1
|
Jarrar B, Almansour M, Al-Doaiss A, Lee SY, Melhem W, Jarrar Q, Sewelam A. Metallic and metallic oxide nanoparticles toxicity primarily targets the mitochondria of hepatocytes and renal cells. Toxicol Ind Health 2024; 40:667-678. [PMID: 39287072 DOI: 10.1177/07482337241282860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nanoparticles (NPs) are utilized in various applications, posing potential risks to human health, tissues, cells, and macromolecules. This study aimed to investigate the ultrastructural alterations in hepatocytes and renal tubular cells induced by metallic and metal oxide NPs. Adult healthy male Wistar albino rats (Rattus norvegicus) were divided into 6 (n = 7) control and 6 treated groups (n = 7). The rats in the treated groups exposed daily to silver NPs, gold NPs, zinc oxide NPs, silicon dioxide NPs, copper oxide NPs, and ferric oxide NPs for 35 days. The members of the control group for each corresponding NPs received the respective vehicle. Liver and kidney tissue blocks from all rats were processed for Transmission Electron Microscopy (TEM) examinations. The hepatocytes and renal tubular cells of all NPs-treated rats demonstrated mitochondrial ultrastructural alterations mainly cristolysis, swelling, membrane disruption, lucent matrices, matrices lysis, and electron-dense deposits. However, other organelles demonstrated injury but to a lesser extent in the form of shrunken nuclei, nuclear membrane indentation, endoplasmic reticulum fragmentation, cellular membranes enfolding, brush border microvilli disruption, lysosomal hyperplasia, ribosomes dropping, and peroxisome formation. One may conclude from the findings that the hepatocytes and the renal tubular cells mitochondria are the main targets for nanoparticles toxicity ending in mitochondrial disruption and cell injury. Further studies taking into account the relation of mitochondrial ultrastructural damage with a weakened antioxidant defense system induced by chronic exposure to nanomaterials are needed.
Collapse
Affiliation(s)
- Bashir Jarrar
- Nanobiology Unit, Faculty of Sciences, Jerash University, Jordan
| | | | - Amin Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Walid Melhem
- School of Medicine, King Faisal University, Saudi Arabia
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Jordan
| | - Amal Sewelam
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
2
|
Al-Hassani I, Khan NA, Elmenyar E, Al-Hassani A, Rizoli S, Al-Thani H, El-Menyar A. The Interaction and Implication of Stress-Induced Hyperglycemia and Cytokine Release Following Traumatic Injury: A Structured Scoping Review. Diagnostics (Basel) 2024; 14:2649. [PMID: 39682557 DOI: 10.3390/diagnostics14232649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION This is a structured scoping review to assess whether there is a relationship between stress-induced hyperglycemia (SIH), cytokine interactions, and mortality in trauma patients in comparison to non-diabetic normoglycemia [NDN], diabetic normoglycemia [DN], and diabetic hyperglycemia [DH]. METHODS We conducted a literature search of MEDLINE (PubMed) databases from 2000 to 2022 using a search strategy to identify observational studies. Initially, 2879 articles were retrieved. Of these, 2869 were excluded due to insufficient variables, and non-trauma focuses. RESULTS Nine studies on the interaction between SIH and proinflammatory cytokines were analyzed. SIH was associated with the highest mortality rate (21.3%), followed by DH (5.4%), DN (2.8%), and NDN (2.3%) (p < 0.001). Furthermore, SIH patients exhibited an 11.28-fold higher likelihood of mortality compared to NDN patients (95% CI [9.13-13.93]; p < 0.001) and a 4.72-fold higher likelihood compared to DH patients (OR 4.72; 95% CI [3.55-6.27]; p < 0.001). CONCLUSIONS SIH patients had elevated IL-6 concentrations relative to NDN, DN, and DH patients. SIH is linked to higher mortality in trauma, with greater odds than NDN. However, the robustness of this association is still being determined due to statistical and clinical variability. Uncertainties about injury severity and IL-6 level similarities between SIH and DH patients require further investigation.
