1
|
Coggins J, Saito MH, Cook R, Urata S, Urata M, Harsell NL, Tan WN, Figueira BT, Bradley M, Quadri NZ, Saripada JAI, Reyna RA, Maruyama J, Paessler S, Makishima T. Histopathology of the tongue in a hamster model of COVID-19. BMC Oral Health 2025; 25:121. [PMID: 39849469 PMCID: PMC11755867 DOI: 10.1186/s12903-025-05420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
OBJECTIVE With altered sense of taste being a common symptom of coronavirus disease 2019 (COVID-19), the main objective was to investigate the presence and distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) within the tongue over the course of infection. METHODS Golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 and tongues were collected at 2, 3, 5, 8, 17, 21, 35, and 42 days post-infection (dpi) for analysis. In order to test for gross changes in the tongue, the papillae of the tongue were counted. Paraffin-embedded thin sections of the tongues were labeled for the presence of SARS-CoV-2 antigen. RESULTS There was no difference in fungiform or filiform papillae density throughout the course of infection. SARS-CoV-2 antigen was observed in the vallate papillae taste buds (3-35 dpi) and autonomic ganglia (5-35 dpi), as well as in the serous and mucous salivary glands of the posterior tongue (2-42 dpi). CONCLUSION The presence and distribution of SARS-CoV-2 suggest that the virus could cause taste disturbance by infecting the vallate papillae taste buds. This effect could be exacerbated by a diminished secretion of saliva caused by infection of the serous salivary glands and the autonomic ganglia which innervate them.
Collapse
Affiliation(s)
- John Coggins
- Department of Otolaryngology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Marina Hosotani Saito
- Department of Otolaryngology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rebecca Cook
- Department of Otolaryngology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Shinji Urata
- Department of Otolaryngology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Megumi Urata
- Department of Otolaryngology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | | | | | - Megan Bradley
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Nadia Z Quadri
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Rachel A Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tomoko Makishima
- Department of Otolaryngology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
2
|
Adilović M, Hromić-Jahjefendić A, Mahmutović L, Šutković J, Rubio-Casillas A, Redwan EM, Uversky VN. Intrinsic Factors Behind the Long-COVID: V. Immunometabolic Disorders. J Cell Biochem 2025; 126:e30683. [PMID: 39639607 DOI: 10.1002/jcb.30683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/02/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The complex link between COVID-19 and immunometabolic diseases demonstrates the important interaction between metabolic dysfunction and immunological response during viral infections. Severe COVID-19, defined by a hyperinflammatory state, is greatly impacted by underlying chronic illnesses aggravating the cytokine storm caused by increased levels of Pro-inflammatory cytokines. Metabolic reprogramming, including increased glycolysis and altered mitochondrial function, promotes viral replication and stimulates inflammatory cytokine production, contributing to illness severity. Mitochondrial metabolism abnormalities, strongly linked to various systemic illnesses, worsen metabolic dysfunction during and after the pandemic, increasing cardiovascular consequences. Long COVID-19, defined by chronic inflammation and immune dysregulation, poses continuous problems, highlighting the need for comprehensive therapy solutions that address both immunological and metabolic aspects. Understanding these relationships shows promise for effectively managing COVID-19 and its long-term repercussions, which is the focus of this review paper.
Collapse
Affiliation(s)
- Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Lejla Mahmutović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jasmin Šutković
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Chen Y, Zhang C, Feng Y. Medicinal plants for the management of post-COVID-19 fatigue: A literature review on the role and mechanisms. J Tradit Complement Med 2025; 15:15-23. [PMID: 39807273 PMCID: PMC11725095 DOI: 10.1016/j.jtcme.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 01/16/2025] Open
Abstract
Background COVID-19 infection has a lasting impact on human health, which is known as post-COVID-19 conditions. Fatigue is one of the most commonly reported post-COVID-19 conditions. Management of fatigue in the post-COVID-19 era is necessary and emerging. The use of medicinal plants may provide a strategy for the management of post-COVID-19 fatigue. Methods A literature search has been conducted by using PubMed, Embase and Cochrane library databases is performed for studies published up to March 2024. Keywords, such as "post-COVID-19 conditions, persistent COVID-19 symptoms, chronic COVID-19, long-term sequelae, fatigue, post-COVID-19 fatigue, herbal plants, medicinal herbs, traditional Chinese medicine, pharmacological mechanisms, pharmacological actions" are thoroughly searched in Englsih and Chinese. This study reviews the pathophysiology of post-COVID-19 fatigue and potential herbal plants for managing post-COVID-19 fatigue. Results and conclusion Representative medicinal plants that have been extensively investigated by previous studies are presented in the study. Three common mechanisms among the most extensively studied for post-COVID-19 fatigue, with each mechanism having medicinal plants as an example. The latest clinical studies concerning the management of post-COVID-19 fatigue using medicinal plants have also been summarized. The study shows the potential for improving post-COVID-19 fatigue by consuming medicinal plants.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
4
|
Majewska M, Maździarz M, Krawczyk K, Paukszto Ł, Makowczenko KG, Lepiarczyk E, Lipka A, Wiszpolska M, Górska A, Moczulska B, Kocbach P, Sawicki J, Gromadziński L. SARS-CoV-2 disrupts host gene networks: Unveiling key hub genes as potential therapeutic targets for COVID-19 management. Comput Biol Med 2024; 183:109343. [PMID: 39500239 DOI: 10.1016/j.compbiomed.2024.109343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/02/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE Although the end of COVID-19 as a public health emergency was declared on May 2023, still new cases of the infection are reported and the risk remains of new variants emerging that may cause new surges in cases and deaths. While clinical symptoms have been rapidly defined worldwide, the basic body responses and pathogenetic mechanisms acting in patients with SARS-CoV-2 infection over time until recovery or death require further investigation. The understanding of the molecular mechanisms underlying the development and course of the disease is essential in designing effective preventive and therapeutic approaches, and ultimately reducing mortality and disease spreading. METHODS The current investigation aimed to identify the key genes engaged in SARS-CoV-2 infection. To achieve this goal high-throughput RNA sequencing of peripheral blood samples collected from healthy donors and COVID-19 patients was performed. The resulting sequence data were processed using a wide range of bioinformatics tools to obtain detailed modifications within five transcriptomic phenomena: expression of genes and long non-coding RNAs, alternative splicing, allel-specific expression and circRNA production. The in silico procedure was completed with a functional analysis of the identified alterations. RESULTS The transcriptomic analysis revealed that SARS-CoV-2 has a significant impact on multiple genes encoding ribosomal proteins (RPs). Results show that these genes differ not only in terms of expression but also manifest biases in alternative splicing and ASE ratios. The integrated functional analysis exposed that RPs mostly affected pathways and processes related to infection-COVID-19 and NOD-like receptor signaling pathway, SARS-CoV-2-host interactions and response to the virus. Furthermore, our results linked the multiple intronic ASE variants and exonic circular RNA differentiations with SARS-CoV-2 infection, suggesting that these molecular events play a crucial role in mRNA maturation and transcription during COVID-19 disease. CONCLUSIONS By elucidating the genetic mechanisms induced by the virus, the current research provides significant information that can be employed to create new targeted therapeutic strategies for future research and treatment related to COVID-19. Moreover, the findings highlight potentially promising therapeutic biomarkers for early risk assessment of critically ill patients.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| | - Mateusz Maździarz
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Krawczyk
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol G Makowczenko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748, Olsztyn, Poland
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Aleksandra Lipka
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Anna Górska
- Diagnostyka Medical Laboratories, 10-082, Olsztyn, Poland
| | - Beata Moczulska
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Piotr Kocbach
- Department of Family Medicine and Infectious Diseases, School of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Jakub Sawicki
- Department of Botany and Evolutionary Ecology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| |
Collapse
|
5
|
Khalilisamani N, Li Z, Pettolino FA, Moncuquet P, Reverter A, MacMillan CP. Leveraging transcriptomics-based approaches to enhance genomic prediction: integrating SNPs and gene networks for cotton fibre quality improvement. FRONTIERS IN PLANT SCIENCE 2024; 15:1420837. [PMID: 39372856 PMCID: PMC11450228 DOI: 10.3389/fpls.2024.1420837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Cultivated cotton plants are the world's largest source of natural fibre, where yield and quality are key traits for this renewable and biodegradable commodity. The Gossypium hirsutum cotton genome contains ~80K protein-coding genes, making precision breeding of complex traits a challenge. This study tested approaches to improving the genomic prediction (GP) accuracy of valuable cotton fibre traits to help accelerate precision breeding. With a biology-informed basis, a novel approach was tested for improving GP for key cotton fibre traits with transcriptomics of key time points during fibre development, namely, fibre cells undergoing primary, transition, and secondary wall development. Three test approaches included weighting of SNPs in DE genes overall, in target DE gene lists informed by gene annotation, and in a novel approach of gene co-expression network (GCN) clusters created with partial correlation and information theory (PCIT) as the prior information in GP models. The GCN clusters were nucleated with known genes for fibre biomechanics, i.e., fasciclin-like arabinogalactan proteins, and cluster size effects were evaluated. The most promising improvements in GP accuracy were achieved by using GCN clusters for cotton fibre elongation by 4.6%, and strength by 4.7%, where cluster sizes of two and three neighbours proved most effective. Furthermore, the improvements in GP were due to only a small number of SNPs, in the order of 30 per trait using the GCN cluster approach. Non-trait-specific biological time points, and genes, were found to have neutral effects, or even reduced GP accuracy for certain traits. As the GCN clusters were generated based on known genes for fibre biomechanics, additional candidate genes were identified for fibre elongation and strength. These results demonstrate that GCN clusters make a specific and unique contribution in improving the GP of cotton fibre traits. The findings also indicate that there is room for incorporating biology-based GCNs into GP models of genomic selection pipelines for cotton breeding to help improve precision breeding of target traits. The PCIT-GCN cluster approach may also hold potential application in other crops and trees for enhancing breeding of complex traits.
