1
|
Ghosh S, Zheng M, He J, Wu Y, Zhang Y, Wang W, Shen J, Yeung KWK, Neelakantan P, Xu C, Qiao W. Electrically-driven drug delivery into deep cutaneous tissue by conductive microneedles for fungal infection eradication and protective immunity. Biomaterials 2024; 314:122908. [PMID: 39454504 DOI: 10.1016/j.biomaterials.2024.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Fungal infections affect over 13 million people worldwide and are responsible for 1.5 million deaths annually. Some deep cutaneous fungal infections may extend the dermal barriers to cause systemic infection, resulting in substantial morbidity and mortality. However, the management of deep cutaneous fungal infection is challenging and yet overlooked by traditional treatments, which only offer limited drug availability within deep tissue. In this study, we have developed an electrically stimulated microneedle patch to deliver miconazole into the subcutaneous layer. We tested its antifungal efficacy using in vitro and ex vivo models that mimic fungal infection. Moreover, we confirmed its anti-fungal and wound-healing effects in a murine subcutaneous fungal infection model. Furthermore, our findings also showed that the combination of miconazole and applied current synergistically stimulated the nociceptive sensory nerves, thereby activating protective cutaneous immunity mediated by dermal dendritic and γδ-T cells. Collectively, this study provides a new strategy for minimally invasive delivery of therapeutic agents and the modulation of the neuro-immune axis in deep tissue.
Collapse
Affiliation(s)
- Sumanta Ghosh
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mengjia Zheng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jiahui He
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yefeng Wu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yaming Zhang
- Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Weiping Wang
- Department of Pharmacy and Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
2
|
Codru IR, Vintilă BI, Sava M, Bereanu AS, Neamțu SI, Bădilă RM, Bîrluțiu V. Optimizing Diagnosis and Management of Ventilator-Associated Pneumonia: A Systematic Evaluation of Biofilm Detection Methods and Bacterial Colonization on Endotracheal Tubes. Microorganisms 2024; 12:1966. [PMID: 39458275 PMCID: PMC11509713 DOI: 10.3390/microorganisms12101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Healthcare-associated infections, such as ventilator-associated pneumonia and biofilm formation on intubation cannulas, impose significant burdens on hospitals, affecting staffing, finances, and patient wellbeing, while also increasing the risk of patient mortality. We propose a research study aimed at exploring various methodologies for detecting these infections, discovered in the biofilm on medical devices, particularly tracheal cannulas, and understanding the role of each method in comprehending these infections from an etiological perspective. Our investigation also involves an analysis of the types of endotracheal tubes utilized in each case, the bacteria species identified, and strategies for combating biofilm-associated infections. The potential impact of our research is the substantial improvement of patient care through enhanced diagnosis and management of these infections.
Collapse
Affiliation(s)
- Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Alina Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Sandra Ioana Neamțu
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Raluca Maria Bădilă
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| | - Victoria Bîrluțiu
- Faculty of Medicine, Lucian Blaga University of Sibiu,550169 Sibiu, Romania; (I.R.C.); (A.S.B.); (V.B.)
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania; (S.I.N.); (R.M.B.)
| |
Collapse
|
3
|
Aldalin HK, Alharbi NK, Hadi AM, Sharaf M, Mekky AE, Ragab SM, Mahmoud N, Al-Hoshani N, Alwutayd KM, Abdelnour SA. Bioactivity screening and molecular identification of Anchusa milleri L. sunflower crud extract for antioxidant, antiviral, antimicrobial, and anticancer properties. Nat Prod Res 2024:1-14. [PMID: 39180330 DOI: 10.1080/14786419.2024.2390608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The current study evaluates hot water A. milleri sunflower extracts at 40 °C temperature (AMSE40) for their antibacterial, anti-biofilm, antiviral and anticancer activities. AMSE40 exhibited excellent antioxidant activity with an IC50 of 1.17 mg/mL (ascorbic acid) and was found to be rich in phytochemical compounds such as alkaloids, flavonoids, phenolics, saponins, and tannins, with concentrations of 1.23%, 351.60 mg/g, 152.50 mg/g, 0.98%, and 146.35 mg/g, respectively. AMSE40 showed strong antibacterial and anti-biofilm activity against four multidrug-resistant isolates, comprising E. faecalis, S. aureus, P. aeruginosa, and K. pneumonia with minimum bactericidal concentrations (25 mg/mL) and minimum inhibitory concentrations (12.5 mg/mL) for all isolates. The AMSE40 (62.5 µg/mL) showed antiviral efficacy against CoxB4 (9.1%) and HSV-1 (34.4%). Additionally, AMSE40 induced DNA fragmentation in liver cell lines, indicating cell death. The cytotoxic concentration of AMSE40 had a mild impact on Vero (283.2 µg) and HepG2 cells (76.4 µg). A. milleri has the potential to serve as a natural and eco-friendly source for innovative pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Hammad K Aldalin
- Department of Medical Support, Al-Karak University College, Al-Balqa Applied University, Al-Karak, Jordan
| | - Nada K Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ameer M Hadi
- DNA Research Center, University of Babylon, Al-Hilla, Iraq
| | - Mohamed Sharaf
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Alsayed E Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Sherif M Ragab
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nashaat Mahmoud
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Khairiah M Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
5
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Domnin M, Aslanli A. "Stop, Little Pot" as the Motto of Suppressive Management of Various Microbial Consortia. Microorganisms 2024; 12:1650. [PMID: 39203492 PMCID: PMC11356704 DOI: 10.3390/microorganisms12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
The unresolved challenges in the development of highly efficient, stable and controlled synthetic microbial consortia, as well as the use of natural consortia, are very attractive for science and technology. However, the consortia management should be done with the knowledge of how not only to accelerate but also stop the action of such "little pots". Moreover, there are a lot of microbial consortia, the activity of which should be suppressively controlled. The processes, catalyzed by various microorganisms being in complex consortia which should be slowed down or completely cancelled, are typical for the environment (biocorrosion, landfill gas accumulation, biodegradation of building materials, water sources deterioration etc.), industry (food and biotechnological production), medical practice (vaginitis, cystitis, intestinal dysbiosis, etc.). The search for ways to suppress the functioning of heterogeneous consortia in each of these areas is relevant. The purpose of this review is to summarize the general trends in these studies regarding the targets and new means of influence used. The analysis of the features of the applied approaches to solving the main problem confirms the possibility of obtaining a combined effect, as well as selective influence on individual components of the consortia. Of particular interest is the role of viruses in suppressing the functioning of microbial consortia of different compositions.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia (O.S.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Dubljanin E, Zunic J, Vujcic I, Colovic Calovski I, Sipetic Grujicic S, Mijatovic S, Dzamic A. Host-Pathogen Interaction and Resistance Mechanisms in Dermatophytes. Pathogens 2024; 13:657. [PMID: 39204257 PMCID: PMC11357293 DOI: 10.3390/pathogens13080657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/14/2024] Open
Abstract
Dermatophytes are widely distributed in the environment, with an estimated prevalence of 20-25% of the the global population yearly. These fungi are keratinophilic and keratinolytic and cause the infection of keratin-rich structures such as skin, hair, and nails. The pattern of this infectious disease covers a wide spectrum from exposed individuals without symptoms to those with acutely inflammatory or non-inflammatory, chronic to invasive, and even life-threatening symptoms. This review summarizes current information on the pathogenicity, virulence factors, and drug resistance mechanisms associated with dermatophytes. A greater number of virulence factors of these fungi are important for the occurrence of infection and the changes that occur, including those regarding adhesins, the sulfite efflux pump, and proteolytic enzymes. Other virulence factors include mechanisms of evading the host defense, while the development of resistance to antifungal drugs is increasing, resulting in treatment failure. The investigation of host-pathogen interactions is essential for developing a more complete understanding of the mechanisms underlying dermatophyte pathogenesis and host response to inform the use of diagnostics methods and antifungal therapeutics to minimize the high fungal burden caused by dermatophytes and to control the spread of resistance.
