1
|
Ghanem R, Youf R, Haute T, Buin X, Riool M, Pourchez J, Montier T. The (re)emergence of aerosol delivery: Treatment of pulmonary diseases and its clinical challenges. J Control Release 2025; 379:421-439. [PMID: 39800241 DOI: 10.1016/j.jconrel.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Aerosol delivery represents a rapid and non-invasive way to directly reach the lungs while escaping the hepatic first-pass effect. The development of pulmonary drugs for respiratory diseases such as cystic fibrosis, lung infections, pulmonary fibrosis or lung cancer requires an enhanced understanding of the relationships between the natural physiology of the respiratory system and the pathophysiology of these conditions. This knowledge is crucial to better predict and thereby control drug deposition. Moreover, aerosol administration faces several challenges, including the pulmonary tract, immune system, mucociliary clearance, the presence of fluid on the airway surfaces, and, in some cases, bacterial colonisation. Each of them directly influences on the bioavailability of the active molecule. In addition to these challenges, particle size and the device used to administer the treatment are critical factors that can significantly impact the biodistribution of the drugs. Nanoparticles are very promising in the development of new formulations for aerosol drug delivery, as they can be fine-tuned to reach the entire pulmonary tract and overcome the difficulties encountered along the way. However, to properly assess drug delivery, preclinical studies need to be more thorough to efficiently enhance drug delivery.
Collapse
Affiliation(s)
- Rosy Ghanem
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France
| | - Raphaëlle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tanguy Haute
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Xavier Buin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Tristan Montier
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, F-29200 Brest, France.
| |
Collapse
|
2
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
3
|
Hou CJ, Chen TY, Wong TW. Topical indocyanine green antimicrobial photodynamic therapy for refractory feline chronic gingivostomatitis: A case report. Photodiagnosis Photodyn Ther 2024; 50:104373. [PMID: 39424251 DOI: 10.1016/j.pdpdt.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Feline chronic gingivostomatitis (FCGS) is a painful and severe inflammatory mucosal disease in cats that presents significant challenges in treatment. This case study describes a novel approach for a cat with FCGS that was unresponsive to antibiotics, non-steroidal anti-inflammatory drugs, and dental extraction. The cat exhibited rapid improvement after undergoing oral indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (aPDT); however, treatment was discontinued due to an episode of anaphylaxis. Subsequent oral aminolevulinic acid (ALA)-mediated aPDT proved ineffective over nine sessions. The cat was then treated with a topical approach using ICG-aPDT. ICG was prepared by dissolving 5 mg of powder in 3 mL of sterile water, which was applied to the oral gingiva, followed by irradiation with an 810 nm diode laser, delivering a total fluence of 16.8 J/cm2 per session through the skin in two divided doses. The cat underwent biweekly aPDT, totaling 13 treatment sessions without any adverse events over four months. Gradual weight gain was observed from the first treatment. During the three-year follow-up, there was no recurrence of FCGS. This case report highlights the potential efficacy of topical ICG-aPDT as a treatment modality for FCGS.
Collapse
Affiliation(s)
| | - Tzu Ying Chen
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry & Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Gao Q, Liu T, Sun L, Yao Y, Li F, Mao L. Triggered ferroptotic albumin-tocopherol nanocarriers for treating drug-resistant breast cancer. Front Oncol 2024; 14:1464909. [PMID: 39507754 PMCID: PMC11538061 DOI: 10.3389/fonc.2024.1464909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Ferroptosis is considered an effective method to overcome drug-resistant tumors. This study aims to use three FDA-approved biological materials, human serum albumin, D-α-tocopherol succinate, and indocyanine green, to construct a novel biocompatible nanomaterial named HTI-NPs, exploring its effect in drug-resistant breast cancer (MCF-7/ADR cells). The research results indicate that HTI-NPs can selectively inhibit the proliferation of MCF-7/ADR cells in vitro, accompanied by upregulating transferrin receptor, generating reactive oxygen species, and downregulating glutathione peroxidase 4. Under laser irradiation, HTI-NPs can promote ferroptosis by inhibiting glutathione expression through photodynamic therapy. Notably, HTI-NPs exhibit good inhibitory effects on MCF-7/ADR xenograft tumors in vivo. In conclusion, HTI-NPs represent a biocompatible nanomaterial that induces ferroptosis, providing new insights and options for treating drug-resistant breast cancer.
Collapse
Affiliation(s)
- Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Tingting Liu
- Science and Technology Talents, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Li Sun
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yongliang Yao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Fang Li
- Science and Technology Talents, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
5
|
Pires BRB, de Paoli F, Mencalha AL, de Souza da Fonseca A. Photodynamic therapy on mRNA levels in bacteria. Lasers Med Sci 2024; 39:229. [PMID: 39214913 DOI: 10.1007/s10103-024-04179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) has shown efficacy in inactivating different bacterial species by photosensitizer-induced free radical production. Despite aPDT is considered unable to cause resistant strains, enzymatic pathways for detoxification of reactive oxygen species and transmembrane photosensitizer efflux systems could cause resistance to aPDT. Resistance mechanisms can be evaluated by measurement of mRNA from by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Thus, the aim of this study was to access the mRNA level data obtained by RT-qPCR in bacterial cells submitted to photodynamic therapy. Studies performed on mRNA levels in bacteria after PDT were assessed on MEDLINE/Pubmed. The mRNA levels from genes related to various functions have been successfully evaluated in both Gram-positive and -negative bacteria after aPDT by RT-qPCR. Such an approach has improved the understanding of aPDT-induced effects, and reinforced the effectiveness of aPDT on bacteria, which can cause infections in different human tissues.
