1
|
Stefanaki C, Rozou P, Efthymiou V, Xinias I, Mastorakos G, Bacopoulou F, Papagianni M. Impact of Probiotics on the Glycemic Control of Pediatric and Adolescent Individuals with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:2629. [PMID: 39203766 PMCID: PMC11357215 DOI: 10.3390/nu16162629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Human recombinant insulin is currently the only therapy for children and adolescents with type 1 diabetes (T1D), although not always efficient for the glycemic control of these individuals. The interrelation between the gut microbiome and the glycemic control of apparently healthy populations, as well as various populations with diabetes, is undeniable. Probiotics are biotherapeutics that deliver active components to various targets, primarily the gastrointestinal tract. This systematic review and meta-analysis examined the effect of the administration of probiotics on the glycemic control of pediatric and adolescent individuals with T1D. MATERIALS AND METHODS Randomized controlled trials employing the administration of probiotics in children and adolescents with T1D (with ≥10 individuals per treatment arm), written in English, providing parameters of glycemic control, such as mean glucose concentrations and glycosylated hemoglobin (HbA1c), were deemed eligible. RESULTS The search strategy resulted in six papers with contradictory findings. Ultimately, five studies of acceptable quality, comprising 388 children and adolescents with T1D, were included in the meta-analysis. Employing a random and fixed effects model revealed statistically significant negative effect sizes of probiotics on the glycemic control of those individuals, i.e., higher concentrations of glucose and HbA1c than controls. CONCLUSIONS Children and adolescents with T1D who received probiotics demonstrated worse glycemic control than controls after the intervention. Adequately powered studies, with extended follow-up periods, along with monitoring of compliance and employing the proper strains, are required to unravel the mechanisms of action and the relative effects of probiotics, particularly concerning diabetes-related complications and metabolic outcomes.
Collapse
Affiliation(s)
- Charikleia Stefanaki
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Paraskevi Rozou
- Hygiene, Social & Preventive Medicine and Medical Statistics Laboratory, Medical School, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Department of Pediatrics, General Hospital of Larisa, 38221 Larissa, Greece
| | - Vasiliki Efthymiou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Xinias
- Third Pediatric Department, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Athens Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Papagianni
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
2
|
Sun C, Liu Q, Ye X, Li R, Meng M, Han X. The Role of Probiotics in Managing Glucose Homeostasis in Adults with Prediabetes: A Systematic Review and Meta-Analysis. J Diabetes Res 2024; 2024:5996218. [PMID: 38529045 PMCID: PMC10963111 DOI: 10.1155/2024/5996218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Methods The Preferred Reporting Items for Systematic Reviews and Analysis checklist was used. A comprehensive literature search of the PubMed, Embase, and Cochrane Library databases was conducted through August 2022 to assess the impact of probiotics on blood glucose, lipid, and inflammatory markers in adults with prediabetes. Data were pooled using a random effects model and were expressed as standardized mean differences (SMDs) and 95% confidence interval (CI). Heterogeneity was evaluated and quantified as I2. Results Seven publications with a total of 550 patients were included in the meta-analysis. Probiotics were found to significantly reduce the levels of glycosylated hemoglobin (HbA1c) (SMD -0.44; 95% CI -0.84, -0.05; p = 0.03; I2 = 76.13%, p < 0.001) and homeostatic model assessment of insulin resistance (HOMA-IR) (SMD -0.27; 95% CI -0.45, -0.09; p < 0.001; I2 = 0.50%, p = 0.36) and improve the levels of high-density lipoprotein cholesterol (HDL) (SMD -8.94; 95% CI -14.91, -2.97; p = 0.003; I2 = 80.24%, p < 0.001), when compared to the placebo group. However, no significant difference was observed in fasting blood glucose, insulin, total cholesterol, triglycerides, low-density lipoprotein cholesterol, interleukin-6, tumor necrosis factor-α, and body mass index. Subgroup analyses showed that probiotics significantly reduced HbA1c in adults with prediabetes in Oceania, intervention duration of ≥3 months, and sample size <30. Conclusions Collectively, our meta-analysis revealed that probiotics had a significant impact on reducing the levels of HbA1c and HOMA-IR and improving the level of HDL in adults with prediabetes, which indicated a potential role in regulating blood glucose homeostasis. However, given the limited number of studies included in this analysis and the potential for bias, further large-scale, higher-quality randomized controlled trials are needed to confirm these findings. This trial is registered with CRD42022358379.