Collapse
Affiliation(s)
- Eleonora Dubljanin
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Zunic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Isidora Vujcic
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivana Colovic Calovski
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Sipetic Grujicic
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, 11000 Belgrade, Serbia
| | - Stefan Mijatovic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Dzamic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Alhariry J, Kumar A, Yadav TC, Yadav E, Prasad R, Poluri KM, Gupta P. Tyrosol-gold nanoparticle functionalized acacia gum-PVA nanofibers for mitigation of Candida biofilm. Microb Pathog 2024; 193:106763. [PMID: 38925344 DOI: 10.1016/j.micpath.2024.106763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Increasing incidences of fungal infections and prevailing antifungal resistance in healthcare settings has given rise to an antifungal crisis on a global scale. The members of the genus Candida, owing to their ability to acquire sessile growth, are primarily associated with superficial to invasive fungal infections, including the implant-associated infections. The present study introduces a novel approach to combat the sessile/biofilm growth of Candida by fabricating nanofibers using a nanoencapsulation approach. This technique involves the synthesis of tyrosol (TYS) functionalized chitosan gold nanocomposite, which is then encapsulated into PVA/AG polymeric matrix using electrospinning. The FESEM, FTIR analysis of prepared TYS-AuNP@PVA/AG NF suggested the successful encapsulation of TYS into the nanofibers. Further, the sustained and long-term stability of TYS in the medium was confirmed by drug release and storage stability studies. The prepared nanomats can absorb the fluid, as evidenced by the swelling index of the nanofibers. The growth and biofilm inhibition, as well as the disintegration studies against Candida, showed 60-70 % biofilm disintegration when 10 mg of TYS-AuNP@PVA/AG NF was used, hence confirming its biological effectiveness. Subsequently, the nanofibers considerably reduced the hydrophobicity index and ergosterol content of the treated cells. Considering the challenges associated with the inhibition/disruption of fungal biofilm, the fabricated nanofibers prove their effectiveness against Candida biofilm. Therefore, nanocomposite-loaded nanofibers have emerged as potential materials that can control fungal colonization and could also promote healing.
Collapse
Affiliation(s)
- Jinan Alhariry
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Kumar
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248001, Uttarakhand, India
| | - Tara Chand Yadav
- Department of Electronics, Electric, and Automatic Engineering, Rovira I Virgili University (URV), Tarragona, 43003, Spain
| | - Emansi Yadav
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Payal Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248001, Uttarakhand, India.
| |
Collapse
|
8
|
Yamari I, Abchir O, Nour H, Khedraoui M, Rossafi B, Errougui A, Talbi M, Samadi A, Kouali MHE, Chtita S. Unveiling Moroccan Nature's Arsenal: A Computational Molecular Docking, Density Functional Theory, and Molecular Dynamics Study of Natural Compounds against Drug-Resistant Fungal Infections. Pharmaceuticals (Basel) 2024; 17:886. [PMID: 39065737 PMCID: PMC11279552 DOI: 10.3390/ph17070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Candida albicans and Aspergillus fumigatus are recognized as significant fungal pathogens, responsible for various human infections. The rapid emergence of drug-resistant strains among these fungi requires the identification and development of innovative antifungal therapies. We undertook a comprehensive screening of 297 naturally occurring compounds to address this challenge. Using computational docking techniques, we systematically analyzed the binding affinity of each compound to key proteins from Candida albicans (PDB ID: 1EAG) and Aspergillus fumigatus (PDB ID: 3DJE). This rigorous in silico examination aimed to unveil compounds that could potentially inhibit the activity of these fungal infections. This was followed by an ADMET analysis of the top-ranked compound, providing valuable insights into the pharmacokinetic properties and potential toxicological profiles. To further validate our findings, the molecular reactivity and stability were computed using the DFT calculation and molecular dynamics simulation, providing a deeper understanding of the stability and behavior of the top-ranking compounds in a biological environment. The outcomes of our study identified a subset of natural compounds that, based on our analysis, demonstrate notable potential as antifungal candidates. With further experimental validation, these compounds could pave the way for new therapeutic strategies against drug-resistant fungal pathogens.
Collapse
Affiliation(s)
- Imane Yamari
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Oussama Abchir
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Hassan Nour
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Meriem Khedraoui
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Bouchra Rossafi
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Abdelkbir Errougui
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Mohammed Talbi
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - MHammed El Kouali
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| | - Samir Chtita
- Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca P.O. Box 7955, Morocco; (I.Y.); (O.A.); (M.K.); (B.R.); (A.E.); (M.T.); (M.E.K.)
| |
Collapse
|
9
|
Wang D, Zeng N, Li C, Li Z, Zhang N, Li B. Fungal biofilm formation and its regulatory mechanism. Heliyon 2024; 10:e32766. [PMID: 38988529 PMCID: PMC11233959 DOI: 10.1016/j.heliyon.2024.e32766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
Fungal biofilm is a microbial community composed of fungal cells and extracellular polymeric substances (EPS). In recent years, fungal biofilms have played an increasingly important role in many fields. However, there are few studies on fungal biofilms and their related applications and development are still far from enough. Therefore, this review summarizes the composition and function of EPS in fungal biofilms, and improves and refines the formation process of fungal biofilms according to the latest viewpoints. Moreover, based on the study of Saccharomyces cerevisiae and Candida albicans, this review summarizes the gene regulation network of fungal biofilm synthesis, which is crucial for systematically understanding the molecular mechanism of fungal biofilm formation. It is of great significance to further develop effective methods at the molecular level to control harmful biofilms or enhance and regulate the formation of beneficial biofilms. Finally, the quorum sensing factors and mixed biofilms formed by fungi in the current research of fungal biofilms are summarized. These results will help to deepen the understanding of the formation process and internal regulation mechanism of fungal biofilm, provide reference for the study of EPS composition and structure, formation, regulation, group behavior and mixed biofilm formation of other fungal biofilms, and provide strategies and theoretical basis for the control, development and utilization of fungal biofilms.
Collapse
Affiliation(s)
- Dandan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510225, PR China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| |
Collapse
|
10
|
Dong W, Chen J, Liao X, Chen X, Huang L, Huang J, Huang R, Zhong S, Zhang X. Biodiversity, Distribution and Functional Differences of Fungi in Four Species of Corals from the South China Sea, Elucidated by High-Throughput Sequencing Technology. J Fungi (Basel) 2024; 10:452. [PMID: 39057337 PMCID: PMC11278478 DOI: 10.3390/jof10070452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recent studies have predominantly spotlighted bacterial diversity within coral microbiomes, leaving coral-associated fungi in the shadows of scientific inquiry. This study endeavors to fill this knowledge gap by delving into the biodiversity, distribution and functional differences of fungi associated with soft corals Cladiella krempfi and Sarcophyton tortuosum, gorgonian coral Dichotella gemmacea and stony coral Favia speciosa from the South China Sea. Leveraging high-throughput sequencing of fungal internal transcribed spacer-1 (ITS1) region of the rRNA gene, a total of 431 fungal amplicon sequence variants (ASVs) were identified in this study, which indicated that a large number of fungal communities were harbored in the South China Sea corals. Noteworthy among our findings is that 10 fungal genera are reported for the first time in corals, with Candolleomyces, Exophiala, Fomitopsis, Inaequalispora, Kneiffiella, Paraphaeosphaeria, and Yamadazyma belonging to the Ascomycota, and Cystobasidium, Psathyrella, and Solicoccozyma to the Basidiomycota. Moreover, significant differences (p < 0.05) of fungal communities were observed among the various coral species. In particular, the gorgonian coral D. gemmacea emerged as a veritable haven for fungal diversity, boasting 307 unique ASVs. Contrastingly, soft corals S. tortuosum and C. krempfi exhibited modest fungal diversity, with 36 and 21 unique ASVs, respectively, while the stony coral F. speciosa hosted a comparatively sparse fungal community, with merely 10 unique ASVs in total. These findings not only provide basic data on fungal diversity and function in the South China Sea corals, but also underscore the imperative of nuanced conservation and management strategies for coral reef ecosystems worldwide.
Collapse
Affiliation(s)
- Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiatao Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Liyu Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Jiayu Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.D.); (L.H.); (J.H.)
| |
Collapse
|
11
|
Piecuch A, Cal M, Ogórek R. Adhesion and biofilm formation by two clinical isolates of Trichosporon Cutaneum in various environmental conditions. Braz J Microbiol 2024; 55:1793-1800. [PMID: 38625517 PMCID: PMC11153463 DOI: 10.1007/s42770-024-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Trichosporon spp. is an emerging opportunistic pathogen and a common cause of both superficial and invasive infections. Although Trichosporon asahii is the most frequently isolated species, Trichosporon cutaneum is also widely observed, as it is the predominant agent in cases of white Piedra and onychomycosis. Trichosporon spp. is a known to produce biofilms, which serve as one of its virulence mechanisms, however, there is limited data available on biofilms formed by T. cutaneum. Thus, the aim of this study was to assess the adhesion and biofilm formation of two clinical isolates of T. cutaneum under various environmental conditions (including temperature, nutrient availability, and carbon source), as well as their tolerance to fluconazole. Adhesion was tested on common abiotic substrates (such as silicone, glass, and stainless steel), revealing that T. cutaneum readily adhered to all surfaces tested. CV staining was applied for the evaluation of the environment influence on biofilm efficiency and it was proved that the nutrient availability has a major impact. Additionaly, fluorescent staining was employed to visualize the morphology of T. cutaneum biofilm and its survival in the presence of fluconazole. Hyphae production was shown to play a role in elevated biofilm production in minimal medium and increased tolerance to fluconazole.
