1
|
Bonsignore G, Martinotti S, Ranzato E. Honey Bioactive Molecules: There Is a World Beyond the Sugars. BIOTECH 2024; 13:47. [PMID: 39584904 PMCID: PMC11587060 DOI: 10.3390/biotech13040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Honey's many bioactive compounds have been utilized historically to cure infectious diseases. Beneficial effects are its antiviral, antibacterial, anti-inflammatory, antioxidant, and immune-stimulating qualities. The bee species, geographic location, botanical origin, harvest season, processing, and storage conditions all affect honey's potential for therapeutic use. Honey contains a number of antioxidants and active compounds, such as polyphenols, which have been shown to have disease-preventive properties. Based on their origins, categories, and functions, the main polyphenols found in various honey varieties are examined in this review.
Collapse
|
2
|
Zivari-Ghader T, Rashidi MR, Mehrali M. Biological macromolecule-based hydrogels with antibacterial and antioxidant activities for wound dressing: A review. Int J Biol Macromol 2024; 279:134578. [PMID: 39122064 DOI: 10.1016/j.ijbiomac.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Because of the complex symptoms resulting from metabolic dysfunction in the wound microenvironment during bacterial infections, along with the necessity to combat free radicals, achieving prompt and thorough wound healing remains a significant medical challenge that has yet to be fully addressed. Moreover, the misuse of common antibiotics has contributed to the emergence of drug-resistant bacteria, underscoring the need for enhancements in the practical and commonly utilized approach to wound treatment. In this context, hydrogel dressings based on biological macromolecules with antibacterial and antioxidant properties present a promising new avenue for skin wound treatment due to their multifunctional characteristics. Despite the considerable potential of this innovative approach to wound care, comprehensive research on these multifunctional dressings is still insufficient. Consequently, the development of advanced biological macromolecule-based hydrogels, such as chitosan, alginate, cellulose, hyaluronic acid, and others, has been the primary focus of this study. These materials have been enriched with various antibacterial and antioxidant agents to confer multifunctional attributes for wound healing purposes. This review article aims to offer a comprehensive overview of the latest progress in this field, providing a critical theoretical basis for future advancements in the utilization of these advanced biological macromolecule-based hydrogels for wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
3
|
Miraldi E, Cappellucci G, Del Casino C, Giordano E, Guarnieri M, Nepi M, Biagi M, Baini G. Eudermic Properties and Chemical-Physical Characterization of Honeys of Different Botanical Origin. Nutrients 2024; 16:3647. [PMID: 39519479 PMCID: PMC11547790 DOI: 10.3390/nu16213647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Honey is a natural product that, thanks to its composition, particularly the high sugar content, is highly appreciated as an energy nourishment. In addition to sugars, it contains many other substances (carbohydrates, free amino acids, enzymatic proteins, organic acids, polyphenols) from which the therapeutic properties of honey arise: hydrating and osmotic activity, antimicrobial action, and antioxidant and anti-inflammatory power. Objectives: The present work aims to deepen our knowledge/understanding of the activity of skin protection exerted by honey, as a synergic result of its multiple therapeutic effects. Moreover, this study wants to find possible correlations between biological properties and the chemical-physical traits of honey. Methods: To carry out this research, five varieties of citrus honey, one of acacia honey, one of chestnut honey, and one of multifloral honey were used. The honeys were first characterized by chemical-physical analysis and then were subjected to qualitative melissopalynological analysis. Tests were also carried out to evaluate both their antioxidant power and the effect on collagenase, an enzyme involved in the degradation of collagen present in the extracellular matrix and, therefore, in the processes of skin aging. Finally, honey samples were then used in in vitro experiments to assess their action in stimulating cell viability and proliferation on human keratinocytes. Results: Chemical-physical analysis demonstrated a good water content (about 17%), an important sugar content (with the monosaccharides glucose and fructose being the most represented in all the honey samples), various amino acids (with proline remarkably being the highest in all honeys), and a high concentration of polyphenols and total flavonoids (the maximum in chestnut honey, 762 mg/kg and 514 mg/kg, respectively). Conclusions The results obtained in this work confirm the ethnopharmacological use of honey in wound care, bring new scientific knowledge on the use of honey in dermatology, and highlight two fields of excellence, particularly incitrus and chestnut honey.
Collapse
Affiliation(s)
- Elisabetta Miraldi
- Department of Physics, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.C.); (G.B.)
| | - Giorgio Cappellucci
- Department of Physics, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.C.); (G.B.)
| | - Cecilia Del Casino
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.D.C.); (E.G.); (M.G.); (M.N.)
| | - Emanuele Giordano
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.D.C.); (E.G.); (M.G.); (M.N.)
| | - Massimo Guarnieri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.D.C.); (E.G.); (M.G.); (M.N.)
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (C.D.C.); (E.G.); (M.G.); (M.N.)
| | - Marco Biagi
- Department of Food and Drug, University of Parma, 43121 Parma, Italy;
| | - Giulia Baini
- Department of Physics, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; (G.C.); (G.B.)
| |
Collapse
|
4
|
Clare J, Lindley MR, Ratcliffe E. The Potential of Fish Oil Components and Manuka Honey in Tackling Chronic Wound Treatment. Microorganisms 2024; 12:1593. [PMID: 39203434 PMCID: PMC11356504 DOI: 10.3390/microorganisms12081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic wounds are becoming an increasing burden on healthcare services, as they have extended healing times and are susceptible to infection, with many failing to heal, which can lead ultimately to amputation. Due to the additional rise in antimicrobial resistance and emergence of difficult-to-treat Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE pathogens), novel treatments will soon be required asides from traditional antibiotics. Many natural substances have been identified as having the potential to aid in both preventing infection and increasing the speed of wound closure processes. Manuka honey is already in some cases used as a topical treatment in the form of ointments, which in conjunction with dressings and fish skin grafts are an existing US Food and Drug Administration-approved treatment option. These existing treatment options indicate that fatty acids from fish oil and manuka honey are well tolerated by the body, and if the active components of the treatments were better understood, they could make valuable additions to topical treatment options. This review considers two prominent natural substances with established manufacturing and global distribution-marine based fatty acids (including their metabolites) and manuka honey-their function as antimicrobials and how they can aid in wound repair, two important aspects leading to resolution of chronic wounds.
Collapse
Affiliation(s)
- Jenna Clare
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney 2052, Australia;
| | - Elizabeth Ratcliffe
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
5
|
Cucu AA, Urcan AC, Bobiș O, Bonta V, Cornea-Cipcigan M, Moise AR, Dezsi Ș, Pașca C, Baci GM, Dezmirean DS. Preliminary Identification and Quantification of Individual Polyphenols in Fallopia japonica Plants and Honey and Their Influence on Antimicrobial and Antibiofilm Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1883. [PMID: 38999722 PMCID: PMC11244575 DOI: 10.3390/plants13131883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Fallopia japonica (FJ), an invasive plant species known for its rich bioactive compounds, has been used for centuries in traditional Chinese medicine. Despite its significant beekeeping potential, this aspect of FJ remains underexplored. This research aims to investigate the antimicrobial and antibiofilm properties of FJ plants and honey. Notably, this study is the first to identify individual phenolic compounds in both FJ plant tissues and FJ honey, highlighting resveratrol as a marker of FJ honey. The study tested inhibitory activity against seven bacterial strains: Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Salmonella enteritidis, and the yeast Candida albicans. Disk diffusion and microdilution methods were used to assess antimicrobial activity, while the crystal violet staining test evaluated antibiofilm activity. Results showed that FJ plant tissues and honey exhibited strong inhibition, particularly against Gram-negative bacterial strains. The most significant inhibition of biofilm formation, by both FJ plant tissues and honey, was observed against Staphylococcus aureus and Escherichia coli. A significant positive correlation was found between antimicrobial activity and individual polyphenols, especially resveratrol. The antibacterial and antibiofilm potential of FJ plant tissues and honey suggests promising applications in sustainable beekeeping. Further research is necessary to evaluate the bioactive compounds found in FJ honey and their health effects.
Collapse
Affiliation(s)
- Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Adriana Cristina Urcan
- Department of Microbiology and Immunology, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Otilia Bobiș
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Victorița Bonta
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscaping, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Ștefan Dezsi
- Faculty of Geography, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Claudia Pașca
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Ilie CI, Spoiala A, Geana EI, Chircov C, Ficai A, Ditu LM, Oprea E. Bee Bread: A Promising Source of Bioactive Compounds with Antioxidant Properties-First Report on Some Antimicrobial Features. Antioxidants (Basel) 2024; 13:353. [PMID: 38539885 PMCID: PMC10968473 DOI: 10.3390/antiox13030353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Bee bread has received attention due to its high nutritional value, especially its phenolic composition, which enhances life quality. The present study aimed to evaluate the chemical and antimicrobial properties of bee bread (BB) samples from Romania. Initially, the bee bread alcoholic extracts (BBEs) were obtained from BB collected and prepared by Apis mellifera carpatica bees. The chemical composition of the BBE was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and the total phenols and flavonoid contents were determined. Also, a UHPLC-DAD-ESI/MS analysis of phenolic compounds (PCs) and antioxidant activity were evaluated. Furthermore, the antimicrobial activity of BBEs was evaluated by qualitative and quantitative assessments. The BBs studied in this paper are provided from 31 families of plant species, with the total phenols content and total flavonoid content varying between 7.10 and 18.30 mg gallic acid equivalents/g BB and between 0.45 and 1.86 mg quercetin equivalents/g BB, respectively. Chromatographic analysis revealed these samples had a significant content of phenolic compounds, with flavonoids in much higher quantities than phenolic acids. All the BBEs presented antimicrobial activity against all clinical and standard pathogenic strains tested. Salmonella typhi, Candida glabrata, Candida albicans, and Candida kefyr strains were the most sensitive, while BBEs' antifungal activity on C. krusei and C. kefyr was not investigated in any prior research. In addition, this study reports the BBEs' inhibitory activity on microbial (bacterial and fungi) adhesion capacity to the inert substratum for the first time.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Elisabeta-Irina Geana
- National R&D Institute for Cryogenics and Isotopic Technologies (ICIT), 240050 Râmnicu Vâlcea, Romania;
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
- Academy of Romanian Scientists, 010719 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, Research Institute, University of Bucharest, 060101 Bucharest, Romania; (L.-M.D.)