Collapse
Affiliation(s)
- Chao Sun
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyin Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaona Ye
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ronghua Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Miaomiao Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xingjun Han
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Xiao R, Wang L, Tian P, Jin X, Zhao J, Zhang H, Wang G, Zhu M. The Effect of Probiotic Supplementation on Glucolipid Metabolism in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3240. [PMID: 37513657 PMCID: PMC10383415 DOI: 10.3390/nu15143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition with an unknown pathophysiology. Moreover, T2DM remains a serious health risk despite advances in medication and preventive care. Randomised controlled trials (RCTs) have provided evidence that probiotics may have positive effects on glucolipid metabolism. Therefore, we performed a meta-analysis of RCTs to measure the effect of probiotic therapy on glucolipid metabolism in patients with T2DM. METHODS With no constraints on the language used in the literature, Excerpta Medica Database, PubMed, the Cochrane Library, and the Web of Science were searched for pertinent RCTs published between the date of creation and 18 August 2022. Stringent inclusion and exclusion criteria were applied by two reviewers to independently examine the literature. The risk of bias associated with the inclusion of the original studies was assessed using the Cochrane risk-of-bias tool, and Stata 15.0 was used to perform the meta-analysis. RESULTS Thirty-seven publications containing a total of 2502 research participants were included in the meta-analysis. The results showed that after a probiotic intervention, the experimental group showed a significant decrease in body mass index (standardised mean difference (SMD) = -0.42, 95% confidence interval (CI) [-0.76, -0.08]), fasting glucose concentration (SMD = -0.73, 95% CI [-0.97, -0.48]), fasting insulin concentration (SMD = -0.67, 95% CI [-0.99, -0.36]), glycated haemoglobin concentration (SMD = -0.55, 95% CI [-0.75, -0.35]), Homeostatic Model Assessment for Insulin Resistance score (SMD = -0.88, 95% CI [-1.17, -0.59]), triglyceride concentration (SMD = -0.30, 95% CI [-0.43, -0.17]), total cholesterol concentration (SMD = -0.27, 95% CI [-0.43, -0.11]), and low-density lipoprotein concentration (SMD = -0.20, 95% CI [-0.37, -0.04]), and an increase in high-density lipoprotein concentration (SMD = 0.31, 95% CI [0.08, 0.54]). Moreover, subgroup analyses showed that patients with a longer intervention time, or those who were treated with multiple strains of probiotics, may benefit more than those with a shorter intervention time or those who were treated with a single probiotic strain, respectively. CONCLUSION Probiotic supplementation improves glucolipid metabolism in patients with T2DM, offering an alternative approach for the treatment of these patients.