Collapse
Affiliation(s)
- Agata Piecuch
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Str 63/77, Wrocław, Poland.
| | - Magdalena Cal
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Str 63/77, Wrocław, Poland
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego Str 63/77, Wrocław, Poland
| |
Collapse
|
12
|
Pires ACMDS, Carvalho AR, Vaso CO, Mendes-Giannini MJS, Singulani JDL, Fusco-Almeida AM. Influence of Zinc on Histoplasma capsulatum Planktonic and Biofilm Cells. J Fungi (Basel) 2024; 10:361. [PMID: 38786716 PMCID: PMC11122510 DOI: 10.3390/jof10050361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 05/25/2024] Open
Abstract
Histoplasma capsulatum causes a fungal respiratory disease. Some studies suggest that the fungus requires zinc to consolidate the infection. This study aimed to investigate the influence of zinc and the metal chelator TPEN on the growth of Histoplasma in planktonic and biofilm forms. The results showed that zinc increased the metabolic activity, cell density, and cell viability of planktonic growth. Similarly, there was an increase in biofilm metabolic activity but no increase in biomass or extracellular matrix production. N'-N,N,N,N-tetrakis-2-pyridylmethylethane-1,2 diamine (TPEN) dramatically reduced the same parameters in the planktonic form and resulted in a decrease in metabolic activity, biomass, and extracellular matrix production for the biofilm form. Therefore, the unprecedented observations in this study highlight the importance of zinc ions for the growth, development, and proliferation of H. capsulatum cells and provide new insights into the role of metal ions for biofilm formation in the dimorphic fungus Histoplasma, which could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| | - Junya de Lacorte Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (A.R.C.); (C.O.V.); (M.J.S.M.-G.); (J.d.L.S.)
| |
Collapse
|
13
|
Aonofriesei F. Surfactants' Interplay with Biofilm Development in Staphylococcus and Candida. Pharmaceutics 2024; 16:657. [PMID: 38794319 PMCID: PMC11125353 DOI: 10.3390/pharmaceutics16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The capacity of micro-organisms to form biofilms is a pervasive trait in the microbial realm. For pathogens, biofilm formation serves as a virulence factor facilitating successful host colonization. Simultaneously, infections stemming from biofilm-forming micro-organisms pose significant treatment challenges due to their heightened resistance to antimicrobial agents. Hence, the quest for active compounds capable of impeding microbial biofilm development stands as a pivotal pursuit in biomedical research. This study presents findings concerning the impact of three surfactants, namely, polysorbate 20 (T20), polysorbate 80 (T80), and sodium dodecyl sulfate (SDS), on the initial stage of biofilm development in both Staphylococcus aureus and Candida dubliniensis. In contrast to previous investigations, we conducted a comparative assessment of the biofilm development capacity of these two taxonomically distant groups, predicated on their shared ability to reduce TTC. The common metabolic trait shared by S. aureus and C. dubliniensis in reducing TTC to formazan facilitated a simultaneous evaluation of biofilm development under the influence of surfactants across both groups. Our results revealed that surfactants could impede the development of biofilms in both species by disrupting the initial cell attachment step. The observed effect was contingent upon the concentration and type of compound, with a higher inhibition observed in culture media supplemented with SDS. At maximum concentrations (5%), T20 and T80 significantly curtailed the formation and viability of S. aureus and C. dubliniensis biofilms. Specifically, T20 inhibited biofilm development by 75.36% in S. aureus and 71.18% in C. dubliniensis, while T80 exhibited a slightly lower inhibitory effect, with values ranging between 66.68% (C. dubliniensis) and 65.54% (S. aureus) compared to the controls. Incorporating these two non-toxic surfactants into pharmaceutical formulations could potentially enhance the inhibitory efficacy of selected antimicrobial agents, particularly in external topical applications.
Collapse
Affiliation(s)
- Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 1, University Street, 900470 Constanța, Romania
| |
Collapse
|
14
|
Lee J, Song H, Kim K. Inhibition of Candida albicans Biofilm Formation and Attenuation of Its Virulence by Liriope muscari. Antibiotics (Basel) 2024; 13:434. [PMID: 38786162 PMCID: PMC11117302 DOI: 10.3390/antibiotics13050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
(1) Background: Although Candida albicans accounts for the majority of fungal infections, therapeutic options are limited and require alternative antifungal agents with new targets; (2) Methods: A biofilm formation assay with RPMI1640 medium was performed with Liriope muscari extract. A combination antifungal assay, dimorphic transition assay, and adhesion assay were performed under the biofilm formation condition to determine the anti-biofilm formation effect. qRT-PCR analysis was accomplished to confirm changes in gene expression; (3) Results: L. muscari extract significantly reduces biofilm formation by 51.65% at 1.56 μg/mL use and therefore increases susceptibility to miconazole. L. muscari extract also inhibited the dimorphic transition of Candida; nearly 50% of the transition was inhibited when 1.56 μg/mL of the extract was treated. The extract of L. muscari inhibited the expression of genes related to hyphal development and extracellular matrix of 34.4% and 36.0%, respectively, as well as genes within the Ras1-cAMP-PKA, Cph2-Tec1, and MAP kinase signaling pathways of 25.58%, 7.1% and 15.8%, respectively, at 1.56 μg/mL of L. muscari extract treatment; (4) Conclusions: L. muscari extract significantly reduced Candida biofilm formation, which lead to induced antifungal susceptibility to miconazole. It suggests that L. muscari extract is a promising anti-biofilm candidate of Candida albicans since the biofilm formation of Candida albicans is an excellent target for candidiasis regulation.
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Medical Science of Meridian, College of Korean Medicine, Graduate School, Kyung Hee University, Kyungheedae-ro 6-gil, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| | - Hyunchan Song
- Graduate School of Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea;
| | - Kiyoung Kim
- Graduate School of Biotechnology, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si 17104, Republic of Korea;
| |
Collapse
|
15
|
Ji Y, Han J, Moses M, Wang D, Wu L, Xue W, Sun L, Xu B, Chen C, Xiang Y, Huang X. The antimicrobial property of JY-1, a complex mixture of Traditional Chinese Medicine, is linked to it abilities to suppress biofilm formation and disrupt membrane permeability. Microb Pathog 2024; 189:106573. [PMID: 38354989 DOI: 10.1016/j.micpath.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The substantial increase of infections, caused by novel, sudden, and drug-resistant pathogens, poses a significant threat to human health. While numerous studies have demonstrated the antibacterial and antiviral effects of Traditional Chinese Medicine, the potential of a complex mixture of traditional Chinese Medicine with a broad-spectrum antimicrobial property remains underexplored. This study aimed to develop a complex mixture of Traditional Chinese Medicine (TCM), JY-1, and investigate its antimicrobial properties, along with its potential mechanism of action against pathogenic microorganisms. Antimicrobial activity was assessed using a zone of inhibition assay and the drop plate method. Hyphal induction of Candida albicans was conducted using RPMI1640 medium containing 10% FBS, followed by microscopic visualization. Quantitative real-time PCR (RT-qPCR) was employed to quantify the transcript levels of hyphal-specific genes such as HWP1 and ALS3. The impact of JY-1 on biofilm formation was evaluated using both the XTT reduction assay and scanning electron microscopy (SEM). Furthermore, the cell membrane integrity was assessed by protein and nucleic acid leakage assays. Our results clearly showed that JY-1 significantly inhibits the vegetative growth of Candida spp. and Cryptococcus spp. In addition, this complex mixture is effectively against a wide range of pathogenic bacteria, including Staphylococcus aureus, Vancomycin-resistant enterococci, Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae. More interestingly, JY-1 plays a direct anti-viral role against the mammalian viral pathogen vesicular stomatitis virus (VSV). Further mechanistic studies indicate that JY-1 acts to reduce the expression of hyphal specific genes HWP1 and ALS3, resulting in the suppression of the hyphal formation of C. albicans. The antimicrobial property of JY-1 could be attributed to its ability to reduce biofilm formation and disrupt the cell membrane permeability, a process resulting in microbial cell death and the release of cellular contents. Taken together, our work identified a potent broad-spectrum antimicrobial agent, a complex mixture of TCM which might be developed as a potential antimicrobial drug.