Collapse
Affiliation(s)
- Nima Khalilisamani
- Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | - Zitong Li
- Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | | | - Philippe Moncuquet
- Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | - Antonio Reverter
- Livestock and Aquatic Genomics, Agriculture and Food, CSIRO, St Lucia, QLD, Australia
| | | |
Collapse
|
6
|
Hou Q, Jiang J, Na K, Zhang X, Liu D, Jing Q, Yan C, Han Y. Potential therapeutic targets for COVID-19 complicated with pulmonary hypertension: a bioinformatics and early validation study. Sci Rep 2024; 14:9294. [PMID: 38653779 DOI: 10.1038/s41598-024-60113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease (COVID-19) and pulmonary hypertension (PH) are closely correlated. However, the mechanism is still poorly understood. In this article, we analyzed the molecular action network driving the emergence of this event. Two datasets (GSE113439 and GSE147507) from the GEO database were used for the identification of differentially expressed genes (DEGs).Common DEGs were selected by VennDiagram and their enrichment in biological pathways was analyzed. Candidate gene biomarkers were selected using three different machine-learning algorithms (SVM-RFE, LASSO, RF).The diagnostic efficacy of these foundational genes was validated using independent datasets. Eventually, we validated molecular docking and medication prediction. We found 62 common DEGs, including several ones that could be enriched for Immune Response and Inflammation. Two DEGs (SELE and CCL20) could be identified by machine-learning algorithms. They performed well in diagnostic tests on independent datasets. In particular, we observed an upregulation of functions associated with the adaptive immune response, the leukocyte-lymphocyte-driven immunological response, and the proinflammatory response. Moreover, by ssGSEA, natural killer T cells, activated dendritic cells, activated CD4 T cells, neutrophils, and plasmacytoid dendritic cells were correlated with COVID-19 and PH, with SELE and CCL20 showing the strongest correlation with dendritic cells. Potential therapeutic compounds like FENRETI-NIDE, AFLATOXIN B1 and 1-nitropyrene were predicted. Further molecular docking and molecular dynamics simulations showed that 1-nitropyrene had the most stable binding with SELE and CCL20.The findings indicated that SELE and CCL20 were identified as novel diagnostic biomarkers for COVID-19 complicated with PH, and the target of these two key genes, FENRETI-NIDE and 1-nitropyrene, was predicted to be a potential therapeutic target, thus providing new insights into the prediction and treatment of COVID-19 complicated with PH in clinical practice.
Collapse
Affiliation(s)
- Qingbin Hou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jinping Jiang
- Department of Cardiology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Kun Na
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Quanmin Jing
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
7
|
Girma A. The Many Mutations of the COVID-19 Variant: Current Perspectives on EG.5/Eris. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231217805. [PMID: 38084254 PMCID: PMC10710748 DOI: 10.1177/11786302231217805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 02/05/2024]
Abstract
Viral diseases pose a significant threat to public health around the world. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) was originally identified in Wuhan, China, in 2019. Throughout the epidemic, SARS-CoV-2 has continually changed genetically, giving rise to variants that are distinct from the original virus. SARS-CoV-2 has a high-frequency mutation rate, resulting in more genetic diversity. EG.5/Eris is a subvariant and descendant of Omicron, which remains the world's most prevalent coronavirus strain of current concern. The percentage of EG.5 recorded has steadily increased across the board. Epidemiological week 29 (17-23 July 2023) saw a 17.4% global prevalence of EG.5. Mutations in the virus's genome can cause false-negative results in molecular detection and cause increased transmissibility, morbidity, and mortality due to a reduction in vaccine efficiency. Furthermore, these changes in S-protein structure alter the neutralising ability of neutralising antibodies (Nabs), resulting in a reduction in vaccine efficiency. Therefore, all countries should take efficient infection prevention and control measures as per the guidelines of the world, continental, and their country's health organisations, along with vaccine and treatment investigations.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| |
Collapse
|
8
|
Sathu S, Kumar R, Maley DK, Eppakayala S, Kashyap A, NynaSindhu A, Madhu Latha K, Lakkireddy M. Increased Frequency of Low Back Pain in Recent Times: Does the Answer Lie in COVID-19? Cureus 2023; 15:e50021. [PMID: 38186417 PMCID: PMC10767474 DOI: 10.7759/cureus.50021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 01/09/2024] Open
Abstract
Background The COVID-19 pandemic has impacted many people's activities of daily living and health. It has also created economic burdens and caused mental turmoil across the world. Musculoskeletal symptoms, especially low back pain, have been observed in subjects of post-COVID-19 infection and post-vaccination. Aim In this study, we aimed to investigate the relationship between low back pain and COVID-19 infection and vaccination, as well as associated factors and characteristics. Methods We conducted a questionnaire-based cross-sectional observational study at All India Institute of Medical Science (AIIMS) Bibinagar between September 2021 and March 2022. We collected data from individuals through physical and Google Forms (Google, Mountain View, California). Results We included a total of 535 individuals in the study: 274 (51.2%) were previously positive for COVID-19 infection (group A), and 261 (48.8%) were vaccinated against COVID-19 without a history of COVID-19 infection (group B). Each group was divided into two categories based on whether they had low back pain before COVID-19 infection or vaccination. In group A, 90.1% of individuals experienced an aggravation of low back pain after COVID-19 infection, which was found to be significant (p<0.001). In group B, there was an insignificant increase in low back pain following COVID-19 vaccination (p=0.275). The study also revealed a significant association between comorbidities and low back pain in both groups (p<0.001). Additionally, several differences were observed between the two groups, including duration (p<0.001), severity (p=0.012), and intensity (p<0.001) of low back pain, usage of a back support or brace (p=0.043), and intake of vitamin D (p=0.002). Conclusion Low back pain is an ignored feature of one of the musculoskeletal symptoms of COVID-19 and was aggravated by COVID-19 infection in our patients compared to those who received the vaccination. The findings of this study have implications for raising awareness, improving management and rehabilitation, and guiding future research in this area.
Collapse
Affiliation(s)
- Sreedhar Sathu
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Ravi Kumar
- Department of Orthopedics, All India Institute of Medical Sciences, Rajkot, Rajkot, IND
| | - Deepak K Maley
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Srikanth Eppakayala
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Adinarayana Kashyap
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Akula NynaSindhu
- Department of General Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Karra Madhu Latha
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Maheshwar Lakkireddy
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| |
Collapse
|
9
|
Garção DC, Correia AGDS, Ferreira FJS, Pereira PC, Fontes LRG, Ferreira LC. Prevalence and risk factors for seizures in adult COVID-19 patients: A meta-analysis. Epilepsy Behav 2023; 148:109501. [PMID: 39492176 DOI: 10.1016/j.yebeh.2023.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Seizures may be one of the neurological consequences of COVID-19. The present study aims to review the prevalence of seizures in COVID-19 patients considering sex and geographical origin. A review protocol was submitted to the PROSPERO database (CRD42021281467). PRISMA statement was used to report the meta-analysis. The authors selected studies for the meta-analysis by searching the principal databases. Studies were eligible if they reported seizures in COVID-19 patients, regardless of study design. Data were analyzed by proportion meta-analysis with a 95 % confidence interval (95 % CI). Cochran's Q and Higgins' I2 were used to measure heterogeneity. R software was used for meta-analysis. Subgroup analyses were carried out for sex, geographical origin of the subjects, and illness severity. A checklist for prevalence studies was used to assess the risk of bias in the included studies. A total of 32 studies (n = 251,997 analyzed patients) were included in this meta-analysis. A prevalence of 1.03 % (95 % CI 0.73 to 1.37, I2 = 93 %, p < 0.001) was found. No statistically significant differences were found in the analysis by geographical subgroups. Men were found to be less likely to had COVID-19 seizures (OR = 0.75, 95 % CI 0.21-2.74), while mildly ill patients were found to be more likely to had COVID-19-induced seizures (OR = 2.08, 95 % CI 0.86-5.06). Our results show a slight prevalence of seizures in COVID-19 patients. In addition, we found that the groups analyzed had differences in the odds of having COVID-19-induced seizures.
Collapse
Affiliation(s)
- Diogo Costa Garção
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Neurosciences Study Group, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Department of Medicine, Tiradentes University, Aracaju, Sergipe, Brazil.
| | - Alisson Guilherme da Silva Correia
- Neurosciences Study Group, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Department of Nursing, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| | | | | | | | | |
Collapse
|
10
|
Mozzi A, Oldani M, Forcella ME, Vantaggiato C, Cappelletti G, Pontremoli C, Valenti F, Forni D, Saresella M, Biasin M, Sironi M, Fusi P, Cagliani R. SARS-CoV-2 ORF3c impairs mitochondrial respiratory metabolism, oxidative stress, and autophagic flux. iScience 2023; 26:107118. [PMID: 37361873 PMCID: PMC10265927 DOI: 10.1016/j.isci.2023.107118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Coronaviruses encode a variable number of accessory proteins that are involved in host-virus interaction, suppression of immune responses, or immune evasion. SARS-CoV-2 encodes at least twelve accessory proteins, whose roles during infection have been studied. Nevertheless, the role of the ORF3c accessory protein, an alternative open reading frame of ORF3a, has remained elusive. Herein, we show that the ORF3c protein has a mitochondrial localization and alters mitochondrial metabolism, inducing a shift from glucose to fatty acids oxidation and enhanced oxidative phosphorylation. These effects result in increased ROS production and block of the autophagic flux. In particular, ORF3c affects lysosomal acidification, blocking the normal autophagic degradation process and leading to autolysosome accumulation. We also observed different effect on autophagy for SARS-CoV-2 and batCoV RaTG13 ORF3c proteins; the 36R and 40K sites are necessary and sufficient to determine these effects.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Monica Oldani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Matilde E. Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Chiara Vantaggiato
- Scientific Institute IRCCS E. MEDEA, Laboratory of Molecular Biology, 23842 Bosisio Parini, Italy
| | - Gioia Cappelletti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157 Milan, Italy
| | - Chiara Pontremoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Francesca Valenti
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Marina Saresella
- Don C. Gnocchi Foundation ONLUS, IRCCS, Laboratory of Molecular Medicine and Biotechnology, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, 20157 Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842 Bosisio Parini, Italy
| |
Collapse
|
11
|
Lomoio U, Puccio B, Tradigo G, Guzzi PH, Veltri P. SARS-CoV-2 protein structure and sequence mutations: Evolutionary analysis and effects on virus variants. PLoS One 2023; 18:e0283400. [PMID: 37471335 PMCID: PMC10358949 DOI: 10.1371/journal.pone.0283400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
The structure and sequence of proteins strongly influence their biological functions. New models and algorithms can help researchers in understanding how the evolution of sequences and structures is related to changes in functions. Recently, studies of SARS-CoV-2 Spike (S) protein structures have been performed to predict binding receptors and infection activity in COVID-19, hence the scientific interest in the effects of virus mutations due to sequence, structure and vaccination arises. However, there is the need for models and tools to study the links between the evolution of S protein sequence, structure and functions, and virus transmissibility and the effects of vaccination. As studies on S protein have been generated a large amount of relevant information, we propose in this work to use Protein Contact Networks (PCNs) to relate protein structures with biological properties by means of network topology properties. Topological properties are used to compare the structural changes with sequence changes. We find that both node centrality and community extraction analysis can be used to relate protein stability and functionality with sequence mutations. Starting from this we compare structural evolution to sequence changes and study mutations from a temporal perspective focusing on virus variants. Finally by applying our model to the Omicron variant we report a timeline correlation between Omicron and the vaccination campaign.
