1
|
Han P, Zhao X, Li X, Geng J, Ni S, Li Q. Pathophysiology, molecular mechanisms, and genetics of atrial fibrillation. Hum Cell 2024; 38:14. [PMID: 39505800 DOI: 10.1007/s13577-024-01145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
The development of atrial fibrillation (AF) is a highly complex, multifactorial process involving pathophysiologic mechanisms, molecular pathway mechanisms and numerous genetic abnormalities. The pathophysiologic mechanisms including altered ion channels, abnormalities of the autonomic nervous system, inflammation, and abnormalities in Ca2 + handling. Molecular pathway mechanisms including, but not limited to, renin-angiotensin-aldosterone (RAAS), transforming growth factor-β (TGF-β), oxidative stress (OS). Although in clinical practice, the distinction between types of AF such as paroxysmal and persistent determines the choice of treatment options. However, it is the pathophysiologic alterations present in AF that truly determine the success of AF treatment and prognosis, but even more so the molecular mechanisms and genetic alterations that lie behind them. One tiny clue reveals the general trend, and small beginnings show how things will develop. This article will organize the development of these mechanisms and their interactions in recent years.
Collapse
Affiliation(s)
- Pan Han
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinxin Zhao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xuexun Li
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jing Geng
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shouxiang Ni
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Qiao Li
- Department of Diagnostic Ultrasound, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
2
|
Caldwell JL, Clarke JD, Smith CER, Pinali C, Quinn CJ, Pearman CM, Adomaviciene A, Radcliffe EJ, Watkins A, Horn MA, Bode EF, Madders GWP, Eisner M, Eisner DA, Trafford AW, Dibb KM. Restoring Atrial T-Tubules Augments Systolic Ca Upon Recovery From Heart Failure. Circ Res 2024; 135:739-754. [PMID: 39140440 PMCID: PMC11392124 DOI: 10.1161/circresaha.124.324601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Transverse (t)-tubules drive the rapid and synchronous Ca2+ rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca2+ release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca2+. METHODS HF was induced in sheep by rapid ventricular pacing and recovered following termination of rapid pacing. Serial block-face scanning electron microscopy and confocal imaging were used to study t-tubule ultrastructure. Function was assessed using patch clamp, Ca2+, and confocal imaging. Candidate proteins involved in atrial t-tubule recovery were identified by western blot and expressed in rat neonatal ventricular myocytes to determine if they altered t-tubule structure. RESULTS Atrial t-tubules were lost in HF but reappeared following recovery from HF. Recovered t-tubules were disordered, adopting distinct morphologies with increased t-tubule length and branching. T-tubule disorder was associated with mitochondrial disorder. Recovered t-tubules were functional, triggering Ca2+ release in the cell interior. Systolic Ca2+, ICa-L, sarcoplasmic reticulum Ca2+ content, and sarcoendoplasmic reticulum Ca2+ ATPase function were restored following recovery from HF. Confocal microscopy showed fragmentation of ryanodine receptor staining and movement away from the z-line in HF, which was reversed following recovery from HF. Acute detubulation, to remove recovered t-tubules, confirmed their key role in restoration of the systolic Ca2+ transient, the rate of Ca2+ removal, and the peak L-type Ca2+ current. The abundance of telethonin and myotubularin decreased during HF and increased during recovery. Transfection with these proteins altered the density and structure of tubules in neonatal myocytes. Myotubularin had a greater effect, increasing tubule length and branching, replicating that seen in the recovery atria. CONCLUSIONS We show that recovery from HF restores atrial t-tubules, and this promotes recovery of ICa-L, sarcoplasmic reticulum Ca2+ content, and systolic Ca2+. We demonstrate an important role for myotubularin in t-tubule restoration. Our findings reveal a new and viable therapeutic strategy.