Collapse
Affiliation(s)
- Ying Ji
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ji Han
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China
| | - Munika Moses
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- Laboratory of Microbiology and Parasitology of Guizhou & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Lei Wu
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wenwen Xue
- Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China
| | - Lu Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bo Xu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No.164 Lanxi Road, Shanghai, 200062, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China; Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China.
| | - Yanwei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Xinhua Huang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
16
|
Zhou Y, Zhao L, Chen Y, Dhanasekaran S, Chen X, Zhang X, Yang X, Wu M, Song Y, Zhang H. Study on the control effect and physiological mechanism of Wickerhamomyces anomalus on primary postharvest diseases of peach fruit. Int J Food Microbiol 2024; 413:110575. [PMID: 38244385 DOI: 10.1016/j.ijfoodmicro.2024.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Brown rot, aspergillosis and soft rot are the primary diseases of postharvest peach fruit. Our study aimed to investigate the biocontrol effect of Wickerhamomyces anomalus on the primary postharvest diseases of peach fruit and to explore its underlying physiological mechanism. The findings demonstrated that W. anomalus had an obvious inhibitory effect on Monilinia fructicola, Aspergillus niger and Rhizopus stolonifer. At the same time, W. anomalus can grow stably on the wound and surface of peach fruit at 25 °C and 4 °C and can form biofilm. W. anomalus increased the activity of resistance-related enzymes such as PPO, POD, GLU and the content of secondary metabolites such as total phenols, flavonoids and lignin in peach. Furthermore, the application of W. anomalus led to a reduced MDA level in peach fruit and increased activity of the active oxygen-scavenging enzyme system. This increase involved various antioxidant defense enzymes such as SOD and CAT, as well as ascorbic acid-glutathione (AsA-GSH) enzymes, including APX, GPX, GR, DHAR, and MDHAR. Our findings demonstrate that W. anomalus exerts its biocontrol effect by growing rapidly, competing with pathogens for nutrition and space, and enhancing the disease resistance and antioxidative capabilities of the peach fruit.
Collapse
Affiliation(s)
- Yali Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Lina Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China; Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China.
| | - Yaqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xifei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Xiangzheng Yang
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China; College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Maoyu Wu
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan 250014, Shandong, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Nabawy A, Makabenta JM, Park J, Huang R, Nayar V, Patel R, Rotello VM. Nature-Derived Gelatin-Based Antifungal Nanotherapeutics for combatting Candida albicans Biofilms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:637-644. [PMID: 38841652 PMCID: PMC11149111 DOI: 10.1039/d3en00372h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Infections caused by fungi are emerging global health challenges that are exacerbated by the formation of fungal biofilms. Further challenges arise from environmental contamination with antifungal agents, which promotes environmental acquisition of antifungal resistance. We report the generation of an efficient, sustainable, all-natural antifungal nanotherapeutic based on the integration of an antimicrobial natural essential oil into a gelatin-based nanoemulsion platform. Carvacrol-loaded gelatin nanoemulsions penetrated Candida albicans biofilms, resulting in death of C. albicans cells in biofilms, and displayed selective biofilm elimination without harmful effects on fibroblast cells in a fungal biofilm-mammalian fibroblast co-culture model. Furthermore, the nanoemulsions degraded in the presence of physiologically relevant biomolecules, reducing the potential for environmental pollution and ecotoxicity. Overall, the sustainability, and efficacy of the described gelatin nanoemulsion formulation provides an environmentally friendly strategy for treating biofilm-associated fungal infections, including those caused by drug-resistant fungi.
Collapse
Affiliation(s)
- Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Jessa Marie Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Varun Nayar
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003
| |
Collapse
|
18
|
Belizario JA, Bila NM, Vaso CO, Costa-Orlandi CB, Mendonça MB, Fusco-Almeida AM, Pires RH, Mendes-Giannini MJS. Exploring the Complexity of the Interaction between T. rubrum and S. aureus/ S. epidermidis in the Formation of Polymicrobial Biofilms. Microorganisms 2024; 12:191. [PMID: 38258017 PMCID: PMC10820507 DOI: 10.3390/microorganisms12010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Dermatophytes associated with bacteria can lead to severe, difficult-to-treat infections and contribute to chronic infections. Trichophyton rubrum, Staphylococcus aureus, and Staphylococcus epidermidis can form biofilms influenced by nutrient availability. This study investigated biofilm formation by these species by utilizing diverse culture media and different time points. These biofilms were studied through scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), biomass, metabolic activity, and colony-forming units (CFUs). The results revealed that mixed biofilms exhibited high biomass and metabolic activity when cultivated in the brain heart infusion (BHI) medium. Both bacterial species formed mature biofilms with T. rubrum within 72 h, irrespective of media. The timing of bacterial inoculation was pivotal in influencing biomass and metabolic activity. T. rubrum's development within mixed biofilms depended on bacterial addition timing, while pre-adhesion influenced fungal growth. Bacterial communities prevailed initially, while fungi dominated later in the mixed biofilms. CLSM revealed 363 μm thick T. rubrum biofilms with septate, well-developed hyphae; S. aureus (177 μm) and S. epidermidis (178 μm) biofilms showed primarily cocci. Mixed biofilms matched T. rubrum's thickness when associated with S. epidermidis (369 μm), with few hyphae initially. Understanding T. rubrum and Staphylococcal interactions in biofilms advances antimicrobial resistance and disease progression knowledge.
Collapse
Affiliation(s)
- Jenyffie A. Belizario
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), São Paulo 14800-903, Brazil; (J.A.B.); (N.M.B.); (C.O.V.); (C.B.C.-O.); (M.B.M.); (A.M.F.-A.)
| | - Níura M. Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), São Paulo 14800-903, Brazil; (J.A.B.); (N.M.B.); (C.O.V.); (C.B.C.-O.); (M.B.M.); (A.M.F.-A.)
- Department of Para-Clinic, School of Veterinary, Eduardo Mondlane University (UEM), Maputo 257, Mozambique
| | - Carolina O. Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), São Paulo 14800-903, Brazil; (J.A.B.); (N.M.B.); (C.O.V.); (C.B.C.-O.); (M.B.M.); (A.M.F.-A.)
| | - Caroline B. Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), São Paulo 14800-903, Brazil; (J.A.B.); (N.M.B.); (C.O.V.); (C.B.C.-O.); (M.B.M.); (A.M.F.-A.)
| | - Matheus B. Mendonça
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), São Paulo 14800-903, Brazil; (J.A.B.); (N.M.B.); (C.O.V.); (C.B.C.-O.); (M.B.M.); (A.M.F.-A.)
| | - Ana M. Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), São Paulo 14800-903, Brazil; (J.A.B.); (N.M.B.); (C.O.V.); (C.B.C.-O.); (M.B.M.); (A.M.F.-A.)
| | - Regina H. Pires
- Postgraduate Program in Health Promotion, University of Franca, São Paulo 14404-600, Brazil;
| | - Maria José S. Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), São Paulo 14800-903, Brazil; (J.A.B.); (N.M.B.); (C.O.V.); (C.B.C.-O.); (M.B.M.); (A.M.F.-A.)
| |
Collapse
|
19
|
Penman R, Kariuki R, Shaw ZL, Dekiwadia C, Christofferson AJ, Bryant G, Vongsvivut J, Bryant SJ, Elbourne A. Gold nanoparticle adsorption alters the cell stiffness and cell wall bio-chemical landscape of Candida albicans fungal cells. J Colloid Interface Sci 2024; 654:390-404. [PMID: 37852025 DOI: 10.1016/j.jcis.2023.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
HYPOTHESIS Nanomaterials have been extensively investigated for a wide range of biomedical applications, including as antimicrobial agents, drug delivery vehicles, and diagnostic devices. The commonality between these biomedical applications is the necessity for the nanoparticle to interact with or pass through the cellular wall and membrane. Cell-nanomaterial interactions/uptake can occur in various ways, including adhering to the cell wall, forming aggregates on the surface, becoming absorbed within the cell wall itself, or transversing into the cell cytoplasm. These interactions are common to mammalian cells, bacteria, and yeast cells. This variety of interactions can cause changes to the integrity of the cell wall and the cell overall, but the precise mechanisms underpinning such interactions remain poorly understood. Here, we investigate the interaction between commonly investigated gold nanoparticles (AuNPs) and the cell wall/membrane of a model fungal cell to explore the general effects of interaction and uptake. EXPERIMENTS The interactions between 100 nm citrate-capped AuNPs and the cell wall of Candida albicans fungal cells were studied using a range of advanced microscopy techniques, including atomic force microscopy, confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, and synchrotron-FTIR micro-spectroscopy. FINDINGS In most cases, particles adhered on the cell surface, although instances of particles being up-taken into the cell cytoplasm and localised within the cell wall and membrane were also observed. There was a measurable increase in the stiffness of the fungal cell after AuNPs were introduced. Analysis of the synchrotron-FTIR data showed significant changes in spectral features associated with phospholipids and proteins after exposure to AuNPs.
