1
|
Gerdol M, Pallavicini A. Exploring the immune resilience of Mediterranean mussels: Recent advances and future directions. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110147. [PMID: 39837400 DOI: 10.1016/j.fsi.2025.110147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/14/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
The Mediterranean mussel (Mytilus galloprovincialis) is a key species in European aquaculture, known for its economic and societal importance, particularly as a primary source of income for local fisheries in European coastal areas. While historically resilient to the mass mortality events that have affected other bivalve species, M. galloprovincialis may face increasing threats from emerging pathogens, including bacteria, viruses, and eukaryotic parasites. These microorganisms, often opportunistic, pose heightened risks in the current climate change scenario, where heatwaves are becoming increasingly frequent and the persistent presence of pollutants is suspected to impair the functional response of hemocytes. Over the past decade, significant advancements in immunological research have provided deeper insights into the cellular and molecular mechanisms underlying the robust defense system of M. galloprovincialis, which allows this species to efficiently cope with a broad range of infections. By analyzing the scientific literature published on mussel immunology over the past ten years, this review consolidates current knowledge on the immune system of the Mediterranean mussel. We place a particular focus on the cellular and molecular components involved in the recognition and elimination of microbial pathogens and discuss how the most recent discoveries may inform improved management and disease mitigation strategies for Mediterranean mussel farming in the in the years to come.
Collapse
Affiliation(s)
- Marco Gerdol
- University of Trieste, Department of Life Sciences, Italy.
| | | |
Collapse
|
2
|
Cunha M, Petrillo V, Madeira M, He Y, Coppola F, Meucci V, De Marchi L, Soares AMVM, Freitas R. The influence of temperature on the impacts of caffeine in mussels: Evaluating subcellular impacts and model predictions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173453. [PMID: 38802017 DOI: 10.1016/j.scitotenv.2024.173453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
In aquatic ecosystems, the presence of pharmaceuticals, particularly caffeine (CAF), has been linked to wastewater discharge, hospital waste, and the disposal of expired pharmaceutical products containing CAF. Additionally, rising temperatures due to climate change are anticipated in aquatic environments. This study aimed to assess the toxicity of various CAF concentrations under current (17 °C) and projected (21 °C) temperature conditions, using the mussel Mytilus galloprovincialis as a bioindicator species. Subcellular impacts were evaluated following 28 days of exposure to four CAF concentrations (0.5; 1.0; 5.0; 10.0 μg/L) at the control temperature (17 °C). Only effects at an environmentally relevant CAF concentration (5.0 μg/L) were assessed at the highest temperature (21 °C). The overall biochemical response of mussels was evaluated using non-metric Multidimensional Scaling (MDS) and the Integrated Biomarker Response (IBR) index, while the Independent Action (IA) model was used to compare observed and predicted responses. Results showed that at 17 °C, increased CAF concentrations were associated with higher metabolism and biotransformation capacity, accompanied by cellular damage at the highest concentration. Conversely, under warming conditions (21 °C), the induction of antioxidant enzymes was observed, although insufficient to prevent cellular damage compared to the control temperature. Regarding neurotoxicity, at 17 °C, the activity of the acetylcholinesterase enzyme was inhibited up to 5.0 μg/L; however, at 10.0 μg/L, activity increased, possibly due to CAF competition for adenosine receptors. The IA model identified a synergistic response for most parameters when CAF and warming acted together, aligning with observed results, albeit with slightly lower magnitudes.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vincenzo Petrillo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Madalena Madeira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, PR China; Sino-portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 Jiangsu Province, China
| | - Francesca Coppola
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Asnicar D, Stranci F, Monti S, Badocco D, Marčeta T, Munari M, Marin MG. Investigating intraspecific variability in the biological responses of sea urchins (Paracentrotus lividus) to seawater acidification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51687-51701. [PMID: 39120814 PMCID: PMC11374922 DOI: 10.1007/s11356-024-34618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Alterations in seawater chemistry posed by acidification may lead to immunological and antioxidant defence impairment in sea urchins, with differences among local populations. Here, we analyzed the effects of reduced pH on Paracentrotus lividus, with a multibiomarker approach, and the possible intraspecific variations in sea urchin responses. Two groups of animals with different ecological histories (i.e., the pattern of environmental characteristics and pressures experienced throughout the organism's lifetime) were maintained at ambient pH and pH reduced of 0.4 units for 8 months. Changes in gonadosomatic index (GSI), immunological, and oxidative stress biomarkers were assessed in coelomic fluid, gonads, and digestive tract. Animals maintained at reduced pH showed limited impact of seawater acidification compared to the ambient pH condition. However, sea urchins from the two sites were differently influenced by the seawater pH (as shown by multivariate analyses). GSI and immunological and antioxidant status were differentially modulated between the two sexes, with generally higher values in females, but differences between sexes in relation to the pH of exposure were limited. Overall, our findings highlight that the impact of environmental stressors may differ in sea urchins from different locations. This has implications for the maintenance of P. lividus wild populations under future global change scenarios.