Collapse
Affiliation(s)
- Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Khelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, 36036900, Minas Gerais, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil.
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil.
| |
Collapse
|
6
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
7
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
8
|
Leanse LG, Marasini S, dos Anjos C, Dai T. Antimicrobial Resistance: Is There a 'Light' at the End of the Tunnel? Antibiotics (Basel) 2023; 12:1437. [PMID: 37760734 PMCID: PMC10525303 DOI: 10.3390/antibiotics12091437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, with the increases in microorganisms that express a multitude of antimicrobial resistance (AMR) mechanisms, the threat of antimicrobial resistance in the global population has reached critical levels. The introduction of the COVID-19 pandemic has further contributed to the influx of infections caused by multidrug-resistant organisms (MDROs), which has placed significant pressure on healthcare systems. For over a century, the potential for light-based approaches targeted at combatting both cancer and infectious diseases has been proposed. They offer effective killing of microbial pathogens, regardless of AMR status, and have not typically been associated with high propensities of resistance development. To that end, the goal of this review is to describe the different mechanisms that drive AMR, including intrinsic, phenotypic, and acquired resistance mechanisms. Additionally, the different light-based approaches, including antimicrobial photodynamic therapy (aPDT), antimicrobial blue light (aBL), and ultraviolet (UV) light, will be discussed as potential alternatives or adjunct therapies with conventional antimicrobials. Lastly, we will evaluate the feasibility and requirements associated with integration of light-based approaches into the clinical pipeline.
Collapse
Affiliation(s)
- Leon G. Leanse
- Health and Sports Sciences Hub, University of Gibraltar, Europa Point Campus, Gibraltar GX11 1AA, Gibraltar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (C.d.A.); (T.D.)
| | - Sanjay Marasini
- New Zealand National Eye Centre, Department of Ophthalmology, The University of Auckland, Auckland 1142, New Zealand;
| | - Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (C.d.A.); (T.D.)
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (C.d.A.); (T.D.)
| |
Collapse
|
9
|
Annunziata M, Donnarumma G, Guida A, Nastri L, Persico G, Fusco A, Sanz-Sánchez I, Guida L. Clinical and microbiological efficacy of indocyanine green-based antimicrobial photodynamic therapy as an adjunct to non-surgical treatment of periodontitis: a randomized controlled clinical trial. Clin Oral Investig 2023; 27:2385-2394. [PMID: 36719506 PMCID: PMC10159973 DOI: 10.1007/s00784-023-04875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The aim of the present randomized clinical trial (RCT) with a parallel arm design was to evaluate the clinical and microbiological efficacy of repeated ICG-aPDT as an adjunct to full-mouth subgingival debridement in the treatment of periodontitis. MATERIALS AND METHODS Twenty-four periodontitis patients were treated with full-mouth ultrasonic subgingival debridement (FMUD). Initial sites with probing depth (PD) > 4 mm were randomly assigned to receive the test (ICG-aPDT with an 810 nm diode laser) or the control treatment (off-mode aPDT) one and four weeks after FMUD. Clinical parameters were registered after 3 and 6 months. The presence of the main periodontal pathogens in subgingival samples was assessed with real-time PCR. RESULTS Both treatment modalities resulted in significant clinical improvements at 3 and 6 months. The only significant differences in favour of the test group were found at 6 months for a higher PD reduction in initial deep pockets (PD ≥ 6 mm) and a higher percentage of closed pockets (PD ≤ 4 mm/no bleeding on probing). Limited microbiological changes were observed in both groups after treatment with no inter-group difference, except for a more significant reduction in Aggregatibacter actinomycetemcomitans and Parvimonas micra levels in the test group at 3 months. CONCLUSION The combination of repeated ICG-aPDT and FMUD provided no benefits except for selective clinical and microbiological improvements compared to FMUD alone. CLINICAL RELEVANCE Based on the obtained results, only limited adjunctive effects could be found for the combined use of ICG-aPDT and FMUD. Further, well-designed RCT with larger sample sizes are required to confirm these findings. TRIAL REGISTRATION ClinicalTrials.gov NCT04671394.