Collapse
Affiliation(s)
- Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
20
|
Shukla S, Chauhan P, Gaur P, Rana P, Patel SK, Chopra D, Vikram A, Prajapati G, Yadav AK, Kotian SY, Bala L, Dwivedi A, Mishra A. Toxic potential assessment of hair dye developer 2,4,5,6-tetraaminopyrimidine sulfate exposed under ambient UVB radiation. Toxicol Ind Health 2024; 40:1-8. [PMID: 37876040 DOI: 10.1177/07482337231209352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Synthetic cosmetics, particularly hair dyes, are becoming increasingly popular among people of all ages and genders. 2,4,5,6-tetraaminopyrimidine sulfate (TAPS) is a key component of oxidative hair dyes and is used as a developer in several hair dyes. TAPS has previously been shown to absorb UVB strongly and degrade in a time-dependent manner, causing phototoxicity in human skin cells. However, the toxic effects of UVB-degraded TAPS are not explored in comparison to parent TAPS. Therefore, this research work aims to assess the toxicity of UVB-degraded TAPS than TAPS on two different test systems, that is, HaCaT (mammalian cell) and Staphylococcus aureus (a bacterial cell). Our result on HaCaT has illustrated that UVB-degraded TAPS is less toxic than parent TAPS. Additionally, UVB-exposed TAPS and parent TAPS were given to S. aureus, and the bacterial growth and their metabolic activity were assessed via CFU and phenotype microarray. The findings demonstrated that parent TAPS reduced bacterial growth via decreased metabolic activity; however, bacteria easily utilized the degraded TAPS. Thus, this study suggests that the products generated after UVB irradiation of TAPS is considered to be safer than their parent TAPS.
Collapse
Affiliation(s)
- Saumya Shukla
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Priyanka Chauhan
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute Lucknow, India
| | - Prakriti Gaur
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Priyanka Rana
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Gaurav Prajapati
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Akhilesh Kumar Yadav
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research(CSIR-IITR), Lucknow, India
| | - Sumana Y Kotian
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research(CSIR-IITR), Lucknow, India
| | - Lakshmi Bala
- Department of Biochemistry, College of Dental Sciences, Babu Banarasi Das University, Lucknow, India
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
| | - Aradhana Mishra
- Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute Lucknow, India
| |
Collapse
|
21
|
Brilhante RSN, Costa ADC, de Mesquita JRL, dos Santos Araújo G, Freire RS, Nunes JVS, Nobre AFD, Fernandes MR, Rocha MFG, Pereira Neto WDA, Crouzier T, Schimpf U, Viera RS. Antifungal Activity of Chitosan against Histoplasma capsulatum in Planktonic and Biofilm Forms: A Therapeutic Strategy in the Future? J Fungi (Basel) 2023; 9:1201. [PMID: 38132801 PMCID: PMC10744476 DOI: 10.3390/jof9121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Histoplasmosis is a respiratory disease caused by Histoplasma capsulatum, a dimorphic fungus, with high mortality and morbidity rates, especially in immunocompromised patients. Considering the small existing therapeutic arsenal, new treatment approaches are still required. Chitosan, a linear polysaccharide obtained from partial chitin deacetylation, has anti-inflammatory, antimicrobial, biocompatibility, biodegradability, and non-toxicity properties. Chitosan with different deacetylation degrees and molecular weights has been explored as a potential agent against fungal pathogens. In this study, the chitosan antifungal activity against H. capsulatum was evaluated using the broth microdilution assay, obtaining minimum inhibitory concentrations (MIC) ranging from 32 to 128 µg/mL in the filamentous phase and 8 to 64 µg/mL in the yeast phase. Chitosan combined with classical antifungal drugs showed a synergic effect, reducing chitosan's MICs by 32 times, demonstrating that there were no antagonistic interactions relating to any of the strains tested. A synergism between chitosan and amphotericin B or itraconazole was detected in the yeast-like form for all strains tested. For H. capsulatum biofilms, chitosan reduced biomass and metabolic activity by about 40% at 512 µg/mL. In conclusion, studying chitosan as a therapeutic strategy against Histoplasma capsulatum is promising, mainly considering its numerous possible applications, including its combination with other compounds.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Anderson da Cunha Costa
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | | | - Gessica dos Santos Araújo
- Postgraduate in Veterinary Sciences, Faculty of Veterinary, State University of Ceará, Dr. Silas Munguba Avenue, 1700, Itaperi Campus, Fortaleza 60714-903, CE, Brazil; (G.d.S.A.); (M.F.G.R.)
| | - Rosemeyre Souza Freire
- Analytical Center, Department of Physics, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil; (R.S.F.); (J.V.S.N.)
| | - João Victor Serra Nunes
- Analytical Center, Department of Physics, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil; (R.S.F.); (J.V.S.N.)
| | - Augusto Feynman Dias Nobre
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Mirele Rodrigues Fernandes
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Marcos Fábio Gadelha Rocha
- Postgraduate in Veterinary Sciences, Faculty of Veterinary, State University of Ceará, Dr. Silas Munguba Avenue, 1700, Itaperi Campus, Fortaleza 60714-903, CE, Brazil; (G.d.S.A.); (M.F.G.R.)
| | - Waldemiro de Aquino Pereira Neto
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Sciences, Federal University of Ceará, Rua Barão de Canindé, 210, Montese, Fortaleza 60425-540, CE, Brazil; (A.d.C.C.); (A.F.D.N.); (M.R.F.); (W.d.A.P.N.)
| | - Thomas Crouzier
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, AlbaNova University Center, 106 91 Stockholm, Sweden; (T.C.); (U.S.)
| | - Ulrike Schimpf
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, AlbaNova University Center, 106 91 Stockholm, Sweden; (T.C.); (U.S.)
| | - Rodrigo Silveira Viera
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60440-900, CE, Brazil;
| |
Collapse
|
22
|
Zhu X, Wang A, Zheng Y, Li D, Wei Y, Gan M, Li Y, Si S. Anti-Biofilm Activity of Cocultimycin A against Candida albicans. Int J Mol Sci 2023; 24:17026. [PMID: 38069349 PMCID: PMC10707031 DOI: 10.3390/ijms242317026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Candida albicans (C. albicans), the most common fungal pathogen, has the ability to form a biofilm, leading to enhanced virulence and antibiotic resistance. Cocultimycin A, a novel antifungal antibiotic isolated from the co-culture of two marine fungi, exhibited a potent inhibitory effect on planktonic C. albicans cells. This study aimed to evaluate the anti-biofilm activity of cocultimycin A against C. albicans and explore its underlying mechanism. Crystal violet staining showed that cocultimycin A remarkably inhibited biofilm formation in a dose-dependent manner and disrupted mature biofilms at higher concentrations. However, the metabolic activity of mature biofilms treated with lower concentrations of cocultimycin A significantly decreased when using the XTT reduction method. Cocultimycin A could inhibit yeast-to-hypha transition and mycelium formation of C. albicans colonies, which was observed through the use of a light microscope. Scanning electron microscopy revealed that biofilms treated with cocultimycin A were disrupted, yeast cells increased, and hypha cells decreased and significantly shortened. The adhesive ability of C. albicans cells treated with cocultimycin A to the medium and HOEC cells significantly decreased. Through the use of a qRT-PCR assay, the expression of multiple genes related to adhesion, hyphal formation and cell membrane changes in relation to biofilm cells treated with cocultimycin A. All these results suggested that cocultimycin A may be considered a potential novel molecule for treating and preventing biofilm-related C. albicans infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Maoluo Gan
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (A.W.); (Y.Z.); (D.L.); (Y.W.); (S.S.)