Collapse
Affiliation(s)
- Jessica L Caldwell
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Jessica D Clarke
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Charlotte E R Smith
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Christian Pinali
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Callum J Quinn
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Charles M Pearman
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Aiste Adomaviciene
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Emma J Radcliffe
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Amy Watkins
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Margaux A Horn
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Elizabeth F Bode
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - George W P Madders
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Mark Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - David A Eisner
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Manchester Academic Health Science Centre, University of Manchester, United Kingdom
| |
Collapse
|
3
|
Chen PH, Kao YH, Chen YJ. Pathophysiological Mechanisms of Psychosis-Induced Atrial Fibrillation: The Links between Mental Disorder and Arrhythmia. Rev Cardiovasc Med 2024; 25:343. [PMID: 39355592 PMCID: PMC11440412 DOI: 10.31083/j.rcm2509343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 10/03/2024] Open
Abstract
Atrial fibrillation (AF) is a common phenomenon of sustained arrhythmia leading to heart failure or stroke. Patients with mental disorders (MD), particularly schizophrenia and bipolar disorder, are at a high risk of AF triggered by the dysregulation of the autonomic nervous system, atrial stretch, oxidative stress, inflammation, and electrical or structural remodeling. Moreover, pathophysiological mechanisms underlying MD may also contribute to the genesis of AF. An overactivated hypothalamic-pituitary-adrenal axis, aberrant renin-angiotensin-aldosterone system, abnormal serotonin signaling, disturbed sleep, and genetic/epigenetic factors can adversely alter atrial electrophysiology and structural substrates, leading to the development of AF. In this review, we provide an update of our collective knowledge of the pathophysiological and molecular mechanisms that link MD and AF. Targeting the pathogenic mechanisms of MD-specific AF may facilitate the development of therapeutics that mitigate AF and cardiovascular mortality in this patient population.
Collapse
Affiliation(s)
- Pao-Huan Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Psychiatry, Taipei Medical University Hospital, 11031 Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 11031 Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 11696 Taipei, Taiwan
| |
Collapse
|
4
|
Murphy MB, Yang Z, Subati T, Farber-Eger E, Kim K, Blackwell DJ, Fleming MR, Stark JM, Van Amburg JC, Woodall KK, Van Beusecum JP, Agrawal V, Smart CD, Pitzer A, Atkinson JB, Fogo AB, Bastarache JA, Kirabo A, Wells QS, Madhur MS, Barnett JV, Murray KT. LNK/SH2B3 loss of function increases susceptibility to murine and human atrial fibrillation. Cardiovasc Res 2024; 120:899-913. [PMID: 38377486 PMCID: PMC11218690 DOI: 10.1093/cvr/cvae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 10/07/2023] [Indexed: 02/22/2024] Open
Abstract
AIMS The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are the major components of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared with WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, pro-arrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for Complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumour necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodelling in vitro. Inhibition of soluble TNF-α prevented electrical remodelling and AF susceptibility, while IL-1β inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSION These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the pro-arrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodelling.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Action Potentials/drug effects
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Atrial Fibrillation/metabolism
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/genetics
- Benzylamines/pharmacology
- Disease Models, Animal
- Genetic Predisposition to Disease
- Heart Rate/drug effects
- Inflammation Mediators/metabolism
- Interleukin-1beta/metabolism
- Interleukin-1beta/genetics
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Phenotype
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Matthew B Murphy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Zhenjiang Yang
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Tuerdi Subati