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, Research Institute, University of Bucharest, 060101 Bucharest, Romania; (L.-M.D.)
| |
Collapse
|
7
|
Al-Hadi MAA. Combination of stem cell-derived secretome from human exfoliated deciduous teeth with Yemeni Sidr honey on cell viability and migration: an in vitro study. BDJ Open 2024; 10:21. [PMID: 38480735 PMCID: PMC10937720 DOI: 10.1038/s41405-024-00197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION Bone diseases have a profound global impact, especially when the body's innate regenerative capacity falls short in the face of extensive damage. Stem cells from human exfoliated deciduous teeth (SHEDs), discovered in 2003, offer a promising solution for tissue repair, as they self-renew naturally and are easily obtainable. Mesenchymal stem cells (MSCs), including SHEDs, are believed to promote tissue regeneration by releasing growth factors, collectively known as the secretome. AIMS This study explored the potential of combining SHED-derived secretome with Yemeni Sidr honey to improve osteoblast and fibroblast cell viability and migration. MATERIALS AND METHODS The experiment involved treating cell cultures of two types of rat cell lines - 7F2 osteoblast and BHK-21 fibroblast immortalized cells - with SHED-derived secretome and Yemeni Sidr honey. After the treatment, cell viability was measured using the MTT assay, which calculates OD at 590 nm. Additionally, the scratch assay was conducted to evaluate cell migration, and ImageJ software was used for data processing. RESULTS The findings indicated that combining SHED-derived secretome and Yemeni Sidr honey enhanced osteoblast and fibroblast cell viability and migration. Furthermore, the study highlighted the difference in the stimulative potential of SHED-derived secretome, Yemeni Sidr honey, and their combination, on the viability and migration of the cultured cells. CONCLUSION The research concludes that combining SHED-derived secretome with Yemeni Sidr honey has the potential to promote cell viability and migration in in-vitro settings. The synergistic application of these substances has been found to be more effective -when combined in a dose-dependent manner- than their counterparts. Overall, the current study serves as a foundation for further investigations to establish if the explored substance has any useful clinical applications.
Collapse
Affiliation(s)
- Mona Abdulrahman Abdullah Al-Hadi
- Faculty of Dentistry, Airlangga University, Surabaya, Indonesia.
- Faculty of Dentistry, University of Science and Technology, Sana'a, Yemen.
| |
Collapse
|
8
|
Korani S, Khalesi N, Korani M, Jamialahmadi T, Sahebkar A. Applications of honeybee-derived products in bone tissue engineering. Bone Rep 2024; 20:101740. [PMID: 38304620 PMCID: PMC10831168 DOI: 10.1016/j.bonr.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Nowadays, there is an increasing prevalence of bone diseases and defects caused by trauma, cancers, infections, and degenerative and inflammatory conditions. The restoration of bone tissue lost due to trauma, fractures, or surgical removal resulting from locally invasive pathologies requires bone regeneration. As an alternative to conventional treatments, sustainable materials based on natural products, such as honeybee-derived products (honey, propolis, royal jelly, bee pollen, beeswax, and bee venom), could be considered. Honeybee-derived products, particularly honey, have long been recognized for their healing properties. There are a mixture of phytochemicals that offer bone protection through their antimicrobial, antioxidant, and anti-inflammatory properties. This review aims to summarize the current evidence regarding the effects of honeybee-derived products on bone regeneration. In conclusion, honey, propolis, royal jelly, beeswax, and bee venom can potentially serve as natural products for promoting bone health.
Collapse
Affiliation(s)
- Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naeemeh Khalesi
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mitra Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Liu W, Zu L, Wang S, Li J, Fei X, Geng M, Zhu C, Shi H. Tailored biomedical materials for wound healing. BURNS & TRAUMA 2023; 11:tkad040. [PMID: 37899884 PMCID: PMC10605015 DOI: 10.1093/burnst/tkad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 10/31/2023]
Abstract
Wound healing is a long-term, multi-stage biological process that mainly includes haemostatic, inflammatory, proliferative and tissue remodelling phases. Controlling infection and inflammation and promoting tissue regeneration can contribute well to wound healing. Smart biomaterials offer significant advantages in wound healing because of their ability to control wound healing in time and space. Understanding how biomaterials are designed for different stages of wound healing will facilitate future personalized material tailoring for different wounds, making them beneficial for wound therapy. This review summarizes the design approaches of biomaterials in the field of anti-inflammatory, antimicrobial and tissue regeneration, highlights the advanced precise control achieved by biomaterials in different stages of wound healing and outlines the clinical and practical applications of biomaterials in wound healing.
Collapse
Affiliation(s)
- Wenhui Liu
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lihua Zu
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
| | - Shanzheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu 210009, P.R. China
| | - Jingyao Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaoyuan Fei
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Meng Geng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunlei Zhu
- Department of Orthopaedics, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
| | - Hui Shi
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Nathani S, Das N, Katiyar P, Waghmode B, Sircar D, Roy P. Consumption of honey ameliorates lipopolysaccharide-induced intestinal barrier dysfunction via upregulation of tight junction proteins. Eur J Nutr 2023; 62:3033-3054. [PMID: 37493680 DOI: 10.1007/s00394-023-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 06/30/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE The leaky gut barrier is an important factor leading to various inflammatory gastrointestinal disorders. The nutritional value of honey and variety of its health benefits have long been recognized. This study was undertaken to assess the role of Indian mustard honey in preventing lipopolysaccharide (LPS)-induced intestinal barrier dysfunction using a combination of in vitro and in vivo experimental model systems. METHODS LPS was used to induce intestinal barrier damage in a trans-well model of Caco-2 cells (1 µg/ml) and in Swiss albino mice (5 mg/kg body weight). Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to analyse sugar and phenolic components in honey samples. The Caco-2 cell monolayer integrity was evaluated by transepithelial electrical resistance (TEER) and paracellular permeability assays. The histopathology of intestinal tissue was analysed by haematoxylin and eosin dual staining. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to quantify the transcription of genes. The protein expression was analysed by immunofluorescence, western blot and ELISA-based techniques. RESULTS The in vitro data showed that honey prevented LPS-induced intestinal barrier dysfunction dose dependently as was measured by TEER and paracellular flux of FITC-dextran dye. Further, the in vivo data showed a prophylactic effect of orally administered honey as it prevented the loss of intestinal barrier integrity and villus structure. The cellular localization and expression of tight junction (TJ) proteins were upregulated along with downregulation of pro-inflammatory cytokines in response to the administration of honey with LPS. CONCLUSIONS The findings of this study suggest a propitious role of honey in the maintenance of TJ protein integrity, thereby preventing LPS-induced intestinal barrier disintegration.
Collapse
Affiliation(s)
- Sandip Nathani
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Bhairavnath Waghmode
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| |
Collapse
|
11
|
Medvecky L, Giretova M, Stulajterova R, Sopcak T, Jevinova P, Luptakova L. Novel Biocement/Honey Composites for Bone Regenerative Medicine. J Funct Biomater 2023; 14:457. [PMID: 37754871 PMCID: PMC10649667 DOI: 10.3390/jfb14090457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
New biocements based on a powdered mixture of calcium phosphate/monetite (TTCPM) modified with the addition of honey were prepared by mixing the powder and honey liquid components at a non-cytotoxic concentration of honey (up to 10% (w/v)). The setting process of the cements was not affected by the addition of honey, and the setting time of ~4 min corresponded to the fast setting calcium phosphate cements (CPCs). The cement powder mixture was completely transformed into calcium-deficient nanohydroxyapatite after 24 h of hardening in a simulated body fluid, and the columnar growth of long, needle-like nanohydroxyapatite particles around the original calcium phosphate particles was observed in the honey cements. The compressive strength of the honey cements was reduced with the content of honey in the cement. Comparable antibacterial activities were found for the cements with honey solutions on Escherichia coli, but very low antibacterial activities were found for Staphylococcus aureus for all the cements. The enhanced antioxidant inhibitory activity of the composite extracts was verified. In vitro cytotoxicity testing verified the non-cytotoxic nature of the honey cement extracts, and the addition of honey promoted alkaline phosphatase activity, calcium deposit production, and the upregulation of osteogenic genes (osteopontin, osteocalcin, and osteonectin) by mesenchymal stem cells, demonstrating the positive synergistic effect of honey and CPCs on the bioactivity of cements that could be promising therapeutic candidates for the repair of bone defects.
Collapse
Affiliation(s)
- Lubomir Medvecky
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (T.S.)
| | - Maria Giretova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (T.S.)
| | - Radoslava Stulajterova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (T.S.)
| | - Tibor Sopcak
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (T.S.)
| | - Pavlina Jevinova
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Lenka Luptakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| |
Collapse
|
12
|
Jiang P, Li Q, Luo Y, Luo F, Che Q, Lu Z, Yang S, Yang Y, Chen X, Cai Y. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 2023; 14:1221705. [PMID: 37664860 PMCID: PMC10470649 DOI: 10.3389/fendo.2023.1221705] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes and is associated with a high risk of lower limb amputation and mortality. During their lifetime, 19%-34% of patients with diabetes can develop DFU. It is estimated that 61% of DFU become infected and 15% of those with DFU require amputation. Furthermore, developing a DFU increases the risk of mortality by 50%-68% at 5 years, higher than some cancers. Current standard management of DFU includes surgical debridement, the use of topical dressings and wound decompression, vascular assessment, and glycemic control. Among these methods, local treatment with dressings builds a protective physical barrier, maintains a moist environment, and drains the exudate from DFU wounds. This review summarizes the development, pathophysiology, and healing mechanisms of DFU. The latest research progress and the main application of dressings in laboratory and clinical stage are also summarized. The dressings discussed in this review include traditional dressings (gauze, oil yarn, traditional Chinese medicine, and others), basic dressings (hydrogel, hydrocolloid, sponge, foam, film agents, and others), bacteriostatic dressings, composite dressings (collagen, nanomaterials, chitosan dressings, and others), bioactive dressings (scaffold dressings with stem cells, decellularized wound matrix, autologous platelet enrichment plasma, and others), and dressings that use modern technology (3D bioprinting, photothermal effects, bioelectric dressings, microneedle dressings, smart bandages, orthopedic prosthetics and regenerative medicine). The dressing management challenges and limitations are also summarized. The purpose of this review is to help readers understand the pathogenesis and healing mechanism of DFU, help physicians select dressings correctly, provide an updated overview of the potential of biomaterials and devices and their application in DFU management, and provide ideas for further exploration and development of dressings. Proper use of dressings can promote DFU healing, reduce the cost of treating DFU, and reduce patient pain.
