1
|
Cuevas-Sierra A, Chero-Sandoval L, Higuera-Gómez A, Vargas JA, Martínez-Urbistondo M, Castejón R, Martínez JA. Modulatory role of Faecalibacterium on insulin resistance and coagulation in patients with post-viral long haulers depending on adiposity. iScience 2024; 27:110450. [PMID: 39081294 PMCID: PMC11284562 DOI: 10.1016/j.isci.2024.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Patients with Post-viral long hauler encompass lasting symptoms and comorbid complexities, often exacerbated in individuals with excessive body weight. The aim was to study gut microbiota in 130 patients with post-viral long hauler stratified by body mass index (BMI) and the relationship between inflammation and microbiota. Significant higher values were found for anthropometric variables and markers of glucose and dyslipidemia in individuals with higher BMI, as well as elevated levels of C-reactive protein, fibrinogen, IL-6, uric acid, and D-dimer. An interactive association showed an interplay between Faecalibacterium, D-dimer levels, and insulin resistance. This investigation showed that anthropometric, biochemical, and inflammatory variables were impaired in patients with post-viral long haulers with higher BMI. In addition, gut microbiota differences were found between groups and a modification effect on Faecalibacterium abundance regarding insulin resistance and D-dimer. These findings suggest that considering adiposity and gut microbiota structure and composition may improve personalized clinical interventions in patients with chronic inflammation.
Collapse
Affiliation(s)
- Amanda Cuevas-Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Lourdes Chero-Sandoval
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
- Department of Endocrinology and Nutrition of the University Clinical Hospital, University of Valladolid, 47002 Valladolid, Spain
| | - Andrea Higuera-Gómez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - J. Antonio Vargas
- Internal Medicine Service of Puerta de Hierro Majadahonda University Hospital, 2822 Madrid, Spain
| | | | - Raquel Castejón
- Internal Medicine Service of Puerta de Hierro Majadahonda University Hospital, 2822 Madrid, Spain
| | - J. Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
- Centro de Medicina y Endocrinología, Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
3
|
Rizzello F, Viciani E, Gionchetti P, Filippone E, Imbesi V, Melotti L, Dussias NK, Salice M, Santacroce B, Padella A, Velichevskaya A, Marcante A, Castagnetti A. Signatures of disease outcome severity in the intestinal fungal and bacterial microbiome of COVID-19 patients. Front Cell Infect Microbiol 2024; 14:1352202. [PMID: 38510960 PMCID: PMC10952111 DOI: 10.3389/fcimb.2024.1352202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Background COVID-19, whose causative pathogen is the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), was declared a pandemic in March 2020. The gastrointestinal tract is one of the targets of this virus, and mounting evidence suggests that gastrointestinal symptoms may contribute to disease severity. The gut-lung axis is involved in the immune response to SARS-CoV-2; therefore, we investigated whether COVID-19 patients' bacterial and fungal gut microbiome composition was linked to disease clinical outcome. Methods In May 2020, we collected stool samples and patient records from 24 hospitalized patients with laboratory-confirmed SARS-CoV-2 infection. Fungal and bacterial gut microbiome was characterized by amplicon sequencing on the MiSeq, Illumina's integrated next generation sequencing instrument. A cohort of 201 age- and sex-matched healthy volunteers from the project PRJNA661289 was used as a control group for the bacterial gut microbiota analysis. Results We observed that female COVID-19 patients had a lower gut bacterial microbiota richness than male patients, which was consistent with a different latency in hospital admittance time between the two groups. Both sexes in the COVID-19 patient study group displayed multiple positive associations with opportunistic bacterial pathogens such as Enterococcus, Streptococcus, and Actinomyces. Of note, the Candida genus dominated the gut mycobiota of COVID-19 patients, and adult patients showed a higher intestinal fungal diversity than elderly patients. We found that Saccharomycetales unassigned fungal genera were positively associated with bacterial short-chain fatty acid (SCFA) producers and negatively associated with the proinflammatory genus Bilophila in COVID-19 patients, and we observed that none of the patients who harbored it were admitted to the high-intensity unit. Conclusions COVID-19 was associated with opportunistic bacterial pathogens, and Candida was the dominant fungal taxon in the intestine. Together, we found an association between commensal SCFA-producers and a fungal genus that was present in the intestines of patients who did not experience the most severe outcome of the disease. We believe that this taxon could have played a role in the disease outcome, and that further studies should be conducted to understand the role of fungi in gastrointestinal and health protection.