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (X.Z.); (A.W.); (Y.Z.); (D.L.); (Y.W.); (S.S.)
| | | |
Collapse
|
23
|
Liu J, Liu R, Deng R, Zheng S, Shen Z. Antibacterial activity and antibacterial mechanism of flavaspidic acid BB against Staphylococcus haemelyticus. BMC Microbiol 2023; 23:276. [PMID: 37773054 PMCID: PMC10540430 DOI: 10.1186/s12866-023-02997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Staphylococcus haemolyticus (S. haemolyticus) is the main etiological factor in skin and soft tissue infections (SSTI). S. haemolyticus infections are an important concern worldwide, especially with the associated biofilms and drug resistance. Herein, we investigated the inhibitory effect of Flavaspidic acid BB obtained from plant extractions on clinical S. haemolyticus strains and their biofilms. Moreover, we predicted its ability to bind to the protein-binding site by molecular simulation. Since the combination of Hsp70 and RNase P synthase after molecular simulation with flavaspidic acid BB is relatively stable, enzyme-linked immunosorbent assay (ELISA) was used to investigate Hsp70 and RNase P synthase to verify the potential antimicrobial targets of flavaspidic acid BB. RESULTS The minimum inhibitory concentrations (MIC) of flavaspidic acid BB on 16 clinical strains of S. haemolyticus was 5 ~ 480 µg/mL, and BB had a slightly higher inhibitory effect on the biofilm than MUP. The inhibitory effect of flavaspidic acid BB on biofilm formation was better with an increase in the concentration of BB. Molecular simulation verified its ability to bind to the protein-binding site. The combination of ELISA kits showed that flavaspidic acid BB promoted the activity of Hsp70 and inhibited the activity of RNase P, revealing that flavaspidic acid BB could effectively inhibit the utilization and re-synthesis of protein and tRNA synthesis, thus inhibiting bacterial growth and biofilm formation to a certain extent. CONCLUSIONS This study could potentially provide a new prospect for the development of flavaspidic acid BB as an antibacterial agent for resistant strains.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Ruijie Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Rongrong Deng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shiqian Zheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Zhibin Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
- Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
24
|
Feng J, Yanshao B, Wang H, Zhang X, Wang F. Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1242-1263. [PMID: 37549249 DOI: 10.1080/19440049.2023.2240894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Spoilage of grains by mycotoxigenic fungi poses a great threat to food security and human health. Conventionally used chemical agents to prevent grain fungi contamination cause increasingly significant problems such as microbial resistance, residual toxicity and environmental unfriendliness. In recent years, plant essential oils (EOs) have become a hot spot in the research of control of grain fungi and mycotoxins, due to their extensive sources, non-toxicity, environmental friendliness and good antifungal efficiency. The current review aims to provide an overview of the prevention of fungi and mycotoxins in grain through EOs. The antifungal and toxin inhibition efficiency of different EOs and their effective components are investigated. The inhibition mechanism of EOs on fungi and mycotoxins in grains is introduced. The influence of EOs treatment on the change of grain quality is also discussed. In addition, the formulations and techniques used to overcome the disadvantages of EOs application are introduced. The results of recent studies have confirmed that EOs provide great potential for controlling common fungi and mycotoxins in grains, and enhancing quantity and quality safety of grains.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bowen Yanshao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fenghe Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
25
|
Palandurkar GS, Kumar S. Biofilm's Impact on Inflammatory Bowel Diseases. Cureus 2023; 15:e45510. [PMID: 37868553 PMCID: PMC10585119 DOI: 10.7759/cureus.45510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The colon has a large surface area covered with a thick mucus coating. Colon's biomass consists of about 1,012 colony-forming units per gram of feces and 500-1,000 distinct bacterial species. The term inflammatory bowel disease (IBD) indicates the collection of intestinal illnesses in which the digestive system (esophagus, large intestine, mouth, stomach, and small intestine) experiences persistent inflammation. IBD development is influenced by environmental (infections, stress, and nutrition) and genetic factors. The microbes present in gut microbiota help maintain intestinal homeostasis and support immune and epithelial cell growth, differentiation, as well as proliferation. It has been discovered that a variety of variables and microorganisms are crucial for the development of biofilms and mucosal colonization during IBD. An extracellular matrix formed by bacteria supports biofilm production in our digestive system and harms the host's immunological response. Irritable bowel syndrome (IBS) and IBD considerably affect human socioeconomic well-being and the standard of living. IBD is a serious public health issue, affecting millions of people across the globe. The gut microbiome may significantly influence IBS pathogenesis, even though few diagnostic and treatment options are available. As a result, current research focuses more on disrupting biofilm in IBD patients and stresses primarily on drugs that help improve the quality of life for human well-being. We evaluate studies on IBD and bacterial biofilm to add fresh insights into the existing state of knowledge of biofilm formation in IBD, incidence of IBD patients, molecular level of investigations, bacteria that are involved in the formation of biofilm, and present and down the line regimens and probiotics. Planning advanced ways to control and eradicate bacteria in biofilms should be the primary goal to add fresh insights into generating innovative diagnostic and alternative therapy options for IBD.
Collapse
Affiliation(s)
- Gopal S Palandurkar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
26
|
Thamban Chandrika N, Green KD, Spencer AC, Tsodikov OV, Garneau-Tsodikova S. Discovery and development of novel substituted monohydrazides as potent antifungal agents. RSC Med Chem 2023; 14:1351-1361. [PMID: 37484566 PMCID: PMC10357949 DOI: 10.1039/d3md00167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Novel substituted monohydrazides synthesized for this study displayed broad-spectrum activity against various fungal strains, including a panel of clinically relevant Candida auris strains. The activity of these compounds was either comparable or superior to amphotericin B against most of the fungal strains tested. These compounds possessed fungistatic activity in a time-kill assay and exhibited no mammalian cell toxicity. In addition, they prevented the formation of fungal biofilms. Even after repeated exposures, the Candida albicans ATCC 10231 (strain A) fungal strain did not develop resistance to these monohydrazides.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Abbygail C Spencer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 South Limestone Street Lexington KY 40536-0596 USA
| |
Collapse
|
27
|
Jabeen G, Naz SA, Rangel DEN, Jabeen N, Shafique M, Yasmeen K. In-vitro evaluation of virulence markers and antifungal resistance of clinical Candida albicans strains isolated from Karachi, Pakistan. Fungal Biol 2023; 127:1241-1249. [PMID: 37495314 DOI: 10.1016/j.funbio.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 07/28/2023]
Abstract
Candidiasis is a significant fungal infection with high mortality and morbidity rates worldwide. Candida albicans is the most dominant species responsible for causing different manifestations of candidiasis. Certain virulence traits as well as its resistance to antifungal drugs contribute to the pathogenesis of this yeast. This study was designed to determine the production of some virulence factors, such as biofilm formation and extracellular hydrolytic enzymes (esterase, coagulase, gelatinase, and catalase) by this fungus, as well as its antifungal resistance profile. A total of 304 clinical C. albicans isolates obtained from different clinical specimens were identified by a conventional diagnostic protocol. The antifungal susceptibility of C. albicans strains was determined by disk diffusion technique against commercially available antifungal disks, such as nystatin 50 μg, amphotericin B 100 unit, fluconazole 25 μg, itraconazole 10 μg, ketoconazole 10 μg, and voriconazole 1 μg. The assessment of biofilm formation was determined by the tube staining assay and spectrophotometry. Gelatinase, coagulase, catalase, and esterase enzyme production was also detected using standard techniques. A total of 66.1% (201/304) and 28.9% (88/304) of C. albicans strains were susceptible-dose dependent (SDD) to nystatin and itraconazole, respectively. Among the antifungal drugs, C. albicans strains showed high resistance to ketoconazole 24.7% (75/304); however, no statistically significant relationship between the clinical origin of C. albicans isolates and antifungal drug resistance pattern was detected. For virulence factors, the majority of the C. albicans strains actively produced biofilm and all hydrolytic enzymes. Biofilm formation was demonstrated by 88% (267/304) of the strains with a quantitative mean value 0.1762 (SD ± 0.08293). However, 100% (304/304) of isolates produced catalase enzyme, 69% (211/304) produced coagulase, 66% (197/304) produced gelatinase, and 52% (157/304) produced esterase enzyme. A significant relationship between the source of specimens and biofilm formation by C. albicans was observed; nevertheless, there was no significant relationship between different sources of C. albicans strains and the production of different enzymatic virulence factors. The study found that C. albicans strains have excellent potential to produce virulence markers and resistance to antifungals, which necessitates surveillance of these opportunistic pathogens to minimize the chances of severe invasive infections.