Collapse
Affiliation(s)
- Pingnan Jiang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianhang Li
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanhong Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Feng Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingya Che
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoyu Lu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuxiang Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xia Chen
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| | - Yulan Cai
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
13
|
Ghéczy N, Tao S, Pour-Esmaeil S, Szymańska K, Jarzębski AB, Walde P. Performance of a Flow-Through Enzyme Reactor Prepared from a Silica Monolith and an α-Poly(D-Lysine)-Enzyme Conjugate. Macromol Biosci 2023; 23:e2200465. [PMID: 36598452 DOI: 10.1002/mabi.202200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Horseradish peroxidase (HRP) is covalently bound in aqueous solution to polycationic α-poly(D-lysine) chains of ≈1000 repeating units length, PDL, via a bis-aryl hydrazone bond (BAH). Under the experimental conditions used, about 15 HRP molecules are bound along the PDL chain. The purified PDL-BAH-HRP conjugate is very stable when stored at micromolar HRP concentration in a pH 7.2 phosphate buffer solution at 4 °C. When a defined volume of such a conjugate solution of desired HRP concentration (i.e., HRP activity) is added to a macro- and mesoporous silica monolith with pore sizes of 20-30 µm as well as below 30 nm, quantitative and stable noncovalent conjugate immobilization is achieved. The HRP-containing monolith can be used as flow-through enzyme reactor for bioanalytical applications at neutral or slightly alkaline pH, as demonstrated for the determination of hydrogen peroxide in diluted honey. The conjugate can be detached from the monolith by simple enzyme reactor washing with an aqueous solution of pH 5.0, enabling reloading with fresh conjugate solution at pH 7.2. Compared to previously investigated polycationic dendronized polymer-enzyme conjugates with approximately the same average polymer chain length, the PDL-BAH-HRP conjugate appears to be equally suitable for HRP immobilization on silica surfaces.
Collapse
Affiliation(s)
- Nicolas Ghéczy
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| | - Siyuan Tao
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| | - Sajad Pour-Esmaeil
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice, 44-100, Poland
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, 44-100, Poland
| | - Peter Walde
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| |
Collapse
|
14
|
Evaluation of physicochemical properties of honey powder using rice and pea proteins as carriers. Food Res Int 2023; 167:112692. [PMID: 37087262 DOI: 10.1016/j.foodres.2023.112692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Honey is a special product widely appreciated because of its peculiar flavor and aroma as well as its beneficial effects on health due to its constituents. However, the use of honey in its natural form can present several disadvantages to the food industry because of its high viscosity and density. This work aimed to obtain honey powder using rice, pea, or a mixture of both proteins as carriers by spray drying and to characterize physiochemically. Also, the mass balance was performed to evaluate changes in humidity and temperature that occurred by the drying air during the process. The honey showed acceptable physicochemical parameters by the legislation of honey quality control in regard to color (143.43 ± 4.34) mm Pfund, free acidity (46.41 ± 0.53) meq/kg, pH (3.73 ± 0.03), fructose content (46.52 ± 0.56) g/100 g and glucose content (35.88 ± 0.16) g/100 g, which leads to the production of honey powder. Among the carriers tested, the honey powder using rice protein achieved the highest powder recovery yield at (64.88 ± 0.64) %. The physicochemical properties were evaluated and the phenolic compounds were not negatively affected by spray drying conditions, maintaining a value of gallic acid equivalent (GAE) content at (301.31 ± 20.95) mg/kg of honey. Therefore, this work shows honey as an alternative food ingredient in powdered form, including the growing market for using alternative protein.
Collapse
|
15
|
First Report on Medical Treatment and Outcome of Burnt Cattle. Vet Sci 2023; 10:vetsci10030187. [PMID: 36977226 PMCID: PMC10058702 DOI: 10.3390/vetsci10030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The management of livestock affected by fire often comes down to two options: euthanasia or slaughtering. However, the therapeutic approach can be attempted for high-value cattle. The aim of a primary assessment is to identify signs of smoke inhalation injuries, cardiovascular impairment and shock and to determine the severity and extent of burn injuries. Full-thickness burns covering 40% or more of the body are highly unfavorable prognostic factors and are usually fatal. Moreover, it can take several days for the burns to appear in their full extent, leaving the prognosis uncertain. In this case report, the clinical findings, treatment and outcome of two burnt Holstein heifers are described. Daily wound care required cleaning, the removal of eschars and the application of topical antibacterial agents for seven months in order to discharge one heifer. The topical use of honey with a solution of povidone–iodine proved to be affordable and successful, with no residue risks. The other heifer was more severely wounded, and despite the administration of fluid therapy, pain management, anti-oxidants and anti-microbials, after initial stabilization, the animal’s condition worsened, leading to euthanasia. This confirms that the treatment of burnt cattle is possible but challenging due to the late onset of multi-organ failure.
Collapse
|
16
|
Brites A, Ferreira M, Bom S, Grenho L, Claudio R, Gomes PS, Fernandes MH, Marto J, Santos C. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int J Pharm 2023; 632:122541. [PMID: 36566824 DOI: 10.1016/j.ijpharm.2022.122541] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Development of multifunctional 3D patches with appropriate antibacterial and biocompatible properties is needed to deal with wound care regeneration. Combining gelatin-based hydrogel with a well-known natural antibacterial honey (Manuka honey, MH) in a 3D patch can provide improved printability and at the same time provide favourable biological effects that may be useful in regenerative wound treatment. In this study, an antibacterial Manuka-Gelatin 3D patches was developed by an extrusion-based printing process, with controlled porosity, high shape fidelity, and structural stability. It was demonstrated the antibacterial activity of Manuka-Gelatin 3D patches against both gram-positive bacteria (S. epidermidis and S. aureus) and gram-negative (E. coli), common in wound infection. The 3D Manuka-Gelatin base patches demonstrated antibacterial activity, and moreover enhanced the proliferation of human dermal fibroblasts and human epidermal keratinocytes, and promotion of angiogenesis. Moreover, the ease of printing achieved by the addition of honey, coupled with the interesting biological response obtained, makes this 3D patch a good candidate for wound healing applications.
Collapse
Affiliation(s)
- Ana Brites
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal
| | - Marta Ferreira
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal
| | - Sara Bom
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Ricardo Claudio
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro S Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| | - Catarina Santos
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal; ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
17
|
Kunat-Budzyńska M, Rysiak A, Wiater A, Grąz M, Andrejko M, Budzyński M, Bryś MS, Sudziński M, Tomczyk M, Gancarz M, Rusinek R, Ptaszyńska AA. Chemical Composition and Antimicrobial Activity of New Honey Varietals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032458. [PMID: 36767825 PMCID: PMC9915547 DOI: 10.3390/ijerph20032458] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 05/27/2023]
Abstract
Due to a widespread occurrence of multidrug-resistant pathogenic strains of bacteria, there is an urgent need to look for antimicrobial substances, and honey with its antimicrobial properties is a very promising substance. In this study, we examined for the first time antimicrobial properties of novel varietal honeys, i.e., plum, rapeseed, Lime, Phacelia, honeydew, sunflower, willow, and multifloral-P (Prunus spinosa L.), multifloral-AP (Acer negundo L., Prunus spinosa L.), multifloral-Sa (Salix sp.), multifloral-Br (Brassica napus L.). Their antimicrobial activity was tested against bacteria (such as Escherichia coli, Bacillus circulans, Staphylococcus aureus, Pseudomonas aeruginosa), yeasts (such as Saccharomyces cerevisiae and Candida albicans) and mold fungi (such as Aspergillus niger). In tested honeys, phenolic acids constituted one of the most important groups of compounds with antimicrobial properties. Our study found phenolic acids to occur in greatest amount in honeydew honey (808.05 µg GAE/g), with the highest antifungal activity aiming at A. niger. It was caffeic acid that was discovered in the greatest amount (in comparison with all phenolic acids tested). It was found in the highest amount in such honeys as phacelia-356.72 µg/g, multifloral (MSa) and multifloral (MBr)-318.9 µg/g. The highest bactericidal activity against S. aureus was found in multifloral honeys MSa and MBr. Additionally, the highest amount of syringic acid and cinnamic acid was identified in rapeseed honey. Multifloral honey (MAP) showed the highest bactericidal activity against E. coli, and multifloral honey (MSa) against S. aureus. Additionally, multifloral honey (MBr) was effective against E. coli and S. aureus. Compounds in honeys, such as lysozyme-like and phenolic acids, i.e., coumaric, caffeic, cinnamic and syringic acids, played key roles in the health-benefit properties of honeys tested in our study.