Collapse
Affiliation(s)
- Fernando Rizzello
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | | | - Paolo Gionchetti
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | - Eleonora Filippone
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | - Veronica Imbesi
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Laura Melotti
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | - Nikolas Konstantine Dussias
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical and Sciences, University of Bologna, Bologna, Italy
| | - Marco Salice
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Scheithauer TPM, Montijn RC, Mieremet A. Gut microbe-host interactions in post-COVID syndrome: a debilitating or restorative partnership? Gut Microbes 2024; 16:2402544. [PMID: 39287023 PMCID: PMC11409505 DOI: 10.1080/19490976.2024.2402544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Post-COVID syndrome (PCS) patients have reported a wide range of symptoms, including fatigue, shortness of breath, and diarrhea. Particularly, the presence of gastrointestinal symptoms has led to the hypothesis that the gut microbiome is involved in the development and severity of PCS. The objective of this review is to provide an overview of the role of the gut microbiome in PCS by describing the microbial composition and microbial metabolites in COVID-19 and PCS. Moreover, host-microbe interactions via the microbiota-gut-brain (MGB) and the microbiota-gut-lung (MGL) axes are described. Furthermore, we explore the potential of therapeutically targeting the gut microbiome to support the recovery of PCS by reviewing preclinical model systems and clinical studies. Overall, current studies provide evidence that the gut microbiota is affected in PCS; however, diversity in symptoms and highly individual microbiota compositions suggest the need for personalized medicine. Gut-targeted therapies, including treatments with pre- and probiotics, have the potential to improve the quality of life of affected individuals.
Collapse
Affiliation(s)
- Torsten P M Scheithauer
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Roy C Montijn
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Arnout Mieremet
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
5
|
He KY, Lei XY, Zhang L, Wu DH, Li JQ, Lu LY, Laila UE, Cui CY, Xu ZX, Jian YP. Development and management of gastrointestinal symptoms in long-term COVID-19. Front Microbiol 2023; 14:1278479. [PMID: 38156008 PMCID: PMC10752947 DOI: 10.3389/fmicb.2023.1278479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Emerging evidence reveals that SARS-CoV-2 possesses the capability to disrupt the gastrointestinal (GI) homeostasis, resulting in the long-term symptoms such as loss of appetite, diarrhea, gastroesophageal reflux, and nausea. In the current review, we summarized recent reports regarding the long-term effects of COVID-19 (long COVID) on the gastrointestine. Objective To provide a narrative review of abundant clinical evidence regarding the development and management of long-term GI symptoms in COVID-19 patients. Results Long-term persistent digestive symptoms are exhibited in a majority of long-COVID patients. SARS-CoV-2 infection of intestinal epithelial cells, cytokine storm, gut dysbiosis, therapeutic drugs, psychological factors and exacerbation of primary underlying diseases lead to long-term GI symptoms in COVID-19 patients. Interventions like probiotics, prebiotics, fecal microbiota transplantation, and antibiotics are proved to be beneficial in preserving intestinal microecological homeostasis and alleviating GI symptoms. Conclusion Timely diagnosis and treatment of GI symptoms in long-COVID patients hold great significance as they may contribute to the mitigation of severe conditions and ultimately lead to the improvement of outcomes of the patients.