Collapse
Affiliation(s)
- Ugo Lomoio
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Barbara Puccio
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
| | | | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
12
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Sameni M, Mirmotalebisohi SA, Dehghan Z, Abooshahab R, Khazaei-Poul Y, Mozafar M, Zali H. Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study. 3 Biotech 2023; 13:117. [PMID: 37070032 PMCID: PMC10090260 DOI: 10.1007/s13205-023-03518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/28/2023] Open
Abstract
The world has recently been plagued by a new coronavirus infection called SARS-CoV-2. This virus may lead to severe acute respiratory syndrome followed by multiple organ failure. SARS-CoV-2 has approximately 80-90% genetic similarity to SARS-CoV. Given the limited omics data available for host response to the viruses (more limited data for SARS-CoV-2), we attempted to unveil the crucial molecular mechanisms underlying the SARS-CoV-2 pathogenesis by comparing its regulatory network motifs with SARS-CoV. We also attempted to identify the non-shared crucial molecules and their functions to predict the specific mechanisms for each infection and the processes responsible for their different manifestations. Deciphering the crucial shared and non-shared mechanisms at the molecular level and signaling pathways underlying both diseases may help shed light on their pathogenesis and pave the way for other new drug repurposing against COVID-19. We constructed the GRNs for host response to SARS-CoV and SARS-CoV-2 pathogens (in vitro) and identified the significant 3-node regulatory motifs by analyzing them topologically and functionally. We attempted to identify the shared and non-shared regulatory elements and signaling pathways between their host responses. Interestingly, our findings indicated that NFKB1, JUN, STAT1, FOS, KLF4, and EGR1 were the critical shared TFs between motif-related subnetworks in both SARS and COVID-1, which are considered genes with specific functions in the immune response. Enrichment analysis revealed that the NOD-like receptor signaling, TNF signaling, and influenza A pathway were among the first significant pathways shared between SARS and COVID-19 up-regulated DEGs networks, and the term "metabolic pathways" (hsa01100) among the down-regulated DEGs networks. WEE1, PMAIP1, and TSC22D2 were identified as the top three hubs specific to SARS. However, MYPN, SPRY4, and APOL6 were the tops specific to COVID-19 in vitro. The term "Complement and coagulation cascades" pathway was identified as the first top non-shared pathway for COVID-19 and the MAPK signaling pathway for SARS. We used the identified crucial DEGs to construct a drug-gene interaction network to propose some drug candidates. Zinc chloride, Fostamatinib, Copper, Tirofiban, Tretinoin, and Levocarnitine were the six drugs with higher scores in our drug-gene network analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03518-x.
Collapse
Affiliation(s)
- Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Yalda Khazaei-Poul
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mozafar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Liu Y. Integrative network pharmacology and in silico analyses identify the anti-omicron SARS-CoV-2 potential of eugenol. Heliyon 2023; 9:e13853. [PMID: 36845041 PMCID: PMC9937729 DOI: 10.1016/j.heliyon.2023.e13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Eugenol as a natural product is the source of isoniazid, and purified eugenol is extensively used in the cosmetics industry and the productive processes of edible spices. Accumulating evidence suggested that eugenol exerted potent anti-microorganism and anti-inflammation effects. Application of eugenol effectively reduced the risk of atherosclerosis, arterial embolism, and Type 2 diabetes. A previous study confirmed that treatment with eugenol attenuated lung inflammation and improved heart functions in SARS-CoV-2 spike S1-intoxicated mice. In addition to the study, based on a series of public datasets, computational analyses were conducted to characterize the acting targets of eugenol and the functional roles of these targets in COVID-19. The binding capacities of eugenol to conservative sites of SARS-CoV-2 like RNA-dependent RNA polymerase (RdRp) and mutable site as spike (S) protein, were calculated by using molecular docking following the molecular dynamics simulation with RMSD, RMSF, and MM-GBSA methods. The results of network pharmacology indicated that six targets, including PLAT, HMOX1, NUP88, CTSL, ITGB1 andTMPRSS2 were eugenol-SARS-CoV-2 interacting proteins. The omics results of in-silico study further implicated that eugenol increased the expression of SCARB1, HMOX1 and GDF15, especially HMOX1, which were confirmed the potential interacting targets between eugenol and SARS-CoV-2 antigens. Enrichment analyses indicated that eugenol exerted extensive biological effects such as regulating immune infiltration of macrophage, lipid localization, monooxyenase activity, iron ion binding and PPAR signaling. The results of the integrated analysis of eugenol targets and immunotranscription profile of COVID-19 cases shows that eugenol also plays an important role in strengthen of immunologic functions and regulating cytokine signaling. As a complement to the integrated analysis, the results of molecular docking indicated the potential binding interactions between eugenol and four proteins relating to cytokine production/release and the function of T type lymphocytes, including human TLR-4, TCR, NF-κB, JNK and AP-1. Furthermore, results of molecular docking and molecular dynamics (100ns) simulations implicated that stimulated modification of eugenol to the SARS-CoV-2 Omicron Spike-ACE2 complex, especially for human ACE2, and the molecular interaction of eugenol to SARS-CoV-2 RdRp, were no less favorable than two positive controls, molnupiravir and nilotinib. Dynamics (200ns) simulations indicated that the binding capacities and stabilities of eugenol to finger subdomain of RdRp is no less than molnupiravir. However, the simulated binding capacity of eugenol to SARS-CoV-2 wild type RBD and Omicron mutant RBD were less than nilotinib. Eugenol was predicted to have more favor LD50 value and lower cytotoxicity than two positive controls, and eugenol can pass through the blood-brain barrier (BBB). In a brief, eugenol is helpful for attenuating systemic inflammation induced by SARS-CoV-2 infection, due to the direct interaction of eugenol to SARS-CoV-2 proteins and extensive bio-manipulation of pro-inflammatory factors. This study carefully suggests eugenol is a candidate compound of developing drugs and supplement agents against SARS-CoV-2 and its Omicron variants.
Collapse
Affiliation(s)
- Yang Liu
- Graduated Student of Harbin Medical University, Cardiology. Baojian Road105, Nangang Distinct, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Merino VF, Yan Y, Ordonez AA, Bullen CK, Lee A, Saeki H, Ray K, Huang T, Jain SK, Pomper MG. Nucleolin mediates SARS-CoV-2 replication and viral-induced apoptosis of host cells. Antiviral Res 2023; 211:105550. [PMID: 36740097 PMCID: PMC9896859 DOI: 10.1016/j.antiviral.2023.105550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Host-oriented antiviral therapeutics are promising treatment options to combat COVID-19 and its emerging variants. However, relatively little is known about the cellular proteins hijacked by SARS-CoV-2 for its replication. Here we show that SARS-CoV-2 induces expression and cytoplasmic translocation of the nucleolar protein, nucleolin (NCL). NCL interacts with SARS-CoV-2 viral proteins and co-localizes with N-protein in the nucleolus and in stress granules. Knockdown of NCL decreases the stress granule component G3BP1, viral replication and improved survival of infected host cells. NCL mediates viral-induced apoptosis and stress response via p53. SARS-CoV-2 increases NCL expression and nucleolar size and number in lungs of infected hamsters. Inhibition of NCL with the aptamer AS-1411 decreases viral replication and apoptosis of infected cells. These results suggest nucleolin as a suitable target for anti-COVID therapies.
Collapse
Affiliation(s)
- Vanessa F Merino
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yu Yan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alvaro A Ordonez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - C Korin Bullen
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Albert Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harumi Saeki
- Department of Human Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Krishanu Ray
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanjay K Jain
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Guzzi PH, di Paola L, Puccio B, Lomoio U, Giuliani A, Veltri P. Computational analysis of the sequence-structure relation in SARS-CoV-2 spike protein using protein contact networks. Sci Rep 2023; 13:2837. [PMID: 36808182 PMCID: PMC9936485 DOI: 10.1038/s41598-023-30052-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The structure of proteins impacts directly on the function they perform. Mutations in the primary sequence can provoke structural changes with consequent modification of functional properties. SARS-CoV-2 proteins have been extensively studied during the pandemic. This wide dataset, related to sequence and structure, has enabled joint sequence-structure analysis. In this work, we focus on the SARS-CoV-2 S (Spike) protein and the relations between sequence mutations and structure variations, in order to shed light on the structural changes stemming from the position of mutated amino acid residues in three different SARS-CoV-2 strains. We propose the use of protein contact network (PCN) formalism to: (i) obtain a global metric space and compare various molecular entities, (ii) give a structural explanation of the observed phenotype, and (iii) provide context dependent descriptors of single mutations. PCNs have been used to compare sequence and structure of the Alpha, Delta, and Omicron SARS-CoV-2 variants, and we found that omicron has a unique mutational pattern leading to different structural consequences from mutations of other strains. The non-random distribution of changes in network centrality along the chain has allowed to shed light on the structural (and functional) consequences of mutations.
Collapse
Affiliation(s)
- Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Luisa di Paola
- grid.9657.d0000 0004 1757 5329Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, Universita Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Barbara Puccio
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Ugo Lomoio
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Giuliani
- grid.416651.10000 0000 9120 6856Environment and Health Department, Istituto Superiore di Sanita, Rome, Italy
| | - Pierangelo Veltri
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy ,grid.7778.f0000 0004 1937 0319Department of Computer, Modeling, Electronics and System Engineering, University of Calabria, Rende, Italy
| |
Collapse
|
17
|
Structural analysis of SARS-CoV-2 Spike protein variants through graph embedding. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2023; 12:3. [PMID: 36506261 PMCID: PMC9718452 DOI: 10.1007/s13721-022-00397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected almost all countries. The unprecedented spreading of this virus has led to the insurgence of many variants that impact protein sequence and structure that need continuous monitoring and analysis of the sequences to understand the genetic evolution and to prevent possible dangerous outcomes. Some variants causing the modification of the structure of the proteins, such as the Spike protein S, need to be monitored. Protein contact networks (PCNs) have been recently proposed as a modelling framework for protein structures. In such a framework, the protein structure is represented as an unweighted graph whose nodes are the central atoms of the backbones (C- α ), and edges connect two atoms falling in the spatial distance between 4 and 7 Å. PCN may also be a data-rich representation since we may add to each node/atom biological and topological information. Such formalism enables the possibility of using algorithms from graph theory to analyze the graph. In particular, we refer to graph embedding methods enabling the analysis of such graphs with deep learning methods. In this work, we explore the possibility of embedding PCN using Graph Neural Networks and then analyze in the embedded space each residue to distinguish mutated residues from non-mutated ones. In particular, we analyzed the structure of the Spike protein of the coronavirus. First, we obtained the PCNs of the Spike protein for the wild-type, α , β , and δ variants. Then we used the GraphSage embedding algorithm to obtain an unsupervised embedding. Then we analyzed the point of mutation in the embedded space. Results show the characteristics of the mutation point in the embedding space.