Collapse
Affiliation(s)
- Davide Asnicar
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
- Aquatic Biosciences, Huntsman Marine Science Centre, 1 Lower Campus Road, E5B 2L7, St. Andrews, New Brunswick, Canada
| | - Federica Stranci
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Silvia Monti
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Tihana Marčeta
- Institute of Marine Sciences (ISMAR), CNR, Castello 2737/F, 30122, Venezia, Italy
| | - Marco Munari
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
- Department of Integrative Marine Ecology, Fano Marine Centre, Stazione Zoologica Anton Dohrn, Fano, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
4
|
Della Torre C, Villa S, Chiarore A, Cannavacciuolo A, Rizzi C, Musco L, Nigro L, Munari M. Biomonitoring of human activities recovery following lockdown in a highly touristic Mediterranean Island using Mytilus galloprovincialis. MARINE POLLUTION BULLETIN 2024; 204:116533. [PMID: 38833949 DOI: 10.1016/j.marpolbul.2024.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Coastal waters face significant anthropogenic stress, particularly from tourism, exacerbating pollution, especially in areas like touristic islands. Ischia, the largest island in the Gulf of Naples and part of the Regno di Nettuno Marine Protected Area, suffers from pollution due to tourism and maritime traffic. During the initial SARS-CoV-2 lockdown from March to June 2020, Ischia was isolated, providing a unique opportunity to study pollutant release and its impact on coastal ecosystems. Adult Mytilus galloprovincialis mussels were transplanted to three sites on the island for active biomonitoring. Accumulation of chemicals in tissues and biomarkers related to metabolism, detoxification, and oxidative stress were measured. Results indicated that pollutants from daily activities entered the sea, affecting filter feeders. Translocated organisms showed modulated metabolic functions and biochemical changes, highlighting coastal vulnerability and calling for conservation efforts.
Collapse
Affiliation(s)
- Camilla Della Torre
- Department of Biosciences, University of Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Antonia Chiarore
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Cristiana Rizzi
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Luigi Musco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, Stazione Idrobiologica 'Umberto d'Ancona', University of Padova, Chioggia, Italy.
| |
Collapse
|
5
|
Signorini SG, Munari M, Federico L, Farè F, Fontana M, Caruso D, Freitas R, Paciello S, D'Aniello I, Gambi MC, Della Torre C. Living under natural conditions of ocean acidification entails energy expenditure and oxidative stress in a mussel species. MARINE POLLUTION BULLETIN 2024; 203:116470. [PMID: 38728956 DOI: 10.1016/j.marpolbul.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
We investigated the health conditions of the Mediterranean mussel Mytilus galloprovincialis recruited in the CO2 vents system of Castello Aragonese at Ischia Island (Mediterranean Sea). Individuals of M. galloprovincialis were sampled in three sites along the pH gradient (8.10, 7.7 and up to <7.4). Untargeted metabolomics and biochemical endpoints related to energetic metabolism, oxidative stress/damage, neurotoxicity and immune defense were analyzed. Corrosion of the valves occurred at low pH. A separation of the metabolome was observed along the pH gradient. Metabolites belonging to amino acids, nucleosides, lipids and organic osmolytes were significantly reduced in the organisms from the most acidified sites. The content of reactive oxygen species and the activity of glutathione peroxidase were reduced in organisms from the acidified sites compared to ambient pH, and no oxidative damage was induced. Overall results suggested the presence of an energy cost underpinning long-term survival in acidified conditions for this species.
Collapse
Affiliation(s)
- Silvia Giorgia Signorini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Chioggia, Venice, Italy
| | - Lorenzo Federico
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Fiorenza Farè
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy
| | - Manuela Fontana
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Unitech OMICs, Mass Spectrometry Facility, Università degli Studi di Milano, Milan, Italy; Department of Pharmacological and Molecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Rosa Freitas
- CESAM - Centre of Marine and Environmental Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Sofia Paciello
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Département de Sciences Biologiques, Université de Montréal, Montréal, Canada
| | - Ilaria D'Aniello
- Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Chioggia, Venice, Italy
| | | | - Camilla Della Torre
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
6
|
Gürkan M, Ertürk Gürkan S, Künili İE, Acar S, Özel OT, Düzgüneş ZD, Türe M. Evaluation of the health of Mediterranean mussels (Mytilus galloprovincialis Lamarck, 1819) distributed in the Çanakkale strait, Turkey. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106492. [PMID: 38598959 DOI: 10.1016/j.marenvres.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
The observation of mortality in Mediterranean mussels (Mytilus galloprovincialis) distributed in the Çanakkale Strait in recent years was influential in developing the research question for this study. In this study, the presence of bacteria (Vibrio spp.) and parasites (Marteilia spp. and Haplosporidium spp.) in mussels collected from Kumkale, Kepez, and Umurbey stations in the Çanakkale Strait was investigated seasonally. Microbiological findings, histopathology, oxidative stress enzymes and their gene expressions, lipid peroxidation, lysosomal membrane stability, and changes in haemolymph were examined. In summer samples, both the defence system and the extent of damage were higher in gill tissue. In winter samples, enzyme activities and lipid peroxidation were found to be predominantly higher in digestive gland tissues. Histological examinations and Hemacolor staining revealed the presence of protozoan cysts, and for bacterial examination, molecular analysis performed after culturing revealed the presence of 7 Vibrio species. While the total numbers of heterotrophic bacteria detected in all samples were at acceptable levels, the predominance of Vibrio spp. numbers among the total heterotrophic bacteria detected in almost all samples were noteworthy. The total hemocyte count was calculated as 5.810(4)±0.58 (cells/mm3) in winter and 7.210(4)±1.03 (cells/mm3) in summer. These factors are considered to be possible causes of mussel mortality.