Collapse
Affiliation(s)
- Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Li-Yuan Lu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Umm E. Laila
- School of Life Sciences, Henan University, Kaifeng, China
| | - Cui-Yun Cui
- Department of Blood Transfusion, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Pinheiro VE, Ribeiro AS, Camillo CAM, Casonatto J. Undernutrition risk is independently associated with worsened indicators of hospital rehabilitation in COVID-19 patients. Hosp Pract (1995) 2023; 51:267-274. [PMID: 37897431 DOI: 10.1080/21548331.2023.2277680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
OBJECTIVE This study was designed to analyze the association between the risk of undernutrition and indicators of hospital rehabilitation in patients with COVID-19 while controlling for confounding variables. METHODS This was an analytical study conducted by analyzing the medical records of patients with COVID-19. A total of 562 adult patients were eligible for the study. In addition to the risk of undernutrition (independent variable), indicators of hospital rehabilitation (dependent variables) were evaluated. These indicators included the length of hospital stay, clinical outcome (discharge or death), food intake, mobility (bedridden status), the use of mechanical ventilation, and the need for enteral nutrition. Pre-existing comorbidities (confounding/control variables) were grouped into cardiovascular, metabolic/endocrine, neurological, chronic obstructive pulmonary disease, and other categories (neoplasms, multiple sclerosis, and kidney disease). A dichotomization model was applied for data analysis. The Chi-Square test was used to verify the association between the risk of undernutrition and the dependent variables. Associations with a significance level of P < 0.05 were subjected to Poisson regression to identify the prevalence ratio. RESULTS Patients at risk of undernutrition had a 90% higher chance of being bedridden and were 35 times more likely to experience a decrease in food intake. They also had an 89% higher chance of using invasive mechanical ventilation and a 91% higher chance of requiring enteral nutrition. Additionally, individuals at risk of undernutrition had a 73% higher chance of death. Adjustment for comorbidities did not alter these associations, demonstrating that the risk of undernutrition is independently associated with indicators of hospital rehabilitation. CONCLUSION The risk of undernutrition is independently associated with worsened indicators of hospital rehabilitation in patients with COVID-19, including higher prevalence of mortality.
Collapse
Affiliation(s)
- Vanessa Esquissato Pinheiro
- Department of Health Sciences, University Pitágoras UNOPAR - Research Group in Physiology and Physical Activity - Londrina-Paraná-Brazil, Londrina, Brazil
| | - Alex Silva Ribeiro
- Department of Health Sciences, University Pitágoras UNOPAR - Research Group in Physiology and Physical Activity - Londrina-Paraná-Brazil, Londrina, Brazil
| | - Carlos Augusto Marçal Camillo
- Department of Health Sciences, University Pitágoras UNOPAR - Research Group in Physiology and Physical Activity - Londrina-Paraná-Brazil, Londrina, Brazil
| | - Juliano Casonatto
- Department of Health Sciences, University Pitágoras UNOPAR - Research Group in Physiology and Physical Activity - Londrina-Paraná-Brazil, Londrina, Brazil
| |
Collapse
|
7
|
Wang Y, Shen M, Li Y, Shao J, Zhang F, Guo M, Zhang Z, Zheng S. COVID-19-associated liver injury: Adding fuel to the flame. Cell Biochem Funct 2023; 41:1076-1092. [PMID: 37947373 DOI: 10.1002/cbf.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
COVID-19 is mainly characterized by respiratory disorders and progresses to multiple organ involvement in severe cases. With expansion of COVID-19 and SARS-CoV-2 research, correlative liver injury has been revealed. It is speculated that COVID-19 patients exhibited abnormal liver function, as previously observed in the SARS and MERS pandemics. Furthermore, patients with underlying diseases such as chronic liver disease are more susceptible to SARS-CoV-2 and indicate a poor prognosis accompanied by respiratory symptoms, systemic inflammation, or metabolic diseases. Therefore, COVID-19 has the potential to impair liver function, while individuals with preexisting liver disease suffer from much worse infected conditions. COVID-19 related liver injury may be owing to direct cytopathic effect, immune dysfunction, gut-liver axis interaction, and inappropriate medication use. However, discussions on these issues are infancy. Expanding research have revealed that angiotensin converting enzyme 2 (ACE2) expression mediated the combination of virus and target cells, iron metabolism participated in the virus life cycle and the fate of target cells, and amino acid metabolism regulated immune response in the host cells, which are all closely related to liver health. Further exploration holds great significance in elucidating the pathogenesis, facilitating drug development, and advancing clinical treatment of COVID-19-related liver injury. This article provides a review of the clinical and laboratory hepatic characteristics in COVID-19 patients, describes the etiology and impact of liver injury, and discusses potential pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Carusi A, Filipovska J, Wittwehr C, Clerbaux LA. CIAO: a living experiment in interdisciplinary large-scale collaboration facilitated by the Adverse Outcome Pathway framework. Front Public Health 2023; 11:1212544. [PMID: 37637826 PMCID: PMC10449328 DOI: 