Collapse
Affiliation(s)
- Rui Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Wuxi 214002, China
| |
Collapse
|
4
|
Yan Q, Hu W, Tian Y, Li X, Yu Y, Li X, Feng B. Probiotics intervention in preventing conversion of impaired glucose tolerance to diabetes: The PPDP follow-on study. Front Endocrinol (Lausanne) 2023; 14:1113611. [PMID: 36875472 PMCID: PMC9982119 DOI: 10.3389/fendo.2023.1113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVES The purpose of this study was to assess the incidence of type 2 diabetes mellitus (T2DM) after 6 years in patients with IGT who received early probiotic intervention in the Probiotics Prevention Diabetes Program (PPDP) trial. METHODS 77 patients with IGT in the PPDP trial were randomized to either probiotic or placebo. After the completion of the trial, 39 non-T2DM patients were invited to follow up glucose metabolism after the next 4 years. The incidence of T2DM in each group was assessed using Kaplan-Meier analysis. The 16S rDNA sequencing technology was used to analyze gut microbiota's structural composition and abundance changes between the groups. RESULTS The cumulative incidence of T2DM was 59.1% with probiotic treatment versus 54.5% with placebo within 6 years, there was no significant difference in the risk of developing T2DM between the two groups (P=0.674). CONCLUSIONS Supplemental probiotic therapy does not reduce the risk of IGT conversion to T2DM. CLINICAL TRIAL REGISTRATION https://www.chictr.org.cn/showproj.aspx?proj=5543, identifier ChiCTR-TRC-13004024.
Collapse
Affiliation(s)
- Qun Yan
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiting Hu
- The Second Clinical Medical College, Shanxi Medical University, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Tian
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Yu
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xing Li
- The Second Clinical Medical College, Shanxi Medical University, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Feng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Bo Feng,
| |
Collapse
|
5
|
Li Y, Wu Y, Wu L, Qin L, Liu T. The effects of probiotic administration on patients with prediabetes: a meta-analysis and systematic review. J Transl Med 2022; 20:498. [PMID: 36324119 PMCID: PMC9632036 DOI: 10.1186/s12967-022-03695-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in the prediabetic population by meta-analysis, namely, fasting blood glucose (FBG), glycated haemoglobin A1c (HbA1c), homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), and the mechanisms of action are summarized from the existing studies. METHODS Seven databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed, CNKI, and Wanfang Med) were searched until March 2022. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model to observe the efficacy of probiotic supplementation on the included indicators. RESULTS Seven publications with a total of 460 patients were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HbA1c (WMD, -0.07; 95% CI -0.11, -0.03; P = 0.001), QUICKI (WMD, 0.01; 95% CI 0.00, 0.02; P = 0.04), TC (SMD, -0.28; 95% CI -0.53, -0.22; P = 0.03), TG (SMD, -0.26; 95% CI -0.52, -0.01; P = 0.04), and LDL-C (WMD, -8.94; 95% CI -14.91, -2.97; P = 0.003) compared to levels in the placebo group. The effects on FBG (WMD, -0.53; 95% CI -2.31, 1.25; P = 0.56), HOMA-IR (WMD, -0.21; 95% CI -0.45, 0.04; P = 0.10), and HDL-C (WMD, 2.05; 95% CI -0.28, 4.38; P = 0.08) were not different from those of the placebo group. CONCLUSION The present study clearly indicated that probiotics may fulfil an important role in the regulation of HbA1c, QUICKI, TC, TG and LDL-C in patients with prediabetes. In addition, based on existing studies, we concluded that probiotics may regulate blood glucose homeostasis in a variety of ways. TRIAL REGISTRATION This meta-analysis has been registered at PROSPERO with ID: CRD42022321995.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, 100029, Beijing, China.
| |
Collapse
|
6
|
Carydias E, Tasho A, Kani C, Bacopoulou F, Stefanaki C, Markantonis SL. Systematic Review and Meta-Analysis of the Efficacy and Safety of Metformin and GLP-1 Analogues in Children and Adolescents with Diabetes Mellitus Type 2. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101572. [PMID: 36291508 PMCID: PMC9600106 DOI: 10.3390/children9101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Diabetes mellitus type 2 (DMT2) is one of the most frequent glucose metabolism disorders, in which serum glucose concentrations are increased. In most cases, changes in lifestyle and diet are considered as the first step in addressing its therapy. If changes in lifestyle and diet fail, drugs, such as metformin, must be added. Lately, apart from metformin or insulin, the FDA has approved the use of glucagon-like peptide-1 (GLP-1) analogues for children and adolescents. Little is known about their efficacy and safety at this young age. The main aim of this systematic review/meta-analysis was to assess the safety and efficacy of metformin and GLP-1 analogues, exenatide and liraglutide, compared with placebos or other antidiabetic drugs used for DMT2 in children and adolescents. Metformin did not seem to demonstrate pharmacologic superiority, while GLP-1 analogues were found superior to placebos. GLP-1 analogues may be considered a useful alternative for the treatment of DMT2 in children and adolescents.