Collapse
Affiliation(s)
- Magdalena Kunat-Budzyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Mariola Andrejko
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Michał Budzyński
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Maciej S. Bryś
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Marcin Sudziński
- Urban Artistic Apiary, Centre for the Meeting of Cultures, Plac Teatralny 1 Str., 20-029 Lublin, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2a Str., 15-230 Białystok, Poland
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Robert Rusinek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Aneta A. Ptaszyńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| |
Collapse
|
18
|
Tomić SL, Vuković JS, Babić Radić MM, Filipović VV, Živanović DP, Nikolić MM, Nikodinovic-Runic J. Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration. Polymers (Basel) 2023; 15:polym15030589. [PMID: 36771889 PMCID: PMC9920545 DOI: 10.3390/polym15030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Scaffolding biomaterials are gaining great importance due to their beneficial properties for medical purposes. Targeted biomaterial engineering strategies through the synergy of different material types can be applied to design hybrid scaffolding biomaterials with advantageous properties for biomedical applications. In our research, a novel combination of the bioactive agent Manuka honey (MHo) with 2-hydroxyethyl methacrylate/gelatin (HG) hydrogel scaffolds was created as an efficient bioactive platform for biomedical applications. The effects of Manuka honey content on structural characteristics, porosity, swelling performance, in vitro degradation, and in vitro biocompatibility (fibroblast and keratinocyte cell lines) of hybrid hydrogel scaffolds were studied using Fourier transform infrared spectroscopy, the gravimetric method, and in vitro MTT biocompatibility assays. The engineered hybrid hydrogel scaffolds show advantageous properties, including porosity in the range of 71.25% to 90.09%, specific pH- and temperature-dependent swelling performance, and convenient absorption capacity. In vitro degradation studies showed scaffold degradability ranging from 6.27% to 27.18% for four weeks. In vitro biocompatibility assays on healthy human fibroblast (MRC5 cells) and keratinocyte (HaCaT cells) cell lines by MTT tests showed that cell viability depends on the Manuka honey content loaded in the HG hydrogel scaffolds. A sample containing the highest Manuka honey content (30%) exhibited the best biocompatible properties. The obtained results reveal that the synergy of the bioactive agent, Manuka honey, with 2-hydroxyethyl methacrylate/gelatin as hybrid hydrogel scaffolds has potential for biomedical purposes. By tuning the Manuka honey content in HG hydrogel scaffolds advantageous properties of hybrid scaffolds can be achieved for biomedical applications.
Collapse
Affiliation(s)
- Simonida Lj. Tomić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3303-630
| | - Jovana S. Vuković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija M. Babić Radić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vuk. V. Filipović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Dubravka P. Živanović
- University of Belgrade, Faculty of Medicine, Department of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
- University of Belgrade, University Clinical Center of Serbia, Clinic of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
| | - Miloš M. Nikolić
- University of Belgrade, Faculty of Medicine, Department of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
- University of Belgrade, University Clinical Center of Serbia, Clinic of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| |
Collapse
|
19
|
Cárdenas-Escudero J, Mármol-Rojas C, Escribano Pintor S, Galán-Madruga D, Cáceres JO. Honey polyphenols: regulators of human microbiota and health. Food Funct 2023; 14:602-620. [PMID: 36541681 DOI: 10.1039/d2fo02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive review of research over the last decade was conducted to carry out this work. The main objective of this work is to present relevant evidence of the effect of honey intake on the human intestinal microbiota and its relationship with the improvement of various chronic diseases, such as cirrhosis, metabolic syndrome, diabetes, and obesity, among others. Therefore, this work focuses on the health-improving honey dietary supplementation implications associated with specific changes in the human microbiota and their biochemical mechanisms to enhance the proliferation of beneficial microorganisms and the inhibition of pathogenic microorganisms. Consumption of honey polyphenols significantly improves people's health conditions, especially in patients with chronic disease. Hence, honey intake unequivocally constitutes an alternative way to enhance health and could be used to prevent some relevant chronic diseases.
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain. .,Analytical Chemistry Department, FCNET, Universidad de Panamá, Bella Vista, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, 3366, Panamá 4, Panamá
| | - C Mármol-Rojas
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - S Escribano Pintor
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220 Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
20
|
CHETTOUM A, FEKNOUS N, BOUMENDJEL M, MEKHANCHA DE, BOUDIDA Y, SEDARI A, BERREDJEM A, ATI H, ZAIDI K, BOUMENDJEL A, MESSARAH M. Biological, physicochemical and antibacterial properties of pure honey harvested at the municipality of Seraïdi (Annaba, north east of Algeria). FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.41022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
| | | | | | - Djamel-Eddine MEKHANCHA
- Brothers Mentouri Constantine 1 University, Algeria; Salah Boubnider Constantine 3 University, Algeria
| | | | | | | | - Hanène ATI
- Chadli Bendjedid El-Tarf University, Algeria
| | | | | | | |
Collapse
|
21
|
Jaldin-Crespo L, Silva N, Martínez J. Nanomaterials Based on Honey and Propolis for Wound Healing-A Mini-Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4409. [PMID: 36558262 PMCID: PMC9785851 DOI: 10.3390/nano12244409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wound healing is a public health concern worldwide, particularly in chronic wounds due to delayed healing and susceptibility to bacterial infection. Nanomaterials are widely used in wound healing treatments due to their unique properties associated with their size and very large surface-area-to-volume ratio compared to the same material in bulk. The properties of nanomaterials can be expanded and improved upon with the addition of honey and propolis, due to the presence of bioactive molecules such as polyphenols, flavonoids, peptides, and enzymes. These bionanomaterials can act at different stages of wound healing and through different mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulation, cell proliferation, and angiogenic effects. Biomaterials, at the nanoscale, show new alternatives for wound therapy, allowing for targeted and continuous delivery of beekeeping products at the injection site, thus avoiding possible systemic adverse effects. Here, we summarize the most recent therapies for wound healing based on bionanomaterials assisted by honey and propolis, with a focus on in vitro and in vivo studies. We highlight the type, composition (honey, propolis, and polymeric scaffolds), biological, physicochemical/mechanical properties, potential applications and patents related of the last eight years. Furthermore, we discuss the challenges, advantages, disadvantages and stability of different bionanomaterials related to their clinical translation and insight into the investigation and development of new treatments for wound healing.
Collapse
Affiliation(s)
- Limberg Jaldin-Crespo
- Regenerative Medicine Center, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Nataly Silva
- Faculty of Design, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Jessica Martínez
- Regenerative Medicine Center, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|
22
|
Muacevic A, Adler JR. Pediatric First-Degree Burn Management With Honey and 1% Silver Sulfadiazine (Ag-SD): Comparison and Contrast. Cureus 2022; 14:e32842. [PMID: 36570107 PMCID: PMC9779910 DOI: 10.7759/cureus.32842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background The cardinal area of managing fire wounds is guided by adequately evaluating the burn-induced lesion's profundity and size. Superficial second-degree burns are often treated through daily reinstating with fresh sterile bandaging with appropriate topical antimicrobials to allow rapid spontaneous epithelialization. Around the world, a wide variety of substances are used to treat these wounds, from honey to synthetic biological dressings. Objective This study intended to determine honey's therapeutic potential compared with 1% silver sulfadiazine (Ag-SD) in arsenal-caused contusion medicament fulfillment. Methods A total of 70 cases were evaluated in this research work after fulfilling the required selection criteria during the study period of January 2014 to December 2014 and January 2017 to December 2017. Purposive selection criteria were adopted in the study to select research patients. The patients in Group-1 (n = 35) relied on honey as medication, while patients in Group-2 (n = 35) relied on 1% Ag-SD. Results In Group-1, exudation (68.4%) and sloughing (82.9%) were substantially reduced by Days 3 and 5 of therapeutic intervention, respectively. However, in Group-2, a reduction of exudation (17.1%) and sloughing (22.9%) occurred after Days 3 and 5 of treatment, respectively. Completion of the epithelialization process was observed among Group-1 and Group-2 cases. It was detected after Days 7 and 10 of treatment at 36.3% and 77% (Group-1) and 27% and 67% (Group-2), respectively. Around 3 ml of 1% honey was required per body surface area per dressing in Group-1. On the other hand, in Group-2, 2 gm Ag-SD was needed per body surface area per dressing. Conclusion Patients treated with honey found better clinical outcomes in managing superficial partial-thickness burns.
Collapse
|
23
|
Matharu RK, Ahmed J, Seo J, Karu K, Golshan MA, Edirisinghe M, Ciric L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers (Basel) 2022; 14:polym14235155. [PMID: 36501550 PMCID: PMC9740266 DOI: 10.3390/polym14235155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Natural substances are increasingly being developed for use in health-related applications. Honey has attracted significant interest, not only for its physical and chemical properties, but also for its antibacterial activity. For the first time, suspensions of Black Forest honeydew honey and manuka honey UMF 20+ were examined for their antibacterial properties against Escherichia coli and Staphylococcus epidermidis using flow cytometry. The inhibitory effect of honey on bacterial growth was evident at concentrations of 10, 20 and 30 v/v%. The minimum inhibitory effects of both honey types against each bacterium were also investigated and reported. Electrospray ionisation (ESI) mass spectrometry was performed on both Black Forest honeydew honey and manuka honey UMF 20+. Manuka honey had a gluconic concentration of 2519 mg/kg, whilst Black Forest honeydew honey had a concentration of 2195 mg/kg. Manuka honey demonstrated the strongest potency when compared to Black Forest honeydew honey; therefore, it was incorporated into nanofiber scaffolds using pressurised gyration and 10, 20 and 30 v/v% manuka honey-polycaprolactone solutions. Composite fibres were analysed for their morphology and topography using scanning electron microscopy. The average fibre diameter of the manuka honey-polycaprolactone scaffolds was found to range from 437 to 815 nm. The antibacterial activity of the 30 v/v% scaffolds was studied using S. epidermidis. Strong antibacterial activity was observed with a bacterial reduction rate of over 90%. The results show that honey composite fibres formed using pressurised gyration can be considered a natural therapeutic agent for various medicinal purposes, including wound-healing applications.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
- Correspondence:
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jegak Seo
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Mitra Ashrafi Golshan
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
24
|
Antibacterial Efficacy and Healing Potential of Honey from Different Zones in Nigeria on Diabetic-Induced Wound Infection in Wistar Rats. Int J Microbiol 2022; 2022:5308435. [PMID: 36312784 PMCID: PMC9616666 DOI: 10.1155/2022/5308435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
There is an increase in drug-resistant strains causing infection, thus making available therapeutics less effective. As resistance increases, modern medicine focuses on the antibacterial potential of natural products, which can aid in wound healing. The present study determined Nigeria honey's antibacterial efficacy in treating diabetes-induced wound infections in Wistar albino rats. 54 Wistar rats randomly divided into 9 groups of 6 each were used for the study: group I (negative control, no treatment), group II (positive control, diabetes without treatment), group III (diabetes treated with 1% silver sulfadiazine), and groups IV–IX (diabetes treated with different honey samples). Physiochemical analysis and microbiological and antibacterial activity of the honey samples were determined. The treatments were carried out for 17 days, and wound contraction, malondialdehyde (MDA) levels, and catalase activity were measured. Results obtained showed that the most effective honey was DCH (21.5 ± 2.12), followed by HBP + M (15 ± 2.12) and TRB, JS, and HBP (13 ± 2.8; 13 ± 1.41; 13.5 ± 0.71) for antibacterial activity on Staphylococcus aureus. Microbiologically, no coliform was detected in all the samples, confirming the honey's quality. The amount of lipid peroxidation was raised in the diabetic group with no treatment, 1% silver sulfadiazine group, and JS group, while no significant reduction was observed in other groups. Differences in wound contraction were significantly notable on various days of measurement, day 3 (p < 0.002), day 6 (p < 0.046), and day 9 (p = 0.00). The catalase level in the different treatment groups increased significantly (p < 0.05), implying an antioxidant potential of the different honey samples except for Jos honey. The study concludes that honey infused with moringa was faster and more efficient in healing diabetic wounds than other honey samples and silver sulfadiazine.