Collapse
Affiliation(s)
- Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkiye.
| | - İbrahim Ender Künili
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Fishing and Fish Processing Technology, Çanakkale, Turkiye
| | - Seçil Acar
- Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology, Department of Marine Sciences and Limnology, Çanakkale, Turkiye
| | - Osman Tolga Özel
- Central Fisheries Research Institute, Department of Aquaculture, Trabzon, Turkiye
| | - Zehra Duygu Düzgüneş
- Central Fisheries Research Institute, Department of Breeding and Genetics, Trabzon, Turkiye
| | - Mustafa Türe
- Central Fisheries Research Institute, Department of Fisheries Health, Trabzon, Turkiye
| |
Collapse
|
7
|
Russo T, Coppola F, Paris D, De Marchi L, Meucci V, Motta A, Carbone M, Di Cosmo A, Soares AMVM, Pretti C, Mollo E, Freitas R, Polese G. Exploring toxicological interactions in a changing sea: The case of the alkaloids caffeine and caulerpin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169190. [PMID: 38092204 DOI: 10.1016/j.scitotenv.2023.169190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
The bisindolic alkaloid caulerpin (CAU) is a bioactive compound isolated from green algae of the genus Caulerpa that are highly invasive in the Mediterranean Sea. On the other side, the purine alkaloid caffeine (CAF) is one of the most globally consumed psychoactive substances and a widespread anthropogenic water pollutant. Both compounds display a large panel of biological properties and are well known to accumulate in the tissues of aquatic organisms and, in certain circumstances, co-occur in the human diet. On this premise, the present study aimed to investigate possible synergistic interactions between CAU and CAF by using the bivalve Mytilus galloprovincialis as a model organism. Mussels were exposed to CAF via medium while they were fed with food enriched with CAU. After treatments, biochemical analysis confirmed the toxic potential of CAF, with increased AChE activity and lipid peroxidation. Also, histopathological alterations were observed in the gills and digestive tubules. The NMR-based metabolomics analysis detected higher levels of free amino acids under CAF treatments. Conversely, the food administration of CAU did not affect the above toxicological biomarkers. In addition, we did not observe any cumulative effect between CAF and CAU toward increased cellular damage and neurotoxicity. On the other hand, a possible action of CAU in decreasing CAF toxicity could be hypothesized based on our results. This hypothesis is supported by the activity of CAU as an agonist of peroxisome proliferator-activated receptors (PPARs). PPARs mediate xenobiotic detoxification via cytochromes P450, which is involved in CAF metabolism. Overall, the results obtained not only rule out any cumulative adverse effects of CAF and CAU but also encourage further research to evaluate the possible use of CAU, a compound easily obtained through the valorization of biomass from invasive species, as a food additive to improve the clearance of xenobiotics.
Collapse
Affiliation(s)
- Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Francesca Coppola
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Marianna Carbone
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Ernesto Mollo
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, NA, Italy
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
8
|
Baracchini C, Messager L, Stocker P, Leignel V. The Impacts of the Multispecies Approach to Caffeine on Marine Invertebrates. TOXICS 2023; 12:29. [PMID: 38250985 PMCID: PMC10823422 DOI: 10.3390/toxics12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Caffeine is one of the most consumed substances by humans through foodstuffs (coffee, tea, drugs, etc.). Its human consumption releases a high quantity of caffeine into the hydrological network. Thus, caffeine is now considered an emergent pollutant sometimes found at high concentrations in oceans and seas. Surprisingly, little research has been conducted on the molecular responses induced by caffeine in marine organisms. We studied, in laboratory conditions, six phylogenetically distant species that perform distinct ecological functions (Actinia equina and Aulactinia verrucosa (cnidarians, predator), Littorina littorea (gastropod, grazer), Magallana gigas (bivalve, filter-feeder), and Carcinus maenas and Pachygrapsus marmoratus (crabs, predator and scavenger)) subjected to caffeine exposure. The antioxidant responses (catalase, CAT; glutathione peroxidase, GPx; superoxide dismutase, SOD), lipid peroxidation (MDA), and the acetylcholinesterase (AChE) activity were estimated when the organisms were exposed to environmental caffeine concentrations (5 μg/L (low), 10 μg/L (high)) over 14 days. Differential levels of responses and caffeine effects were noted in the marine invertebrates, probably in relation to their capacity to metabolization the pollutant. Surprisingly, the filter feeder (M. gigas, oyster) did not show enzymatic responses or lipid peroxidation for the two caffeine concentrations tested. The marine gastropod (grazer) appeared to be more impacted by caffeine, with an increase in activities for all antioxidative enzymes (CAT, GPx, SOD). In parallel, the two cnidarians and two crabs were less affected by the caffeine contaminations. However, caffeine was revealed as a neurotoxic agent to all species studied, inducing high inhibition of AChE activity. This study provides new insights into the sublethal impacts of caffeine at environmentally relevant concentrations in marine invertebrates.