Collapse
|
18
|
Loduca Lima V, Soares LCM, Pereira LA, Nascimento PA, Cirillo LRN, Sakuma HT, da Veiga GL, Abucham-Neto JZ, Fonseca FLA. Ophthalmic Manifestations Among Patients Surviving COVID-19. Int J Gen Med 2023; 16:1747-1755. [PMID: 37193252 PMCID: PMC10182800 DOI: 10.2147/ijgm.s399806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 05/18/2023] Open
Abstract
Background and Aim To identify ocular findings related to SARS-CoV-2 infection in patients after the resolution of COVID-19 using complete ocular examinations and optical coherence tomography (OCT). Methods In this cross-sectional study, conducted from May 30 to October 30, 2020, patients who recovered from various stages COVID-19 underwent eye examination and multimodal retinal imaging (Retinographies and Spectral-OCT). Results We included 50 patients, 29 (58%) males, median age of 46.5 [standard deviation 15.8]. Of these, 42% (21) had mild, 18% (9) had severe and 40% (20) had critical disease. The median time interquartile range (IQR) between symptom onset and ocular examination was 55 days [IQR 39-71]. Seven patients (14%) reported ophthalmic symptoms, transitory low visual acuity (6%) and retroocular pain (8%). On OCT, one patient without comorbidities had sectoral retinal pallor suggestive of acute retinal ischaemia and oedema of the retina's inner layers and atrophy. All findings progressively and spontaneously improved months after resolution of COVID-19. Conclusion Patients with COVID-19 present findings compatible with the general population depending on age and comorbidities; nevertheless, acute retinal findings associated with the disease may be present, such as caused either by the direct effects of retinal SARS-CoV-2 infection, by indirect effects of the cytokine storm or by the pro-thrombotic state associated with COVID-19. Therefore, retinal involvement in patients with COVID-19 remains subject to considerable discussion and study.
Collapse
Affiliation(s)
- Vagner Loduca Lima
- Departamento de Oftalmologia, Faculdade de Medicina do ABC, Santo André, Brazil
| | | | | | | | | | | | - Glaucia Luciano da Veiga
- Departamento de Oftalmologia, Faculdade de Medicina do ABC, Santo André, Brazil
- Laboratório de Análises Clínicas, Faculdade de Medicina do ABC, Santo André, Brasil
- Correspondence: Glaucia Luciano da Veiga, Departamento de Oftalmologia, Faculdade de Medicina ABC, 2000 Lauro Gomes Avenue, Santo André, SP, 09069-870, Brazil, Tel +55 11 4993-5488, Email
| | | | - Fernando Luiz Affonso Fonseca
- Departamento de Oftalmologia, Faculdade de Medicina do ABC, Santo André, Brazil
- Laboratório de Análises Clínicas, Faculdade de Medicina do ABC, Santo André, Brasil
- Departamento de Ciências Farmacêuticas da Universidade Federal de São Paulo/UNIFESP, Diadema, Brasil
| |
Collapse
|
19
|
Abulsoud AI, El-Husseiny HM, El-Husseiny AA, El-Mahdy HA, Ismail A, Elkhawaga SY, Khidr EG, Fathi D, Mady EA, Najda A, Algahtani M, Theyab A, Alsharif KF, Albrakati A, Bayram R, Abdel-Daim MM, Doghish AS. Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions. Biomed Pharmacother 2023; 157:113977. [PMID: 36370519 PMCID: PMC9637516 DOI: 10.1016/j.biopha.2022.113977] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
COVID-19 is a worldwide pandemic caused by SARS-coronavirus-2 (SARS-CoV-2). Less than a year after the emergence of the Covid-19 pandemic, many vaccines have arrived on the market with innovative technologies in the field of vaccinology. Based on the use of messenger RNA (mRNA) encoding the Spike SARS-Cov-2 protein or on the use of recombinant adenovirus vectors enabling the gene encoding the Spike protein to be introduced into our cells, these strategies make it possible to envisage the vaccination in a new light with tools that are more scalable than the vaccine strategies used so far. Faced with the appearance of new variants, which will gradually take precedence over the strain at the origin of the pandemic, these new strategies will allow a much faster update of vaccines to fight against these new variants, some of which may escape neutralization by vaccine antibodies. However, only a vaccination policy based on rapid and massive vaccination of the population but requiring a supply of sufficient doses could make it possible to combat the emergence of these variants. Indeed, the greater the number of infected individuals, the faster the virus multiplies, with an increased risk of the emergence of variants in these RNA viruses. This review will discuss SARS-CoV-2 pathophysiology and evolution approaches in altered transmission platforms and emphasize the different mutations and how they influence the virus characteristics. Also, this article summarizes the common vaccines and the implication of the mutations and genetic variety of SARS-CoV-2 on the COVID-19 biomedical arbitrations.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants University of Life Sciences, Lublin 50A Doświadczalna Street, 20-280, Lublin, Poland.
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory sciences, College of Applied medical sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Roula Bayram
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
20
|
Reece MD, Song C, Hancock SC, Pereira Ribeiro S, Kulpa DA, Gavegnano C. Repurposing BCL-2 and Jak 1/2 inhibitors: Cure and treatment of HIV-1 and other viral infections. Front Immunol 2022; 13:1033672. [PMID: 36569952 PMCID: PMC9782439 DOI: 10.3389/fimmu.2022.1033672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
B cell lymphoma 2 (BCL-2) family proteins are involved in the mitochondrial apoptotic pathway and are key modulators of cellular lifespan, which is dysregulated during human immunodeficiency virus type 1 (HIV-1) and other viral infections, thereby increasing the lifespan of cells harboring virus, including the latent HIV-1 reservoir. Long-lived cells harboring integrated HIV-1 DNA is a major barrier to eradication. Strategies reducing the lifespan of reservoir cells could significantly impact the field of cure research, while also providing insight into immunomodulatory strategies that can crosstalk to other viral infections. Venetoclax is a first-in-class orally bioavailable BCL-2 homology 3 (BH3) mimetic that recently received Food and Drug Administration (FDA) approval for treatment in myeloid and lymphocytic leukemia. Venetoclax has been recently investigated in HIV-1 and demonstrated anti-HIV-1 effects including a reduction in reservoir size. Another immunomodulatory strategy towards reduction in the lifespan of the reservoir is Jak 1/2 inhibition. The Jak STAT pathway has been implicated in BCL-2 and interleukin 10 (IL-10) expression, leading to a downstream effect of cellular senescence. Ruxolitinib and baricitinib are FDA-approved, orally bioavailable Jak 1/2 inhibitors that have been shown to indirectly decay the HIV-1 latent reservoir, and down-regulate markers of HIV-1 persistence, immune dysregulation and reservoir lifespan in vitro and ex vivo. Ruxolitinib recently demonstrated a significant decrease in BCL-2 expression in a human study of virally suppressed people living with HIV (PWH), and baricitinib recently received emergency use approval for the indication of coronavirus disease 2019 (COVID-19), underscoring their safety and efficacy in the viral infection setting. BCL-2 and Jak 1/2 inhibitors could be repurposed as immunomodulators for not only HIV-1 and COVID-19, but other viruses that upregulate BCL-2 anti-apoptotic proteins. This review examines potential routes for BCL-2 and Jak 1/2 inhibitors as immunomodulators for treatment and cure of HIV-1 and other viral infections.
Collapse
Affiliation(s)
- Monica D. Reece
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Colin Song
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Sarah C. Hancock
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Susan Pereira Ribeiro
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Deanna A. Kulpa
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Christina Gavegnano
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, College of Arts and Sciences, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Díaz-Resendiz KJG, Toledo-Ibarra GA, Ruiz-Manzano R, Giron Perez DA, Covantes-Rosales CE, Benitez-Trinidad AB, Ramirez-Ibarra KM, Hermosillo Escobedo AT, González-Navarro I, Ventura-Ramón GH, Romero Castro A, Alam Escamilla D, Bueno-Duran AY, Girón-Pérez MI. Ex vivo treatment with fucoidan of mononuclear cells from SARS-CoV-2 infected patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2634-2652. [PMID: 34689674 DOI: 10.1080/09603123.2021.1982875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
COVID-19 is a worldwide health emergency, therapy for this disease is based on antiviral drugs and immunomodulators, however, there is no treatment to effectively reduce the COVID-19 mortality rate. Fucoidan is a polysaccharide obtained from marine brown algae, with anti-inflammatory, antiviral, and immune-enhancing properties, thus, fucoidan may be used as an alternative treatment (complementary to prescribed medical therapy) for the recovery of COVID-19. This work aimed to determine the effects of ex-vivo treatment with fucoidan on cytotoxicity, apoptosis, necrosis, and senescence, besides functional parameters of calcium flux and mitochondrial membrane potential (ΔΨm) on human peripheral blood mononuclear cells isolated from SARS-CoV-2 infected, recovered and healthy subjects. Data suggest that fucoidan does not exert cytotoxicity or senescence, however, it induces the increment of intracellular calcium flux. Additionally, fucoidan promotes recovery of ΔΨm in PBMCs from COVID-19 recovered females. Data suggest that fucoidan could ameliorate the immune response in COVID-19 patients.