Collapse
Affiliation(s)
- Marco Annunziata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Agostino Guida
- U.O.C. Odontostomatologia, A.O.R.N. "A. Cardarelli", Naples, Italy
| | - Livia Nastri
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gerardo Persico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ignacio Sanz-Sánchez
- Etiology and Therapy of Periodontal and Peri-Implant Diseases (ETEP) Research Group, University Complutense, Madrid, Spain.
| | - Luigi Guida
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
10
|
Liu WT, Wang HT, Yeh YH, Wong TW. An Update on Recent Advances of Photodynamic Therapy for Primary Cutaneous Lymphomas. Pharmaceutics 2023; 15:pharmaceutics15051328. [PMID: 37242570 DOI: 10.3390/pharmaceutics15051328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Primary cutaneous lymphomas are rare non-Hodgkin lymphomas consisting of heterogeneous disease entities. Photodynamic therapy (PDT) utilizing photosensitizers irradiated with a specific wavelength of light in the presence of oxygen exerts promising anti-tumor effects on non-melanoma skin cancer, yet its application in primary cutaneous lymphomas remains less recognized. Despite many in vitro data showing PDT could effectively kill lymphoma cells, clinical evidence of PDT against primary cutaneous lymphomas is limited. Recently, a phase 3 "FLASH" randomized clinical trial demonstrated the efficacy of topical hypericin PDT for early-stage cutaneous T-cell lymphoma. An update on recent advances of photodynamic therapy in primary cutaneous lymphomas is provided.
Collapse
Affiliation(s)
- Wei-Ting Liu
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Han-Tang Wang
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Hsuan Yeh
- School of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
11
|
Zhang Y, Liu W, Wang Q. Positive effects of low-dose photodynamic therapy with aminolevulinic acid or its methyl ester in skin rejuvenation and wound healing: An update. JOURNAL OF BIOPHOTONICS 2023; 16:e202200293. [PMID: 36602479 DOI: 10.1002/jbio.202200293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In dermatology, photodynamic therapy (PDT) is widely used in skin tumors, infections, etc., because of the killing effect triggered by toxic reactive oxygen species (ROS). However, the ROS concentration is determined by various photosensitizer concentrations and formulations, as well as various irradiation parameters. Low-dose PDT leads to sufficiently low ROS level, which results in biological effects that are the exact opposite of the killing potency. Therefore, in recent years, low-dose PDT has been exploited in improving aging and wound. Low-dose ALA/MAL PDT might improve aging through promoting the proliferation of fibroblasts, blocking DNA damage, counteracting oxidative stress, inhibiting melanogenesis, and remodeling lymphatic vessels in aged skin. Promoting fibroblasts and epidermal stem cells proliferation and migration, promoting granulation tissue formation and angiogenesis and regulating the inflammatory process might be the mechanisms of low-dose ALA/MAL PDT in wound healing. Nevertheless, the positive effects of low-dose PDT have not been thoroughly investigated in dermatology, and high-quality studies are still needed to fill the relevant vacancy.
Collapse
Affiliation(s)
- YuWei Zhang
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Liu
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qian Wang
- The Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
12
|
Sirks MJ, van Dijk EHC, Rosenberg N, Hollak CEM, Aslanis S, Cheung CMG, Chowers I, Eandi CM, Freund KB, Holz FG, Kaiser PK, Lotery AJ, Ohno-Matsui K, Querques G, Subhi Y, Tadayoni R, Wykoff CC, Zur D, Diederen RMH, Boon CJF, Schlingemann RO. Clinical impact of the worldwide shortage of verteporfin (Visudyne®) on ophthalmic care. Acta Ophthalmol 2022; 100:e1522-e1532. [PMID: 35388619 PMCID: PMC9790583 DOI: 10.1111/aos.15148] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Since July 2021, a worldwide shortage of verteporfin (Visudyne®) occurred: an essential medicine required for photodynamic therapy (PDT). PDT with verteporfin has a broad range of indications in ophthalmology, including chronic central serous chorioretinopathy, polypoidal choroidal vasculopathy and choroidal haemangioma. For these disorders, PDT is either the first-choice treatment or regarded as a major treatment option. MATERIALS AND METHODS A questionnaire was sent to key opinion leaders in the field of medical retina throughout the world, to assess the role of PDT in their country and the effects of the shortage of verteporfin. In addition, information on the application of alternative treatments during shortage of verteporfin was obtained, to further assess the impact of the shortage. RESULTS Our questionnaire indicated that the shortage of verteporfin had a major impact on ophthalmic care worldwide and was regarded to be a serious problem by most of our respondents. However, even though there is ample evidence to support the use of PDT in several chorioretinal diseases, we found notable differences in its use in normal patient care throughout the world. Various alternative management strategies were noted during the verteporfin shortage, including lowering the dose of verteporfin per patient, the use of alternative treatment strategies and the use of a centralized system for allocating the remaining ampoules of verteporfin in some countries. CONCLUSION The shortage of verteporfin has had a large effect on the care of ophthalmic patients across the world and may have resulted in significant and irreversible vision loss. Mitigation strategies should be developed in consultation with all stakeholders to avoid future medication shortages of verteporfin and other unique ophthalmic medications. These strategies may include mandatory stock keeping, compulsory licensing to an alternative manufacturer or incentivizing the development of competition, for example through novel public-private partnerships.