Collapse
Affiliation(s)
- Elisabeth Carydias
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece
| | - Andoneta Tasho
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece
| | - Chara Kani
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Flora Bacopoulou
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| | - Charikleia Stefanaki
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sophia L. Markantonis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece
| |
Collapse
|
7
|
Gur M, Zuckerman-Levin N, Masarweh K, Hanna M, Laghi L, Marazzato M, Levanon S, Hakim F, Bar-Yoseph R, Wilschanski M, Bentur L. The effect of probiotic administration on metabolomics and glucose metabolism in CF patients. Pediatr Pulmonol 2022; 57:2335-2343. [PMID: 35676769 PMCID: PMC9796051 DOI: 10.1002/ppul.26037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Cystic fibrosis (CF)-related diabetes (CFRD) affects 50% of CF adults. Gut microbial imbalance (dysbiosis) aggravates their inflammatory response and contributes to insulin resistance (IR). We hypothesized that probiotics may improve glucose tolerance by correcting dysbiosis. METHODS A single-center prospective pilot study assessing the effect of Vivomixx® probiotic (450 billion/sachet) on clinical status, spirometry, lung clearance index (LCI), and quality of life (QOL) questionnaires; inflammatory parameters (urine and stool metabolomics, blood cytokines); and glucose metabolism (oral glucose tolerance test [OGTT]), continuous glucose monitoring [CGM], and homeostasis model assessment of IR (HOMA-IR) in CF patients. RESULTS Twenty-three CF patients (six CFRD), mean age 17.7 ± 8.2 years. After 4 months of probiotic administration, urinary cysteine (p = 0.018), lactulose (p = 0.028), arabinose (p = 0.036), mannitol (p = 0.041), and indole 3-lactate (p = 0.046) significantly increased, while 3-methylhistidine (p = 0.046) and N-acetyl glutamine (p = 0.047) decreased. Stool 2-Hydroxyisobutyrate (p = 0.022) and 3-methyl-2-oxovalerate (p = 0.034) decreased. Principal component analysis, based on urine metabolites, found significant partitions between subjects at the end of treatment compared to baseline (p = 0.004). After 2 months of probiotics, the digestive symptoms domain of Cystic Fibrosis Questionnaire-Revised improved (p = 0.007). In the nondiabetic patients, a slight decrease in HOMA-IR, from 2.28 to 1.86, was observed. There was no significant change in spirometry results, LCI, blood cytokines and CGM. CONCLUSIONS Changes in urine and stool metabolic profiles, following the administration of probiotics, may suggest a positive effect on glucose metabolism in CF. Larger long-term studies are needed to confirm our findings. Understanding the interplay between dysbiosis, inflammation, and glucose metabolism may help preventing CFRD.