Collapse
Affiliation(s)
- K J G Díaz-Resendiz
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - G A Toledo-Ibarra
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - R Ruiz-Manzano
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - D A Giron Perez
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - C E Covantes-Rosales
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A B Benitez-Trinidad
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - K M Ramirez-Ibarra
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A T Hermosillo Escobedo
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - I González-Navarro
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - G H Ventura-Ramón
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - A Romero Castro
- Universidad De Quintana Roo, División De Ciencias De La Salud, Chetumal, Quintana Roo, México
| | - D Alam Escamilla
- Universidad De Quintana Roo, División De Ciencias De La Salud, Chetumal, Quintana Roo, México
| | - A Y Bueno-Duran
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| | - Manuel Iván Girón-Pérez
- Universidad Autónoma De Nayarit, Laboratorio Nacional De Investigación Para La Inocuidad Alimentaria (Laniia)-unidad Nayarit, Calle Tres S/n. Colonia. Cd. Industrial. Tepic, Nayarit, México
| |
Collapse
|
22
|
Wu C, Wu Z, Chen Y, Huang X, Tian B. Potential core genes associated with COVID-19 identified via weighted gene co-expression network analysis. Swiss Med Wkly 2022; 152:40033. [PMID: 36509426 DOI: 10.57187/smw.2022.40033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIMS Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus belonging to the Coronaviridae family that causes coronavirus disease (COVID-19). This disease rapidly reached pandemic status, presenting a serious threat to global health. However, the detailed molecular mechanism contributing to COVID-19 has not yet been elucidated. METHODS The expression profiles, including the mRNA levels, of samples from patients infected with SARS-CoV-2 along with clinical data were obtained from the GSE152075 dataset in the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules, which were then implemented to evaluate the relationships between fundamental modules and clinical traits. The differentially expressed genes (DEGs), gene ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were evaluated using R software packages. RESULTS A total of 377 SARS-CoV-2-infected samples and 54 normal samples with available clinical and genetic data were obtained from the GEO database. There were 1444 DEGs identified between the sample types, which were used to screen out 11 co-expression modules in the WGCNA. Six co-expression modules were significantly associated with three clinical traits (SARS-CoV-2 positivity, age, and sex). Among the DEGs in two modules significantly correlated with SARS-CoV-2 positivity, enrichment was observed in the biological process of viral infection strategies (viral translation) in the GO analysis. The KEGG signalling pathway analysis demonstrated that the DEGs in the two modules were commonly enriched in oxidative phosphorylation, ribosome, and thermogenesis pathways. Moreover, a five-core gene set (RPL35A, RPL7A, RPS15, RPS20, and RPL17) with top connectivity with other genes was identified in the SARS-CoV-2 infection modules, suggesting that these genes may be indispensable in viral transcription after infection. CONCLUSION The identified core genes and signalling pathways associated with SARS-CoV-2 infection can significantly supplement the current understanding of COVID-19. The five core genes encoding ribosomal proteins may be indispensable in viral protein biosynthesis after SARS-CoV-2 infection and serve as therapeutic targets for COVID-19 treatment. These findings can be used as a basis for creating a hypothetical model for future experimental studies regarding associations of SARS-CoV-2 infection with ribosomal protein function.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zuowei Wu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Chen
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xing Huang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bole Tian
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
23
|
Jamal QMS. Antiviral Potential of Plants against COVID-19 during Outbreaks-An Update. Int J Mol Sci 2022; 23:13564. [PMID: 36362351 PMCID: PMC9655040 DOI: 10.3390/ijms232113564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 12/01/2023] Open
Abstract
Several human diseases are caused by viruses, including cancer, Type I diabetes, Alzheimer's disease, and hepatocellular carcinoma. In the past, people have suffered greatly from viral diseases such as polio, mumps, measles, dengue fever, SARS, MERS, AIDS, chikungunya fever, encephalitis, and influenza. Recently, COVID-19 has become a pandemic in most parts of the world. Although vaccines are available to fight the infection, their safety and clinical trial data are still questionable. Social distancing, isolation, the use of sanitizer, and personal productive strategies have been implemented to prevent the spread of the virus. Moreover, the search for a potential therapeutic molecule is ongoing. Based on experiences with outbreaks of SARS and MERS, many research studies reveal the potential of medicinal herbs/plants or chemical compounds extracted from them to counteract the effects of these viral diseases. COVID-19's current status includes a decrease in infection rates as a result of large-scale vaccination program implementation by several countries. But it is still very close and needs to boost people's natural immunity in a cost-effective way through phytomedicines because many underdeveloped countries do not have their own vaccination facilities. In this article, phytomedicines as plant parts or plant-derived metabolites that can affect the entry of a virus or its infectiousness inside hosts are described. Finally, it is concluded that the therapeutic potential of medicinal plants must be analyzed and evaluated entirely in the control of COVID-19 in cases of uncontrollable SARS infection.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| |
Collapse
|
24
|
Zhu JY, Wang G, Huang X, Lee H, Lee JG, Yang P, van de Leemput J, Huang W, Kane MA, Yang P, Han Z. SARS-CoV-2 Nsp6 damages Drosophila heart and mouse cardiomyocytes through MGA/MAX complex-mediated increased glycolysis. Commun Biol 2022; 5:1039. [PMID: 36180527 PMCID: PMC9523645 DOI: 10.1038/s42003-022-03986-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
SARS-CoV-2 infection causes COVID-19, a severe acute respiratory disease associated with cardiovascular complications including long-term outcomes. The presence of virus in cardiac tissue of patients with COVID-19 suggests this is a direct, rather than secondary, effect of infection. Here, by expressing individual SARS-CoV-2 proteins in the Drosophila heart, we demonstrate interaction of virus Nsp6 with host proteins of the MGA/MAX complex (MGA, PCGF6 and TFDP1). Complementing transcriptomic data from the fly heart reveal that this interaction blocks the antagonistic MGA/MAX complex, which shifts the balance towards MYC/MAX and activates glycolysis-with similar findings in mouse cardiomyocytes. Further, the Nsp6-induced glycolysis disrupts cardiac mitochondrial function, known to increase reactive oxygen species (ROS) in heart failure; this could explain COVID-19-associated cardiac pathology. Inhibiting the glycolysis pathway by 2-deoxy-D-glucose (2DG) treatment attenuates the Nsp6-induced cardiac phenotype in flies and mice. These findings point to glycolysis as a potential pharmacological target for treating COVID-19-associated heart failure.
Collapse
Affiliation(s)
- Jun-Yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Guanglei Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaohu Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Hangnoh Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Jin-Gu Lee
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
- University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
25
|
Alexander AJ, Joshi A, Mehendale A. The Musculoskeletal Manifestations of COVID-19: A Narrative Review Article. Cureus 2022; 14:e29076. [PMID: 36249619 PMCID: PMC9557238 DOI: 10.7759/cureus.29076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic has caused a devastating impact across the planet. Millions of lives lost and economic structures are struggling to remain afloat. Clinical effects of SARS CoV-2 virus include tiredness, fatigue, headache, cough, loss of appetite, fever, loss of sensations of taste, and smell as well as other respiratory difficulties. Pulmonary complications of coronavirus infections result in severe pneumonia with the final sequelae being sepsis, and end-stage respiratory failure. Further cardiovascular, neurological, hematological, and gastrointestinal complications build up to cause the demise of the immune system ultimately leading to death of the affected individual. The attack of the virus and the resultant reaction of the epithelial cells lining the respiratory tract have been in the limelight of most studies pertaining to the pandemic. However, a lesser number of studies have detailed the muscular and osseous pathologies that appear post-coronavirus infection. Inflammation post-infection, across the organ systems, may appear as a link to bone and joint pathology. Myalgia is a typical COVID-19 infection symptom. On the contrary, other musculoskeletal signs have very seldom been reported. Multimodality imaging techniques stand a chance at showing the diagnosis and the degree of follow-up after evaluation. Apart from myalgia, there are cases of arthralgia, myopathies, and neuropathies. According to numerous reports, there is the possibility of a link between the current drug regimen used to treat the SARS-CoV-2 infection and the musculoskeletal manifestations observed. In this study, we aim to shed light on the coronavirus pandemic and its association to various musculoskeletal manifestations, provide a different perspective of the infected patients, and address the major points that a clinician must take care while administering care to the patient. We will also address the present treatment in line with the various musculoskeletal symptoms observed.
Collapse
|
26
|
The Effects of COVID-19 on Skeletal Muscles, Muscle Fatigue and Rehabilitation Programs Outcomes. Medicina (B Aires) 2022; 58:medicina58091199. [PMID: 36143878 PMCID: PMC9500689 DOI: 10.3390/medicina58091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives: Consequences due to infection with SARS-CoV-2 virus can have a direct impact on skeletal muscle, due to the fact that both cardiac and skeletal muscle tissue show robust ACE2(angiotensin-converting enzyme 2) expression, suggesting a potential susceptibility to SARS-CoV-2 infection in both types of tissues. From the articles analyzed we concluded that the musculoskeletal damage is firstly produced by the inflammatory effects, cytokine storm and muscle catabolism. However, myopathy, polyneuropathy and therapies such as corticoids were also considered important factors in muscle fatigue and functional incapacity. Pulmonary rehabilitation programs and early mobilization had a highly contribution during the acute phase and post-illness recovery process and helped patients to reduce dyspnea, increase the capacity of physical effort, overcome psychological disorders and improved the quality of their life. Materials and Methods: We have included in this review 33 articles that contain data on muscle damage following SARS-CoV-2 infection. We used the following keywords to search for articles: SARS-CoV-2, COVID-19, muscle weakness, muscle disease, muscle fatigue, neurological disorders. As a search strategy we used PubMed, Cochrane Database of Systematic Reviews; Database of Abstracts of Reviews of Effects and Health Technology Assessment Database to collect the information. We also have chosen the most recent articles published in the last 5 years. Conclusions: Muscular damage, as well as the decrease in the quality of life, are often a consequence of severe SARS-CoV-2 infection through: systemic inflammation, corticotherapy, prolonged bed rest and other unknown factors. Pulmonary rehabilitation programs and early mobilization had a highly contribution during the acute phase and post-illness recovery process and helped patients to reduce dyspnea, increase the capacity of physical effort, overcome psychological disorders and improve the quality of their life.
Collapse
|
27
|
Ortuso F, Mercatelli D, Guzzi PH, Giorgi FM. Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J Biomol Struct Dyn 2022; 40:6545-6555. [PMID: 33583326 PMCID: PMC7885719 DOI: 10.1080/07391102.2021.1886175] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 entry in human cells is mediated by the interaction between the viral Spike protein and the human ACE2 receptor. This mechanism evolved from the ancestor bat coronavirus and is currently one of the main targets for antiviral strategies. However, there currently exist several Spike protein variants in the SARS-CoV-2 population as the result of mutations, and it is unclear if these variants may exert a specific effect on the affinity with ACE2 which, in turn, is also characterized by multiple alleles in the human population. In the current study, the GBPM analysis, originally developed for highlighting host-guest interaction features, has been applied to define the key amino acids responsible for the Spike/ACE2 molecular recognition, using four different crystallographic structures. Then, we intersected these structural results with the current mutational status, based on more than 295,000 sequenced cases, in the SARS-CoV-2 population. We identified several Spike mutations interacting with ACE2 and mutated in at least 20 distinct patients: S477N, N439K, N501Y, Y453F, E484K, K417N, S477I and G476S. Among these, mutation N501Y in particular is one of the events characterizing SARS-CoV-2 lineage B.1.1.7, which has recently risen in frequency in Europe. We also identified five ACE2 rare variants that may affect interaction with Spike and susceptibility to infection: S19P, E37K, M82I, E329G and G352V.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Francesco Ortuso
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Net4Science srl, c/o University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Daniele Mercatelli
- Department of Surgical and Medical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | | |
Collapse
|
28
|
Navish AA, Uthayakumar R. An exploration on the topologies of SARS-CoV-2/human protein-protein interaction network. J Biomol Struct Dyn 2022:1-13. [PMID: 35947116 DOI: 10.1080/07391102.2022.2108496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Network biology is an important finding that uncovers the significant elements in viral infection control. Since viruses use the proteins on their surfaces to attach and enter into the host cell, the establishment of virus-host protein interactions is a potent regulator of the global organization of the viral life cycle after virus entry into host cells. In this instance, a topological study on the SARS-CoV-2/Human Protein-Protein Interaction Network (PPIN) evacuates much information about the protein-protein interactions. By making some interruptions to the interaction between proteins and hosts, we can quickly reduce the spread of the disease and get an insight into the target protein for drug development. This paper mainly focused on the graphical and structural complexity of the SARS-CoV-2/Human PPIN. For this purpose, the various primary (distance, radius, diameter, etc…) and advanced levels of graph measures (density, modularity, clustering coefficient, etc…) as well as a few fractal (box dimension, multifractal analysis) and entropy measures have been used. In addition, several graph descriptions and distribution graphs of PPIN offered to gain a thorough understanding of the SARS-CoV-2/Human PPIN. Conclusively, based on our work, we have discovered that PPIN is moderately complex and identified that hiring Nsp8 as a target node will positively affect the PPIN and has pointed out that mathematically found target proteins are matched with already suggested target proteins in the previous survey.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A A Navish
- Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Dindigul, TamilNadu, India
| | - R Uthayakumar
- Department of Mathematics, The Gandhigram Rural Institute - Deemed to be University, Dindigul, TamilNadu, India
| |
Collapse
|
29
|
Babu G, Nobel FA. Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease. INFORMATICS IN MEDICINE UNLOCKED 2022; 32:101038. [PMID: 35966126 PMCID: PMC9357445 DOI: 10.1016/j.imu.2022.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
The SARS-CoV-2 virus causes Coronavirus disease, an infectious disease. The majority of people who are infected with this virus will have mild to moderate respiratory symptoms. Multiple studies have proved that there is a substantial pathophysiological link between COVID-19 disease and patients having comorbidities such as cystic fibrosis and chronic kidney disease. In this study, we attempted to identify differentially expressed genes as well as genes that intersected among them in order to comprehend their compatibility. Gene expression profiling indicated that 849 genes were mutually exclusive and functional analysis was done within the context of gene ontology and key pathways involvement. Three genes (PRPF31, FOXN2, and RIOK3) were commonly upregulated in the analysed datasets of three disease categories. These genes could be potential biomarkers for patients with COVID-19 and cystic fibrosis, and COVID-19 and chronic kidney disease. Further extensive analyses have been performed to describe how these genes are regulated by various transcription factors and microRNAs. Then, our analyses revealed six hub genes (PRPF31, FOXN2, RIOK3, UBC, HNF4A, and ELAVL). As they were involved in the interaction between COVID-19 and the patient with CF and CKD, they could help researchers identify potential therapeutic molecules. Some drugs have been predicted based on the upregulated genes, which may have a significant impact on reducing the burden of these diseases in the future.