10.3389/fpubh.2023.1212544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The CIAO project was launched in Spring 2020 to address the need to make sense of the numerous and disparate data available on COVID-19 pathogenesis. Based on a crowdsourcing model of large-scale collaboration, the project has exploited the Adverse Outcome Pathway (AOP) knowledge management framework built to support chemical risk assessment driven by mechanistic understanding of the biological perturbations at the different organizational levels. Hence the AOPs might have real potential to integrate data produced through different approaches and from different disciplines as experienced in the context of COVID-19. In this study, we aim to address the effectiveness of the AOP framework (i) in supporting an interdisciplinary collaboration for a viral disease and (ii) in working as the conceptual mediator of a crowdsourcing model of collaboration. Methods We used a survey disseminated among the CIAO participants, a workshop open to all interested CIAO contributors, a series of interviews with some participants and a self-reflection on the processes. Results The project has supported genuine interdisciplinarity with exchange of knowledge. The framework provided a common reference point for discussion and collaboration. The diagram used in the AOPs assisted with making explicit what are the different perspectives brought to the knowledge about the pathways. The AOP-Wiki showed up many aspects about its usability for those not already in the world of AOPs. Meanwhile their use in CIAO highlighted needed adaptations. Introduction of new Wiki elements for modulating factors was potentially the most disruptive one. Regarding how well AOPs support a crowdsourcing model of large-scale collaboration, the CIAO project showed that this is successful when there is a strong central organizational impetus and when clarity about the terms of the collaboration is brought as early as possible. Discussion Extrapolate the successful CIAO approach and related processes to other areas of science where the AOP could foster interdisciplinary and systematic organization of the knowledge is an exciting perspective.
Collapse
Affiliation(s)
| | | | - Clemens Wittwehr
- European Commission, Joint Research Centre (JRC), Joint Research Centre, Ispra, Italy
| | - Laure-Alix Clerbaux
- European Commission, Joint Research Centre (JRC), Joint Research Centre, Ispra, Italy
| |
Collapse
|
9
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Kopel J, Goyal H. COVID-19 and Gastrointestinal Disease: Current Insights and Future Management. J Clin Med 2023; 12:jcm12072727. [PMID: 37048810 PMCID: PMC10094869 DOI: 10.3390/jcm12072727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The first case of coronavirus disease 2019 (COVID-19) was reported in Wuhan, Hubei Province, China, in December 2019, marking a pivotal moment in human history [...].
Collapse
Affiliation(s)
- Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Hemant Goyal
- Center for Interventional Gastroenterology at UT (iGUT), Department of Endoluminal Surgery & Interventional Gastroenterology, The University of Texas Health Sciences Center, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
11
|
Ahsan K, Anwar MA, Munawar N. Gut microbiome therapeutic modulation to alleviate drug-induced hepatic damage in COVID-19 patients. World J Gastroenterol 2023; 29:1708-1720. [PMID: 37077515 PMCID: PMC10107217 DOI: 10.3748/wjg.v29.i11.1708] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) infection caused by the severe acute respiratory syndrome coronavirus 2 virus, its symptoms, treatment, and post-COVID-19 effects have been a major focus of research since 2020. In addition to respiratory symptoms, different clinical variants of the virus have been associated with dynamic symptoms and multiorgan diseases, including liver abnormalities. The release of cytokines by the activation of innate immune cells during viral infection and the high doses of drugs used for COVID-19 treatment are considered major drivers of liver injury in COVID-19 patients. The degree of hepatic inflammation in patients suffering from chronic liver disease and having COVID-19 could be severe and can be estimated through different liver chemistry abnormality markers. Gut microbiota influences liver chemistry through its metabolites. Gut dysbiosis during COVID-19 treatment can promote liver inflammation. Here, we highlighted the bidirectional association of liver physiology and gut microbiota (gut-liver axis) and its potential to manipulate drug-induced chemical abnormalities in the livers of COVID-19 patients.
Collapse
Affiliation(s)
- Khansa Ahsan
- Department of Chemistry, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
12
|
Meringer H, Wang A, Mehandru S. The Pathogenesis of Gastrointestinal, Hepatic, and Pancreatic Injury in Acute and Long Coronavirus Disease 2019 Infection. Gastroenterol Clin North Am 2023; 52:1-11. [PMID: 36813418 PMCID: PMC9721275 DOI: 10.1016/j.gtc.2022.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) tract is targeted by severe acute respiratory syndrome coronavirus-2. The present review examines GI involvement in patients with long coronavirus disease and discusses the underlying pathophysiological mechanisms that include viral persistence, mucosal and systemic immune dysregulation, microbial dysbiosis, insulin resistance, and metabolic abnormalities. Due to the complex and potentially multifactorial nature of this syndrome, rigorous clinical definitions and pathophysiology-based therapeutic approaches are warranted.