Collapse
Affiliation(s)
| | | | | | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Venue Olivier Messiaen, 72085 Le Mans, France; (C.B.); (P.S.)
| |
Collapse
|
9
|
Gendre H, Palos Ladeiro M, Geffard A, Poret A, Le Foll F, Ben Cheikh Y. Modulation of haemocyte motility by chemical and biological stresses in Mytilus edulis and Dreissena polymorpha. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108919. [PMID: 37422276 DOI: 10.1016/j.fsi.2023.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Mussels are constantly exposed to various pollutants in the environment, which can impair their immune defences against microbes and thus threaten their survival. In this study, we expand the insight into a key parameter of immune response in two mussel species by exploring the impact of exposure to pollutants or bacteria or simultaneous chemical and biological exposure on haemocyte motility. Basal haemocyte velocity in primary culture was high and increasing over time in Mytilus edulis (mean cell speed of 2.32 μm/min ± 1.57) whereas Dreissena polymorpha showed a constant and rather low cell motility with time (mean cell speed of 0.59 μm/min ± 0.1). In the presence of bacteria, the motility of haemocytes was instantly enhanced and slowed down after 90 min for M. edulis. In contrast, in vitro exposure of haemocytes to chemicals, either Bisphenol A, oestradiol, copper, or caffeine, induced an inhibition of cell motility in both mussel species. Finally, the cellular activation observed during bacterial challenges was inhibited by simultaneous exposure to bacteria and pollutants. Overall, our results indicate that chemical contaminants can alter haemocyte migration in mussels which can weaken their response to pathogens and therefore increase their susceptibility to infectious diseases.
Collapse
Affiliation(s)
- Héloïse Gendre
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France; Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Mélissa Palos Ladeiro
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France
| | - Agnès Poret
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Frank Le Foll
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Yosra Ben Cheikh
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France.
| |
Collapse
|
10
|
Afsa S, De Marco G, Cristaldi A, Giannetto A, Galati M, Billè B, Conti GO, Ben Mansour H, Ferrante M, Cappello T. Single and combined effects of caffeine and salicylic acid on mussel Mytilus galloprovincialis: Changes at histomorphological, molecular and biochemical levels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104167. [PMID: 37286067 DOI: 10.1016/j.etap.2023.104167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Caffeine (CAF) and salicylic acid (SA) are frequently detected in waterbody, though information on their biological impact is poor. This work assesses the effects of CAF (5ng/L to 10µg/L) and SA (0.05µg/L to 100µg/L) alone and combined as CAF+SA (5ng/L+0.05µg/L to 10µg/L+100µg/L) on mussel Mytilus galloprovincialis under 12-days exposure by histomorphology of digestive gland and oxidative stress defense at molecular and biochemical levels. Besides evaluating tissue accumulation, absence of histomorphological damage and haemocyte infiltration highlighted activation of defensive mechanisms. Up-regulation of Cu/Zn-sod, Mn-sod, cat and gst combined with increased catalase and glutathione S-transferase activity were found in CAF-exposed mussels, while SA reduced ROS production and mitochondrial activity. CAF+SA exposure induced differential responses, and the integrated biomarker response (IBR) revealed more pronounced effects of SA than CAF. These results enlarge knowledge on pharmaceuticals impact on non-target organisms, emphasizing the need for proper environmental risk assessment.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Cristaldi
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Margherita Ferrante
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
11
|
Hossain MA, Chowdhury T, Chowdhury G, Schneider P, Hussain M, Das B, Iqbal MM. Impact of Pb Toxicity on the Freshwater Pearl Mussel, Lamellidens marginalis: Growth Metrics, Hemocyto-Immunology, and Histological Alterations in Gill, Kidney, and Muscle Tissue. TOXICS 2023; 11:475. [PMID: 37368575 DOI: 10.3390/toxics11060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Pb is one of the most extensively used harmful heavy metals in Bangladesh, and its occurrence in waters affects aquatic organisms significantly. The tropical pearl mussel, Lamellidens marginalis, was exposed to different concentrations (T1 21.93 mgL-1, T2 43.86 mgL-1, and T3 87.72 mgL-1) of Pb(NO3)2 and was evaluated against a control C 0 mgL-1 of Pb(NO3)2, followed by a 96 h acute toxicity test. The LC50 value was recorded as 219.32 mgL-1. The physicochemical parameters were documented regularly for each treatment unit. The values of % SGR, shell weight, soft tissue wet weight, and weight gain remained statistically higher for the control group in comparison with the treatment. No mortality was noted for control units, while a gradually decreased survival rate was recorded for the different treatment groups. Fulton's condition factor was recorded as highest in the control and lowest in the T3 unit, while the condition indices did not vary between the control and treatment groups. The hemocyte was accounted as maximum in the control and T1, while minimum in T2 and T3. The serum lysosomal parameters also followed a similar pattern, and a significantly low level of lysosomal membrane stability, and serum lysosome activity was noted for T3 and T2 units in comparison to the control group. The histology of the gill, kidney, and muscle was well structured in the control group, while distinct pathologies were observed in the gill, kidney, and muscle tissue of different treatment groups. The quantitative comparison revealed that the intensity of pathological alteration increased as the dosage of Pb increased. The current study, therefore, indicated that intrusion of Pb(NO3)2 in the living medium significantly alters growth performance and hemocyte counts, and chronic toxicity induces histomorphological abnormalities in vital organs.