Collapse
Affiliation(s)
- Gul Jabeen
- Lab of Applied Microbiology and Clinical Mycology, Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Gulshan Iqbal, Karachi, 75300, Pakistan; Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Sehar Afshan Naz
- Lab of Applied Microbiology and Clinical Mycology, Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Gulshan Iqbal, Karachi, 75300, Pakistan.
| | - Drauzio E N Rangel
- Universidade Tecnológica Federal do Paraná, Dois Vizinhos, Paraná, 85660-000, Brazil
| | - Nusrat Jabeen
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Maryam Shafique
- Lab of Applied Microbiology and Clinical Mycology, Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Gulshan Iqbal, Karachi, 75300, Pakistan
| | - Kousar Yasmeen
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Gulshan, Iqbal, Karachi, 75300, Pakistan
| |
Collapse
|
28
|
Kulshrestha A, Gupta P. Combating polymicrobial biofilm: recent approaches. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01070-y. [PMID: 37310652 DOI: 10.1007/s12223-023-01070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
The polymicrobial biofilm (PMBF) is formed when microbes from multiple species co-aggregate into an envelope made of extra polymeric substances (EPS) that keep the microbes safe from external stresses. The formation of PMBF has been linked to a variety of human infections, including cystic fibrosis, dental caries, urinary tract infections, etc. Multiple microbial species co-aggregation during an infection results in a recalcitrant biofilm formation, which is a seriously threatening phenomenon. It is challenging to treat polymicrobial biofilms since they contain multiple microbes which show drug resistance to various antibiotics/antifungals. The present study discusses various approaches by which an antibiofilm compound works. Depending on their mode of action, antibiofilm compounds can block the adhesion of cells to one another, modify membranes/walls, or disrupt quorum-sensing systems.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, India.
| |
Collapse
|
29
|
Shi X, Gu R, Guo Y, Xiao H, Xu K, Li Y, Li C. Capsular polysaccharide-amikacin nanoparticles for improved antibacterial and antibiofilm performance. Int J Biol Macromol 2023:125325. [PMID: 37302623 DOI: 10.1016/j.ijbiomac.2023.125325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Natural nanoscale polysaccharide and its application have attracted much attention in recent years. In this study, we report for the first time that a novel naturally occurring capsular polysaccharide (CPS-605) from Lactobacillus plantarum LCC-605, which can self-assemble into spherical nanoparticles with an average diameter of 65.7 nm. To endow CPS-605 with more functionalities, we develop amikacin-functionalized capsular polysaccharide (CPS) nanoparticles (termed CPS-AM NPs) with improved antibacterial and antibiofilm activities against both Escherichia coli and Pseudomonas aeruginosa. They also exhibit faster bactericidal activity than AM alone. The high local positive charge density of CPS-AM NPs facilitates the interaction between the NPs and bacteria, leading to extraordinary bactericidal efficiencies (99.9 % and 100 % for E. coli and P. aeruginosa, respectively, within 30 min) by damaging the cell wall. Very interestingly, CPS-AM NPs exhibit an unconventional antibacterial mechanism against P. aeruginosa, that is, they can induce plasmolysis, along with bacterial cell surface disruption, cell inclusion release and cell death. In addition, CPS-AM NPs exhibit low cytotoxicity and negligible hemolytic activity, showing excellent biocompatibility. The CPS-AM NPs provide a new strategy for the design of next-generation antimicrobial agents that can reduce the working concentration of antibiotics to fight against bacterial resistance.
Collapse
Affiliation(s)
- Xiaotong Shi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ruihan Gu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Kefei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuan Li
- College of Resource & Environment, Yunnan Agriculture University, Kunming 650201, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
30
|
Li W, Shu Y, Zhang J, Wu M, Zhu GH, Huang WY, Shen L, Kang Y. Long-term prednisone treatment causes fungal microbiota dysbiosis and alters the ecological interaction between gut mycobiome and bacteriome in rats. Front Microbiol 2023; 14:1112767. [PMID: 37342562 PMCID: PMC10277626 DOI: 10.3389/fmicb.2023.1112767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Glucocorticoids (GCs) are widely used in the treatment of immune-mediated diseases due to their anti-inflammatory and immunosuppressive effects. Prednisone is one of the most commonly used GCs. However, it is still unknown whether prednisone affects gut fungi in rats. Herein we investigated whether prednisone changed the composition of gut fungi and the interactions between gut mycobiome and bacteriome/fecal metabolome in rats. Twelve male Sprague-Dawley rats were randomly assigned to a control group and a prednisone group which received prednisone daily by gavage for 6 weeks. ITS2 rRNA gene sequencing of fecal samples was performed to identify differentially abundant gut fungi. The associations between gut mycobiome and bacterial genera/fecal metabolites obtained from our previously published study were explored by using Spearman correlation analysis. Our data showed that there were no changes in the richness of gut mycobiome in rats after prednisone treatment, but the diversity increased significantly. The relative abundance of genera Triangularia and Ciliophora decreased significantly. At the species level, the relative abundance of Aspergillus glabripes increased significantly, while Triangularia mangenotii and Ciliophora sp. decreased. In addition, prednisone altered the gut fungi-bacteria interkingdom interactions in rats after prednisone treatment. Additionally, the genus Triangularia was negatively correlated with m-aminobenzoic acid, but positively correlated with hydrocinnamic acid and valeric acid. Ciliophora was negatively correlated with phenylalanine and homovanillic acid, but positively correlated with 2-Phenylpropionate, hydrocinnamic acid, propionic acid, valeric acid, isobutyric acid, and isovaleric acid. In conclusion, long-term prednisone treatment caused fungal microbiota dysbiosis and might alter the ecological interaction between gut mycobiome and bacteriome in rats.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Shu
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhang
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengmeng Wu
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-hua Zhu
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-yan Huang
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Kang
- Department of Nephrology and Rheumatology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Comitini F, Canonico L, Agarbati A, Ciani M. Biocontrol and Probiotic Function of Non- Saccharomyces Yeasts: New Insights in Agri-Food Industry. Microorganisms 2023; 11:1450. [PMID: 37374952 DOI: 10.3390/microorganisms11061450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Fermented food matrices, including beverages, can be defined as the result of the activity of complex microbial ecosystems where different microorganisms interact according to different biotic and abiotic factors. Certainly, in industrial production, the technological processes aim to control the fermentation to place safe foods on the market. Therefore, if food safety is the essential prerogative, consumers are increasingly oriented towards a healthy and conscious diet driving the production and consequently the applied research towards natural processes. In this regard, the aim to guarantee the safety, quality and diversity of products should be reached limiting or avoiding the addition of antimicrobials or synthetic additives using the biological approach. In this paper, the recent re-evaluation of non-Saccharomyces yeasts (NSYs) has been reviewed in terms of bio-protectant and biocontrol activity with a particular focus on their antimicrobial power using different application modalities including biopackaging, probiotic features and promoting functional aspects. In this review, the authors underline the contribution of NSYs in the food production chain and their role in the technological and fermentative features for their practical and useful use as a biocontrol agent in food preparations.
Collapse
Affiliation(s)
- Francesca Comitini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Laura Canonico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alice Agarbati
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Maurizio Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
32
|
Salvador A, Veiga FF, Svidzinski TIE, Negri M. Case of Mixed Infection of Toenail Caused by Candida parapsilosis and Exophiala dermatitidis and In Vitro Effectiveness of Propolis Extract on Mixed Biofilm. J Fungi (Basel) 2023; 9:jof9050581. [PMID: 37233292 DOI: 10.3390/jof9050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Onychomycosis is a chronic fungal nail infection caused by several filamentous and yeast-like fungi, such as the genus Candida spp., of great clinical importance. Black yeasts, such as Exophiala dermatitidis, a closely related Candida spp. species, also act as opportunistic pathogens. Fungi infectious diseases are affected by organisms organized in biofilm in onychomycosis, making treatment even more difficult. This study aimed to evaluate the in vitro susceptibility profile to propolis extract and the ability to form a simple and mixed biofilm of two yeasts isolated from the same onychomycosis infection. The yeasts isolated from a patient with onychomycosis were identified as Candida parapsilosis sensu stricto and Exophiala dermatitidis. Both yeasts were able to form simple and mixed (in combination) biofilms. Notably, C. parapsilosis prevailed when presented in combination. The susceptibility profile of propolis extract showed action against E. dermatitidis and C. parapsilosis in planktonic form, but when the yeasts were in mixed biofilm, we only observed action against E. dermatitidis, until total eradication.