Collapse
Affiliation(s)
| | - Naushad Ahmad Khan
- Department of Surgery, Clinical Research, Trauma & Vascular Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Eman Elmenyar
- Faculty of Medicine, Bahcesehir University, Istanbul 34734, Türkiye
| | - Ammar Al-Hassani
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Sandro Rizoli
- Department of Surgery, Trauma Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Hassan Al-Thani
- Department of Surgery, Trauma and Vascular Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Ayman El-Menyar
- Department of Surgery, Clinical Research, Trauma & Vascular Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha P.O. Box 24144, Qatar
| |
Collapse
|
3
|
Liang R, Zhu L, Huang Y, Chen J, Tang Q. Mitochondria: fundamental characteristics, challenges, and impact on aging. Biogerontology 2024; 25:923-941. [PMID: 39196438 DOI: 10.1007/s10522-024-10132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
As one of the most vital organelles within biological cells, mitochondria hold an irreplaceable status and play crucial roles in various diseases. Research and therapies targeting mitochondria have achieved significant progress in numerous conditions. Throughout an organism's lifespan, mitochondrial dynamics persist continuously, and due to their inherent characteristics and various external factors, mitochondria are highly susceptible to damage. This susceptibility is particularly evident during aging, where the decline in biological function is closely intertwined with mitochondrial dysfunction. Despite being an ancient and enigmatic organelle, much remains unknown about mitochondria. Here, we will explore the past and present knowledge of mitochondria, providing a comprehensive review of their intrinsic properties and interactions with nuclear DNA, as well as the challenges and impacts they face during the aging process.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
4
|
Delpino MV, Quarleri J. Aging mitochondria in the context of SARS-CoV-2: exploring interactions and implications. FRONTIERS IN AGING 2024; 5:1442323. [PMID: 39380657 PMCID: PMC11458564 DOI: 10.3389/fragi.2024.1442323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has presented global challenges with a diverse clinical spectrum, including severe respiratory complications and systemic effects. This review explores the intricate relationship between mitochondrial dysfunction, aging, and obesity in COVID-19. Mitochondria are vital for cellular energy provision and resilience against age-related macromolecule damage accumulation. They manage energy allocation in cells, activating adaptive responses and stress signals such as redox imbalance and innate immunity activation. As organisms age, mitochondrial function diminishes. Aging and obesity, linked to mitochondrial dysfunction, compromise the antiviral response, affecting the release of interferons, and worsening COVID-19 severity. Furthermore, the development of post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID has been associated with altered energy metabolism, and chronic immune dysregulation derived from mitochondrial dysfunction. Understanding the interplay between mitochondria, aging, obesity, and viral infections provides insights into COVID-19 pathogenesis. Targeting mitochondrial health may offer potential therapeutic strategies to mitigate severe outcomes and address long-term consequences in infected individuals.
Collapse
|
5
|
Guo J, Huang M, Hou S, Yuan J, Chang X, Gao S, Zhang Z, Wu Z, Li J. Therapeutic Potential of Terpenoids in Cancer Treatment: Targeting Mitochondrial Pathways. Cancer Rep (Hoboken) 2024; 7:e70006. [PMID: 39234662 PMCID: PMC11375335 DOI: 10.1002/cnr2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND In recent decades, natural compounds have been considered a significant source of new antitumor medicines due to their unique advantages. Several in vitro and in vivo studies have focused on the effect of terpenoids on apoptosis mediated by mitochondria in malignant cells. RECENT FINDINGS In this review article, we focused on six extensively studied terpenoids, including sesquiterpenes (dihydroartemisinin and parthenolide), diterpenes (oridonin and triptolide), and triterpenes (betulinic acid and oleanolic acid), and their efficacy in targeting mitochondria to induce cell death. Terpenoid-induced mitochondria-related cell death includes apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and necrosis caused by mitochondrial permeability transition. Apoptosis and autophagy interact in meaningful ways. In addition, in view of several disadvantages of terpenoids, such as low stability and bioavailability, advances in research on combination chemotherapy and chemical modification were surveyed. CONCLUSION This article deepens our understanding of the association between terpenoids and mitochondrial cell death, presenting a hypothetical basis for the use of terpenoids in anticancer management.
