percutaneous coronary intervention]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:892-898. [PMID: 35790440 PMCID: PMC9257371 DOI: 10.12122/j.issn.1673-4254.2022.06.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the correlation of intraplaque neovascularization (IPN) detected by carotid contrast-enhanced ultrasound (CEUS) with revascularization in patients following percutaneous coronary intervention (PCI). METHODS This study was conducted among 105 patients who were followed up for more than 12 months after PCI. All the patients received CEUS examination for assessment of carotid plaque formation and IPN, which were compared between patients with revascularization (REV group, n=27) and those without revascularization (N-REV group, n=78). ROC curve was used to analyze the diagnostic efficacy of CEUS for predicting revascularization. Univariate and multivariate logistic regression analyses were performed to identify the risk factors associated with revascularization. RESULTS In the REV group, the IPN score was 0 in 1 (3.7%) patient, 1 in 8 (29.6%) patients, 2 in 15 (55.6%) patients and 3 in 3 (11.1%) patients. Significant differences were noted between REV and N-REV groups in plaque length (15.70±6.93 vs 12.10±6.64, P < 0.05), maximum plaque thickness (3.69±1.12 vs 3.14±1.18, P < 0.05) and IPN (1.74±0.71 vs 0.87±0.63, P < 0.001). IPN score was identified as an independent risk factor for revascularization in patients following PCI, and at the cutoff value of 1.5, its sensitivity, specificity, positive predictive value, and negative predictive value for predicting the occurrence of revascularization were 74%, 89%, 69%, and 91%, respectively, with an AUC of 0.848 (95% CI: 0.703-0.905, P < 0.001). CONCLUSION CEUS allows noninvasive and semi-quantitative assessment of neovascularization in carotid artery plaques, and IPN detected by CEUS is correlated with the risk of revascularization in patients following PCI.
Collapse
Affiliation(s)
- 艳艳 韩
- 中国人民解放军总医院第六医学中心心血管病医学部,北京 100048Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
- 解放军医学院,北京 100853Medical School of Chinese PLA, Beijing 100853, China
| | - 翔 费
- 中国人民解放军总医院第一医学中心超声诊断科,北京 100853Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - 玲 任
- 中国人民解放军总医院第一医学中心超声诊断科,北京 100853Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- 兰州大学第二临床医学院,甘肃 兰州 730030Second Medical College of Lanzhou University, Lanzhou 730030, China
| | - 晶晶 汪
- 中国人民解放军总医院第六医学中心心血管病医学部,北京 100048Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - 韬 陈
- 中国人民解放军总医院第六医学中心心血管病医学部,北京 100048Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - 军 郭
- 中国人民解放军总医院第六医学中心心血管病医学部,北京 100048Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - 奇 汪
- 中国人民解放军总医院第六医学中心心血管病医学部,北京 100048Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
35
|
Cheng W, Rosolowski M, Boettner J, Desch S, Jobs A, Thiele H, Buettner P. High-density lipoprotein cholesterol efflux capacity and incidence of coronary artery disease and cardiovascular mortality: a systematic review and meta-analysis. Lipids Health Dis 2022; 21:47. [PMID: 35643463 PMCID: PMC9148501 DOI: 10.1186/s12944-022-01657-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023] Open
Abstract
Background The preventive effect of cholesterol efflux capacity (CEC) on the progression of atherosclerotic lesions has been confirmed in animal models, but findings in the population are inconsistent. Therefore, this meta-analysis aimed to systematically investigate the relationship of CEC with coronary artery disease (CAD) and cardiovascular mortality in a general population. Methods Four electronic databases (PubMed, Embase database, Cochrane Library, Web of Science) were searched from inception to February 1st, 2022 for relevant studies, without any language restriction. For continuous variables, the mean and standard deviation (SD), maximum adjusted odds ratios (ORs), relative risks (RRs), or hazard ratios (HRs) and 95% confidence intervals (CIs) were extracted. The random-effects model was adopted to calculate the pooled results, and dose-response analyses were conducted. All pooled results were expressed by standardized mean difference (SMD) and ORs. Results Finally, 18 observational studies were included. Compared with the non-CAD group, the CAD group (SMD -0.48, 95% CI − 0.66 to − 0.30; I2 88.9%) had significantly lower CEC. In the high-CEC population, the risks of CAD (OR 0.52, 95% CI 0.37 to 0.71; I2 81%) significantly decreased, and a linear negative dose-response was detected. However, an association between CEC and the risk of cardiovascular mortality was not found (OR 0.44, 95% CI 0.18 to 1.06; I2 83.2%). Conclusions This meta-analysis suggests that decreased CEC is strongly associated with the risk of CAD, independent of HDL-C level. However, a decreased CEC seems not to be related to cardiovascular mortality. Meanwhile, CEC is linearly negatively correlated with the risk of CAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01657-3.