Collapse
|
25
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
26
|
Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022; 14:pharmaceutics14081663. [PMID: 36015289 PMCID: PMC9414000 DOI: 10.3390/pharmaceutics14081663] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Honey was used in traditional medicine to treat wounds until the advent of modern medicine. The rising global antibiotic resistance has forced the development of novel therapies as alternatives to combat infections. Consequently, honey is experiencing a resurgence in evaluation for antimicrobial and wound healing applications. A range of both Gram-positive and Gram-negative bacteria, including antibiotic-resistant strains and biofilms, are inhibited by honey. Furthermore, susceptibility to antibiotics can be restored when used synergistically with honey. Honey’s antimicrobial activity also includes antifungal and antiviral properties, and in most varieties of honey, its activity is attributed to the enzymatic generation of hydrogen peroxide, a reactive oxygen species. Non-peroxide factors include low water activity, acidity, phenolic content, defensin-1, and methylglyoxal (Leptospermum honeys). Honey has also been widely explored as a tissue-regenerative agent. It can contribute to all stages of wound healing, and thus has been used in direct application and in dressings. The difficulty of the sustained delivery of honey’s active ingredients to the wound site has driven the development of tissue engineering approaches (e.g., electrospinning and hydrogels). This review presents the most in-depth and up-to-date comprehensive overview of honey’s antimicrobial and wound healing properties, commercial and medical uses, and its growing experimental use in tissue-engineered scaffolds.
Collapse
|
27
|
Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics (Basel) 2022; 11:antibiotics11070975. [PMID: 35884229 PMCID: PMC9312033 DOI: 10.3390/antibiotics11070975] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/22/2023] Open
Abstract
Honey, a naturally sweet and viscous substance is mainly produced by honeybees (Apis mellifera) from flower nectar. Honey exerts a plethora of biological and pharmacological activities, namely, antioxidant, antimicrobial and anti-inflammatory activity, because of the presence of an extensive variety of bioactive compounds. The antibacterial activity is one of the most reported biological properties, with many studies demonstrating that honey is active against clinically important pathogens. As a result, beside honey’s widespread utilization as a common food and flavouring agent, honey is an attractive natural antimicrobial agent. However, the use of neat honey for therapeutic purposes poses some problems, for instance, its stickiness may hamper its appeal to consumers and health care professionals, and the maintenance of an adequate therapeutic concentration over a sufficient timeframe may be challenging due to honey liquidity and leakage. It has motivated researchers to integrate honey into diverse formulations, for example, hydrogels, dressings, ointments, pastes and lozenges. The antibacterial activity of these formulations should be scientifically determined to underscore claims of effectiveness. Some researchers have made efforts to adapt the disc carrier and suspension test to assess the antimicrobial activity of topical products (e.g., silver-based wound dressings). However, there is currently no established and validated method for determining the in vitro antimicrobial potential of natural product-based formulations, including those containing honey as the active principle. Against the backdrop of a brief discussion of the parameters that contribute to its antibacterial activity, this review provides an outline of the methods currently used for investigating the antibacterial activity of neat honey and discusses their limitations for application to honey-based formulations.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia;
- CRC for Honey Bee Products, University of Western Australia, Crawley 6009, Australia
| | - Dhanushka Hettiarachchi
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (M.L.H.); (L.Y.L.); (D.H.)
- CRC for Honey Bee Products, University of Western Australia, Crawley 6009, Australia
- Correspondence:
| |
Collapse
|
28
|
Advancements in Skin Delivery of Natural Bioactive Products for Wound Management: A Brief Review of Two Decades. Pharmaceutics 2022; 14:pharmaceutics14051072. [PMID: 35631658 PMCID: PMC9143175 DOI: 10.3390/pharmaceutics14051072] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Application of modern delivery techniques to natural bioactive products improves their permeability, bioavailability, and therapeutic efficacy. Many natural products have desirable biological properties applicable to wound healing but are limited by their inability to cross the stratum corneum to access the wound. Over the past two decades, modern systems such as microneedles, lipid-based vesicles, hydrogels, composite dressings, and responsive formulations have been applied to natural products such as curcumin or aloe vera to improve their delivery and efficacy. This article reviews which natural products and techniques have been formulated together in the past two decades and the success of these applications for wound healing. Many cultures prefer natural-product-based traditional therapies which are often cheaper and more available than their synthetic counterparts. Improving natural products’ effect can provide novel wound-healing therapies for those who trust traditional compounds over synthetic drugs to reduce medical inequalities.
Collapse
|
29
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 2022; 17:353-384. [PMID: 35782328 PMCID: PMC9237601 DOI: 10.1016/j.ajps.2022.01.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health. And bacterial contamination could significantly menace the wound healing process. Considering the sophisticated wound healing process, novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients, antibacterial agents included, into biomaterials with different morphologies to improve cell behaviors and promote wound healing. However, a comprehensive review on anti-bacterial wound dressing to enhance wound healing has not been reported. In this review, various antibacterial biomaterials as wound dressings will be discussed. Different kinds of antibacterial agents, including antibiotics, nanoparticles (metal and metallic oxides, light-induced antibacterial agents), cationic organic agents, and others, and their recent advances are summarized. Biomaterial selection and fabrication of biomaterials with different structures and forms, including films, hydrogel, electrospun nanofibers, sponge, foam and three-dimension (3D) printed scaffold for skin regeneration, are elaborated discussed. Current challenges and the future perspectives are presented in this multidisciplinary field. We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.
Collapse
Affiliation(s)
- Yuqing Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hualei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
31
|
Scalzone A, Cerqueni G, Bonifacio MA, Pistillo M, Cometa S, Belmonte MM, Wang XN, Dalgarno K, Ferreira AM, De Giglio E, Gentile P. Valuable effect of Manuka Honey in increasing the printability and chondrogenic potential of a naturally derived bioink. Mater Today Bio 2022; 14:100287. [PMID: 35647514 PMCID: PMC9130107 DOI: 10.1016/j.mtbio.2022.100287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
Hydrogel-based bioinks are the main formulations used for Articular Cartilage (AC) regeneration due to their similarity to chondral tissue in terms of morphological and mechanical properties. However, the main challenge is to design and formulate bioinks able to allow reproducible additive manufacturing and fulfil the biological needs for the required tissue. In our work, we investigated an innovative Manuka honey (MH)-loaded photocurable gellan gum methacrylated (GGMA) bioink, encapsulating mesenchymal stem cells differentiated in chondrocytes (MSCs-C), to generate 3D bioprinted construct for AC studies. We demonstrated the beneficial effect of MH incorporation on the bioink printability, leading to the obtainment of a more homogenous filament extrusion and therefore a better printing resolution. Also, GGMA-MH formulation showed higher viscoelastic properties, presenting complex modulus G∗ values of ∼1042 Pa, compared to ∼730 Pa of GGMA. Finally, MH-enriched bioink induced a higher expression of chondrogenic markers col2a1 (14-fold), sox9 (3-fold) and acan (4-fold) and AC ECM main element production (proteoglycans and collagen).
Collapse
Affiliation(s)
- Annachiara Scalzone
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Giorgia Cerqueni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Maria A. Bonifacio
- Department of Chemistry, University of Bari “Aldo Moro”, Bari, Italy
- INSTM, National Consortium of Materials Science and Technology, Florence, Italy
| | - Michele Pistillo
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Monica Mattioli Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Xiao N. Wang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana M. Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elvira De Giglio
- Department of Chemistry, University of Bari “Aldo Moro”, Bari, Italy
- Corresponding author.
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
- Corresponding author.
| |
Collapse
|
32
|
Dumitru CD, Neacsu IA, Grumezescu AM, Andronescu E. Bee-Derived Products: Chemical Composition and Applications in Skin Tissue Engineering. Pharmaceutics 2022; 14:750. [PMID: 35456584 PMCID: PMC9030501 DOI: 10.3390/pharmaceutics14040750] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Skin tissue regeneration is one of the population's most common problems, and the complications that may appear in the healing process can have detrimental consequences. An alternative to conventional treatments could be represented by sustainable materials based on natural products, such as honey and its derivates (propolis, royal jelly, bee pollen, beeswax, and bee venom). They exhibit significant inhibitory activities against bacteria and have great potential in dermal tissue regeneration. Research in the pharmaceutical field demonstrates that conventional medication combined with bee products can deliver better results. The advantages include minimizing side effects and maintaining the same effectiveness by using low concentrations of antibiotic, anti-inflammatory, or chemotherapy drugs. Several studies suggested that bee products can replace the antimicrobial activity and efficiency of antibiotics, but further investigation is needed to establish a topical mixture's potential, including honey, royal jelly, and propolis. Bee products seem to complete each other's deficiencies, and their mixture may have a better impact on the wound healing process. The topic addressed in this paper highlights the usefulness of honey, propolis, royal jelly, bee pollen, beeswax, and bee venom in the re-epithelization process and against most common bacterial infections.