Collapse
Affiliation(s)
- Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Hou
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianfeng Yuan
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyue Chang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Li H, Fu Y, Xu Y, Miao H, Wang H, Zhang T, Mei X, He Y, Zhang A, Ge X. Cuproptosis associated cytoskeletal destruction contributes to podocyte injury in chronic kidney disease. Am J Physiol Cell Physiol 2024; 327:C254-C269. [PMID: 38798269 DOI: 10.1152/ajpcell.00497.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
The podocyte cytoskeleton determines the stability of podocyte structure and function, and their imbalance plays a pathogenic role in podocyte diseases. However, the underlying mechanism of podocyte cytoskeleton damage is not fully understood. Here, we investigate the specific role of cuproptosis in inducing podocyte cytoskeleton injury. In in vitro and in vivo studies, exposure to high levels of copper and adriamycin (ADR) caused significant increases in copper concentration in intracellular and renal tissue. Moreover, excessive accumulation of copper induced cuproptosis, resulting in the destruction of the podocyte cytoskeleton. However, inhibition of copper accumulation to reduce cuproptosis also significantly alleviated the damage of podocyte cytoskeleton. In addition, inhibition of cuproptosis mitigated ADR-induced mitochondrial damage as well as the production of reactive oxygen species and depolarization of mitochondrial membrane potential, and restored adenosine triphosphate (ATP) synthesis. Among the transcriptome sequencing data, the difference of CXCL5 (C-X-C motif chemokine ligand 5) was the most significant. Both high copper and ADR exposure can cause upregulation of CXCL5, and CXCL5 deletion inhibits the occurrence of cuproptosis, thereby alleviating the podocyte cytoskeleton damage. This suggests that CXCL5 may act upstream of cuproptosis that mediates podocyte cytoskeleton damage. In conclusion, cuproptosis induced by excessive copper accumulation may induce podocyte cytoskeleton damage by promoting mitochondrial dysfunction, thereby causing podocyte injury. This indicates that cuproptosis plays an important role in the pathogenesis of podocyte injury and provides a basis for seeking potential targets for the treatment of chronic kidney disease.NEW & NOTEWORTHY Cuproptosis induced by excessive copper accumulation leads to podocyte cytoskeleton damage by promoting mitochondrial dysfunction, and CXCL5 acts as an upstream signal mediating the occurrence of cuproptosis.
Collapse
Affiliation(s)
- Han Li
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Children's Major Disease Research, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingjie Fu
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yue Xu
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongjun Miao
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Haonan Wang
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Tongtong Zhang
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuejian Mei
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yinglang He
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Aihua Zhang
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuhua Ge
- Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
- Jiangsu Key Laboratory of Children's Major Disease Research, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Vilas-Boas EA, Kowaltowski AJ. Mitochondrial redox state, bioenergetics, and calcium transport in caloric restriction: A metabolic nexus. Free Radic Biol Med 2024; 219:195-214. [PMID: 38677486 DOI: 10.1016/j.freeradbiomed.2024.04.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Mitochondria congregate central reactions in energy metabolism, many of which involve electron transfer. As such, they are expected to both respond to changes in nutrient supply and demand and also provide signals that integrate energy metabolism intracellularly. In this review, we discuss how mitochondrial bioenergetics and reactive oxygen species production is impacted by dietary interventions that change nutrient availability and impact on aging, such as calorie restriction. We also discuss how dietary interventions alter mitochondrial Ca2+ transport, regulating both mitochondrial and cytosolic processes modulated by this ion. Overall, a plethora of literature data support the idea that mitochondrial oxidants and calcium transport act as integrating signals coordinating the response to changes in nutritional supply and demand in cells, tissues, and animals.