Collapse
|
36
|
Cimmino G, di Serafino L, Cirillo P. Pathophysiology and mechanisms of Acute Coronary Syndromes: athero-thrombosis, immune-inflammation and beyond. Expert Rev Cardiovasc Ther 2022; 20:351-362. [PMID: 35510629 DOI: 10.1080/14779072.2022.2074836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The pathophysiology of atherosclerosis and its acute complications, such as the Acute Coronary Syndromes (ACS), is continuously under investigation. Immunity and inflammation seem to play a pivotal role in promoting formation and grow of atherosclerotic plaques. At the same time, plaque rupture followed by both platelets' activation and coagulation cascade induction lead to intracoronary thrombus formation. Although these phenomena might be considered responsible of about 90% of ACS, in up to 5-10% of acute syndromes a non-obstructive coronary artery disease (MINOCA) might be documented. This paper gives an overview on athero-thrombosis and immuno-inflammation processes involved in ACS pathophysiology also emphasizing the pathological mechanisms potentially involved in MINOCA. AREAS COVERED The relationship between immuno-inflammation and atherothrombosis is continuously updated by recent findings. At the same time, pathophysiology of MINOCA still remains a partially unexplored field, stimulating the research of potential links between these two aspects of ACS pathophysiology. EXPERT OPINION Pathophysyiology of ACS has been extensively investigated; however, several grey areas still remain. MINOCA represents one of these areas. At the same time, many aspects of immune-inflammation processes are still unknown. Thus, research should be continued to shed a brighter light on both these sides of "ACS" moon.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi di Serafino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
37
|
Khomtchouk BB, Lee YS, Khan ML, Sun P, Mero D, Davidson MH. Targeting the cytoskeleton and extracellular matrix in cardiovascular disease drug discovery. Expert Opin Drug Discov 2022; 17:443-460. [PMID: 35258387 PMCID: PMC9050939 DOI: 10.1080/17460441.2022.2047645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/24/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Currently, cardiovascular disease (CVD) drug discovery has focused primarily on addressing the inflammation and immunopathology aspects inherent to various CVD phenotypes such as cardiac fibrosis and coronary artery disease. However, recent findings suggest new biological pathways for cytoskeletal and extracellular matrix (ECM) regulation across diverse CVDs, such as the roles of matricellular proteins (e.g. tenascin-C) in regulating the cellular microenvironment. The success of anti-inflammatory drugs like colchicine, which targets microtubule polymerization, further suggests that the cardiac cytoskeleton and ECM provide prospective therapeutic opportunities. AREAS COVERED Potential therapeutic targets include proteins such as gelsolin and calponin 2, which play pivotal roles in plaque development. This review focuses on the dynamic role that the cytoskeleton and ECM play in CVD pathophysiology, highlighting how novel target discovery in cytoskeletal and ECM-related genes may enable therapeutics development to alter the regulation of cellular architecture in plaque formation and rupture, cardiac contractility, and other molecular mechanisms. EXPERT OPINION Further research into the cardiac cytoskeleton and its associated ECM proteins is an area ripe for novel target discovery. Furthermore, the structural connection between the cytoskeleton and the ECM provides an opportunity to evaluate both entities as sources of potential therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Bohdan B. Khomtchouk
- University of Chicago, Department of Medicine, Section of Computational Biomedicine and Biomedical Data Science, Institute for Genomics and Systems Biology, Chicago, IL USA
| | - Yoon Seo Lee
- The College of the University of Chicago, Chicago, IL USA
| | - Maha L. Khan