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Eric Farber-Eger
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
| | - Kyungsoo Kim
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Daniel J Blackwell
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Matthew R Fleming
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
| | - Joshua M Stark
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Joseph C Van Amburg
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Kaylen K Woodall
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Justin P Van Beusecum
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Vineet Agrawal
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
| | - Charles D Smart
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Ashley Pitzer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - James B Atkinson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, 1161 21 Avenue South, Nashville, TN 37232, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, 1161 21 Avenue South, Nashville, TN 37232, USA
| | - Julie A Bastarache
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Quinn S Wells
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Avenue, Nashville, TN 37203, USA
| | - Meena S Madhur
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Joey V Barnett
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Katherine T Murray
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, 559 PRB, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| |
Collapse
|
5
|
Zhang Z, Zhang J, Jiao H, Tian W, Zhai X. Genetically predicted dietary macronutrient intakes and atrial fibrillation risk: a Mendelian randomization study. Eur J Med Res 2024; 29:227. [PMID: 38609963 PMCID: PMC11010414 DOI: 10.1186/s40001-024-01781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/10/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND AND AIM Previous observational investigations have indicated a potential association between relative dietary macronutrient intakes and atrial fibrillation and flutter (AF) risk. In this study, we employed Mendelian Randomization (MR) to evaluate the presence of causality and to elucidate the specific causal relationship. METHODS We employed six, five, and three single nucleotide polymorphisms (SNPs) as instrumental variables for relative carbohydrate, protein, and fat intake, identified from a genome-wide association study that included 268,922 individuals of European descent. Furthermore, we acquired summary statistics for genome-wide association studies on AF from the FinnGen consortium, which involved 22,068 cases and 116,926 controls. To evaluate the causal estimates, we utilized the random effect inverse variance weighted method (IVW) and several other MR methods, including MR-Egger, weighted median, and MR-PRESSO, to confirm the robustness of our findings. RESULTS Our analysis indicates a convincing causal relationship between genetically predicted relative carbohydrate and protein intake and reduced AF risk. Inverse variance weighted analysis results for carbohydrates (OR = 0.29; 95% CI (0.14, 0.59); P < 0.001) and protein (OR = 0.47; 95% CI (0.26, 0.85); P = 0.01) support this association. Our MR analysis did not identify a significant causal relationship between relative fat intake and AF risk. CONCLUSION Our study provides evidence supporting a causal relationship between higher relative protein and carbohydrate intake and a lower risk of atrial fibrillation (AF).
Collapse
Affiliation(s)
- Zhuoya Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haoyang Jiao
- Institute of Documentation, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Tian
- Gaoyang County Hospital, Baoding, 071599, Hebei Province, China.
| | - Xu Zhai
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Hailati J, Liu ZQ, Zhang YF, Zhang L, Midilibieke H, Ma XL, Wulasihan M. Increased Cyclic Guanosine Monophosphate and Interleukin-1Beta Is Activated by Mitochondrial Dysfunction and Associated With Heart Failure in Atrial Fibrillation Patients. Cardiol Res 2024; 15:108-116. [PMID: 38645829 PMCID: PMC11027785 DOI: 10.14740/cr1613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/16/2024] [Indexed: 04/23/2024] Open
Abstract