Collapse
Affiliation(s)
- Marc J Sirks
- Department of Ophthalmology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Elon H C van Dijk
- Department of Ophthalmology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Noa Rosenberg
- Medicine for Society, Platform at Amsterdam University Medical Centres - University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam UMC - University of Amsterdam, Amsterdam, The Netherlands
| | - Carla E M Hollak
- Medicine for Society, Platform at Amsterdam University Medical Centres - University of Amsterdam, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam UMC - University of Amsterdam, Amsterdam, The Netherlands.,Sphinx, Amsterdam Lysosome Center, Amsterdam, The Netherlands
| | | | - Chui Ming Gemmy Cheung
- Singapore National Eye Center, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chiara M Eandi
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland.,Department of Surgical Sciences, University of Turin, Turin, Italy
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, USA.,Department of Ophthalmology, New York University Grossman School of Medicine, New York, New York, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Andrew J Lotery
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Giuseppe Querques
- IRCCS San Raffaele Scientific Institute, University Vita Salute San Raffaele, Milan, Italy
| | - Yousif Subhi
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ramin Tadayoni
- University of Paris, Paris, France.,Hôpital Lariboisière, AP-HP, Paris, France.,Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Houston, Texas, USA.,Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Dinah Zur
- Ophthalmology Division, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roselie M H Diederen
- Department of Ophthalmology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Reinier O Schlingemann
- Department of Ophthalmology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| |
Collapse
|
13
|
Lung surfactant negatively affects the photodynamic inactivation of bacteria-in vitro and molecular dynamic simulation analyses. Proc Natl Acad Sci U S A 2022; 119:e2123564119. [PMID: 35696565 PMCID: PMC9231493 DOI: 10.1073/pnas.2123564119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the context of the rapid increase of antibiotic-resistant infections, in particular of pneumonia, antimicrobial photodynamic therapy (aPDT), the microbiological application of photodynamic therapy (PDT), comes in as a promising treatment alternative since the induced damage and resultant death are not dependent on a specific biomolecule or cellular pathway. The applicability of aPDT using the photosensitizer indocyanine green with infrared light has been successfully demonstrated for different bacterial agents in vitro, and the combination of pulmonary delivery using nebulization and external light activation has been shown to be feasible. However, there has been little progress in obtaining sufficient in vivo efficacy results. This study reports the lung surfactant as a significant suppressor of aPDT in the lungs. In vitro, the clinical surfactant Survanta® reduced the aPDT effect of indocyanine green, Photodithazine®, bacteriochlorin-trizma, and protoporphyrin IX against Streptococcus pneumoniae. The absorbance and fluorescence spectra, as well as the photobleaching profile, suggested that the decrease in efficacy is not a result of singlet oxygen quenching, while a molecular dynamics simulation showed an affinity for the polar head groups of the surfactant phospholipids that likely impacts uptake of the photosensitizers by the bacteria. Methylene blue is the exception, likely because its high water solubility confers a higher mobility when interacting with the surfactant layer. We propose that the interaction between lung surfactant and photosensitizer must be taken into account when developing pulmonary aPDT protocols.
Collapse
|
14
|
Mehnath S, Chitra K, Jeyaraj M. An all-in-one nanomaterial derived from rGO-MoS 2 for photo/chemotherapy of tuberculosis. NEW J CHEM 2022. [DOI: 10.1039/d1nj03549e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A combination of therapeutic modalities has recently emerged as an alternative technique for combating Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Sivaraj Mehnath
- Biomaterial and Nanomedicine Laboratory, National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai-25, Tamil Nadu, India
| | - Karuppannan Chitra
- Translational Research Platform for Veterinary Biological, Madhavaram Milk Colony, Chennai-51, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- Biomaterial and Nanomedicine Laboratory, National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai-25, Tamil Nadu, India
| |
Collapse
|
15
|
Yuann JMP, Lee SY, He S, Wong TW, Yang MJ, Cheng CW, Huang ST, Liang JY. Effects of free radicals from doxycycline hyclate and minocycline hydrochloride under blue light irradiation on the deactivation of Staphylococcus aureus, including a methicillin-resistant strain. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112370. [PMID: 34864528 DOI: 10.1016/j.jphotobiol.2021.112370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Doxycycline hyclate (DCH) and minocycline hydrochloride (MH) are tetracycline antibiotics and broad-spectrum antimicrobial agents. The changes in DCH and MH under blue light (λ = 462 nm) irradiation in alkaline conditions (BLIA) were investigated. Deactivation caused by superoxide anion radical (O2•-) and deactivation from DCH and MH during photolysis on Staphylococcus aureus (S. aureus), including methicillin-resistant S. aureus (MRSA), were studied. DCH is relatively unstable compared to MH under BLIA. The level of O2•- generated from the MH-treated photoreaction is lower than that from DCH photolysis, and the DCH-treated photoreaction is more efficient at inactivating S. aureus and MRSA at the same radiant intensity. DCH subjected to BLIA decreased the viability of S. aureus and MRSA by 3.84 and 5.15 log, respectively. Two photolytic products of DCH (PPDs) were generated under BLIA. The mass spectra of the PPDs featured molecular ions at m/z 460.8 and 458.8. The molecular formulas of the PPDs were C21H22N2O10 and C22H24N2O9, and their exact masses were 462.44 and 460.44 g/mol, respectively. These results bolster the photolytic oxidation that leads to DCH-enhanced deactivation of S. aureus and MRSA. Photochemical treatment of DCH could be applied as a supplement in hygienic processes.