- The College of the University of Chicago, Chicago, IL USA
| | - Patrick Sun
- The College of the University of Chicago, Chicago, IL USA
| | | | - Michael H. Davidson
- University of Chicago, Department of Medicine, Section of Cardiology, Chicago, IL USA
| |
Collapse
|
38
|
Discrepancy between plaque vulnerability and functional severity of angiographically intermediate coronary artery lesions. Cardiovasc Interv Ther 2022; 37:691-698. [PMID: 35260967 DOI: 10.1007/s12928-022-00851-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/25/2022] [Indexed: 11/02/2022]
Abstract
This study sought to investigate the relationship between physiological severity and plaque vulnerability of intermediate coronary artery stenoses as assessed by fractional flow reserve (FFR) and near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS). We included vessels where both FFR and NIRS-IVUS were performed. A positive FFR was defined as FFR ≤ 0.80. Lipid core burden index of the entire target vessel (TV-LCBI), maximum LCBI in 4 mm (maxLCBI4mm), and maximum plaque burden (PB) were evaluated using NIRS-IVUS. A vulnerable plaque was defined as a lipid-rich plaque (maxLCBI4mm ≥ 400) with large PB (≥ 70%). A total of 59 vessels of 45 patients were included. Median FFR value was 0.75 [interquartile 0.72, 0.82]. An FFR value of ≤ 0.80 was observed in 42 vessels (71%). TV-LCBI (correlation coefficient [CC] = - 0.331, p = 0.011), lesion length (CC = - 0.350, p = 0.007), and PB (CC = - 0.230, p = 0.080) negatively correlated with FFR value, while maxLCBI4mm did not (CC = - 0.156, p = 0.24). The prevalence of vulnerable plaques (26.2% vs. 29.4%, p > 0.99) and mean TV-LCBI, maxLCBI4mm, and PB values were not significantly different between the vessels with FFR ≤ 0.80 and those with FFR > 0.80. In multivariable logistic models, diabetes mellitus (p = 0.003) and hemoglobin A1c (p = 0.012) were associated with the presence of a vulnerable plaque. In conclusion, the results of the present study suggested that FFR may reflect total lipid burden but not necessarily plaque vulnerability. In patients with coronary artery disease and a high likelihood of rapid atherosclerosis progression, such as diabetes mellitus patients, assessing plaque vulnerability in addition to the functional severity of coronary artery lesions may help stratify better the risk of future events.
Collapse
|
39
|
Hafiane A, Daskalopoulou SS. Targeting the Residual Cardiovascular Risk by Specific Anti-inflammatory Interventions as a Therapeutic Strategy in Atherosclerosis. Pharmacol Res 2022; 178:106157. [DOI: 10.1016/j.phrs.2022.106157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
|
40
|
Liu J, Xu P, Liu D, Wang R, Cui S, Zhang Q, Li Y, Yang W, Zhang D. TCM Regulates PI3K/Akt Signal Pathway to Intervene Atherosclerotic Cardiovascular Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4854755. [PMID: 34956379 PMCID: PMC8702326 DOI: 10.1155/2021/4854755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
Vascular endothelial injury is the initial stage of atherosclerosis (AS). Stimulating and activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway can regulate the expression of vascular endothelial cytokines, thus affecting the occurrence and development of AS. In addition, the PI3K/Akt signaling pathway can regulate the polarization and survival of macrophages and the expression of inflammatory factors and platelet function, thus influencing the progression of AS. In recent years, traditional Chinese medicine (TCM) has been widely recognized for its advantages of fewer side effects, multiple pathways, and multiple targets. Also, the research of TCM regulation of AS via the PI3K/Akt signaling pathway has achieved certain results. This study aimed to analyze the characteristics of the PI3K/Akt signaling pathway and its role in the pathogenesis of AS, as well as the role of Chinese medicine in regulating the PI3K/Akt signaling pathway. The findings are expected to provide a theoretical basis for the clinical treatment and pathological mechanism research of AS.