Collapse
Affiliation(s)
- Corina Dana Dumitru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
33
|
Karimianfard N, Jaberi A. The prevalence of using complementary and alternative medicine products among patients with pressure ulcer. BMC Complement Med Ther 2022; 22:91. [PMID: 35346164 PMCID: PMC8958779 DOI: 10.1186/s12906-022-03573-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Background The use of complementary and alternative medicine (CAM) therapies has increased in recent years throughout the world and in Iran. Nonetheless, there are limited data about the prevalence of their use. This study aimed to assess the prevalence of using CAM therapies among patients with pressure ulcer (PU). Methods This cross-sectional study was conducted in 2019–2020. Participants were 299 patients with PU conveniently selected from wound clinics and healthcare settings in Shiraz, Iran. A demographic questionnaire and the International Questionnaire to Measure Use of CAM were used for data collection. The data were analyzed using the SPSS software (v. 22.0). Results All 299 participants completed the study. Their mean age was 59.56 ± 18.76 years. The most common CAM therapies used for PU management were herbal products (100%), vitamin supplementation therapy (45.2%), spiritual therapies (21.7%), wet cupping therapy (16.4%), leech therapy (9.4%), acupuncture (1.7%), dry cupping therapy (1.3%), and massage therapy (1.3%). The most common herbal product used for PU management was Pistacia atlantica gum either alone or in combination with other herbal products (15.5%). The use of CAM therapies had significant relationship with participants’ age, underlying conditions, and PU stage (P < 0.05) and the most significant predictor of using herbal products for PU was educational level (P < 0.05, OR = 5.098). Conclusions The use of CAM therapies, particularly herbal products, for PU management is high in Iran. Quality public education and close professional supervision are needed for the safe use of these products.
Collapse
|
34
|
Bonsignore G, Patrone M, Martinotti S, Ranzato E. "Green" Biomaterials: The Promising Role of Honey. J Funct Biomater 2021; 12:jfb12040072. [PMID: 34940551 PMCID: PMC8708775 DOI: 10.3390/jfb12040072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The development of nanotechnology has allowed us to better exploit the potential of many natural compounds. However, the classic nanotechnology approach often uses both dangerous and environmentally harmful chemical compounds and drastic conditions for synthesis. Nevertheless, “green chemistry” techniques are revolutionizing the possibility of making technology, also for tissue engineering, environmentally friendly and cost-effective. Among the many approaches proposed and among several natural compounds proposed, honey seems to be a very promising way to realize this new “green” approach.
Collapse
|
35
|
Nezhad-Mokhtari P, Javanbakht S, Asadi N, Ghorbani M, Milani M, Hanifehpour Y, Gholizadeh P, Akbarzadeh A. Recent advances in honey-based hydrogels for wound healing applications: Towards natural therapeutics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Bulut SP, Gurbuzel M, Karabela SN, Pence HH, Aksaray S, Topal U. The investigation of biochemical and microbiological properties of four different honey types produced in turkey and the comparison of their effects with silver sulfadiazine on wound healing in a rat model of burn injury. Niger J Clin Pract 2021; 24:1694-1705. [PMID: 34782511 DOI: 10.4103/njcp.njcp_582_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background To determine and compare the effects of different honey types on wound healing in an animal model, with silver sulfadiazine as the standard treatment. Materials and Methods Five different groups were created with eight rats in each group. Partial-depth burns were created, and different types of honey and silver sulfadiazine were applied to the respective groups. Rats were monitored for 21 days, and wound cultures were obtained. Histopathological evaluation and cytokine analysis of final tissue samples were performed. In addition, the biochemical and microbiological analyses of the four types of honey used in the study were performed. Results Wound shrinkage comparisons showed that all four honey-treated groups (Bingöl, Konya, cotton, and citrus) performed better than the silver sulfadiazine group (honey groups, respectively, 86.86%, 84.72%, 89.61%, and 95.33% vs. control 82.90%). However, only citrus honey caused a significant difference in wound shrinkage rate when compared with other groups as well with control group (95.34% vs. 82.9%, P < 0.05). In tissues, all honey groups had higher cytokine (interleukin [IL]-6, IL-1B, tumor necrosis factor [TNF]-α) values compared with controls (P < 0.001). Honey analysis showed a significant inverse relationship between Fe (iron) and the number of diastases. Conclusions The results of this study support the role of honey in wound healing, due to its antibacterial and immunomodulatory effects. More studies are needed to identify the role of honey composition in wound healing.
Collapse
Affiliation(s)
- S Pamak Bulut
- Department of General Surgery, Vocational School of Health Services, University of Health Sciences and Esenler Obstetrics, Gynecology and Children's Hospital, Kayseri, Turkey
| | - M Gurbuzel
- Department of Pathology, Haseki Training and Research Hospital, Kayseri, Turkey
| | - S N Karabela
- Department of Clinical Microbiology and Infectious Diseases, Vocational School of Health Services, University of Health Sciences and Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Kayseri, Turkey
| | - H H Pence
- Department of Medical Biochemistry, Hamidiye Medical Faculty, University of Health Sciences, Kayseri, Turkey
| | - S Aksaray
- Department of Medical Microbiology, University of Health Sciences, Hamidiye Medical Faculty, İstanbul, Turkey
| | - U Topal
- Department of Surgical Oncology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| |
Collapse
|
37
|
Tashkandi H. Honey in wound healing: An updated review. Open Life Sci 2021; 16:1091-1100. [PMID: 34708153 PMCID: PMC8496555 DOI: 10.1515/biol-2021-0084] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a complex process with many interdependent pathophysiological and immunological mediators to restore the cellular integrity of damaged tissue. Cutaneous wound healing is the repair response to a multitude of pathologies induced by trauma, surgery, and burn leading to the restoration and functionality of the compromised cells. Many different methods have been employed to treat acute and chronic wounds, such as antimicrobial therapy, as most wounds are susceptible to infection from microbes and are difficult to treat. However, many antimicrobial agents have become ineffective in wound treatment due to the emergence of multiple drug-resistant bacteria, and failures in current wound treatment methods have been widely reported. For this reason, alternative therapies have been sought, one of which is the use of honey as a wound treatment agent. The use of honey has recently gained clinical popularity for possible use in wound treatment and regenerative medicine. With this high demand, a better delivery and application procedure is required, as well as research aiming at its bioactivity. Honey is a safe natural substance, effective in the inhibition of bacterial growth and the treatment of a broad range of wound types, including burns, scratches, diabetic boils (Skin abscesses associated with diabetic), malignancies, leprosy, fistulas, leg ulcers, traumatic boils, cervical and varicose ulcers, amputation, burst abdominal wounds, septic and surgical wounds, cracked nipples, and wounds in the abdominal wall. Honey comprises a wide variety of active compounds, including flavonoids, phenolic acid, organic acids, enzymes, and vitamins, that may act to improve the wound healing process. Tissue-engineered scaffolds have recently attracted a great deal of attention, and various scaffold fabrication techniques are being researched. Some incorporate honey to improve their delivery during wound treatment. Hence, the aim of this review is to summarize recent studies on the wound healing properties of honey.
Collapse
Affiliation(s)
- Hanaa Tashkandi
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
38
|
Leoni V, Giupponi L, Pavlovic R, Gianoncelli C, Cecati F, Ranzato E, Martinotti S, Pedrali D, Giorgi A, Panseri S. Multidisciplinary analysis of Italian Alpine wildflower honey reveals criticalities, diversity and value. Sci Rep 2021; 11:19316. [PMID: 34588574 PMCID: PMC8481395 DOI: 10.1038/s41598-021-98876-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
Wildflower honeys produced in mountain grasslands are an expression of the biodiversity of these fragile habitats. Despite its importance, the botanical origin of honey is often defined without performing formal analysis. The aim of the study was to characterize six wildflower mountain honeys produced in the Italian Alps with different analytic techniques (SPME-GC-MS, HPLC-Orbitrap, cicatrizing and antioxidant activity) alongside melissopalynological analysis and botanical definition of the production area. Even though the apiaries were in mountain grasslands rich in Alpine herbaceous species, the honey could be defined as rhododendron/raspberry unifloral or raspberry and rhododendron bifloral while the honey produced at the lowest altitude differed due to the presence of linden, heather and chestnut. The non-compliance of the honey could be due to habitat (meadows and pastures) fragmentation, but also to specific compounds involved in the plant-insect relationship, such as kynurenic acid, present in a high quantity in the sample rich in chestnut pollen. 255 volatile compounds were detected as well as some well-known markers of specific botanic essences, in particular chestnut, linden and heather, also responsible for most of the differences in aroma profiling. A high correlation between nicotinaldehyde content and percentage of raspberry pollen (r = 0.853, p < 0.05) was found. Phenolic acid and hydroxy-fatty acid were predominant in the chestnut pollen dominant honey, which presented the highest antioxidant activity and the lowest cicatrizing activity, while the flavonoid fraction was accentuated in one sample (rhododendron pollen prevalent), that was also the one with the highest effect on wound closure, although all samples had similar cicatrizing effects apart from the chestnut pollen dominant honey (lowest cicatrizing activity). Our study highlighted the difficulty of producing mountain wildflower honey and the importance of a thorough characterization of this product, also to encourage its production and valorisation.