Collapse
Affiliation(s)
- Jeu-Ming P Yuann
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan
| | - Shwu-Yuan Lee
- Department of Tourism and Leisure, Hsing Wu University, New Taipei City 244012, Taiwan
| | - Sin He
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, Department of Biochemistry and Molecular Biology, College of Medicine, Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Meei-Ju Yang
- Tea Research and Extension Station, Yangmei 326011, Taiwan
| | - Chien-Wei Cheng
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan
| | - Shiuh-Tsuen Huang
- Department of Science Education and Application, National Taichung University of Education, Taichung 40306, Taiwan; Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40200, Taiwan.
| | - Ji-Yuan Liang
- Department of Biotechnology, Ming Chuan University, Gui Shan 333321, Taiwan.
| |
Collapse
|
16
|
The Immunogenetic Aspects of Photodynamic Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:433-448. [DOI: 10.1007/978-3-030-92616-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Feng Y, Gu D, Wang Z, Lu C, Fan J, Zhou J, Wang R, Su X. Comprehensive evaluation and analysis of the salinity stress response mechanisms based on transcriptome and metabolome of Staphylococcus aureus. Arch Microbiol 2021; 204:28. [PMID: 34921629 DOI: 10.1007/s00203-021-02624-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus possesses an extraordinary ability to deal with a wide range of osmotic pressure. This study performed transcriptomic and metabolomic analyses on the potential mechanism of gradient salinity stress adaptation in S. aureus ZS01. The results revealed that CPS biosynthetic protein genes were candidate target genes for directly regulating the phenotypic changes of biofilm. Inositol phosphate metabolism was downregulated to reduce the conversion of functional molecules. The gluconeogenesis pathway and histidine synthesis were downregulated to reduce the production of endogenous glucose. The pyruvate metabolism pathway was upregulated to promote the accumulation of succinate. TCA cycle metabolism pathway was downregulated to reduce unnecessary energy loss. L-Proline was accumulated to regulate osmotic pressure. Therefore, these self-protection mechanisms can protect cells from hypertonic environments and help them focus on survival. In addition, we identified ten hub genes. The findings will aid in the prevention and treatment strategies of S. aureus infections.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,College of Life Sciences, Tonghua Normal University, Tonghua, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Dizhou Gu
- College of Life Sciences, Tonghua Normal University, Tonghua, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, Dalian, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China. .,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China.
| |
Collapse
|
18
|
Xu X, Liu B, Wu H, Zhang Y, Tian X, Tian J, Liu T. Poly Lactic- co-Glycolic Acid-Coated Toluidine Blue Nanoparticles for the Antibacterial Therapy of Wounds. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3394. [PMID: 34947743 PMCID: PMC8708285 DOI: 10.3390/nano11123394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
Bacterial infections in wounded skin are associated with high mortality. The emergence of drug-resistant bacteria in wounded skin has been a challenge. Toluidine blue (TB) is a safe and inexpensive photosensitizer that can be activated and used in near-infrared photodynamic therapy to effectively kill methicillin-resistant Staphylococcus aureus (MRSA). However, its aggregation-induced quenching effect largely affects its clinical applications. In this study, TB nanoparticles (NPs) were synthesized using an ultrasound-assisted coating method. Their physicochemical and biological properties were studied and evaluated by scanning electron microscopy and Fourier-transform infrared spectroscopy. The TBNPs had a broad-spectrum antibacterial activity against Gram-positive bacteria (MRSA) and Gram-negative bacteria (E. coli). In addition, MTT, hemolysis, and acute toxicity tests confirmed that TBNPs had good biocompatibility. The TBNPs exhibited a high photodynamic performance under laser irradiation and efficiently killed E. coli and MRSA through generated reactive oxygen species, which destroyed the cell wall structure. The potential application of TBNPs in vivo was studied using an MRSA-infected wound model. The TBNPs could promote wound healing within 7 days, mainly by reducing the inflammation and promoting collagen deposition and granulation tissue formation. In conclusion, the TBNPs offer a promising strategy for clinical applications against multiple-drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Jijing Tian
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 West Road Yuanmingyuan, Beijing 100193, China; (X.X.); (B.L.); (H.W.); (Y.Z.); (X.T.)