Collapse
Affiliation(s)
- Jiali Liu
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pangao Xu
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine Shandong, Jinan, Shandong, China
| | - Dekun Liu
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ruiqing Wang
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengnan Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qiuyan Zhang
- Pharmacy School, Shandong University of Traditional Chinese Medicine Shandong, Jinan, Shandong, China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Engineering Research Center of Traditional Chinese Medicine Precise Treatment of Cardiovascular Disease, Zibo, Shandong, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Engineering Research Center of Traditional Chinese Medicine Precise Treatment of Cardiovascular Disease, Zibo, Shandong, China
| | - Dan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
41
|
Cilengitide Inhibits Neovascularization in a Rabbit Abdominal Aortic Plaque Model by Impairing the VEGF Signaling. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5954757. [PMID: 34888383 PMCID: PMC8651393 DOI: 10.1155/2021/5954757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Background Cilengitide is a selective αvβ3 and αvβ5 integrin inhibitor. We sought to investigate the effect of cilengitide on the neovascularization of abdominal aortic plaques in rabbits and explore its underlying antiangiogenic mechanism on human umbilical vein endothelial cells (HUVECs). Materials and Methods For the in vivo experiment, the abdominal aortic plaque model of rabbits was established and injected with different doses of cilengitide or saline for 14 consecutive days. Conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) were applied to measure the vascular structure and blood flow parameters. CD31 immunofluorescence staining was performed for examining neovascularization. Relative expressions of vascular endothelial growth factor (VEGF) and integrin of the plaque were determined. For in vitro experiments, HUVECs were tested for proliferation, migration, apoptosis, and tube formation in the presence of different doses of cilengitide. Relative expressions of VEGF, integrin, and Ras/ERK/AKT signaling pathways were determined for the exploration of underlying mechanism. Results CEUS showed modestly increased size and eccentricity index (EI) of plaques in the control group. Different degrees of reduced size and EI of plaques were observed in two cilengitide treatment groups. The expressions of VEGF and integrin in the plaque were inhibited after 14 days of cilengitide treatment. The neovascularization and apoptosis of the abdominal aorta were also significantly alleviated by cilengitide treatment. For in vitro experiments, cilengitide treatment was found to inhibit the proliferation, migration, and tube formation of HUVECs. However, cilengitide did not induce the apoptosis of HUVECs. A higher dose of cilengitide inhibited the mRNA expression of VEGF-A, β3, and β5, but not αV. Lastly, cilengitide treatment significantly inhibited the Ras/ERK/AKT pathway in the HUVECs. Conclusions. This study showed that cilengitide effectively inhibited the growth of plaque size by inhibiting the angiogenesis of the abdominal aortic plaques and blocking the VEGF-mediated angiogenic effect on HUVECs.
Collapse
|
42
|
Real-Life Outcomes of Coronary Bifurcation Stenting in Acute Myocardial Infarction (Zabrze-Opole Registry). J Cardiovasc Dev Dis 2021; 8:jcdd8110155. [PMID: 34821708 PMCID: PMC8619945 DOI: 10.3390/jcdd8110155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
Percutaneous coronary intervention (PCI) of bifurcation lesions is a technical challenge associated with high risk of adverse events, especially in primary PCI. The aim of the study is to analyze long-term outcomes after PCI for coronary bifurcation in acute myocardial infarction (AMI). The outcome was defined as the rate of major adverse cardiac event related to target lesion failure (MACE-TLF) (death-TLF, nonfatal myocardial infarction-TLF and target lesion revascularization (TLR)) and the rate of stent thrombosis (ST). From 306 patients enrolled to the registry, 113 were diagnosed with AMI. In the long term, AMI was not a risk factor for MACE-TLF. The risk of MACE-TLF was dependent on the culprit lesion, especially in the right coronary artery (RCA) and side branch (SB) with a diameter >3 mm. When PCI was performed in the SB, the inflation pressure in SB remained the single risk factor of poor prognosis. The rate of cumulative ST driven by late ST in AMI was dependent on the inflation pressure in the main branch (MB). In conclusion, PCI of bifurcation culprit lesions should be performed carefully in case of RCA and large SB diameter and attention should be paid to high inflation pressure in the SB. On the contrary, the lower the inflation pressure in the MB, the higher the risk of ST.
Collapse
|
43
|
Cai Y, Li Z. Mathematical modeling of plaque progression and associated microenvironment: How far from predicting the fate of atherosclerosis? COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106435. [PMID: 34619601 DOI: 10.1016/j.cmpb.2021.106435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Mathematical modeling contributes to pathophysiological research of atherosclerosis by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. In turn, the complexity of atherosclerosis is well suited to quantitative approaches as it provides challenges and opportunities for new developments of modeling. In this review, we summarize the current 'state of the art' on the mathematical modeling of the effects of biomechanical factors and microenvironmental factors on the plaque progression, and its potential help in prediction of plaque development. We begin with models that describe the biomechanical environment inside and outside the plaque and its influence on its growth and rupture. We then discuss mathematical models that describe the dynamic evolution of plaque microenvironmental factors, such as lipid deposition, inflammation, smooth muscle cells migration and intraplaque hemorrhage, followed by studies on plaque growth and progression using these modelling approaches. Moreover, we present several key questions for future research. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving plaque vulnerability and propose future potential direction in therapy for cardiovascular disease.