Collapse
Affiliation(s)
- Michal Gur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nehama Zuckerman-Levin
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Pediatric Diabetes Unit, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Kamal Masarweh
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Moneera Hanna
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy.,Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Shir Levanon
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Fahed Hakim
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Bar-Yoseph
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Wilschanski
- Department of Pediatric Gastroenterology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lea Bentur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Zeighamy Alamdary S, Afifirad R, Asgharzadeh S, Asadollahi P, Mahdizade Ari M, Dashtibin S, Sabaghan M, Shokouhamiri MR, Ghanavati R, Darbandi A. The Influence of Probiotics Consumption on Management of Prediabetic State: A Systematic Review of Clinical Trials. Int J Clin Pract 2022; 2022:5963679. [PMID: 36160290 PMCID: PMC9484983 DOI: 10.1155/2022/5963679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prediabetes consists of the intermediary stage between normal glucose regulation and overt diabetes mellitus and develops when blood glucose levels are higher than normal but not high enough to confirm a type 2 diabetes mellitus diagnosis (T2DM). Recent evidence suggests that probiotics could be promising approaches to improve this state. In this study, we performed a systematic review to compile the results of clinical trials investigating the effects of pro-/pre-/synbiotics on prediabetes subjects from 2010 to 2020. The article search was carried out in Medline, Embase, Scopus, Web of Science, The Cochrane Library, Clinical trials.gov, ProQuest, Open Grey, and Google Scholar. Search filters were developed using 2 parameters: "prestate diabetes" and "probiotics." Of the 418 studies that were screened, 15 original articles reached the inclusion criteria. Pooling data from these trials showed positive and significant effects of probiotics in the reduction of hyperglycemia, insulin concentration levels, lipid profile, and BMI (Body mass index). Administration of probiotics may provide beneficial and healthful effects in the clinical management of patients with prediabetes and metabolic syndrome. Different probiotics compositions have shown beneficial and noticeable effects on glucose homeostasis, lipid profiles, BMI, and inflammatory markers in subjects with prediabetes, metabolic syndrome, and healthy individuals and could be advantageous in recomposing the gut microbiota back into the normal state during the prediabetic state.
Collapse
Affiliation(s)
| | - Roghayeh Afifirad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Asgharzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtibin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Verma A, Nelson MT, DePaolo WR, Hampe C, Roth CL. A randomized double-blind placebo controlled pilot study of probiotics in adolescents with severe obesity. J Diabetes Metab Disord 2021; 20:1289-1300. [PMID: 34900780 PMCID: PMC8630143 DOI: 10.1007/s40200-021-00855-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The purpose of the study is to assess the effect of probiotic supplementation on gut microbiota and insulin resistance in adolescents with severe obesity. METHODS Through a randomized, double blind, placebo-controlled, 12-week pilot clinical trial, 15 adolescents with severe obesity received either an oral probiotic 'Visbiome®' (n = 8) or placebo (n = 7). Anthropometry, fasting glucose, insulin, hs-CRP and stool for microbiome and calprotectin were collected at baseline (week 0) and 12 weeks after intervention. RESULTS Among completers (n = 4 in each of the two groups), mean change in fasting glucose was significantly lower in the probiotic group (0 ± 4 mg/dL) as compared to the placebo group (6.3 ± 1.7 mg/dL) (p = 0.028). Gut microbial Firmicutes to Bacteroidetes (F/B) ratio had a greater decline from week 0 to week 12 in the probiotic group (mean 17.7 ± 25.1 to 2.39 ± 2.0, respectively) but was not statistically significant (p = 0.06) as compared to in the placebo group (mean 12.8 ± 18.2 to 6.9 ± 5.61, respectively) (p = 0.89). Weight and BMI (mean ± SD) trended to remain stable in the treatment group (-1.07 ± 6.1 kg and -0.3 ± 2.2 kg/m2 respectively) as compared to the placebo group (3.9 ± 5.1 kg, 1.0 ± 1.6 kg/m2) but was not significant (p = 0.12 for weight and 0.38 for BMI). No significant change in the fasting insulin, HOMA-IR, or serum and stool inflammatory markers were noted between the two groups (p > 0.05). One participant in the treatment arm reported adverse effects of gastrointestinal intolerance. CONCLUSION Probiotic therapy with Visbiome® may improve the fasting glucose and possibly decrease the gut microbial F/B ratio as compared to placebo in adolescents with severe obesity. Future larger studies are required to confirm these findings.U.S. Clinical Trial Registry number: NCT03109587. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40200-021-00855-7.