Background This study aimed to identify the association of cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator interferon genes (cGAS-STING) pathway with heart failure (HF) in atrial fibrillation (AF) patients. Methods We prospectively enrolled 106 AF patients without evidence of HF. The serum levels of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and interleukin (IL)-1β were measured by enzyme-linked immunoassay (ELISA). To determine the underlying mechanism, we supplemented the complex I inhibitor rotenone and the specific cGAS inhibitor RU.521 in neonatal rat ventricular cardiomyocytes. Results During 18-month follow-up, serum concentrations of 2'3'-cGAMP (baseline 51.82 ± 11.34 pg/mL vs. follow-up 124.50 ± 75.83 pg/mL, Ppaired t < 0.01) and IL-1β (baseline 436.07 ± 165.82 vs. follow-up 632.48 ± 119.25 ng/mL, Ppaired t < 0.01) were substantially upregulated in AF patients with HF as compared with those without HF. Furthermore, serum 2'3'-cGAMP and IL-1β levels at 18-month follow-up were independently associated with the occurrence of HF in AF patients. Inhibition of cGAS by RU.521 effectively reversed the upregulation of 2'3'-cGAMP and STING phosphorylation induced by mitochondrial dysfunction, accompanied with inhibition of nod-like receptor protein 3 (NLRP3) inflammasome, IL-1β and IL-18 secretion. Conclusions Induction of mitochondrial dysfunction causes an upregulation of 2'3'-cGAMP and activation of NLRP3 inflammasome through cGAS-STING pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Juledezi Hailati
- Cardiovascular Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, Xinjiang, China
| | - Zhi Qiang Liu
- Cardiovascular Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, Xinjiang, China
| | - Yun Fei Zhang
- Cardiovascular Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, Xinjiang, China
| | - Lei Zhang
- Cardiovascular Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, Xinjiang, China
| | - Hasidaer Midilibieke
- Cardiovascular Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, Xinjiang, China
| | - Xiang Li Ma
- Cardiovascular Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, Xinjiang, China
| | - Muhuyati Wulasihan
- Cardiovascular Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Xinshi District, Urumqi, Xinjiang, China
| |
Collapse
|
7
|
Subati T, Yang Z, Murphy MB, Stark JM, Trykall DZ, Davies SS, Barnett JV, Murray KT. Isolevuglandins Promote Mitochondrial Dysfunction and Electrophysiologic Abnormalities in Atrial Cardiomyocytes. Cells 2024; 13:483. [PMID: 38534327 PMCID: PMC10969716 DOI: 10.3390/cells13060483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, yet the cellular and molecular mechanisms underlying the AF substrate remain unclear. Isolevuglandins (IsoLGs) are highly reactive lipid dicarbonyl products that mediate oxidative stress-related injury. In murine hypertension, the lipid dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) reduced IsoLGs and AF susceptibility. We hypothesized that IsoLGs mediate detrimental pathophysiologic effects in atrial cardiomyocytes that promote the AF substrate. Using Seahorse XFp extracellular flux analysis and a luminescence assay, IsoLG exposure suppressed intracellular ATP production in atrial HL-1 cardiomyocytes. IsoLGs caused mitochondrial dysfunction, with reduced mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) with protein carbonylation, and mitochondrial DNA damage. Moreover, they generated cytosolic preamyloid oligomers previously shown to cause similar detrimental effects in atrial cells. In mouse atrial and HL-1 cells, patch clamp experiments demonstrated that IsoLGs rapidly altered action potentials (AP), implying a direct effect independent of oligomer formation by reducing the maximum Phase 0 upstroke slope and shortening AP duration due to ionic current modifications. IsoLG-mediated mitochondrial and electrophysiologic abnormalities were blunted or totally prevented by 2-HOBA. These findings identify IsoLGs as novel mediators of oxidative stress-dependent atrial pathophysiology and support the investigation of dicarbonyl scavengers as a novel therapeutic approach to prevent AF.
Collapse
Affiliation(s)
- Tuerdi Subati
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.S.); (Z.Y.); (M.B.M.); (J.M.S.); (D.Z.T.); (S.S.D.); (J.V.B.)
| | - Zhenjiang Yang
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.S.); (Z.Y.); (M.B.M.); (J.M.S.); (D.Z.T.); (S.S.D.); (J.V.B.)
| | - Matthew B. Murphy
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.S.); (Z.Y.); (M.B.M.); (J.M.S.); (D.Z.T.); (S.S.D.); (J.V.B.)
| | - Joshua M. Stark
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.S.); (Z.Y.); (M.B.M.); (J.M.S.); (D.Z.T.); (S.S.D.); (J.V.B.)
| | - David Z. Trykall
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.S.); (Z.Y.); (M.B.M.); (J.M.S.); (D.Z.T.); (S.S.D.); (J.V.B.)
| | - Sean S. Davies
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.S.); (Z.Y.); (M.B.M.); (J.M.S.); (D.Z.T.); (S.S.D.); (J.V.B.)
| | - Joey V. Barnett
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.S.); (Z.Y.); (M.B.M.); (J.M.S.); (D.Z.T.); (S.S.D.); (J.V.B.)
| | - Katherine T. Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (T.S.); (Z.Y.); (M.B.M.); (J.M.S.); (D.Z.T.); (S.S.D.); (J.V.B.)