Collapse
Affiliation(s)
- Mohammad Amzad Hossain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Toma Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Gourab Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Petra Schneider
- Department for Water, Environment, Civil Engineering and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstraße 2, 39114 Magdeburg, Germany
| | - Monayem Hussain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Bipresh Das
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammed Mahbub Iqbal
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
12
|
Gendre H, Ben Cheikh Y, Le Foll F, Geffard A, Palos Ladeiro M. Comparative immune responses of blue mussel and zebra mussel haemocytes to simultaneous chemical and bacterial exposure. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108654. [PMID: 36868539 DOI: 10.1016/j.fsi.2023.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Biomonitoring at the scale of the aquatic continuum and based on biomarkers, requires various representative species and a knowledge of their sensitivity to contaminants. Mussel immunomarkers are established tools for evaluating immunotoxic stress, but little is known about the consequences of an immune activation by local microorganisms on their response to pollution. This study aims to compare the sensitivity of cellular immunomarkers in two mussel species from different environments, the marine mussel Mytilus edulis (blue mussel) and the freshwater mussel Dreissena polymorpha (zebra mussel), to chemical stressors combined with bacterial challenge. Haemocytes were exposed ex vivo to the contaminants (bisphenol A, caffeine, copper chloride, oestradiol, ionomycin) for 4 h. The chemical exposures were coupled with simultaneous bacterial challenges (Vibrio splendidus and Pseudomonas fluorescens) to trigger activation of the immune response. Cellular mortality, phagocytosis efficiency and phagocytosis avidity were then measured by flow cytometry. The two mussel species had different basal levels since D. polymorpha showed higher cell mortality than M. edulis (23.9 ± 11% and 5.5 ± 3% dead cells respectively), and lower phagocytosis efficiency (52.6 ± 12% and 62.2 ± 9%), but similar phagocytosis avidity (17.4 ± 5 and 13.4 ± 4 internalised beads). Both bacterial strains led to an increase in cellular mortality (+8.4% dead cells in D. polymorpha, +4.9% in M. edulis), as well an activation of phagocytosis (+9.2% of efficient cells in D. polymorpha, +6.2% efficient cells and +3 internalised beads per cell in M. edulis). All chemicals triggered an increase in haemocyte mortality and/or phagocytotic modulations, except for bisphenol A. The two species differed in the amplitude of their response. The addition of a bacterial challenge significantly altered cell responses to chemicals with synergetic and antagonistic variations compared to a single exposure, depending on the compound used and the mussel species. This work highlights the species-specific sensitivity of mussel immunomarkers to contaminants, with or without bacterial challenge, and the necessity of considering the presence of in natura non-pathogenic microorganisms for future in situ applications of immunomarkers.
Collapse
Affiliation(s)
- Héloïse Gendre
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, SEBIO, UMR-I 02, Reims, France; Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Yosra Ben Cheikh
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Frank Le Foll
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, SEBIO, UMR-I 02, Reims, France
| | - Mélissa Palos Ladeiro
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, SEBIO, UMR-I 02, Reims, France.
| |
Collapse
|
13
|
Palombo C, Chiarore A, Ciscato M, Asnicar D, Mirasole A, Fabbrizzi E, Teixidó N, Munari M. Thanks mum. Maternal effects in response to ocean acidification of sea urchin larvae at different ecologically relevant temperatures. MARINE POLLUTION BULLETIN 2023; 188:114700. [PMID: 36773584 DOI: 10.1016/j.marpolbul.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/09/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Cristina Palombo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Department of Environmental Biology, University of Rome "La Sapienza", Rome, Italy
| | - Antonia Chiarore
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy.