Collapse
Affiliation(s)
- Valeria Leoni
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| | - Luca Giupponi
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| | - Radmila Pavlovic
- Department of Health, Animal Science and Food Safety (VESPA), University of Milan, Via Celoria 10, 20133, Milan, Italy.
| | - Carla Gianoncelli
- Fondazione Fojanini Di Studi Superiori, Via Valeriana 32, 23100, Sondrio, Italy
| | - Francisco Cecati
- Instituto de Investigaciones en Tecnología Química (INTEQUI), Universidad Nacional de San Luis, Almirante Brown 1455, 5700, San Luis, Argentina
| | - Elia Ranzato
- DiSIT-Dipartimento Di Scienze E Innovazione Tecnologica, University of Piemonte Orientale, piazza Sant'Eusebio 5, 13100, Vercelli, Italy
| | - Simona Martinotti
- DiSIT-Dipartimento Di Scienze E Innovazione Tecnologica, University of Piemonte Orientale, piazza Sant'Eusebio 5, 13100, Vercelli, Italy
| | - Davide Pedrali
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| | - Annamaria Giorgi
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Sara Panseri
- Department of Health, Animal Science and Food Safety (VESPA), University of Milan, Via Celoria 10, 20133, Milan, Italy
| |
Collapse
|
39
|
Badis D, Ouafa D. Comparative study of the therapeutic efficacy of autologous platelet-rich plasma and honey in healing skin wounds in sheep. Vet World 2021; 14:2170-2177. [PMID: 34566336 PMCID: PMC8448649 DOI: 10.14202/vetworld.2021.2170-2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: This investigation is the continuation of a published preliminary study examining the therapeutic efficacy of platelet-rich plasma (PRP) as a topical treatment for skin wounds in sheep. The study aimed to compare the healing effects of autologous PRP with that of natural honey. Materials and Methods: This study involved nine clinically healthy male sheep. After sterile skin preparation, full-thickness longitudinal incision wounds were created on the backs of each animal. The animals were randomly divided into three groups of three sheep each. In Group I, the wounds were treated with PRP; in Group II, the wounds were treated with honey; and in Group III, the wounds were treated with saline solution. The different treatments were administered topically every 3 days. Healing was assessed by a semi-quantitative histopathological study from biopsies taken on the 3rd, 7th, 14th, 21st, and 28th days of healing. The data obtained were compared using the non-parametric Mann–Whitney U-test, and p<0.05 and 0.01 were used to determine the level of significance of the recorded differences. Results: Semi-quantitative histopathological evaluation showed significant differences in the progression of wound healing between the three study groups. Recorded data showed that PRP may reduce inflammation during the first 3 days after the incision. Moreover, the synthesis and organization of collagen fibers were significantly improved in the group treated with PRP compared with those in the group treated with honey. Conclusion: PRP offers a promising therapeutic option for healing skin wounds in sheep compared with honey.
Collapse
Affiliation(s)
- Daikh Badis
- Department of Biology of Organisms, University of Batna 2, Batna, Algeria.,Biotechnology's Laboratory of the Bioactive Molecules and the Cellular Physiopathology, University of Batna 2, Batna, Algeria
| | - Deffa Ouafa
- Department of Biology of Organisms, University of Batna 2, Batna, Algeria.,Laboratory of Biology and Environment, Faculty of Nature and Life Sciences, University of Mentouri Brothers, Constantine, Algeria
| |
Collapse
|
40
|
Scepankova H, Combarros-Fuertes P, Fresno JM, Tornadijo ME, Dias MS, Pinto CA, Saraiva JA, Estevinho LM. Role of Honey in Advanced Wound Care. Molecules 2021; 26:4784. [PMID: 34443372 PMCID: PMC8398244 DOI: 10.3390/molecules26164784] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Honey is a natural product rich in several phenolic compounds, enzymes, and sugars with antioxidant, anticarcinogenic, anti-inflammatory, and antimicrobial potential. Indeed, the development of honey-based adhesives for wound care and other biomedical applications are topics being widely investigated over the years. Some of the advantages of the use of honey for wound-healing solutions are the acceleration of dermal repair and epithelialization, angiogenesis promotion, immune response promotion and the reduction in healing-related infections with pathogenic microorganisms. This paper reviews the main role of honey on the development of wound-healing-based applications, the main compounds responsible for the healing capacity, how the honey origin can influence the healing properties, also highlighting promising results in in vitro and in vivo trials. The challenges in the use of honey for wound healing are also covered and discussed. The delivery methodology (direct application, incorporated in fibrous membranes and hydrogels) is also presented and discussed.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Patricia Combarros-Fuertes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - José María Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - María Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Miguel Sousa Dias
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal;
| | - Carlos A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Letícia M. Estevinho
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal;
| |
Collapse
|
41
|
Kaiser P, Wächter J, Windbergs M. Therapy of infected wounds: overcoming clinical challenges by advanced drug delivery systems. Drug Deliv Transl Res 2021; 11:1545-1567. [PMID: 33611768 PMCID: PMC8236057 DOI: 10.1007/s13346-021-00932-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
In recent years, the incidence of infected wounds is steadily increasing, and so is the clinical as well as economic interest in effective therapies. These combine reduction of pathogen load in the wound with general wound management to facilitate the healing process. The success of current therapies is challenged by harsh conditions in the wound microenvironment, chronicity, and biofilm formation, thus impeding adequate concentrations of active antimicrobials at the site of infection. Inadequate dosing accuracy of systemically and topically applied antibiotics is prone to promote development of antibiotic resistance, while in the case of antiseptics, cytotoxicity is a major problem. Advanced drug delivery systems have the potential to enable the tailor-made application of antimicrobials to the side of action, resulting in an effective treatment with negligible side effects. This review provides a comprehensive overview of the current state of treatment options for the therapy of infected wounds. In this context, a special focus is set on delivery systems for antimicrobials ranging from semi-solid and liquid formulations over wound dressings to more advanced carriers such as nano-sized particulate systems, vesicular systems, electrospun fibers, and microneedles, which are discussed regarding their potential for effective therapy of wound infections. Further, established and novel models and analytical techniques for preclinical testing are introduced and a future perspective is provided.
Collapse
Affiliation(s)
- Pia Kaiser
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Jana Wächter
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Promising Antimicrobial Properties of Bioactive Compounds from Different Honeybee Products. Molecules 2021; 26:molecules26134007. [PMID: 34209107 PMCID: PMC8272120 DOI: 10.3390/molecules26134007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023] Open
Abstract
Bee products have been known for centuries for their versatile healing properties. In recent decades they have become the subject of documented scientific research. This review aims to present and compare the impact of bee products and their components as antimicrobial agents. Honey, propolis, royal jelly and bee venom are bee products that have antibacterial properties. Sensitivity of bacteria to these products varies considerably between products and varieties of the same product depending on their origin. According to the type of bee product, different degrees of activity were observed against Gram-positive and Gram-negative bacteria, yeasts, molds and dermatophytes, as well as biofilm-forming microorganisms. Pseudomonas aeruginosa turned out to be the most resistant to bee products. An analysis of average minimum inhibitory concentration values for bee products showed that bee venom has the strongest bacterial effectiveness, while royal jelly showed the weakest antibacterial activity. The most challenging problems associated with using bee products for medical purposes are dosage and safety. The complexity and variability in composition of these products raise the need for their standardization before safe and predictable clinical uses can be achieved.
Collapse
|
43
|
Peršurić Ž, Pavelić SK. Bioactives from Bee Products and Accompanying Extracellular Vesicles as Novel Bioactive Components for Wound Healing. Molecules 2021; 26:molecules26123770. [PMID: 34205731 PMCID: PMC8233762 DOI: 10.3390/molecules26123770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, interest has surged among researchers to determine compounds from bee products such as honey, royal jelly, propolis and bee pollen, which are beneficial to human health. Mass spectrometry techniques have shown that bee products contain a number of proven health-promoting compounds but also revealed rather high diversity in the chemical composition of bee products depending on several factors, such as for example botanical sources and geographical origin. In the present paper, we present recent scientific advances in the field of major bioactive compounds from bee products and corresponding regenerative properties. We also discuss extracellular vesicles from bee products as a potential novel bioactive nutraceutical component. Extracellular vesicles are cell-derived membranous structures that show promising potential in various therapeutic areas. It has been extensively reported that the use of vesicles, which are naturally formed in plant and animal cells, as delivery agents have many advantages. Whether the use of extracellular vesicles from bee products represents a new solution for wound healing remains still to be elucidated. However, promising results in specific applications of the bee products in wound healing and tissue regenerative properties of extracellular vesicles provide a good rationale to further explore this idea.
Collapse
Affiliation(s)
- Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia;
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, HR-51000 Rijeka, Croatia
- Correspondence:
| |
Collapse
|
44
|
Abstract
Honey, a concentrated natural product, is produced by honeybees (Apis mellifera) from the nectar of flowers. It contains over 200 compounds that exert various biological or pharmacological activities, ranging from antioxidant, anti-inflammatory, antimicrobial, and antihypertensive to hypoglycemic effects. Due to the presence of a plethora of bioactive compounds, as well as unique physicochemical properties, honey has been widely used as medicine throughout human history along with its extensive utilization as common food and flavoring agent. The application of neat honey for therapeutic purpose, however, poses some difficulties such as the maintenance of a required therapeutic concentration over an adequate timeframe due to the problem of liquefaction and leakage. This has driven researchers to incorporate honey into a range of formulations, for example, hydrogels, dressings, ointments, pastes, or lozenges. After a brief discussion of the chemistry and medicinal use of honey, this review focuses on commercial honey-based medicinal formulations as well as in vitro, in vivo, and clinical studies on noncommercial honey formulations for the treatment of various ailments. In addition to this, it also covers the application of honey formulations and the evidence underpinning their use.
Collapse
|
45
|
Hall TJ, Villapún VM, Addison O, Webber MA, Lowther M, Louth SET, Mountcastle SE, Brunet MY, Cox SC. A call for action to the biomaterial community to tackle antimicrobial resistance. Biomater Sci 2021; 8:4951-4974. [PMID: 32820747 DOI: 10.1039/d0bm01160f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The global surge of antimicrobial resistance (AMR) is a major concern for public health and proving to be a key challenge in modern disease treatment, requiring action plans at all levels. Microorganisms regularly and rapidly acquire resistance to antibiotic treatments and new drugs are continuously required. However, the inherent cost and risk to develop such molecules has resulted in a drying of the pipeline with very few compounds currently in development. Over the last two decades, efforts have been made to tackle the main sources of AMR. Nevertheless, these require the involvement of large governmental bodies, further increasing the complexity of the problem. As a group with a long innovation history, the biomaterials community is perfectly situated to push forward novel antimicrobial technologies to combat AMR. Although this involvement has been felt, it is necessary to ensure that the field offers a united front with special focus in areas that will facilitate the development and implementation of such systems. This paper reviews state of the art biomaterials strategies striving to limit AMR. Promising broad-spectrum antimicrobials and device modifications are showcased through two case studies for different applications, namely topical and implantables, demonstrating the potential for a highly efficacious physical and chemical approach. Finally, a critical review on barriers and limitations of these methods has been developed to provide a list of short and long-term focus areas in order to ensure the full potential of the biomaterials community is directed to helping tackle the AMR pandemic.