Collapse
Affiliation(s)
- Eloisa A Vilas-Boas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil.
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| |
Collapse
|
8
|
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 2024:AD.2024.0280. [PMID: 38913049 DOI: 10.14336/ad.2024.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
As human life expectancy continues to rise, becoming a pressing global concern, it brings into focus the underlying mechanisms of aging. The increasing lifespan has led to a growing elderly population grappling with age-related diseases (ARDs), which strains healthcare systems and economies worldwide. While human senescence was once regarded as an immutable and inexorable phenomenon, impervious to interventions, the emerging field of geroscience now offers innovative approaches to aging, holding the promise of extending the period of healthspan in humans. Understanding the intricate links between aging and pathologies is essential in addressing the challenges presented by aging populations. A substantial body of evidence indicates shared mechanisms and pathways contributing to the development and progression of various ARDs. Consequently, novel interventions targeting the intrinsic mechanisms of aging have the potential to delay the onset of diverse pathological conditions, thereby extending healthspan. In this narrative review, we discuss the most promising methods and interventions aimed at modulating aging, which harbor the potential to mitigate ARDs in the future. We also outline the complexity of senescence and review recent empirical evidence to identify rational strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Piotr Pawel Chmielewski
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- 2nd Department of General Surgery and Surgical Oncology, Medical University Hospital, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Uzma Zaheer
- School of Biosciences, Faculty of Health Sciences and Medicine, The University of Surrey, United Kingdom
| | - Shahab Uddin
- Translational Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | | | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, The University of Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Mann V, Sundaresan A, Shishodia S. Overnutrition and Lipotoxicity: Impaired Efferocytosis and Chronic Inflammation as Precursors to Multifaceted Disease Pathogenesis. BIOLOGY 2024; 13:241. [PMID: 38666853 PMCID: PMC11048223 DOI: 10.3390/biology13040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Overnutrition, driven by the consumption of high-fat, high-sugar diets, has reached epidemic proportions and poses a significant global health challenge. Prolonged overnutrition leads to the deposition of excessive lipids in adipose and non-adipose tissues, a condition known as lipotoxicity. The intricate interplay between overnutrition-induced lipotoxicity and the immune system plays a pivotal role in the pathogenesis of various diseases. This review aims to elucidate the consequences of impaired efferocytosis, caused by lipotoxicity-poisoned macrophages, leading to chronic inflammation and the subsequent development of severe infectious diseases, autoimmunity, and cancer, as well as chronic pulmonary and cardiovascular diseases. Chronic overnutrition promotes adipose tissue expansion which induces cellular stress and inflammatory responses, contributing to insulin resistance, dyslipidemia, and metabolic syndrome. Moreover, sustained exposure to lipotoxicity impairs the efferocytic capacity of macrophages, compromising their ability to efficiently engulf and remove dead cells. The unresolved chronic inflammation perpetuates a pro-inflammatory microenvironment, exacerbating tissue damage and promoting the development of various diseases. The interaction between overnutrition, lipotoxicity, and impaired efferocytosis highlights a critical pathway through which chronic inflammation emerges, facilitating the development of severe infectious diseases, autoimmunity, cancer, and chronic pulmonary and cardiovascular diseases. Understanding these intricate connections sheds light on potential therapeutic avenues to mitigate the detrimental effects of overnutrition and lipotoxicity on immune function and tissue homeostasis, thereby paving the way for novel interventions aimed at reducing the burden of these multifaceted diseases on global health.