Collapse
Affiliation(s)
- Yan Cai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhiyong Li
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
44
|
de Souza P, Mariano LNB, da Silva RDCMVAF, Gasparotto F, Lourenço ELB, Donadel G, Boeing T, Gasparotto Junior A. Therapeutic Feasibility of the Natural Products in the Heart Complaints: An Overview. J Med Food 2021; 24:1245-1254. [PMID: 34665024 DOI: 10.1089/jmf.2021.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heart pain is the most frequent complaint leading patients to seek medical help. Functional heart symptoms, especially chest pain, are prevalent and, according to the International Classification of Diseases (ICD-10), are described as "somatoform autonomous functional disorders of the cardiovascular system." The problem lies in the fact that pain does not always have a somatic background, that is, it may be related to crucial underlying heart disease. The population does not know how to differentiate somatic pain from significant ischemic symptoms, and based on the patient's complaints, traditional medicine ends up treating other underlying cardiac diseases. Many unsuccessful unconventional therapies have been proposed in recent years, including herbal medicines that seek to disrupt the disease's pathogenesis. The present review summarizes research carried out in the last 5 years on natural products' heart complaints, including myocardial ischemia, arrhythmia, and heart failure. Several herbal medicines may be used as a replacement or complementary treatment strategy. A total of 17 medicinal plants have shown promising results in preclinical studies. However, human clinical trials are scarce; only two have been presented. Generally, the data are bland, and many issues have been raised about herbal therapies' safety, efficacy, and mode of action. Besides, relevant clinical trials, future perspectives, and possible clinical applications are discussed.
Collapse
Affiliation(s)
- Priscila de Souza
- Graduate Program in Pharmaceutical Sciences (PPGCF), Chemical-Pharmaceutical Research Nucleus (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Luísa Nathália Bolda Mariano
- Laboratory of Cardiovascular Biology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rita de Cássia M V A F da Silva
- Graduate Program in Pharmaceutical Sciences (PPGCF), Chemical-Pharmaceutical Research Nucleus (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Francielli Gasparotto
- Cesumar Institute of Science, Technology, and Innovation (ICETI), University Center of Maringa, Maringa, PR, Brazil
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, PR, Brazil
| | - Guilherme Donadel
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, PR, Brazil
| | - Thaise Boeing
- Graduate Program in Pharmaceutical Sciences (PPGCF), Chemical-Pharmaceutical Research Nucleus (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
45
|
Inflammatory Biomarkers and Endothelial Alteration in Patients with Heart Failure and Acute Coronary Syndromes. JOURNAL OF INTERDISCIPLINARY MEDICINE 2021. [DOI: 10.2478/jim-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: Systemic inflammation plays a key role in the pathophysiology of acute coronary syndrome (ACS), having a direct effect in promoting the progression and rupture of vulnerable coronary plaques. The aim of this study was to investigate the association between inflammatory biomarkers and the type of ACS (ST-elevation myocardial infarction – STEMI, non-ST-elevation myocardial infarction – NSTEMI, or unstable angina – UA) in patients with confirmed heart failure.
Material and Methods: This study included a total of 266 patients admitted to the Clinical Department of Cardiology of the County Emergency Clinical Hospital of Târgu Mureș – Cardiac Intensive Care Unit (CICU) for ACS of various types (UA, NSTEMI or STEMI) between January 1, 2017 and December 31, 2020, in whom the diagnosis of heart failure was established based on clinical and paraclinical data. From the total number of patients, 36 were hospitalized for UA and 230 for MI, of which 165 were STEMI and 65 were NSTEMI.