Collapse
Affiliation(s)
- Golap Babu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Fahim Alam Nobel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
30
|
Exploring the Binding Interaction of Active Compound of Pineapple against Foodborne Bacteria and Novel Coronavirus (SARS-CoV-2) Based on Molecular Docking and Simulation Studies. Nutrients 2022; 14:nu14153045. [PMID: 35893899 PMCID: PMC9332411 DOI: 10.3390/nu14153045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/30/2022] Open
Abstract
Natural resources, particularly plants and microbes, are an excellent source of bioactive molecules. Bromelain, a complex enzyme mixture found in pineapples, has numerous pharmacological applications. In a search for therapeutic molecules, we conducted an in silico study on natural phyto-constituent bromelain, targeting pathogenic bacteria and viral proteases. Docking studies revealed that bromelain strongly bound to food-borne bacterial pathogens and SARS-CoV-2 virus targets, with a high binding energy of −9.37 kcal/mol. The binding interaction was mediated by the involvement of hydrogen bonds, and some hydrophobic interactions stabilized the complex and molecular dynamics. Simulation studies also indicated the stable binding between bromelain and SARS-CoV-2 protease as well as with bacterial targets which are essential for DNA and protein synthesis and are required to maintain the integrity of membranous proteins. From this in silico study, it is also concluded that bromelain could be an effective molecule to control foodborne pathogen toxicity and COVID-19. So, eating pineapple during an infection could help to interfere with the pathogen attaching and help prevent the virus from getting into the host cell. Further, research on the bromelain molecule could be helpful for the management of COVID-19 disease as well as other bacterial-mediated diseases. Thus, the antibacterial and anti-SARS-CoV-2 virus inhibitory potentials of bromelain could be helpful in the management of viral infections and subsequent bacterial infections in COVID-19 patients.
Collapse
|
31
|
Habeichi NJ, Tannous C, Yabluchanskiy A, Altara R, Mericskay M, Booz GW, Zouein FA. Insights into the modulation of the interferon response and NAD + in the context of COVID-19. Int Rev Immunol 2022; 41:464-474. [PMID: 34378474 DOI: 10.1080/08830185.2021.1961768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in dramatic worldwide mortality. Along with developing vaccines, the medical profession is exploring new strategies to curb this pandemic. A better understanding of the molecular consequences of SARS-CoV-2 cellular infection could lead to more effective and safer treatments. This review discusses the potential underlying impact of SARS-CoV-2 in modulating interferon (IFN) secretion and in causing mitochondrial NAD+ depletion that could be directly linked to COVID-19's deadly manifestations. What is known or surmised about an imbalanced innate immune response and mitochondrial dysfunction post-SARS-CoV-2 infection, and the potential benefits of well-timed IFN treatments and NAD+ boosting therapies in the context of the COVID-19 pandemic are discussed.
Collapse
Affiliation(s)
- Nada J Habeichi
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.,Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Cynthia Tannous
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mathias Mericskay
- Department of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| |
Collapse
|
32
|
Eskandarzade N, Ghorbani A, Samarfard S, Diaz J, Guzzi PH, Fariborzi N, Tahmasebi A, Izadpanah K. Network for network concept offers new insights into host- SARS-CoV-2 protein interactions and potential novel targets for developing antiviral drugs. Comput Biol Med 2022; 146:105575. [PMID: 35533462 PMCID: PMC9055686 DOI: 10.1016/j.compbiomed.2022.105575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2, the causal agent of COVID-19, is primarily a pulmonary virus that can directly or indirectly infect several organs. Despite many studies carried out during the current COVID-19 pandemic, some pathological features of SARS-CoV-2 have remained unclear. It has been recently attempted to address the current knowledge gaps on the viral pathogenicity and pathological mechanisms via cellular-level tropism of SARS-CoV-2 using human proteomics, visualization of virus-host protein-protein interactions (PPIs), and enrichment analysis of experimental results. The synergistic use of models and methods that rely on graph theory has enabled the visualization and analysis of the molecular context of virus/host PPIs. We review current knowledge on the SARS-COV-2/host interactome cascade involved in the viral pathogenicity through the graph theory concept and highlight the hub proteins in the intra-viral network that create a subnet with a small number of host central proteins, leading to cell disintegration and infectivity. Then we discuss the putative principle of the "gene-for-gene and "network for network" concepts as platforms for future directions toward designing efficient anti-viral therapies.
Collapse
Affiliation(s)
- Neda Eskandarzade
- Department of Basic Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran,Corresponding author
| | - Samira Samarfard
- Berrimah Veterinary Laboratory, Department of Primary Industry and Resources, Berrimah, NT, 0828, Australia
| | - Jose Diaz
- Laboratorio de Dinámica de Redes Genéticas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Pietro H. Guzzi
- Department of Medical and Surgical Sciences, Laboratory of Bioinformatics Unit, Italy
| | - Niloofar Fariborzi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
33
|
Hiram Guzzi P, Petrizzelli F, Mazza T. Disease spreading modeling and analysis: a survey. Brief Bioinform 2022; 23:6606045. [PMID: 35692095 DOI: 10.1093/bib/bbac230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION The control of the diffusion of diseases is a critical subject of a broad research area, which involves both clinical and political aspects. It makes wide use of computational tools, such as ordinary differential equations, stochastic simulation frameworks and graph theory, and interaction data, from molecular to social granularity levels, to model the ways diseases arise and spread. The coronavirus disease 2019 (COVID-19) is a perfect testbench example to show how these models may help avoid severe lockdown by suggesting, for instance, the best strategies of vaccine prioritization. RESULTS Here, we focus on and discuss some graph-based epidemiological models and show how their use may significantly improve the disease spreading control. We offer some examples related to the recent COVID-19 pandemic and discuss how to generalize them to other diseases.
Collapse
Affiliation(s)
- Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University, Catanzaro, 88110, Italy
| | - Francesco Petrizzelli
- Bioinformatics unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy
| | - Tommaso Mazza
- Bioinformatics unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy
| |
Collapse
|
34
|
The impact of the suppression of highly connected protein interactions on the corona virus infection. Sci Rep 2022; 12:9188. [PMID: 35654986 PMCID: PMC9160517 DOI: 10.1038/s41598-022-13373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Several highly effective Covid-19 vaccines are in emergency use, although more-infectious coronavirus strains, could delay the end of the pandemic even further. Because of this, it is highly desirable to develop fast antiviral drug treatments to accelerate the lasting immunity against the virus. From a theoretical perspective, computational approaches are useful tools for antiviral drug development based on the data analysis of gene expression, chemical structure, molecular pathway, and protein interaction mapping. This work studies the structural stability of virus–host interactome networks based on the graphical representation of virus–host protein interactions as vertices or nodes connected by commonly shared proteins. These graphical network visualization methods are analogous to those use in the design of artificial neural networks in neuromorphic computing. In standard protein-node-based network representation, virus–host interaction merges with virus–protein and host–protein networks, introducing redundant links associated with the internal virus and host networks. On the contrary, our approach provides a direct geometrical representation of viral infection structure and allows the effective and fast detection of the structural robustness of the virus–host network through proteins removal. This method was validated by applying it to H1N1 and HIV viruses, in which we were able to pinpoint the changes in the Interactome Network produced by known vaccines. The application of this method to the SARS-CoV-2 virus–host protein interactome implies that nonstructural proteins nsp4, nsp12, nsp16, the nuclear pore membrane glycoprotein NUP210, and ubiquitin specific peptidase USP54 play a crucial role in the viral infection, and their removal may provide an efficient therapy. This method may be extended to any new mutations or other viruses for which the Interactome Network is experimentally determined. Since time is of the essence, because of the impact of more-infectious strains on controlling the spread of the virus, this method may be a useful tool for novel antiviral therapies.
Collapse
|
35
|
Aviña-Padilla K, Zambada-Moreno O, Herrera-Oropeza GE, Jimenez-Limas MA, Abrahamian P, Hammond RW, Hernández-Rosales M. Insights into the Transcriptional Reprogramming in Tomato Response to PSTVd Variants Using Network Approaches. Int J Mol Sci 2022; 23:5983. [PMID: 35682662 PMCID: PMC9181013 DOI: 10.3390/ijms23115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/25/2023] Open
Abstract
Viroids are the smallest pathogens of angiosperms, consisting of non-coding RNAs that cause severe diseases in agronomic crops. Symptoms associated with viroid infection are linked to developmental alterations due to genetic regulation. To understand the global mechanisms of host viroid response, we implemented network approaches to identify master transcription regulators and their differentially expressed targets in tomato infected with mild and severe variants of PSTVd. Our approach integrates root and leaf transcriptomic data, gene regulatory network analysis, and identification of affected biological processes. Our results reveal that specific bHLH, MYB, and ERF transcription factors regulate genes involved in molecular mechanisms underlying critical signaling pathways. Functional enrichment of regulons shows that bHLH-MTRs are linked to metabolism and plant defense, while MYB-MTRs are involved in signaling and hormone-related processes. Strikingly, a member of the bHLH-TF family has a specific potential role as a microprotein involved in the post-translational regulation of hormone signaling events. We found that ERF-MTRs are characteristic of severe symptoms, while ZNF-TF, tf3a-TF, BZIP-TFs, and NAC-TF act as unique MTRs. Altogether, our results lay a foundation for further research on the PSTVd and host genome interaction, providing evidence for identifying potential key genes that influence symptom development in tomato plants.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Centro de Investigación y de Estudios Avanzados del I.P.N Unidad Irapuato, Irapuato 36821, Mexico;
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Octavio Zambada-Moreno
- Centro de Investigación y de Estudios Avanzados del I.P.N Unidad Irapuato, Irapuato 36821, Mexico;
| | - Gabriel Emilio Herrera-Oropeza
- Center for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London WC2R 2LS, UK;
| | - Marco A. Jimenez-Limas
- Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Peter Abrahamian
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA;
| | - Rosemarie W. Hammond
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA;
| | | |
Collapse
|
36
|
Madeddu E, Maniga B, Zaffanello M, Fanos V, Marcialis A. The SARS-CoV2 and mitochondria: the impact on cell fate. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022199. [PMID: 35546040 PMCID: PMC9171887 DOI: 10.23750/abm.v93i2.10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 06/27/2021] [Indexed: 11/17/2022]
Abstract
Coronavirus infection causes endoplasmic reticulum stress inside the cells, which inhibits protein folding. Prolonged endoplasmic reticulum stress causes an apoptotic process of unfolded protein response-induced cell death. Endoplasmic reticulum stress rapidly induces the activation of mTORC1, responsible for the induction of the IRE1-JNK pathway. IRE1-JNK stands out for its dual nature: pro-apoptotic in the first stage of infection, anti-apoptotic in persistently infected cells. Once penetrated the cells, the virus can deflect the mitochondrial function by implementing both waterfalls pro-apoptotic and anti-apoptotic response. The virus prevents, through Open Reading Frame 9b (ORF-9b) interacting with mitochondria, the response of the type I interferon of the cells affected by the infection and is fundamental for generating an antiviral cellular state. ORF-9b has effects on mitochondrial dynamics, inducing fusion and autophagy and promoting cell survival. The recognition of ORF-9b has made it possible to identify it as a molecular target of some existing potentially effective drugs (Midostaurin and Ruxolitinib). Other drugs, with the same target, are currently being tested. Given the great importance of mitochondria in virus-host interaction, in-depth knowledge of the actors and pathways involved is essential to continue developing new therapeutic strategies against SARS CoV2.