| | - Maria Ciscato
- Department of Biology, University of Padova, Padova, Italy
| | - Davide Asnicar
- Department of Biology, University of Padova, Padova, Italy; Aquatic Bioscience, Huntsman Marine Science Centre, 1 Lower Campus Road, St Andrews, New Brunswick, Canada E5B 2L7.
| | - Alice Mirasole
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy.
| | - Erika Fabbrizzi
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Nuria Teixidó
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France.
| | - Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia, Naples, Italy; Department of Integrative Marine Ecology, Fano Marine Centre, Stazione Zoologica Anton Dohrn, Fano, Italy.
| |
Collapse
|
14
|
Zapata Vívenes E, Sánchez G, Nusetti O, Marcano LDV. Modulation of innate immune responses in the flame scallop Ctenoides scaber (Born, 1778) caused by exposure to used automobile crankcase oils. FISH & SHELLFISH IMMUNOLOGY 2022; 130:342-349. [PMID: 36122641 DOI: 10.1016/j.fsi.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The used automobile crankcase oils are potential sources of contaminant elements for the coastal-marine ecosystems, affecting mainly the immunological system of organisms that feed by filtration, e. g. scallops. This study examined the effects of a water-soluble fraction of used automobile crankcase oils (WSF-UACO) on innate cellular- and humoral immune responses of the flame scallop Ctenoides scaber. The scallops were exposed to ascending concentrations of 0, 0.001, 0.01, and 0.1 of WSF-UACO under a static system of aquaria during 7 and 13 d. The viability, haemocyte total count (HTC), lysosomal membrane destabilization (LMD), phagocytosis, and protein concentration in hemolymph samples withdrawn taken from the blood sinus as well as lysozyme activity of the digestive gland were measured as immune endpoints. A decrease in cellular immune competence in scallops exposed to WSF-UACO was observed, with significant impairment of viability, HTC, and phagocytosis. LMD index increased about exposure concentrations, and plasma protein concentrations augmented to 0.01 and 0.1% during 13 d. Lysozyme activity increased in scallops exposed to WSF-UVCO during 7 d, to level off in the chronic period. Lysozyme activity and enhanced plasma proteins could act as compensatory responses when cell parameters tend to fall, helping to the regulation of microbial microflora and possible invasion of pathogenic microbes as well as defense against xenobiotics. The results demonstrate that the immunological responses of C. scaber are highly sensitive to the complex chemical mixture of contaminants, and it could be used for evaluating biological risks of hazardous xenobiotics in tropical marine environments. Republic of Ecuador.
Collapse
Affiliation(s)
- Edgar Zapata Vívenes
- Grupo de Investigación, Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Ecuador.
| | - Gabriela Sánchez
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| | - Osmar Nusetti
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| | - Leida Del Valle Marcano
- Laboratorio de Bioquímica y Ecotoxicología, Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela.
| |
Collapse
|
15
|
Munari M, Chiarore A, Signorini SG, Cannavacciuolo A, Nannini M, Magni S, Binelli A, Gambi MC, Della Torre C. Surviving in a changing ocean. Tolerance to acidification might affect the susceptibility of polychaetes to chemical contamination. MARINE POLLUTION BULLETIN 2022; 181:113857. [PMID: 35749979 DOI: 10.1016/j.marpolbul.2022.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/26/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to assess the combined effects of ocean acidification (OA) and pollution to the polychaete Syllis prolifera inhabiting the CO2 vent system of the Castello Aragonese (Ischia Island, Italy). We investigated the basal activities of antioxidant enzymes in organisms from the acidified site and from an ambient-pH control site in two different periods of the year. Results showed a limited influence of acidified conditions on the functionality of the antioxidant system. We then investigated the responsiveness of individuals living inside the CO2 vent compared to those from the control to face exposure to acetone and copper. Results highlighted a higher susceptibility of organisms from the vent to acetone and a different response of antioxidant enzymes in individuals from the two sites. Conversely, a higher tolerance to copper was observed in polychaetes from the acidified-site with respect to controls, but any significant oxidative stress was induced at sublethal concentrations.
Collapse
Affiliation(s)
- Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Antonia Chiarore
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy; Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Matteo Nannini
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
16
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153591. [PMID: 35122849 DOI: 10.1016/j.scitotenv.2022.153591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In coastal systems, organisms are exposed to a multitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Ocean Acidification, but Not Environmental Contaminants, Affects Fertilization Success and Sperm Motility in the Sea Urchin Paracentrotus lividus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ocean acidification poses an increasing concern for broadcast spawning species that release gametes in the water column where fertilization occurs. Indeed, the functionality of gametes and their interactions may be negatively affected by reduced pH. Susceptibility to other environmental stressors, such as pollutants, may be also altered under acidified conditions, resulting in more detrimental effects. To verify this hypothesis, combined exposures to CO2-driven acidification and environmentally relevant concentrations (0.5 µg/L) of three contaminants (caffeine, diclofenac, and PFOS, all singularly or in mixture) were carried out to highlight potential negative effects on fertilization success and motility of sperm in the sea urchin Paracentrotus lividus. Our results showed a significant reduction in the percentage of fertilized eggs when sperm were pre-exposed to reduced pH (ambient pH minus 0.4 units) compared to that of controls (ambient, pH = 8.1). Sperm speed and motility also decreased when sperm were activated and then exposed at reduced pH. Conversely, at both pH values tested, no significant effect due to the contaminants, nor of their interaction with pH, was found on any of the biological endpoints considered.