Results: Only hs-CRP and IL-6 were significantly higher in MI compared to UA. Mean hs-CRP was 4.9 ± 4.5 mg/mL in patients with UA vs. 20.4 ± 42.2 mg/mL in patients with MI (p = 0.001), and mean IL-6 was 7.2 ± 13.8 pg/mL in UA vs. 31.6 ± 129.2 pg/mL in MI (p <0.0001). ICAM seems to have had a greater discriminating power between STEMI and other types of ACS in those with heart failure, having a value more than double in those with STEMI (216.1 ± 149.6 ng/mL vs. 448.2 ± 754.4 ng/mL, p <0.0001).
Conclusions: In patients with heart failure, the increase of inflammatory biomarkers such as hs-CRP is associated with the development of an acute myocardial infarction but not with its type. Adhesion molecules, especially ICAM, are elevated in patients with STEMI compared to other types of ACS, indicating a potential role of endothelial alteration in the development of an ACS when it adds to systemic inflammation linked to heart failure.
Collapse
|
46
|
Kondakov A, Lelyuk V. Clinical Molecular Imaging for Atherosclerotic Plaque. J Imaging 2021; 7:jimaging7100211. [PMID: 34677297 PMCID: PMC8538040 DOI: 10.3390/jimaging7100211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a well-known disease leading to cardiovascular events, including myocardial infarction and ischemic stroke. These conditions lead to a high mortality rate, which explains the interest in their prevention, early detection, and treatment. Molecular imaging is able to shed light on the basic pathophysiological processes, such as inflammation, that cause the progression and instability of plaque. The most common radiotracers used in clinical practice can detect increased energy metabolism (FDG), macrophage number (somatostatin receptor imaging), the intensity of cell proliferation in the area (labeled choline), and microcalcifications (fluoride imaging). These radiopharmaceuticals, especially FDG and labeled sodium fluoride, can predict cardiovascular events. The limitations of molecular imaging in atherosclerosis include low uptake of highly specific tracers, possible overlap with other diseases of the vessel wall, and specific features of certain tracers’ physiological distribution. A common protocol for patient preparation, data acquisition, and quantification is needed in the area of atherosclerosis imaging research.
Collapse
|
47
|
Ni D, Mo Z, Yi G. Recent insights into atherosclerotic plaque cell autophagy. Exp Biol Med (Maywood) 2021; 246:2553-2558. [PMID: 34407677 DOI: 10.1177/15353702211038894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular and cerebrovascular diseases, such as coronary heart disease and stroke, caused by atherosclerosis have become the "number one killer", seriously endangering human health in developing and developed countries. Atherosclerosis mainly occurs in large and medium-sized arteries and involves intimal thickening, accumulation of foam cells, and formation of atheromatous plaques. Autophagy is a cellular catabolic process that has evolved to defend cells from the turnover of intracellular molecules. Autophagy is thought to play an important role in the development of plaques. This review focuses on studies on autophagy in cells involved in the formation of atherosclerotic plaques, such as monocytes, macrophages, endothelial cells, dendritic cells, and vascular smooth muscle cells, indicating that autophagy plays an important role in plaque development. We mainly discuss the roles of autophagy in these cells in maintaining the stability of atherosclerotic plaques, providing a reference for the next steps to unravel the mechanisms of atherogenesis.
Collapse
Affiliation(s)
- Dan Ni
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541000, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
48
|
ICAM-1-carrying targeted nano contrast agent for evaluating inflammatory injury in rabbits with atherosclerosis. Sci Rep 2021; 11:16508. [PMID: 34389762 PMCID: PMC8363608 DOI: 10.1038/s41598-021-96042-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022] Open
Abstract
To investigate the feasibility of using ICAM-1-targeted nano ultrasonic contrast to evaluate the degree of inflammatory injury at different stages in the abdominal aorta of rabbits with atherosclerosis (AS). Twenty-five experimental rabbits were assigned to five groups: the control group (A); the week-4 after modeling group (B); the week-8 after modeling group (C); the week-12 after modeling group (D); the week-16 after modeling group (E). All groups were given 2D ultrasonography, conventional ultrasonic contrast (SonoVue), and ICAM-1-targeted nano ultrasonic contrast, respectively. Signal intensity of vascular perfusion was evaluated. Signal intensity of ICAM-1-targeted nano ultrasonic contrast was substantially enhanced and prolonged in the vascular wall of the abdominal bubble aorta increased in B, C, D, and E groups (all P < 0.05). A positive linear correlation between intensity and the expression of ICAM-1 (r = 0.895, P < 0.001). The intensity of outer membrane was enhanced from week 4 to week 12, and both the intima-media membrane and outer membrane were enhanced with double-layer parallel echo at week 16, which was in line with the progression of atherosclerotic plaque inflammatory injury. ICAM-1-targeted nano contrast agent would be possibly a novel non-invasive molecular imaging method for plaque inflammatory injury and site high expression of specific adhesion molecules in early atherosclerotic lesions.