Collapse
Affiliation(s)
- Arushi Verma
- Department of Pediatrics, University of Washington, Seattle, WA USA
- Division of Pediatric Endocrinology, Seattle Children’s Hospital, Seattle, WA USA
- Present Address: Department of Pediatrics, Division of Pediatric Endocrinology, University of Nevada Reno School of Medicine, 75 Pringle Way, Suite 505, Reno, NV 89521 USA
| | - Maria T. Nelson
- Department of Pediatrics, University of Washington, Seattle, WA USA
| | - William R. DePaolo
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, WA USA
| | - Christiane Hampe
- Department of Medicine, Division of Endocrinology, University of Washington, Seattle, WA USA
| | - Christian L. Roth
- Division of Pediatric Endocrinology, Seattle Children’s Hospital, Seattle, WA USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA USA
| |
Collapse
|
10
|
Wang X, Yang J, Qiu X, Wen Q, Liu M, Zhou D, Chen Q. Probiotics, Pre-biotics and Synbiotics in the Treatment of Pre-diabetes: A Systematic Review of Randomized Controlled Trials. Front Public Health 2021; 9:645035. [PMID: 33842424 PMCID: PMC8032954 DOI: 10.3389/fpubh.2021.645035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
Objectives: This study aimed to review the data from randomized controlled trials (RCTs) and identify evidence for microbiota's role and use of probiotics, pre-biotics, or synbiotics in pre-diabetes. Methods: RCTs of pro-, pre-, synbiotics for the treatment of pre-diabetes population will be summarized. We searched for EMBASE, MEDLINE, Web of Science, Cochrane Central, Clinical Trials (ClinicalTrials.gov) from inception to February 2021. Results: The gut microbiota influences host metabolic disorders via the modulation of metabolites, including short-chain fatty acids (SCFAs), the endotoxin lipopolysaccharides (LPS), bile acids (BA) and trimethylamine N-oxide (TMAO), as well as mediating the interaction between the gastrointestinal system and other organs. Due to the limited sources of studies, inconsistent outcomes between included studies. Probiotics can decrease glycated hemoglobin (HbA1c) and have the potential to improve post-load glucose levels. The supplementation of probiotics can suppress the rise of blood cholesterol, but the improvement cannot be verified. Pre-biotics are failed to show an evident improvement in glycemic control, but their use caused the changes in the composition of gut microbiota. A combination of probiotics and pre-biotics in the synbiotics supplementation is more effective than probiotics alone in glycemic control. Conclusion: In the current studies using probiotics, pre-biotics or synbiotics for the treatment of pre-diabetes, the benefits of modulating the abundance of gut microbiota were partially demonstrated. However, there is insufficient evidence to show significant benefits on glucose metabolism, lipid metabolism and body composition.
Collapse
Affiliation(s)
- Xian Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao Yang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianliang Qiu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Wen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongqi Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. Int J Mol Sci 2021; 22:ijms22042121. [PMID: 33672754 PMCID: PMC7924631 DOI: 10.3390/ijms22042121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/04/2023] Open
Abstract
A high-fat, Western-style diet is an important predisposing factor for the onset of type 2 diabetes and obesity. It causes changes in gut microbial profile, reduction of microbial diversity, and the impairment of the intestinal barrier, leading to increased serum lipopolysaccharide (endotoxin) levels. Elevated lipopolysaccharide (LPS) induces acetyltransferase P300 both in the nucleus and cytoplasm of liver hepatocytes through the activation of the IRE1-XBP1 pathway in the endoplasmic reticulum stress. In the nucleus, induced P300 acetylates CRTC2 to increase CRTC2 abundance and drives Foxo1 gene expression, resulting in increased expression of the rate-limiting gluconeogenic gene G6pc and Pck1 and abnormal liver glucose production. Furthermore, abnormal cytoplasm-appearing P300 acetylates IRS1 and IRS2 to disrupt insulin signaling, leading to the prevention of nuclear exclusion and degradation of FOXO1 proteins to further exacerbate the expression of G6pc and Pck1 genes and liver glucose production. Inhibition of P300 acetyltransferase activity by chemical inhibitors improved insulin signaling and alleviated hyperglycemia in obese mice. Thus, P300 acetyltransferase activity appears to be a therapeutic target for the treatment of type 2 diabetes and obesity.