Collapse
|
37
|
Daniell H, Nair SK, Esmaeili N, Wakade G, Shahid N, Ganesan PK, Islam MR, Shepley-McTaggart A, Feng S, Gary EN, Ali AR, Nuth M, Cruz SN, Graham-Wooten J, Streatfield SJ, Montoya-Lopez R, Kaznica P, Mawson M, Green BJ, Ricciardi R, Milone M, Harty RN, Wang P, Weiner DB, Margulies KB, Collman RG. Debulking SARS-CoV-2 in saliva using angiotensin converting enzyme 2 in chewing gum to decrease oral virus transmission and infection. Mol Ther 2022; 30:1966-1978. [PMID: 34774754 PMCID: PMC8580552 DOI: 10.1016/j.ymthe.2021.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/29/2022] Open
Abstract
To advance a novel concept of debulking virus in the oral cavity, the primary site of viral replication, virus-trapping proteins CTB-ACE2 were expressed in chloroplasts and clinical-grade plant material was developed to meet FDA requirements. Chewing gum (2 g) containing plant cells expressed CTB-ACE2 up to 17.2 mg ACE2/g dry weight (11.7% leaf protein), have physical characteristics and taste/flavor like conventional gums, and no protein was lost during gum compression. CTB-ACE2 gum efficiently (>95%) inhibited entry of lentivirus spike or VSV-spike pseudovirus into Vero/CHO cells when quantified by luciferase or red fluorescence. Incubation of CTB-ACE2 microparticles reduced SARS-CoV-2 virus count in COVID-19 swab/saliva samples by >95% when evaluated by microbubbles (femtomolar concentration) or qPCR, demonstrating both virus trapping and blocking of cellular entry. COVID-19 saliva samples showed low or undetectable ACE2 activity when compared with healthy individuals (2,582 versus 50,126 ΔRFU; 27 versus 225 enzyme units), confirming greater susceptibility of infected patients for viral entry. CTB-ACE2 activity was completely inhibited by pre-incubation with SARS-CoV-2 receptor-binding domain, offering an explanation for reduced saliva ACE2 activity among COVID-19 patients. Chewing gum with virus-trapping proteins offers a general affordable strategy to protect patients from most oral virus re-infections through debulking or minimizing transmission to others.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Smruti K Nair
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nardana Esmaeili
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geetanjali Wakade
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naila Shahid
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prem Kumar Ganesan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Md Reyazul Islam
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheng Feng
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ebony N Gary
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ali R Ali
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Manunya Nuth
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Selene Nunez Cruz
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jevon Graham-Wooten
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | - Paul Kaznica
- Fraunhofer USA, Center Mid-Atlantic, Newark, DE 19711, USA
| | | | - Brian J Green
- Fraunhofer USA, Center Mid-Atlantic, Newark, DE 19711, USA
| | - Robert Ricciardi
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Milone
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ping Wang
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David B Weiner
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Petrizzelli F, Guzzi PH, Mazza T. Beyond COVID-19 Pandemic: Topology-aware optimization of vaccination strategy for minimizing virus spreading. Comput Struct Biotechnol J 2022; 20:2664-2671. [PMID: 35664237 PMCID: PMC9135485 DOI: 10.1016/j.csbj.2022.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Paper discusses the relevance of the adoption of ad-hoc vaccination strategies. Paper shows how to evaluate the impact of different vaccination strategy by considering network-based models. Tailored interventions, e.g., vaccination, applied on central nodes of these networks may efficiently stop the propagation of an infection. The way node "centrality" is defined is the key to curb infection spreading.
The mitigation of an infectious disease spreading has recently gained considerable attention from the research community. It may be obtained by adopting sanitary measurements (e.g., vaccination, wearing masks), social rules (e.g., social distancing), together with an extensive vaccination campaign. Vaccination is currently the primary way for mitigating the Coronavirus Disease (COVID-19) outbreak without severe lockdown. Its effectiveness also depends on the number and timeliness of administrations and thus demands strict prioritization criteria. Almost all countries have prioritized similar classes of exposed workers: healthcare professionals and the elderly, obtaining to maximize the survival of patients and years of life saved. Nevertheless, the virus is currently spreading at high rates, and any prioritization criterion so far adopted did not account for the structural organization of the contact networks. We reckon that a network where nodes are people while the edges represent their social contacts may efficiently model the virus’s spreading. It is known that tailored interventions (e.g., vaccination) on central nodes may efficiently stop the propagation, thereby eliminating the “bridge edges.” We then introduce such a model and consider both synthetic and real datasets. We present the benefits of a topology-aware versus an age-based vaccination strategy to mitigate the spreading of the virus. The code is available at https://github.com/mazzalab/playgrounds.
Collapse
Affiliation(s)
- Francesco Petrizzelli
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Capuccini, 71013 S. Giovanni Rotondo, Fg, Italy
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Campus S Venuta, 88100, Italy
- Corresponding authors.
| | - Tommaso Mazza
- Laboratory of Bioinformatics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Capuccini, 71013 S. Giovanni Rotondo, Fg, Italy
- Corresponding authors.
| |
Collapse
|
39
|
Does the Serum Concentration of Angiotensin II Type 1 Receptor Have an Effect on the Severity of COVID-19? A Prospective Preliminary Observational Study among Healthcare Professionals. J Clin Med 2022; 11:jcm11071769. [PMID: 35407377 PMCID: PMC8999741 DOI: 10.3390/jcm11071769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
SARS-CoV-2 is a virus that causes severe respiratory distress syndrome. The pathophysiology of COVID-19 is related to the renin-angiotensin system (RAS). SARS-CoV-2, a vector of COVID-19, uses angiotensin-converting enzyme 2 (ACE-2), which is highly expressed in human lung tissue, nasal cavity, and oral mucosa, to gain access into human cells. After entering the cell, SARS-CoV-2 inhibits ACE-2, thus favouring the ACE/Ang II/angiotensin II type 1 receptor (AT1R) axis, which plays a role in the development of acute lung injury (ALI). This study aimed to analyse the influence of angiotensin 1 receptor (AT1R) levels in the serum on the course of the severity of symptoms in healthcare professionals who had a SARS-CoV-2 infection. This prospective observational study was conducted on a group of 82 participants. The study group included physicians and nurses who had a COVID-19 infection confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR) test for SARS-CoV-2. The control group consisted of healthy medical professionals who had not had a SARS-CoV-2 infection or who had no symptoms of COVID-19 and who tested negative for SARS-CoV-2 on the day of examination. We analysed the correlation between AT1R concentration and the severity of COVID-19, as well as with sex, age, blood group, and comorbidities. There were no statistically significant differences in the mean values of AT1R concentration in the recovered individuals and the non-COVID-19 subjects (3.29 vs. 3.76 ng/mL; p = 0.32). The ROC curve for the AT1R assay showed an optimal cut-off point of 1.33 (AUC = 0.44; 95% CI = 0.32-0.57; p = 0.37). There was also no correlation between AT1R concentration and the severity of symptoms associated with COVID-19. Blood type analysis showed statistically significantly lower levels of AT1R in COVID-19-recovered participants with blood group A than in those with blood group O. In conclusion, AT1R concentration does not affect the severity of symptoms associated with COVID-19 among healthcare professionals.
Collapse
|
40
|
Iourov IY, Vorsanova SG. COVID-19 and Aging-Related Genome (Chromosome) Instability in the Brain: Another Possible Time-Bomb of SARS-CoV-2 Infection. Front Aging Neurosci 2022; 14:786264. [PMID: 35309884 PMCID: PMC8928435 DOI: 10.3389/fnagi.2022.786264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ivan Y. Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
- Department of Medical Biological Disciplines, Belgorod State University, Belgorod, Russia
- *Correspondence: Ivan Y. Iourov
| | - Svetlana G. Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, Moscow, Russia
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
41
|
Herman L, De Smedt SC, Raemdonck K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J Control Release 2022; 342:170-188. [PMID: 34813878 PMCID: PMC8605818 DOI: 10.1016/j.jconrel.2021.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has wielded an enormous pressure on global health care systems, economics and politics. Ongoing vaccination campaigns effectively attenuate viral spreading, leading to a reduction of infected individuals, hospitalizations and mortality. Nevertheless, the development of safe and effective vaccines as well as their global deployment is time-consuming and challenging. In addition, such preventive measures have no effect on already infected individuals and can show reduced efficacy against SARS-CoV-2 variants that escape vaccine-induced host immune responses. Therefore, it is crucial to continue the development of specific COVID-19 targeting therapeutics, including small molecular drugs, antibodies and nucleic acids. However, despite clear advantages of local drug delivery to the lung, inhalation therapy of such antivirals remains difficult. This review aims to highlight the potential of pulmonary surfactant (PS) in the treatment of COVID-19. Since SARS-CoV-2 infection can progress to COVID-19-related acute respiratory distress syndrome (CARDS), which is associated with PS deficiency and inflammation, replacement therapy with exogenous surfactant can be considered to counter lung dysfunction. In addition, due to its surface-active properties and membrane-interacting potential, PS can be repurposed to enhance drug spreading along the respiratory epithelium and to promote intracellular drug delivery. By merging these beneficial features, PS can be regarded as a versatile biomaterial to combat respiratory infections, in particular COVID-19.