Collapse
|
49
|
Site-specific Phenotype of Atherosclerotic Lesions According to Their Location Within the Coronary Tree – a CCTA-based Study of Vulnerable Plaques. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2021. [DOI: 10.2478/jce-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Background: The evaluation of site-specific phenotype according to the topographic location of atherosclerotic lesions within the coronary tree has not been studied so far. The present study is based on the premise that the location of coronary plaques can influence their composition and degree of vulnerability. Aim: To evaluate different phenotypes of vulnerable coronary plaques across the three major coronary arteries in terms of composition, morphology, and degree of vulnerability, in patients with chest pain and low-to-intermediate probability of coronary artery disease, using coronary computed tomography angiography (CCTA) and a complex plaque analysis. Material and methods: This was a cross-sectional study on 75 subjects undergoing CCTA for chest pain, who presented at least one vulnerable coronary plaque (VP), defined as the presence of ≥1 CT vulnerability marker (low attenuation plaque, napkin-ring sign, spotty calcifications, positive remodeling). The study included per plaque analysis of 90 vulnerable coronary lesions identified in various locations within the coronary tree as follows: n = 30 VPs in the left anterior descending artery (LAD), n = 30 VPs in the circumflex artery (CXA), and n = 30 VPs in the right coronary artery (RCA). Results: The RCA exhibited significantly longer VPs (p = 0.001), with the largest volume (p = 0.0007) compared to those arising from the LAD and CXA. Vulnerable plaques located in the LAD exhibited a significantly more calcified phenotype (calcified volume: LAD – 44.07 ± 63.90 mm3 vs. CXA – 12.40 ± 19.65 mm3 vs. RCA – 33.69 ± 34.38 mm3, p = 0.002). Plaques from the RCA presented a more non-calcified phenotype, with the largest non-calcified (p = 0.002), lipid rich (p = 0.0005), and fibrotic volumes (p = 0.003). Low-attenuation plaques were most frequent in the RCA (p = 0.0009), while the highest vulnerability degree was present in lesions located in the LAD, which presented the highest number of vulnerability markers per plaque (p = 0.01). Conclusions: Vulnerable plaques arising from the right coronary artery are longer, more vo-luminous and with larger lipid and non-calcified content, whereas those located in the left anterior descending artery present a higher volume of calcium, but also a higher degree of vulnerability. The least vulnerable lesions were present in the circumflex artery.
Collapse
|
50
|
Circulating Biomarkers Reflecting Destabilization Mechanisms of Coronary Artery Plaques: Are We Looking for the Impossible? Biomolecules 2021; 11:biom11060881. [PMID: 34198543 PMCID: PMC8231770 DOI: 10.3390/biom11060881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite significant strides to mitigate the complications of acute coronary syndrome (ACS), this clinical entity still represents a major global health burden. It has so far been well-established that most of the plaques leading to ACS are not a result of gradual narrowing of the vessel lumen, but rather a result of sudden disruption of vulnerable atherosclerotic plaques. As most of the developed imaging modalities for vulnerable plaque detection are invasive, multiple biomarkers were proposed to identify their presence. Owing to the pivotal role of lipids and inflammation in the pathophysiology of atherosclerosis, most of the biomarkers originated from one of those processes, whereas recent advancements in molecular sciences shed light on the use of microRNAs. Yet, at present there are no clinically implemented biomarkers or any other method for that matter that could non-invasively, yet reliably, diagnose the vulnerable plaque. Hence, in this review we summarized the available knowledge regarding the pathophysiology of plaque instability, the current evidence on potential biomarkers associated with plaque destabilization and finally, we discussed if search for biomarkers could one day bring us to non-invasive, cost-effective, yet valid way of diagnosing the vulnerable, rupture-prone coronary artery plaques.
Collapse
|