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 West Road Yuanmingyuan, Beijing 100193, China; (X.X.); (B.L.); (H.W.); (Y.Z.); (X.T.)
| |
Collapse
|
19
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
20
|
Recent Advances in Photodynamic Therapy against Fungal Keratitis. Pharmaceutics 2021; 13:pharmaceutics13122011. [PMID: 34959293 PMCID: PMC8709008 DOI: 10.3390/pharmaceutics13122011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Fungal keratitis is a serious clinical infection on the cornea caused by fungi and is one of the leading causes of blindness in Asian countries. The treatment options are currently limited to a few antifungal agents. With the increasing incidence of drug-resistant infections, many patients fail to respond to antibiotics. Riboflavin-mediated corneal crosslinking (similar to photodynamic therapy (PDT)) for corneal ectasia was approved in the US in the early 2000s. Current evidence suggests that PDT could have the potential to inhibit fungal biofilm formation and overcome drug resistance by using riboflavin and rose bengal as photosensitizers. However, only a few clinical trials have been initiated in anti-fungal keratitis PDT treatment. Moreover, the removal of the corneal epithelium and repeated application of riboflavin and rose bengal are required to improve drug penetration before and during PDT. Thus, an improvement in trans-corneal drug delivery is mandatory for a successful and efficient treatment. In this article, we review the studies published to date using PDT against fungal keratitis and aim to enhance the understanding and awareness of this research area. The potential of modifying photosensitizers using nanotechnology to improve the efficacy of PDT on fungal keratitis is also briefly reviewed.
Collapse
|
21
|
Zhang M, Cui Z, Wang Y, Ma W, Ji Y, Ye F, Feng Y, Liu C. Effects of sub-lethal antimicrobial photodynamic therapy mediated by haematoporphyrin monomethyl ether on polymyxin-resistant Escherichia coli clinical isolate. Photodiagnosis Photodyn Ther 2021; 36:102516. [PMID: 34469794 DOI: 10.1016/j.pdpdt.2021.102516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIM It is generally believed that bacteria can not develop resistance to antimicrobial photodynamic therapy (aPDT). This work employed a polymyxin-resistant Escherichia coli clinical isolate (E15017) to study whether it could become resistant to aPDT mediated by haematoporphyrin monomethyl ether (HMME) via consecutive photodynamic treatments at sub-lethal condition. METHODS The sub-lethal and lethal photodynamic treatment conditions for E15017 were determined by colony forming units (CFU) assay. Bacterial cells of E15017 were treated with 20 cycles of repeated sub-lethal HMME-mediated aPDT, and subsequently subjected to aPDT at lethal condition. The antibiotic susceptibility, zeta-potential and membrane integrity of sub-lethal aPDT treated E15017 cells were also investigated. RESULTS After 20 cycles of repeated HMME-mediated aPDT treatments at sub-lethal condition, E15017 cells didn't become more resistant to aPDT. Sub-lethal HMME-mediated aPDT decreased the MIC values of E15017 to ceftazidime and polymyxin E by 4 and 2-fold, respectively, and increased the electronegativity of bacterial surface and affected the bacterial membrane integrity. CONCLUSIONS The results obtained in this study confirmed that antibiotic-resistant bacteria could not develop resistance to aPDT, and HMME-mediated aPDT is an attractive potential treatment for MDR E. coli caused infections.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Pathogenic Microbiology & Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Zixin Cui
- Department of Pathogenic Microbiology & Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China; Department of Infection, The First Affiliated Hospital of College of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, PR China
| | - Yanli Wang
- The First Hospital of Weinan, 35 East Shengli Street, Weinan, 714000, PR China
| | - Wenpeng Ma
- Department of Pathogenic Microbiology & Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Yanhong Ji
- Department of Pathogenic Microbiology & Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China
| | - Feng Ye
- Department of Infection, The First Affiliated Hospital of College of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, PR China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Chengcheng Liu
- Department of Pathogenic Microbiology & Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, PR China.
| |
Collapse
|
22
|
Effectiveness of antimicrobial photodynamic therapy with indocyanine green against the standard and fluconazole-resistant Candida albicans. Lasers Med Sci 2021; 36:1971-1977. [PMID: 34331604 DOI: 10.1007/s10103-021-03389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) is an alternative approach. The current study aimed to investigate the efficacy of aPDT with indocyanine green (ICG) against two Candida albicans (C. albicans) strains. In this in vitro study, the inoculum of standard ATCC 10,231 (S) and fluconazole-resistant (FR) strains were adjusted to the turbidity of a 0.5 McFarland standard. Each strain was allocated into 4 groups: S1 and FR1) control groups, S2 and FR2) ICG-treated groups (1 µg/mL), S3 and FR3) laser-irradiated groups (wavelength: 810 nm; mode: continuous-wave; output power: 300 mW; spot size: 4.5 mm; exposure time: 120 s; radiation dose: 228 J/cm2), S4 and FR4) ICG-mediated-aPDT groups. After treatments, the number of colony-forming units per milliliter (CFU/mL) was calculated. Using the XTT reduction assay, the effects of each treatment on Candida biofilm formation were evaluated. Data were analyzed using SPSS software version 22. In both strains, the maximum number of CFUs was observed in the control group, followed by ICG-treated, laser-irradiated, and ICG-mediated-aPDT groups. In ATCC 10,231 strain, the XTT assay exhibited significant difference between ICG-mediated-aPDT and control groups (p < 0.0001). However, the ICG, laser, and ICG-mediated-aPDT groups in fluconazole-resistant strain showed significant differences when compared with the control (p < 0.05). The mean Candida CFUs and the XTT assay did not show any significant difference between the ATCC 10,231 and fluconazole-resistant strains with respect to each treatment. Data suggest ICG-mediated-aPDT could diminish Candida CFUs in laboratory; however, further studies are warranted to confirm its efficacy and safety to be applied in clinics.