Collapse
|
12
|
Singh P, Rawat A, Al-Jarrah B, Saraswathi S, Gad H, Elawad M, Hussain K, Hendaus MA, Al-Masri W, Malik RA, Al Khodor S, Akobeng AK. Distinctive Microbial Signatures and Gut-Brain Crosstalk in Pediatric Patients with Coeliac Disease and Type 1 Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22041511. [PMID: 33546364 PMCID: PMC7913584 DOI: 10.3390/ijms22041511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Coeliac disease (CD) and Type 1 diabetes mellitus (T1DM) are immune-mediated diseases. Emerging evidence suggests that dysbiosis in the gut microbiome plays a role in the pathogenesis of both diseases and may also be associated with the development of neuropathy. The primary goal in this cross-sectional pilot study was to identify whether there are distinct gut microbiota alterations in children with CD (n = 19), T1DM (n = 18) and both CD and T1DM (n = 9) compared to healthy controls (n = 12). Our second goal was to explore the relationship between neuropathy (corneal nerve fiber damage) and the gut microbiome composition. Microbiota composition was determined by 16S rRNA gene sequencing. Corneal confocal microscopy was used to determine nerve fiber damage. There was a significant difference in the overall microbial diversity between the four groups with healthy controls having a greater microbial diversity as compared to the patients. The abundance of pathogenic proteobacteria Shigella and E. coli were significantly higher in CD patients. Differential abundance analysis showed that several bacterial amplicon sequence variants (ASVs) distinguished CD from T1DM. The tissue transglutaminase antibody correlated significantly with a decrease in gut microbial diversity. Furthermore, the Bacteroidetes phylum, specifically the genus Parabacteroides was significantly correlated with corneal nerve fiber loss in the subjects with neuropathic damage belonging to the diseased groups. We conclude that disease-specific gut microbial features traceable down to the ASV level distinguish children with CD from T1DM and specific gut microbial signatures may be associated with small fiber neuropathy. Further research on the mechanisms linking altered microbial diversity with neuropathy are warranted.
Collapse
Affiliation(s)
- Parul Singh
- Research Department, Sidra Medicine, Doha 26999, Qatar or (P.S.); (A.R.); (B.A.-J.)
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 24404, Qatar
| | - Arun Rawat
- Research Department, Sidra Medicine, Doha 26999, Qatar or (P.S.); (A.R.); (B.A.-J.)
| | - Bara Al-Jarrah
- Research Department, Sidra Medicine, Doha 26999, Qatar or (P.S.); (A.R.); (B.A.-J.)
| | - Saras Saraswathi
- Division of Gastroenterology, Hepatology, and Nutrition, Sidra Medicine, Doha 26999, Qatar; (S.S.); (M.E.); (W.A.-M.); (A.K.A.)
| | - Hoda Gad
- Department Medicine, Weill Cornell Medicine-Qatar, Doha 24144, Qatar; (H.G.); (R.A.M.)
| | - Mamoun Elawad
- Division of Gastroenterology, Hepatology, and Nutrition, Sidra Medicine, Doha 26999, Qatar; (S.S.); (M.E.); (W.A.-M.); (A.K.A.)
| | - Khalid Hussain
- Division of Endocrinology, Sidra Medicine, Doha 26999, Qatar;
| | | | - Wesam Al-Masri
- Division of Gastroenterology, Hepatology, and Nutrition, Sidra Medicine, Doha 26999, Qatar; (S.S.); (M.E.); (W.A.-M.); (A.K.A.)
| | - Rayaz A. Malik
- Department Medicine, Weill Cornell Medicine-Qatar, Doha 24144, Qatar; (H.G.); (R.A.M.)
| | - Souhaila Al Khodor
- Research Department, Sidra Medicine, Doha 26999, Qatar or (P.S.); (A.R.); (B.A.-J.)