- Division of Clinical Pharmacology Room 559, Preston Research Building, Vanderbilt University School of Medicine, 2220 Pierce Avenue, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
9
|
Menezes Júnior ADS, de França-e-Silva ALG, de Oliveira JM, da Silva DM. Developing Pharmacological Therapies for Atrial Fibrillation Targeting Mitochondrial Dysfunction and Oxidative Stress: A Scoping Review. Int J Mol Sci 2023; 25:535. [PMID: 38203704 PMCID: PMC10779389 DOI: 10.3390/ijms25010535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Atrial fibrillation (AF) is a cardiac arrhythmia caused by electrophysiological anomalies in the atrial tissue, tissue degradation, structural abnormalities, and comorbidities. A direct relationship exists between AF and altered mitochondrial activity resulting from membrane potential loss, contractile dysfunction, or decreased ATP levels. This review aimed to elucidate the role of mitochondrial oxidative mechanisms in AF pathophysiology, the impact of mitochondrial oxidative stress on AF initiation and perpetuation, and current therapies. This review followed the Preferred Reporting Items for Systematic Reviews and the Meta-Analysis Extension for Scoping Reviews. PubMed, Excerpta Medica Database, and Scopus were explored until June 2023 using "MESH terms". Bibliographic references to relevant papers were also included. Oxidative stress is an imbalance that causes cellular damage from excessive oxidation, resulting in conditions such as AF. An imbalance in reactive oxygen species production and elimination can cause mitochondrial damage, cellular apoptosis, and cardiovascular diseases. Oxidative stress and inflammation are intrinsically linked, and inflammatory pathways are highly correlated with the occurrence of AF. AF is an intricate cardiac condition that requires innovative therapeutic approaches. The involvement of mitochondrial oxidative stress in the pathophysiology of AF introduces novel strategies for clinical treatment.
Collapse
Affiliation(s)
- Antônio da Silva Menezes Júnior
- Internal Medicine Department, Medicine School, Federal University of Goiás, Goiânia 74605-020, GO, Brazil; (A.L.G.d.F.-e.-S.); (D.M.d.S.)
- Medicine Department, Medical and Life School, Pontifical Catholic University of Goiás, Avenida Universitária, 1440, Sector Universitario, Goiânia 74605-010, GO, Brazil;
| | - Ana Luísa Guedes de França-e-Silva
- Internal Medicine Department, Medicine School, Federal University of Goiás, Goiânia 74605-020, GO, Brazil; (A.L.G.d.F.-e.-S.); (D.M.d.S.)
| | - Joyce Monteiro de Oliveira
- Medicine Department, Medical and Life School, Pontifical Catholic University of Goiás, Avenida Universitária, 1440, Sector Universitario, Goiânia 74605-010, GO, Brazil;
| | - Daniela Melo da Silva
- Internal Medicine Department, Medicine School, Federal University of Goiás, Goiânia 74605-020, GO, Brazil; (A.L.G.d.F.-e.-S.); (D.M.d.S.)