Collapse
|
23
|
Pérez C, Zúñiga T, Palavecino CE. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis Photodyn Ther 2021; 34:102285. [PMID: 33836278 DOI: 10.1016/j.pdpdt.2021.102285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Staphylococcus aureus is a Gram-positive spherical bacterium that commonly causes various infections which can range from superficial to life-threatening. Hospital strains of S. aureus are often resistant to antibiotics, which has made their treatment difficult in recent decades. Other therapeutic alternatives have been postulated to overcome the drawbacks of antibiotic multi-resistance. Of these, photodynamic therapy (PDT) is a promising approach to address the notable shortage of new active antibiotics against multidrug-resistant S. aureus. PDT combines the use of a photosensitizer agent, light, and oxygen to eradicate pathogenic microorganisms. Through a systematic analysis of published results, this work aims to verify the usefulness of applying PDT in treating multidrug-resistant S.aureus infections. METHODS This review was based on a bibliographic search in various databases and the analysis of relevant publications. RESULTS There is currently a large body of evidence demonstrating the efficacy of photodynamic therapy in eliminating S.aureus strains. Both biofilm-producing strains, as well as multidrug-resistant strains. CONCLUSION We conclude that there is sufficient scientific evidence that PDT is a useful adjunct to traditional antibiotic therapy for treating S. aureus infections. Clinical application through appropriate trials should be introduced to further define optimal treatment protocols, safety and efficay.
Collapse
Affiliation(s)
- Camila Pérez
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Tania Zúñiga
- Escuela de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, 8330546, Santiago, Chile.
| |
Collapse
|
24
|
Huo J, Jia Q, Huang H, Zhang J, Li P, Dong X, Huang W. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem Soc Rev 2021; 50:8762-8789. [PMID: 34159993 DOI: 10.1039/d1cs00074h] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Due to the emerging bacterial resistance and the protection of tenacious biofilms, it is hard for the single antibacterial modality to achieve satisfactory therapeutic effects nowadays. In recent years, photothermal therapy (PTT)-derived multimodal synergistic treatments have received wide attention and exhibited cooperatively enhanced bactericidal activity. PTT features spatiotemporally controllable generation of hyperthermia that could eradicate bacteria without inducing resistance. The synergy of it with other treatments, such as chemotherapy, photo-dynamic/catalytic therapy (PDT/PCT), immunotherapy, and sonodynamic therapy (SDT), could lower the introduced laser density in PTT and avoid undesired overheating injury of normal tissues. Simultaneously, by heat-induced improvement of the bacterial membrane permeability, PTT is conducive for accelerated intracellular permeation of chemotherapeutic drugs as well as reactive oxygen species (ROS) generated by photosensitizers/sonosensitizers, and could promote infiltration of immune cells. Thereby, it could solve the currently existing sterilization deficiencies of other combined therapeutic modes, for example, bacterial resistance for chemotherapy, low drug permeability for PDT/PCT/SDT, adverse immunoreactions for immunotherapy, etc. Admittedly, PTT-derived synergistic treatments are becoming essential in fighting bacterial infection, especially those caused by antibiotic-resistant strains. This review firstly presents the classical and newly reported photothermal agents (PTAs) in brief. Profoundly, through the introduction of delicately designed nanocomposite platforms, we systematically discuss the versatile photothermal-derived multimodal synergistic therapy with the purpose of sterilization application. At the end, challenges to PTT-derived combinational therapy are presented and promising synergistic bactericidal prospects are anticipated.
Collapse
Affiliation(s)
- Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Han Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China and School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
25
|
An Insight into the Role of Non-Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2020; 22:ijms22010234. [PMID: 33379392 PMCID: PMC7795024 DOI: 10.3390/ijms22010234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
The concept behind photodynamic therapy (PDT) is being successfully applied in different biomedical contexts such as cancer diseases, inactivation of microorganisms and, more recently, to improve wound healing and tissue regeneration. The effectiveness of PDT in skin treatments is associated with the role of reactive oxygen species (ROS) produced by a photosensitizer (PS), which acts as a "double agent". The release of ROS must be high enough to prevent microbial growth and, simultaneously, to accelerate the immune system response by recruiting important regenerative agents to the wound site. The growing interest in this subject is reflected by the increasing number of studies concerning the optimization of relevant experimental parameters for wound healing via PDT, namely, light features, the structure and concentration of the PS, and the wound type and location. Considering the importance of developing PSs with suitable features for this emergent topic concerning skin wound healing, in this review, a special focus on the achievements attained for each PS class, namely, of the non-porphyrinoid type, is given.