Collapse
Affiliation(s)
- Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
42
|
Epidemiology and Genetic Analysis of SARS-CoV-2 in Myanmar during the Community Outbreaks in 2020. Viruses 2022; 14:v14020259. [PMID: 35215852 PMCID: PMC8875553 DOI: 10.3390/v14020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
We aimed to analyze the situation of the first two epidemic waves in Myanmar using the publicly available daily situation of COVID-19 and whole-genome sequencing data of SARS-CoV-2. From March 23 to December 31, 2020, there were 33,917 confirmed cases and 741 deaths in Myanmar (case fatality rate of 2.18%). The first wave in Myanmar from March to July was linked to overseas travel, and then a second wave started from Rakhine State, a western border state, leading to the second wave spreading countrywide in Myanmar from August to December 2020. The estimated effective reproductive number (Rt) nationwide reached 6–8 at the beginning of each wave and gradually decreased as the epidemic spread to the community. The whole-genome analysis of 10 Myanmar SARS-CoV-2 strains together with 31 previously registered strains showed that the first wave was caused by GISAID clade O or PANGOLIN lineage B.6 and the second wave was changed to clade GH or lineage B.1.36.16 with a close genetic relationship with other South Asian strains. Constant monitoring of epidemiological situations combined with SARS-CoV-2 genome analysis is important for adjusting public health measures to mitigate the community transmissions of COVID-19.
Collapse
|
43
|
Davis G, Li K, Thankam FG, Wilson DR, Agrawal DK. Ocular transmissibility of COVID-19: possibilities and perspectives. Mol Cell Biochem 2022; 477:849-864. [PMID: 35066705 PMCID: PMC8783769 DOI: 10.1007/s11010-021-04336-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Since the initial outbreak of coronavirus disease 2019 (COVID-19), extensive research has emerged from across the globe to understand the pathophysiology of this novel coronavirus. Transmission of this virus is a subject of particular interest as researchers work to understand which protective and preventative measures are most effective. Despite the well understood model of aerosol-respiratory mediated transmission, the exact mechanism underlying the inoculation, infection and spread of COVID-19 is currently unknown. Given anatomical positioning and near constant exposure to aerosolized pathogens, the eye may be a possible gateway for COVID-19 infection. This critical review explores the possibility of an ocular-systemic or ocular-nasal-pulmonic pathway of COVID-19 infection and includes novel insights into the possible immunological mechanisms leading to cytokine surge.
Collapse
Affiliation(s)
- Gavin Davis
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Kin Li
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Finosh G Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Daniel R Wilson
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
44
|
Tao W, Radstake TRDJ, Pandit A. RegEnrich gene regulator enrichment analysis reveals a key role of the ETS transcription factor family in interferon signaling. Commun Biol 2022; 5:31. [PMID: 35017649 PMCID: PMC8752721 DOI: 10.1038/s42003-021-02991-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Changes in a few key transcriptional regulators can lead to different biological states. Extracting the key gene regulators governing a biological state allows us to gain mechanistic insights. Most current tools perform pathway/GO enrichment analysis to identify key genes and regulators but tend to overlook the gene/protein regulatory interactions. Here we present RegEnrich, an open-source Bioconductor R package, which combines differential expression analysis, data-driven gene regulatory network inference, enrichment analysis, and gene regulator ranking to identify key regulators using gene/protein expression profiling data. By benchmarking using multiple gene expression datasets of gene silencing studies, we found that RegEnrich using the GSEA method to rank the regulators performed the best. Further, RegEnrich was applied to 21 publicly available datasets on in vitro interferon-stimulation of different cell types. Collectively, RegEnrich can accurately identify key gene regulators from the cells under different biological states, which can be valuable in mechanistically studying cell differentiation, cell response to drug stimulation, disease development, and ultimately drug development.
Collapse
Affiliation(s)
- Weiyang Tao
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Timothy R D J Radstake
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Chen J, Zhang Y, Shen B. Bioinformatics for the Origin and Evolution of Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1368:53-71. [DOI: 10.1007/978-981-16-8969-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Ghaem Maghami Farahani H, Javanmard G, Rezaee M, Kastelic JP, Barkema HW. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Front Immunol 2021; 12:789317. [PMID: 34975885 PMCID: PMC8714803 DOI: 10.3389/fimmu.2021.789317] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Behzad Hemati
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahsa Rezaee
- Department of Medical Mycology, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
47
|
Bugnon LA, Raad J, Merino GA, Yones C, Ariel F, Milone DH, Stegmayer G. Deep Learning for the discovery of new pre-miRNAs: Helping the fight against COVID-19. MACHINE LEARNING WITH APPLICATIONS 2021; 6:100150. [PMID: 34939043 PMCID: PMC8427907 DOI: 10.1016/j.mlwa.2021.100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023] Open
Abstract
The Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) has been recently found responsible for the pandemic outbreak of a novel coronavirus disease (COVID-19). In this work, a novel approach based on deep learning is proposed for identifying precursors of small active RNA molecules named microRNA (miRNA) in the genome of the novel coronavirus. Viral miRNA-like molecules have shown to modulate the host transcriptome during the infection progression, thus their identification is crucial for helping the diagnosis or medical treatment of the disease. The existence of the mature miRNAs derived from computationally predicted miRNA precursors (pre-miRNAs) in the novel coronavirus was validated with small RNA-seq data from SARS-CoV-2-infected human cells. The results demonstrate that computational models can provide accurate and useful predictions of pre-miRNAs in the SARS-CoV-2 genome, underscoring the relevance of machine learning in the response to a global sanitary emergency. Moreover, the interpretability of our model shed light on the molecular mechanisms underlying the viral infection, thus contributing to the fight against the COVID-19 pandemic and the fast development of new treatments. Our study shows how recent advances in machine learning can be used, effectively, in response to public health emergencies. The approach developed in this work could be of great help in future similar emergencies to accelerate the understanding of the singularities of any viral agent and for the development of novel therapies. Data and source code available at: https://sourceforge.net/projects/sourcesinc/files/aicovid/.
Collapse
Affiliation(s)
- L A Bugnon
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - J Raad
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - G A Merino
- Bioengineering and Bioinformatics Research and Development Institute (IBB), FI-UNER, CONICET, Ruta 11 km 10.5, Oro Verde, Argentina
| | - C Yones
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - F Ariel
- Instituto de Agrobiotecnologia del Litoral (IAL), CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, Argentina
| | - D H Milone
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe, Argentina
| | - G Stegmayer
- Research Institute for Signals, Systems and Computational Intelligence (sinc(i)), FICH-UNL, CONICET, Ciudad Universitaria UNL, Santa Fe, Argentina
| |
Collapse
|
48
|
Srinivasan K, Pandey AK, Livingston A, Venkatesh S. Roles of host mitochondria in the development of COVID-19 pathology: Could mitochondria be a potential therapeutic target? MOLECULAR BIOMEDICINE 2021; 2:38. [PMID: 34841263 PMCID: PMC8608434 DOI: 10.1186/s43556-021-00060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
The recent emergence of severe acute respiratory syndrome-Corona Virus 2 (SARS-CoV-2) in late 2019 and its spread worldwide caused an acute pandemic of Coronavirus disease 19 (COVID-19). Since then, COVID-19 has been under intense scrutiny as its outbreak led to significant changes in healthcare, social activities, and economic settings worldwide. Although angiotensin-converting enzyme-2 (ACE-2) receptor is shown to be the primary port of SARS-CoV-2 entry in cells, the mechanisms behind the establishment and pathologies of COVID-19 are poorly understood. As recent studies have shown that host mitochondria play an essential role in virus-mediated innate immune response, pathologies, and infection, in this review, we will discuss in detail the entry and progression of SARS-CoV-2 and how mitochondria could play roles in COVID-19 disease. We will also review the potential interactions between SARS-CoV-2 and mitochondria and discuss possible treatments, including whether mitochondria as a potential therapeutic target in COVID-19. Understanding SARS-CoV-2 and mitochondrial interactions mediated virus establishment, inflammation, and other consequences may provide a unique mechanism and conceptual advancement in finding a novel treatment for COVID-19.
Collapse
Affiliation(s)
- Kavya Srinivasan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers -New Jersey Medical School, The State University of New Jersey, Newark, NJ USA
- New York Institute of Technology, Old Westbury, NY USA
| | - Ashutosh Kumar Pandey
- Department of Pharmacology, Physiology and Neuroscience, Rutgers -New Jersey Medical School, The State University of New Jersey, Newark, NJ USA
| | | | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers -New Jersey Medical School, The State University of New Jersey, Newark, NJ USA
| |
Collapse
|
49
|
Das A, Roy S, Swarnakar S, Chatterjee N. Understanding the immunological aspects of SARS-CoV-2 causing COVID-19 pandemic: A therapeutic approach. Clin Immunol 2021; 231:108804. [PMID: 34303849 PMCID: PMC8378842 DOI: 10.1016/j.clim.2021.108804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/03/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022]
Abstract
In December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a novel variant of coronavirus has emerged from Wuhan in China and has created havoc impulses across the world with a larger number of fatalities. At the same time, studies are on roll to discover potent vaccine against it or repurposing of approved drugs which are widely adopted are under trial to eradicate the SARS-CoV-2 causing COVID-19 pandemic. Reports have also shown that there are asymptomatic carriers of COVID-19 disease who can transmit the disease to others too. However, the first line defense of the viral attack is body's strong and well-coordinated immune response producing excessive inflammatory innate reaction, thus impaired adaptive host immune defense which lead to death upon the malfunctioning. Considerable works are going on to establish the relation between immune parameters and viral replication that, might alter both the innate and adaptive immune system of COVID-19 patient by up riding a massive cytokines and chemokines secretion. This review mainly gives an account on how SARS-CoV-2 interacts with our immune system and how does our immune system responds to it, along with that drugs which are being used or can be used in fighting COVID-19 disease. The curative therapies as treatment for it have also been addressed in the perspective of adaptive immunity of the patients.
Collapse
Affiliation(s)
- Ananya Das
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sraddhya Roy
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Snehasikta Swarnakar
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| | - Nabanita Chatterjee
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
50
|
Cellular host factors for SARS-CoV-2 infection. Nat Microbiol 2021; 6:1219-1232. [PMID: 34471255 DOI: 10.1038/s41564-021-00958-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed millions of lives and caused a global economic crisis. No effective antiviral drugs are currently available to treat infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The medical need imposed by the pandemic has spurred unprecedented research efforts to study coronavirus biology. Every virus depends on cellular host factors and pathways for successful replication. These proviral host factors represent attractive targets for antiviral therapy as they are genetically more stable than viral targets and may be shared among related viruses. The application of various 'omics' technologies has led to the rapid discovery of proviral host factors that are required for the completion of the SARS-CoV-2 life cycle. In this Review, we summarize insights into the proviral host factors that are required for SARS-CoV-2 infection that were mainly obtained using functional genetic and interactome screens. We discuss cellular processes that are important for the SARS-CoV-2 life cycle, as well as parallels with non-coronaviruses. Finally, we highlight host factors that could be targeted by clinically approved molecules and molecules in clinical trials as potential antiviral therapies for COVID-19.
Collapse
|