| |
Collapse
|
10
|
Benzoni P, Da Dalt L, Elia N, Popolizio V, Cospito A, Giannetti F, Dell’Era P, Olesen MS, Bucchi A, Baruscotti M, Norata GD, Barbuti A. PITX2 gain-of-function mutation associated with atrial fibrillation alters mitochondrial activity in human iPSC atrial-like cardiomyocytes. Front Physiol 2023; 14:1250951. [PMID: 38028792 PMCID: PMC10679737 DOI: 10.3389/fphys.2023.1250951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide; however, the underlying causes of AF initiation are still poorly understood, particularly because currently available models do not allow in distinguishing the initial causes from maladaptive remodeling that induces and perpetuates AF. Lately, the genetic background has been proven to be important in the AF onset. iPSC-derived cardiomyocytes, being patient- and mutation-specific, may help solve this diatribe by showing the initial cell-autonomous changes underlying the development of the disease. Transcription factor paired-like homeodomain 2 (PITX2) has been identified as a key regulator of atrial development/differentiation, and the PITX2 genomic locus has the highest association with paroxysmal AF. PITX2 influences mitochondrial activity, and alterations in either its expression or function have been widely associated with AF. In this work, we investigate the activity of mitochondria in iPSC-derived atrial cardiomyocytes (aCMs) obtained from a young patient (24 years old) with paroxysmal AF, carrying a gain-of-function mutation in PITX2 (rs138163892) and from its isogenic control (CTRL) in which the heterozygous point mutation has been reverted to WT. PITX2 aCMs show a higher mitochondrial content, increased mitochondrial activity, and superoxide production under basal conditions when compared to CTRL aCMs. However, increasing mitochondrial workload by FCCP or β-adrenergic stimulation allows us to unmask mitochondrial defects in PITX2 aCMs, which are incapable of responding efficiently to the higher energy demand, determining ATP deficiency.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Noemi Elia
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
- Cell Factory, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vera Popolizio
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Cospito
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano IRCCS, Milano, Italy
| | - Patrizia Dell’Era
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Morten S. Olesen
- The Heart Centre, Rigshospitalet, Laboratory for Molecular Cardiology, Department of Cardiology, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department Biosciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
11
|
Ramos-Mondragón R, Lozhkin A, Vendrov AE, Runge MS, Isom LL, Madamanchi NR. NADPH Oxidases and Oxidative Stress in the Pathogenesis of Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1833. [PMID: 37891912 PMCID: PMC10604902 DOI: 10.3390/antiox12101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.
Collapse
Affiliation(s)
- Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
| | - Andrey Lozhkin
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Marschall S. Runge
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| |
Collapse
|
12
|
Cheng T, Wang H, Hu Y. The causal effects of genetically determined human blood metabolites on the risk of atrial fibrillation. Front Cardiovasc Med 2023; 10:1211458. [PMID: 37564907 PMCID: PMC10410273 DOI: 10.3389/fcvm.2023.1211458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Background Blood metabolites have been found related to atrial fibrillation (AF), but the causal role is still unclear. Mendel randomization (MR) can give information about the causality between blood metabolites and AF. Methods Two-sample MR analysis was used to evaluate the causality between 486 blood metabolites and AF. Firstly, the genome-wide association study (GWAS) data for AF (from Nielsen et al.) was analyzed and some metabolites were identified. Then another GWAS data for AF (from Roselli et al.) was repeatedly analyzed to verify the results. Inverse variance weighted method was mainly used to determine the causality, and MR-egger, Weighted Median, and MR-PRESSO models were used as supplements of MR. Cochran's Q test was used to assess heterogeneity. And MR-Egger intercept and MR-PRESSO global test were performed to measure pleiotropy. Results The study used Bonferroni's corrected P value (P < 1.03 × 10-4) as the significance threshold. After MR analysis and replication analysis, we found two overlapped metabolites. Among which tryptophan betaine was the