- Correspondence:
| | - Anthony K. Akobeng
- Division of Gastroenterology, Hepatology, and Nutrition, Sidra Medicine, Doha 26999, Qatar; (S.S.); (M.E.); (W.A.-M.); (A.K.A.)
- Department Medicine, Weill Cornell Medicine-Qatar, Doha 24144, Qatar; (H.G.); (R.A.M.)
| |
Collapse
|
13
|
Gut Microbiome, Diabetes, and Obesity: Complex Interplay of Physiology. GUT MICROBIOME-RELATED DISEASES AND THERAPIES 2021. [DOI: 10.1007/978-3-030-59642-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Gut dysbiosis is associated with primary hypothyroidism with interaction on gut-thyroid axis. Clin Sci (Lond) 2020; 134:1521-1535. [PMID: 32519746 DOI: 10.1042/cs20200475] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Background Previous studies have shown that the gut microbiome is associated with thyroid diseases, including Graves' disease, Hashimoto's disease, thyroid nodules, and thyroid cancer. However, the association between intestinal flora and primary hypothyroidism remains elusive. We aimed to characterize gut microbiome in primary hypothyroidism patients. Methods Fifty-two primary hypothyroidism patients and 40 healthy controls were recruited. The differences in gut microbiota between the two groups were analyzed by 16S rRNA sequencing technology. Fecal microbiota transplantation (FMT) was performed in mice using flora from both groups; changes in thyroid function were then assessed in the mice. Results There were significant differences in α and β diversities of gut microbiota between primary hypothyroidism patients and healthy individuals. The random forest analysis indicated that four intestinal bacteria (Veillonella, Paraprevotella, Neisseria, and Rheinheimera) could distinguish untreated primary hypothyroidism patients from healthy individuals with the highest accuracy; this was confirmed by receiver operator characteristic curve analysis. The short chain fatty acid producing ability of the primary hypothyroidism patients' gut was significantly decreased, which resulted in the increased serum lipopolysaccharide (LPS) levels. The FMT showed that mice receiving the transplant from primary hypothyroidism patients displayed decreased total thyroxine levels. Conclusions Our study suggests that primary hypothyroidism causes changes in gut microbiome. In turn, an altered flora can affect thyroid function in mice. These findings could help understand the development of primary hypothyroidism and might be further used to develop potential probiotics to facilitate the adjuvant treatment of this disease.
Collapse
|
15
|
Yan L, Wang M, Chen J, Zhao X, Wang H. Effects of gut microbiome-targeted therapies on cardiometabolic outcomes in children and adolescents: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21612. [PMID: 32756217 PMCID: PMC7402758 DOI: 10.1097/md.0000000000021612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Emerging evidence indicates the role of gut microbiota in the development of cardiovascular diseases. Thus, gut microbiota is increasingly recognized as a potential therapeutic target of cardiovascular disease. However, the effects of gut microbiome-targeted therapies on cardiometabolic outcomes in children and adolescents remain unclear. METHODS We plan to perform a systematic search from PubMed, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science. Two authors will independently select the relevant studies and extract data according to a previously defined data extraction sheet. We will use the Stata 14.0 statistical software and RevMan V.5.3 software to conduct data analyses. RESULTS AND CONCLUSION The results of this study will be published in a peer-reviewed journal and provide more evidence for the application of gut microbiome-targeted therapies in children and adolescents for the intervention of cardiovascular risk factors in clinical practice. PROTOCOL REGISTRATION NUMBER INPLASY202060050.
Collapse
|