Collapse
Affiliation(s)
| | | | - Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (V.M.); (A.S.)
| |
Collapse
|
10
|
Bisht S, Mao Y, Easwaran H. Epigenetic dynamics of aging and cancer development: current concepts from studies mapping aging and cancer epigenomes. Curr Opin Oncol 2024; 36:82-92. [PMID: 38441107 PMCID: PMC10939788 DOI: 10.1097/cco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW This review emphasizes the role of epigenetic processes as incidental changes occurring during aging, which, in turn, promote the development of cancer. RECENT FINDINGS Aging is a complex biological process associated with the progressive deterioration of normal physiological functions, making age a significant risk factor for various disorders, including cancer. The increasing longevity of the population has made cancer a global burden, as the risk of developing most cancers increases with age due to the cumulative effect of exposure to environmental carcinogens and DNA replication errors. The classical 'somatic mutation theory' of cancer cause is being challenged by the observation that multiple normal cells harbor cancer driver mutations without resulting in cancer. In this review, we discuss the role of age-associated epigenetic alterations, including DNA methylation, which occur across all cell types and tissues with advancing age. There is an increasing body of evidence linking these changes with cancer risk and prognosis. SUMMARY A better understanding about the epigenetic changes acquired during aging is critical for comprehending the mechanisms leading to the age-associated increase in cancer and for developing novel therapeutic strategies for cancer treatment and prevention.
Collapse
Affiliation(s)
- Shilpa Bisht
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yiqing Mao
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Mironov VF, Dimukhametov MN, Nemtarev AV, Pashirova TN, Tsepaeva OV, Voloshina AD, Vyshtakalyuk AB, Litvinov IA, Lyubina AP, Sapunova AS, Abramova DF, Zobov VV. Novel Mitochondria-Targeted Amphiphilic Aminophosphonium Salts and Lipids Nanoparticles: Synthesis, Antitumor Activity and Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2840. [PMID: 37947686 PMCID: PMC10649961 DOI: 10.3390/nano13212840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The creation of mitochondria-targeted vector systems is a new tool for the treatment of socially significant diseases. Phosphonium groups provide targeted delivery of drugs through biological barriers to organelles. For this purpose, a new class of alkyl(diethylAmino)(Phenyl) Phosphonium halides (APPs) containing one, two, or three diethylamino groups was obtained by the reaction of alkyl iodides (bromides) with (diethylamino)(phenyl)phosphines under mild conditions (20 °C) and high yields (93-98%). The structure of APP was established by NMR and XRD. A high in vitro cytotoxicity of APPs against M-HeLa, HuTu 80, PC3, DU-145, PANC-1, and MCF-7 lines was found. The selectivity index is in the range of 0.06-4.0 μM (SI 17-277) for the most active APPs. The effect of APPs on cancer cells is characterized by hyperproduction of ROS and depolarization of the mitochondrial membrane. APPs induce apoptosis, proceeding along the mitochondrial pathway. Incorporation of APPs into lipid systems (liposomes and solid lipid nanoparticles) improves cytotoxicity toward tumor cells and decrease toxicity against normal cell lines. The IC50s of lipid systems are lower than for the reference drug DOX, with a high SI (30-56) toward MCF-7 and DU-145. APPs exhibit high selective activity against Gram-positive bacteria S. aureus 209P and B. segeus 8035, including methicillin-resistant S. aureus (MRSA-1, MRSA-2), comparable to the activity of the fluoroquinolone antibiotic norfloxacin. A moderate in vivo toxicity in CD-1 mice was established for the lead APP.
Collapse
Affiliation(s)
- Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Olga V. Tsepaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Alexandra B. Vyshtakalyuk
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Igor A. Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Anastasiia S. Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Dinara F. Abramova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| | - Vladimir V. Zobov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (M.N.D.); (A.V.N.); (T.N.P.); (O.V.T.); (A.D.V.); (A.B.V.); (I.A.L.); (A.P.L.); (A.S.S.); (D.F.A.); (V.V.Z.)
| |
Collapse
|