most significant causal metabolite in both AF GWAS data (from Nielsen et al.) (odds ratio (OR) = 0.83, 95% confidence interval (CI) = 0.76-0.90, P = 9.37 × 10-6) and AF GWAS data (from Roselli et al.) (OR = 0.82, 95% CI = 0.76-0.88, P = 2.00 × 10-7), while uridine was nominally significant metabolites in both AF GWAS data (from Nielsen et al.) (OR = 0.58, 95% CI = 0.40-0.84, P = 0.004) and AF GWAS data (from Roselli et al.) (OR = 0.56, 95% CI = 0.35-0.88, P = 0.01). And the results of sensitivity analysis showed that none of them had obvious heterogeneity or pleiotropy. Conclusion The study identified several blood metabolites that were causally related to AF, which may provide new perspectives on the pathogenesis of AF.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- Beijing University of ChineseMedicine, Beijing, China
| | - Huan Wang
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
13
|
Malyutina S, Maximov V, Chervova O, Orlov P, Ivanova A, Mazdorova E, Ryabikov A, Simonova G, Voevoda M. The Relationship between All-Cause Natural Mortality and Copy Number of Mitochondrial DNA in a 15-Year Follow-Up Study. Int J Mol Sci 2023; 24:10469. [PMID: 37445647 DOI: 10.3390/ijms241310469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
We explored the relationship between the copy number of mitochondrial DNA (mtDNA-CN) and all-cause natural mortality. We examined a random population sample in 2003/2005 (n = 9360, men/women, 45-69, the HAPIEE project) and followed up for 15 years. Using a nested case-control design, we selected non-external deaths among those free from baseline cardiovascular diseases (CVD) and cancer (n = 371), and a sex- and age-stratified control (n = 785). The odds ratios (ORs) of death were 1.06 (95%CI 1.01-1.11) per one-decile decrease in mtDNA-CN independent of age, sex, metabolic factors, smoking, alcohol intake and education. The age-sex-adjusted ORs of death in the second and first tertiles of mtDNA-CN vs. the top tertile were 2.35 (95% CI 1.70-3.26) and 1.59 (1.16-2.17); an increased risk was confined to the second tertile after controlling for smoking and metabolic factors. The multivariable-adjusted OR of CVD death was 1.92 (95% CI 1.18-3.15) in tertile 2 vs. the top tertile of mtDNA-CN, and for cancer-related death the ORs were 3.66 (95% CI 2.21-6.05) and 2.29 (95% CI 1.43-3.68) in tertiles 2 and 1 vs. the top tertile. In the Siberian population cohort, the mtDNA-CN was an inverse predictor of the 15-year risk of natural mortality, due to the greatest impact of CVD and cancer-related death. The findings merit attention for exploring further the role of mtDNA in human ageing and the diversity of mortality.
Collapse
Affiliation(s)
- Sofia Malyutina
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Vladimir Maximov
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Olga Chervova
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Pavel Orlov
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Anastasiya Ivanova
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Ekaterina Mazdorova
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Andrew Ryabikov
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Galina Simonova
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| | - Mikhail Voevoda
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia
| |
Collapse
|
14
|
Lkhagva B, Lee TW, Lin YK, Chen YC, Chung CC, Higa S, Chen YJ. Disturbed Cardiac Metabolism Triggers Atrial Arrhythmogenesis in Diabetes Mellitus: Energy Substrate Alternate as a Potential Therapeutic Intervention. Cells 2022; 11:cells11182915. [PMID: 36139490 PMCID: PMC9497243 DOI: 10.3390/cells11182915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of sustained arrhythmia in diabetes mellitus (DM). Its morbidity and mortality rates are high, and its prevalence will increase as the population ages. Despite expanding knowledge on the pathophysiological mechanisms of AF, current pharmacological interventions remain unsatisfactory; therefore, novel findings on the underlying mechanism are required. A growing body of evidence suggests that an altered energy metabolism is closely related to atrial arrhythmogenesis, and this finding engenders novel insights into the pathogenesis of the pathophysiology of AF. In this review, we provide comprehensive information on the mechanistic insights into the cardiac energy metabolic changes, altered substrate oxidation rates, and mitochondrial dysfunctions involved in atrial arrhythmogenesis, and suggest a promising advanced new therapeutic approach to treat patients with AF.