Collapse
|
18
|
Vieira LR, Soares AMVM, Freitas R. Caffeine as a contaminant of concern: A review on concentrations and impacts in marine coastal systems. CHEMOSPHERE 2022; 286:131675. [PMID: 34358890 DOI: 10.1016/j.chemosphere.2021.131675] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Caffeine has been identified as emerging contaminant of concern due to its widespread occurrence in the aquatic environment and potential to be biologically active. Recently, these concerns have been translated in an increasing research on its occurrence and effects on biota. However, there is still a limited knowledge on seawater matrices and the implications of caffeine presence in coastal and marine ecosystems are not fully known. The present review aims to fill these knowledge gaps, analysing the existing literature regarding the occurrence, effects and potential risks of caffeine residues to coastal ecosystems, contributing to the risk assessment of this psychoactive drug in the aquatic environment. The analysed literature reported caffeine concentrations in the coastal ecosystems, raising high concerns about the potential adverse impacts on the ecological safety and human health. Caffeine has been found in tissues from coastal and marine biota including microalgae, coral reefs, bivalves and fish due to bioaccumulation after chronic, long-term exposures in a contaminated environment. Additionally, caffeine residues had been demonstrated to have adverse impacts on aquatic organisms, at environmentally realistic concentrations, inducing oxidative stress and lipid peroxidation, neurotoxicity, changing energy reserves and metabolic activity, affecting reproduction and development and, in some cases, causing mortality. Considering the increasing adverse impacts of caffeine pollution in the coastal environment, this review highlights the urgent need to minimize the increasing load of caffeine to the aquatic ecosystems; being imperative the implementation of scientific programs and projects to classify effectively the caffeine as a high-priority environmentally hazardous emerging pollutant.
Collapse
Affiliation(s)
- L R Vieira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - R Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Zanella HG, Spessato L, Lopes GK, Yokoyama JT, Silva MC, Souza PS, Ronix A, Cazetta AL, Almeida VC. Caffeine adsorption on activated biochar derived from macrophytes (Eichornia crassipes). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Capolupo M, Gunaalan K, Booth AM, Sørensen L, Valbonesi P, Fabbri E. The sub-lethal impact of plastic and tire rubber leachates on the Mediterranean mussel Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117081. [PMID: 33848903 DOI: 10.1016/j.envpol.2021.117081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Ocean contamination by synthetic polymers can represent a risk for the fitness of marine species due to the leaching of chemical additives. This study evaluated the sub-lethal effects of plastic and rubber leachates on the mussel Mytilus galloprovincialis through a battery of biomarkers encompassing lysosomal endpoints, oxidative stress/detoxification parameters, and specific responses to metals/neurotoxicants. Mussels were exposed for 7 days to leachates from car tire rubber (CTR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) and polyvinyl chloride (PVC), containing organic additives and metals in the ng-μg/L range. The leachate exposure affected general stress parameters, including the neutral lipid content (all leachates), the lysosomal membrane stability (PS, PP, PVC and CTR leachates) and lysosomal volume (PP, PVC and TR leachates). An increased content of the lipid peroxidation products malondialdehyde and lipofuscin was observed in mussels exposed to PET, PS and PP leachates, and PP, PVC and CTR leachates, respectively. PET and PP leachates increased the activity of the phase-II metabolism enzyme glutathione S-transferase, while a decreased acetylcholinesterase activity was induced by PVC leachates. Data were integrated in the mussel expert system (MES), which categorizes the organisms' health status based on biomarker responses. The MES assigned healthy status to mussels exposed to PET leachates, low stress to PS leachates, and moderate stress to PP, CTR and PVC leachates. This study shows that additives leached from selected plastic/rubber polymers cause sub-lethal effects in mussels and that the magnitude of these effects may be higher for CTR, PVC and PP due to a higher content and release of metals and organic compounds.