Collapse
Affiliation(s)
- Hadar Meringer
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn Building 11-02, New York, NY 10029, USA
| | - Andrew Wang
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn Building 11-02, New York, NY 10029, USA
| | - Saurabh Mehandru
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Icahn Building 11-02, New York, NY 10029, USA.
| |
Collapse
|
13
|
The Contribution of Diet Therapy and Probiotics in the Treatment of Sarcopenia Induced by Prolonged Immobilization Caused by the COVID-19 Pandemic. Nutrients 2022; 14:nu14214701. [PMID: 36364963 PMCID: PMC9654246 DOI: 10.3390/nu14214701] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The prolonged immobilization associated with COVID-19 infection and the restrictions imposed by the pandemic have determined major changes in physical activity and eating habits, with a negative impact on physical performance. This study monitored non-pharmacological interventions (diet therapy and probiotics) in managing sarcopenia for patients with recent SARS-CoV-2 history (14 days). A prospective study was performed on 200 patients (between December 2020−December 2021), with SPPB score < 9, randomly divided into: Group K—DP (93 patients) with dietary therapy (protein 1.2−1.5 g/kg) and probiotics for two months; and Group K—non-DP (107 patients) without diet therapy and probiotics. All patients were included in a specific physical training program (40 min), three sessions per week. Skeletal muscle index (SMI), serum albumin, and hemoglobin were determined. The SMI was initially low for both groups without significant statistical differences (6.5 ± 0.52 kg/m2 for Group K—non-DP vs. 6.7 ± 0.57 Kg/m2 for Group K—DP, p = 0.135). After two months, significant difference between initial and final SMI values was determined for Group K—DP (6.92 ± 0.50 kg/m2 vs. 6.77 ± 0.56 kg/m2, p = 0.048). In Group K—DP, at end of study, were more patients with normal SMI (n = 32 → N = 70) values (p < 0.001) and fewer sarcopenia patients (p < 0.001). The initial serum albumin means values in the two groups (Group K—non-DP, 4.17 ± 1.04 g/dL, and Group K—DP, 3.95 ± 0.98 g/dL) were not statistically significantly different (p = 0.122). The hemoglobin level improved significantly following a hyper protein diet enriched with pro-biotics (p = 0.003). Diet therapy, consisting of increased protein intake and specific probiotics and specific physical therapy, demonstrated superiority in improving the functional status of patients with recent COVID-19 infection.
Collapse
|
14
|
Clerbaux LA, Mayasich SA, Muñoz A, Soares H, Petrillo M, Albertini MC, Lanthier N, Grenga L, Amorim MJ. Gut as an Alternative Entry Route for SARS-CoV-2: Current Evidence and Uncertainties of Productive Enteric Infection in COVID-19. J Clin Med 2022; 11:5691. [PMID: 36233559 PMCID: PMC9573230 DOI: 10.3390/jcm11195691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract, the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood. It has been proposed that SARS-CoV-2 can productively infect enterocytes, damaging the intestinal barrier and contributing to inflammatory response, which might lead to GI manifestations, including diarrhea. Here, we report a methodological approach to assess the evidence supporting the sequence of events driving SARS-CoV-2 enteric infection up to gut adverse outcomes. Exploring evidence permits to highlight knowledge gaps and current inconsistencies in the literature and to guide further research. Based on the current insights on SARS-CoV-2 intestinal infection and transmission, we then discuss the potential implication on clinical practice, including on long COVID. A better understanding of the GI implication in COVID-19 is still needed to improve disease management and could help identify innovative therapies or preventive actions targeting the GI tract.
Collapse
Affiliation(s)
| | - Sally A. Mayasich
- University of Wisconsin-Madison Aquatic Sciences Center at US EPA, Duluth, MN 55804, USA
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | - Helena Soares
- Laboratory of Human Immunobiology and Pathogenesis, iNOVA4Health, Faculdade de Ciências Médicas—Nova Medical School, Universidade Nova de Lisboa, 1099-085 Lisbon, Portugal
| | | | | | - Nicolas Lanthier
- Laboratory of Hepatogastroenterology, Service d’Hépato-Gastroentérologie, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris-Saclay, 91190 Paris, France
| | - Maria-Joao Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Lisbon, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| |
Collapse
|