Collapse
Affiliation(s)
- Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence:
| |
Collapse
|
15
|
Zhan X, Cheng L, Huo N, Yu L, Liu C, Liu T, Li G, Fu H. Sodium–glucose cotransporter-2 inhibitor alleviated atrial remodeling in STZ-induced diabetic rats by targeting TLR4 pathway. Front Cardiovasc Med 2022; 9:908037. [PMID: 36148071 PMCID: PMC9485554 DOI: 10.3389/fcvm.2022.908037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The mechanism of sodium–glucose cotransporter-2 inhibitor (SGLT-2i) reducing the incidence of atrial fibrillation remains unclear. We hypothesize that sodium–glucose cotransporter-2 inhibitor alleviated atrial remodeling in STZ-induced diabetic rats by targeting TLR4 pathway. Methods A total of 42 rats were randomly assigned into three groups: control group (CON group); diabetes group (DM group): diabetes mellitus rats were established by 65 mg/kg streptozotocin (STZ) intraperitoneal injection; and diabetes + dapagliflozin group (DM + DAPA group): diabetic rats were given DAPA gavage administration (DAPA 2mg/kg/d for 4 weeks by gavage administration), 14 rats in each group. Epicardial multiple-lead recording and intracardiac electrophysiology studies were performed to investigate the electrical remodeling in the heart and the atrial fibrillation inducibility in each group. Western blot analysis and real-time PCR were used to determine the protein and mRNA expression of toll-like receptor 4 (TLR4), interleukin receptor-associated kinase 1 (IRAK1), tumor necrosis factor receptor-associated factor 6 (TRAF6), nuclear factor-kappa B (NF-κB), and type I collagen (collagen I). Results Compared with rats in CON group, rats in DM group showed marked myocardial fibrosis, ectopic pacing excitement, reduced conduction velocity, decreased cardiac function. TLR4/IRAK1/TRAF6/NF-κB, collagen I proteins expressions and incidence of atrial fibrillation (27.3%) were increased in DM group. Parts of these changes were reversed by treatment of DAPA. Incidence of atrial fibrillation was decreased in DM + DAPA group (2.8%). Conclusions SGLT-2i dapagliflozin may prevent diabetic rats' atrial remodeling and reduce the inducibility of atrial fibrillation partly by targeting TLR4/IRAK1/TRAF6/NF-κB inflammatory pathway.
Collapse
|
16
|
Time series proteome profile analysis reveals a protective role of citrate synthase in angiotensin II-induced atrial fibrillation. J Hypertens 2022; 40:765-775. [PMID: 35013064 PMCID: PMC8901035 DOI: 10.1097/hjh.0000000000003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Angiotensin (Ang) II and elevated blood pressure are considered to be the main risk factors for atrial fibrillation. However, the proteome profiles and key mediators/signaling pathways involved in the development of Ang II-induced atrial fibrillation remain unclear. METHODS Male wild-type C57BL/6 mice (10-week old) were infused with Ang II (2000 ng/kg per min) for 1, 2, or 3 weeks, respectively. Time series proteome profiling of atrial tissues was performed using isobaric tags for relative and absolute quantitation and liquid chromatography coupled with tandem mass spectrometry. RESULTS We identified a total of 1566 differentially expressed proteins (DEPs) in the atrial tissues at weeks 1, 2, and 3 after Ang II infusion. These DEPs were predominantly involved in mitochondrial oxidation-reduction and tricarboxylic acid cycle in Ang II-infused atria. Moreover, coexpression network analysis revealed that citrate synthase, a rate-limiting enzyme in the tricarboxylic acid cycle, was localized at the center of the mitochondrial oxidation-reduction process, and its expression was significantly downreguated in Ang II-infused atria at different time points. Cardiomyocyte-specific overexpresion of citrate synthase markedly reduced atrial fibrillation susceptibility and atrial remodeling in mice. These beneficial effects were associated with increased ATP production and mitochondrial oxidative phosphorylation system complexes I-V expression and inhibition of oxidative stress. CONCLUSION The current study defines the dynamic changes of the DEPs involved in Ang II-induced atrial fibrillation, and identifies that citrate synthase plays a protective role in regulating atrial fibrillation development, and increased citrate synthase expression may represent a potential therapeutic option for atrial fibrillation treatment.
Collapse
|