Collapse
|
26
|
Lin MH, Lee JYY, Pan SC, Wong TW. Enhancing wound healing in recalcitrant leg ulcers with aminolevulinic acid-mediated antimicrobial photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 33:102149. [PMID: 33346057 DOI: 10.1016/j.pdpdt.2020.102149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Chronic leg ulcers effect millions of people around the world. It is imperative to search for effective treatments for such challenging ulcers. We report the success of aminolevulinic acid-mediated antimicrobial photodynamic therapy (A-PDT) to enhance wound healing of chronic ulcers for 3 patients who were refractory to conventional treatments. These ulcers healed after one to three sessions of A-PDT and there was no recurrence for more than 29 months. Interestingly, no bacteria were isolated from the ulcers after A-PDT treatment. In vitro, A-PDT also inactivated all bacteria isolated from the patients. A-PDT conditioned medium containing IL-6 enhanced keratinocyte migration. The results suggest in addition to bactericidal effects, A-PDT also alters the wound microenvironment. A-PDT may be an effective treatment for patients with recalcitrant infected ulcers.
Collapse
Affiliation(s)
- Ming-Hsien Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, Tainan, Taiwan
| | - Julia Yu-Yun Lee
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, Tainan, Taiwan
| | - Shin-Chen Pan
- Section of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
27
|
Kassab G, Cheburkanov V, Willis J, Moule MG, Kurachi C, Yakovlev V, Cirillo JD, Bagnato VS. Safety and delivery efficiency of a photodynamic treatment of the lungs using indocyanine green and extracorporeal near infrared illumination. JOURNAL OF BIOPHOTONICS 2020; 13:e202000176. [PMID: 32667730 PMCID: PMC8177756 DOI: 10.1002/jbio.202000176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 05/20/2023]
Abstract
Photodynamic inactivation (PDI) is a promising alternative for combating infections caused by antimicrobial resistant bacteria. Pneumonias are among the most worrisome infections because of their high-mortality rate. Previous studies have demonstrated the feasibility of using PDI with extracorporeal light to treat pneumonia. In this study, we analyzed key parameters for the viability of this treatment, including the selectivity of the photodynamic response for pathogens over host cells. Our results showed that PDI can induce killing of Staphylococcus aureus (of up to 4.18 log for the strain Xen29 and 3.62 log for Xen36) under conditions where little or no toxicity for host cells is observed. We validated pulmonary delivery of the photosensitizer and light in mice, using photobleaching as an indicator, and demonstrated preservation of healthy tissues as evidence of the safety of the protocol. Overall, PDI displays low toxicity on host tissues, making it a promising tool for treatment of pneumonias caused by S. aureus and other important pathogens.
Collapse
Affiliation(s)
- Giulia Kassab
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Vsevolod Cheburkanov
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Jace Willis
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Madeleine G. Moule
- Department of Microbial Pathogenesis and Immunology, Texas A&M University College of Medicine, Bryan, Texas
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Vladislav Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University College of Medicine, Bryan, Texas
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Hagler Institute for Advances Studies, Texas A&M University, College Station, Texas
| |
Collapse
|
28
|
Attia M, Cao J, Chan R, Ling J, Ye JY. Optical properties of indocyanine green under ultrasound treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2020. [DOI: 10.1016/j.jpap.2020.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Chiang CP, Hsieh O, Tai WC, Chen YJ, Chang PC. Clinical outcomes of adjunctive indocyanine green-diode lasers therapy for treating refractory periodontitis: A randomized controlled trial with in vitro assessment. J Formos Med Assoc 2019; 119:652-659. [PMID: 31543299 DOI: 10.1016/j.jfma.2019.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/10/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/PURPOSE It is still challengeable to treat periodontal pockets refractory to mechanical debridement. This study is to evaluate the potential of indocyanine green (ICG)-diode laser-based photothermal therapy (PTT) for solving this dilemma. METHODS Bone marrow-derived mesenchymal stem cells (BMSCs) and periodontal ligament cells (PDLCs) were incubated with phosphate-buffered saline, chlorhexidine, or ICG, non-irradiated or irradiated with 810-nm diode lasers, and the cell viability was evaluated. Patients with teeth refractory to mechanical periodontal debridement on different quadrants were recruited. At baseline (T0), all examined teeth received scaling and root planing, and those on the test quadrant (PTT group) received ICG-diode laser treatment. The outcome was evaluated using clinical parameters and cytokines in the gingival crevicular fluids at 4-6 weeks (T1) and 6 months (T2). RESULTS In ICG-treated cultures, the viability of BMSCs and PDLCs was recovered on day 4, and laser irradiation inhibited the metabolic activities of BMSCs. 22 patients with 30 control teeth and 35 PTT-treated teeth were examined. All examined teeth showed modest reductions in probing pocket depth (PPD), clinical attachment loss (CAL), bleeding upon probing (BOP), and plaque score at T1 and T2 and significant reductions in IL-1β and MMP-8 at T2. Compared with controls, BOP was reduced more prominently, IL-1β and MMP-8 were significantly lower, and reductions in PPD and CAL were slightly greater in the PTT group at T1 (0.05-0.19 mm). CONCLUSION ICG-diode laser-based PTT is compatible to periodontium and assists in faster resolution of gingival inflammation in periodontal pockets refractory to mechanical debridement.
Collapse
Affiliation(s)
- Chun-Pin Chiang
- Department of Dentistry, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Olivia Hsieh
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Chiu Tai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Jane Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|