Collapse
Affiliation(s)
- Thomas J Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Colney, NR4 7UQ, UK
| | - Morgan Lowther
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie E T Louth
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie E Mountcastle
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Mathieu Y Brunet
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
46
|
Medical-Grade Honey for the Treatment of Extravasation-Induced Injuries in Preterm Neonates: A Case Series. Adv Neonatal Care 2021; 21:122-132. [PMID: 32675576 DOI: 10.1097/anc.0000000000000781] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Preterm neonates often depend on peripheral intravenous administration of nutrition and medication. Since their skin is not fully developed and very vulnerable, extravasation injury is a risk. Medical-grade honey (MGH) possesses antimicrobial activity and stimulates wound healing; although its use in neonatal patients is limited. CLINICAL FINDINGS We present a case series of 7 preterm neonates (28-36 weeks of gestation) with extravasation injuries secondary to peripheral intravenous administration of total parental nutrition and medication. PRIMARY DIAGNOSIS Extravasation injury following the unintentional leakage of total parenteral nutrition, and medication into the surrounding tissue. Signs of extravasation include local pain, erythema, burning, pruritus, and/or swelling. INTERVENTIONS All extravasation injuries were treated with daily cleaning and application of MGH. Some of the cases needed additional surgical intervention or assisted debridement. OUTCOMES After treatment, all extravasation injury wounds presented with granulation tissue formation progressed to normal epithelialization and closed in 7 to 67 days (median: 32 days). Upon initial application, peripheral edema and inflammation decreased. When present, necrotic tissue was effectively debrided, slough was removed, and no signs of infection were detected, irrespective of initial wound presentations. Cicatrization was minimal, and the full range of motion was preserved in all cases. PRACTICE RECOMMENDATIONS Continuous and thorough assessment of peripheral intravenous line placement for malposition, leaking, and signs of extravasation is needed for fast discovery and prevention of further damage. CONCLUSION Medical-grade honey possesses antimicrobial, anti-inflammatory, and antioxidative activity, enhancing wound healing. Medical-grade honey was safe and effective for treating extravasation-induced injuries, independent of location and severity. We recommend MGH for treating extravasation wounds and consideration for other types of wounds.
Collapse
|
47
|
Suarez AFL, Tirador ADG, Villorente ZM, Bagarinao CF, Sollesta JVN, Dumancas GG, Sun Z, Zhan ZQ, Saludes JP, Dalisay DS. The Isorhamnetin-Containing Fraction of Philippine Honey Produced by the Stingless Bee Tetragonula biroi Is an Antibiotic against Multidrug-Resistant Staphylococcus aureus. Molecules 2021; 26:1688. [PMID: 33802916 PMCID: PMC8002709 DOI: 10.3390/molecules26061688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022] Open
Abstract
Honey exhibits antibacterial and antioxidant activities that are ascribed to its diverse secondary metabolites. In the Philippines, the antibacterial and antioxidant activities, as well as the bioactive metabolite contents of the honey, have not been thoroughly described. In this report, we investigated the in vitro antibacterial and antioxidant activities of honey from Apis mellifera and Tetragonula biroi, identified the compound responsible for the antibacterial activity, and compared the observed bioactivities and metabolite profiles to that of Manuka honey, which is recognized for its antibacterial and antioxidant properties. The secondary metabolite contents of honey were extracted using a nonionic polymeric resin followed by antibacterial and antioxidant assays, and then spectroscopic analyses of the phenolic and flavonoid contents. Results showed that honey extracts produced by T. biroi exhibits antibiotic activity against Staphylococcal pathogens as well as high antioxidant activity, which are correlated to its high flavonoid and phenolic content as compared to honey produced by A. mellifera. The bioassay-guided fractionation paired with Liquid Chromatography Mass Spectrometry (LCMS) and tandem MS analyses found the presence of the flavonoid isorhamnetin (3-methylquercetin) in T. biroi honey extract, which was demonstrated as one of the compounds with inhibitory activity against multidrug-resistant Staphylococcus aureus ATCC BAA-44. Our findings suggest that Philippine honey produced by T. biroi is a potential nutraceutical that possesses antibiotic and antioxidant activities.
Collapse
Affiliation(s)
- Angelica Faith L. Suarez
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (A.F.L.S.); (A.D.G.T.)
| | - April Dawn G. Tirador
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (A.F.L.S.); (A.D.G.T.)
| | - Zenith M. Villorente
- Maridan Industries, Inc., Jaro, Iloilo City 5000, Philippines; (Z.M.V.); (C.F.B.); (J.V.N.S.)
| | - Cathrina F. Bagarinao
- Maridan Industries, Inc., Jaro, Iloilo City 5000, Philippines; (Z.M.V.); (C.F.B.); (J.V.N.S.)
| | - Jan Vincent N. Sollesta
- Maridan Industries, Inc., Jaro, Iloilo City 5000, Philippines; (Z.M.V.); (C.F.B.); (J.V.N.S.)
| | - Gerard G. Dumancas
- Department of Mathematics and Physical Sciences, Louisiana State University at Alexandria, Alexandria, LA 71302, USA;
- Balik Scientist Program, Philippine Council for Health Research and Development (PCHRD), Department of Science and Technology, Bicutan, Taguig City 1631, Philippines;
| | - Zhe Sun
- Shimadzu Asia Pacific (SAP), Singapore Science Park I, Singapore 118264, Singapore; (Z.S.); (Z.Q.Z.)
| | - Zhao Qi Zhan
- Shimadzu Asia Pacific (SAP), Singapore Science Park I, Singapore 118264, Singapore; (Z.S.); (Z.Q.Z.)
| | - Jonel P. Saludes
- Balik Scientist Program, Philippine Council for Health Research and Development (PCHRD), Department of Science and Technology, Bicutan, Taguig City 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (A.F.L.S.); (A.D.G.T.)
- Balik Scientist Program, Philippine Council for Health Research and Development (PCHRD), Department of Science and Technology, Bicutan, Taguig City 1631, Philippines;
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
48
|
Rossi M, Marrazzo P. The Potential of Honeybee Products for Biomaterial Applications. Biomimetics (Basel) 2021; 6:biomimetics6010006. [PMID: 33467429 PMCID: PMC7838782 DOI: 10.3390/biomimetics6010006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The development of biomaterials required continuous improvements in their properties for new tissue engineering applications. Implants based on biocompatible materials and biomaterial-based dressings are susceptible to infection threat; moreover, target tissues can suffer injuring inflammation. The inclusion of nature-derived bioactive compounds usually offers a suitable strategy to expand or increase the functional properties of biomaterial scaffolds and can even promote tissue healing. Honey is traditionally known for its healing property and is a mixture of phytochemicals that have a proven reputation as antimicrobial, anti-inflammatory, and antioxidant agents. This review discusses on the potential of honey and other honeybee products for biomaterial improvements. Our study illustrates the available and most recent literature reporting the use of these natural products combined with different polymeric scaffolds, to provide original insights in wound healing and other tissue regenerative approaches.
Collapse
Affiliation(s)
- Martina Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy;
| | - Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
49
|
Extracellular matrix scaffold crosslinked with vancomycin for multifunctional antibacterial bone infection therapy. Biomaterials 2020; 268:120603. [PMID: 33378735 DOI: 10.1016/j.biomaterials.2020.120603] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
The treatment of acute and chronic bone infections remains a major clinical challenge. The various factors released by the bacteria, acidic environment, and bacterial colonies in the bone grooves and implanted synthetic materials collectively promote the formation of biofilms. Dormant bacteria and biofilms cause infections that are difficult to cure and that can develop chronically. Therefore, a new antibacterial material was synthesized in the present study for multifunctional bone infection therapy and consists of specific demineralized extracellular cancellous bone (SDECM) crosslinked with vancomycin (Van) by means of electrostatic interactions and chemical bonds. It was verified in vitro that the new material (Van-SDECM) not only has pH-sensitive release and biofilm inhibition properties, but also maintains sustained bactericidal ability accompanied by the degradation of the scaffold, which does not affect its favorable osteogenic performance. The infectious bone defect in vivo model further confirms the comprehensive anti-infective and osteogenic ability of the Van-SDECM. Further, these favorable properties are due to the pH-sensitive sustained release sterilization and scaffold contact antibacterial properties, accompanied by osteoclast activity inhibition, osteogenesis promotion and immunoregulation effects. This study provides a new drug-scaffold composite preparation method based on a native-derived extracellular matrix scaffold.
Collapse
|
50
|
Schuhladen K, Mukoo P, Liverani L, Neščáková Z, Boccaccini AR. Manuka honey and bioactive glass impart methylcellulose foams with antibacterial effects for wound-healing applications. ACTA ACUST UNITED AC 2020; 15:065002. [PMID: 32268322 DOI: 10.1088/1748-605x/ab87e5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wound dressings able to deliver topically bioactive molecules represent a new generation of wound-regeneration therapies. In this article, foams based on methylcellulose cross-linked with Manuka honey were used as a platform to deliver borate bioactive glass particles doped additionally with copper. Borate bioactive glasses are of great interest in wound-healing applications due to a combination of favorable features, such as angiogenic and antibacterial properties. The multifunctional composite providing the dual effect of the bioactive glass and Manuka honey was produced by freeze-drying, and the resulting foams exhibit suitable morphology characterized by high porosity. Moreover, the performed tests showed improved wettability and mechanical performance with the addition of bioactive glass particles. Dissolution studies using simulated body fluid and cell biology tests using relevant skin cells further proved the excellent bioactivity and positive effects of the foams on cell proliferation and migration. Most interestingly, by the dual release of Manuka honey and ions from the copper-doped bioactive glass, an antibacterial effect against E. coli and S. aureus was achieved. Therefore, the multifunctional foams showed promising outcomes as potential wound dressings for the treatment of infected wounds.
Collapse
Affiliation(s)
- Katharina Schuhladen
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | | | | | | | | |
Collapse
|