Collapse
Affiliation(s)
- Marco Capolupo
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Kuddithamby Gunaalan
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Andy M Booth
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Lisbet Sørensen
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Paola Valbonesi
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Elena Fabbri
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy.
| |
Collapse
|
21
|
Piscopo R, Coppola F, Almeida Â, De Marchi L, Russo T, Esteves VI, Soares AMVM, Pretti C, Chiellini F, Polese G, Freitas R. Effects of temperature on caffeine and carbon nanotubes co-exposure in Ruditapes philippinarum. CHEMOSPHERE 2021; 271:129775. [PMID: 33736227 DOI: 10.1016/j.chemosphere.2021.129775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
In the marine environment, organisms are exposed to a high and increasing number of different contaminants that can interact among them. In addition, abiotic factors can change the dynamics between contaminants and organisms, thus increasing or even decreasing the toxic effect of a particular compound. In this study, the effects of caffeine (CAF) and functionalized multi-walled carbon nanotubes (f-MWCNTs) induced in the clam Ruditapes philippinarum were evaluated, acting alone and in combination (MIX), under two temperature levels (18 and 21 °C). To assess the impact of such compounds, their interaction and the possible influence of temperature, biochemical and histopathological markers were investigated. The effects of f-MWCNTs and caffeine appear to be clearly negative at the control temperature, with lower protein content in contaminated clams and a significant decrease in their metabolism when both pollutants were acting in combination. Also, at control temperature, clams exposed to pollutants showed increased antioxidant capacity, especially when caffeine was acting alone, although cellular damages were still observed at CAF and f-MWCNTs treatments. Increased biotransformation capacity at 18 °C and MIX treatment may explain lower caffeine concentration observed. At increased temperature differences among treatments were not so evident as at 18 °C, with a similar biological pattern among contaminated and control clams. Higher caffeine accumulation at MIX treatment under warming conditions may result from clams' inefficient biotransformation capacity when exposed to increased temperatures.
Collapse
Affiliation(s)
- Raffaele Piscopo
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal; Department of Biology, University of Naples Federico II, 80126, Italy
| | - Francesca Coppola
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Ângela Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Lucia De Marchi
- Department of Biology, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Portugal
| | | | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, 56126, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal.
| |
Collapse
|
22
|
Rodríguez-Romero A, Viguri JR, Calosi P. Acquiring an evolutionary perspective in marine ecotoxicology to tackle emerging concerns in a rapidly changing ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142816. [PMID: 33092841 DOI: 10.1016/j.scitotenv.2020.142816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Tens of thousands of anthropogenic chemicals and wastes enter the marine environment each year as a consequence of the ever-increasing anthropogenic activities and demographic growth of the human population, which is majorly concentrated along coastal areas. Marine ecotoxicology has had a crucial role in helping shed light on the fate of chemicals in the environment, and improving our understanding of how they can affect natural ecosystems. However, chemical contamination is not occurring in isolation, but rather against a rapidly changing environmental horizon. Most environmental studies have been focusing on short-term within-generation responses of single life stages of single species to single stressors. As a consequence, one-dimensional ecotoxicology cannot enable us to appreciate the degree and magnitude of future impacts of chemicals on marine ecosystems. Current approaches that lack an evolutionary perspective within the context of ongoing and future local and global stressors will likely lead us to under or over estimations of the impacts that chemicals will exert on marine organisms. It is therefore urgent to define whether marine organisms can acclimate, i.e. adjust their phenotypes through transgenerational plasticity, or rapidly adapt, i.e. realign the population phenotypic performances to maximize fitness, to the new chemical environment within a selective horizon defined by global changes. To foster a significant advancement in this research area, we review briefly the history of ecotoxicology, synthesis our current understanding of the fate and impact of contaminants under global changes, and critically discuss the benefits and challenges of integrative approaches toward developing an evolutionary perspective in marine ecotoxicology: particularly through a multigenerational approach. The inclusion of multigenerational studies in Ecological Risk Assessment framework (ERA) would provide significant and more accurately information to help predict the risks of pollution in a rapidly changing ocean.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Departamento de Química Analítica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, 11510 Cádiz, Spain; Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Spain.
| | - Javier R Viguri
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Piero Calosi
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
23
|
Abo-Al-Ela HG, Faggio C. MicroRNA-mediated stress response in bivalve species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111442. [PMID: 33038725 DOI: 10.1016/j.ecoenv.2020.111442] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Bivalve mollusks are important aquatic organisms, which are used for biological monitoring because of their abundance, ubiquitous nature, and abilities to adapt to different environments. MicroRNAs (miRNAs) are small noncoding RNAs, which typically silence the expression of target genes; however, certain miRNAs directly or indirectly upregulate their target genes. They are rapidly modulated and play an essential role in shaping the response of organisms to stresses. Based on the regulatory function and rapid alteration of miRNAs, they could act as biomarkers for biotic and abiotic stress, including environmental stresses and contaminations. Moreover, mollusk, particularly hemocytes, rapidly respond to environmental changes, such as pollution, salinity changes, and desiccation, which makes them an attractive model for this purpose. Thus, bivalve mollusks could be considered a good animal model to examine a system's response to different environmental conditions and stressors. miRNAs have been reported to adjust the adaptation and physiological functions of bivalves during endogenous and environmental stressors. In this review, we aimed to discuss the potential mechanisms underlying the response of bivalves to stressors and how miRNAs orchestrate this process; however, if necessary, other organisms' response is included to explain specific processes.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|