Collapse
Affiliation(s)
- Alana Salvador
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| | - Flávia Franco Veiga
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| | - Terezinha Inez Estivalet Svidzinski
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| | - Melyssa Negri
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Maringá CEP 87020-900, PR, Brazil
| |
Collapse
|
33
|
Costa-Orlandi CB, Bila NM, Bonatti JLC, Vaso CO, Santos MB, Polaquini CR, Santoni Biasioli MM, Herculano RD, Regasini LO, Fusco-Almeida AM, Mendes-Giannini MJS. Membranolytic Activity Profile of Nonyl 3,4-Dihydroxybenzoate: A New Anti-Biofilm Compound for the Treatment of Dermatophytosis. Pharmaceutics 2023; 15:pharmaceutics15051402. [PMID: 37242644 DOI: 10.3390/pharmaceutics15051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 05/28/2023] Open
Abstract
The ability of dermatophytes to live in communities and resist antifungal drugs may explain treatment recurrence, especially in onychomycosis. Therefore, new molecules with reduced toxicity that target dermatophyte biofilms should be investigated. This study evaluated nonyl 3,4-dihydroxybenzoate (nonyl) susceptibility and mechanism of action on planktonic cells and biofilms of T. rubrum and T. mentagrophytes. Metabolic activities, ergosterol, and reactive oxygen species (ROS) were quantified, and the expression of genes encoding ergosterol was determined by real-time PCR. The effects on the biofilm structure were visualized using confocal electron microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). T. rubrum and T. mentagrophytes biofilms were susceptible to nonyl and resistant to fluconazole, griseofulvin (all strains), and terbinafine (two strains). The SEM results revealed that nonyl groups seriously damaged the biofilms, whereas synthetic drugs caused little or no damage and, in some cases, stimulated the development of resistance structures. Confocal microscopy showed a drastic reduction in biofilm thickness, and transmission electron microscopy results indicated that the compound promoted the derangement and formation of pores in the plasma membrane. Biochemical and molecular assays indicated that fungal membrane ergosterol is a nonyl target. These findings show that nonyl 3,4-dihydroxybenzoate is a promising antifungal compound.
Collapse
Affiliation(s)
- Caroline B Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Níura M Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
- Department of Para-Clinic, School of Veterinary, Eduardo Modlane University (UEM), Maputo 257, Mozambique
| | - Jean Lucas C Bonatti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Carolina O Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Mariana B Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (U.N.E.S.P.), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Carlos R Polaquini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (U.N.E.S.P.), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Mariana M Santoni Biasioli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Rondinelli D Herculano
- Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Luis O Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (U.N.E.S.P.), Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| | - Maria José S Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (U.N.E.S.P.), Araraquara 14800-903, SP, Brazil
| |
Collapse
|
34
|
Kulshrestha A, Gupta P. Secreted aspartyl proteases family: a perspective review on the regulation of fungal pathogenesis. Future Microbiol 2023; 18:295-309. [PMID: 37097060 DOI: 10.2217/fmb-2022-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Secreted aspartyl proteases (SAPs) are important enzymes for fungal pathogenicity, playing a significant role in infection and survival. This article provides insight into how SAPs facilitate the transformation of yeast cells into hyphae and engage in biofilm formation, invasion and degradation of host cells and proteins. SAPs and their isoenzymes are prevalent during fungal infections, making them a potential target for antifungal and antibiofilm therapies. By targeting SAPs, critical stages of fungal pathogenesis such as adhesion, hyphal development, biofilm formation, host invasion and immune evasion can potentially be disrupted. Developing therapies that target SAPs could provide an effective treatment option for a wide range of fungal infections.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| |
Collapse
|
35
|
Hupka M, Kedia R, Schauer R, Shepard B, Granados-Presa M, Vande Hei M, Flores P, Zea L. Morphology of Penicillium rubens Biofilms Formed in Space. Life (Basel) 2023; 13:1001. [PMID: 37109532 PMCID: PMC10144393 DOI: 10.3390/life13041001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Fungi biofilms have been found growing on spacecraft surfaces such as windows, piping, cables, etc. The contamination of these surfaces with fungi, although undesirable, is highly difficult to avoid. While several biofilm forming species, including Penicillium rubens, have been identified in spacecraft, the effect of microgravity on fungal biofilm formation is unknown. This study sent seven material surfaces (Stainless Steel 316, Aluminum Alloy, Titanium Alloy, Carbon Fiber, Quartz, Silicone, and Nanograss) inoculated with spores of P. rubens to the International Space Station and allowed biofilms to form for 10, 15, and 20 days to understand the effects of microgravity on biofilm morphology and growth. In general, microgravity did not induce changes in the shape of biofilms, nor did it affect growth in terms of biomass, thickness, and surface area coverage. However, microgravity increased or decreased biofilm formation in some cases, and this was incubation-time- and material-dependent. Nanograss was the material with significantly less biofilm formation, both in microgravity and on Earth, and it could potentially be interfering with hyphal adhesion and/or spore germination. Additionally, a decrease in biofilm formation at 20 days, potentially due to nutrient depletion, was seen in some space and Earth samples and was material-dependent.
Collapse
Affiliation(s)
- Megan Hupka
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Raj Kedia
- Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309, USA
| | - Rylee Schauer
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309, USA
| | - Brooke Shepard
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | | | - Pamela Flores
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO 80309, USA
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309, USA
| | - Luis Zea
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
36
|
Inhibition of Polymicrobial Biofilms of Candida albicans- Staphylococcus aureus/ Streptococcus mutans by Fucoidan-Gold Nanoparticles. Mar Drugs 2023; 21:md21020123. [PMID: 36827164 PMCID: PMC9965608 DOI: 10.3390/md21020123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The polymicrobial proliferation and development of complex biofilm morphologies by bacterial and fungal pathogens in the host are some of the key factors contributing to the failure of antimicrobial treatments. The polymicrobial interaction of Candida albicans and some bacterial species has been extensively studied in both in vitro and in vivo model systems. Alternative strategies for disrupting polymicrobial interaction and biofilm formation are constantly needed. Among several alternative strategies, the use of nanoparticles synthesized using a natural product in the treatment of microbial infection has been considered a promising approach. The current study aimed to synthesize gold nanoparticles (AuNPs) using a natural product, fucoidan, and to test their efficacy against mono and duo combinations of fungal (Candida albicans) and bacterial (Staphylococcus aureus/Streptococcus mutans) biofilms. Several methods were used to characterize and study Fu-AuNPs, including UV-vis absorption spectroscopy, FTIR, FE-TEM, EDS, DLS, zeta potential, and XRD. The concentration-dependent inhibition of early-stage biofilms and the eradication of mature biofilms of single species of C. albicans, S. aureus, and S. mutans have been observed. Early biofilms of a dual-species combination of C. albicans and S. aureus/S. mutans were also suppressed at an increasing concentration of Fu-AuNPs. Furthermore, Fu-AuNPs significantly eradicated the established mature biofilm of mixed species. The treatment method proposed in this study, which involves the use of marine-bioinspired nanoparticles, is a promising and biocompatible agent for preventing the growth of polymicrobial biofilms of bacterial and fungal pathogens.
Collapse
|
37
|
Martins-Santana L, Rezende CP, Rossi A, Martinez-Rossi NM, Almeida F. Addressing Microbial Resistance Worldwide: Challenges over Controlling Life-Threatening Fungal Infections. Pathogens 2023; 12:pathogens12020293. [PMID: 36839565 PMCID: PMC9961291 DOI: 10.3390/pathogens12020293] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Fungal infections are a serious global concern because of their ability to spread and colonize host tissues in immunocompromised individuals. Such infections have been frequently reported worldwide and are currently gaining clinical research relevance owing to their resistant character, representing a bottleneck in treating affected people. Resistant fungi are an emergent public health threat. The upsurge of such pathogens has led to new research toward unraveling the destructive potential evoked by these species. Some fungi-grouped into Candida, Aspergillus, and Cryptococcus-are causative agents of severe and systemic infections. They are associated with high mortality rates and have recently been described as sources of coinfection in COVID-hospitalized patients. Despite the efforts to elucidate the challenges of colonization, dissemination, and infection severity, the immunopathogenesis of fungal diseases remains a pivotal characteristic in fungal burden elimination. The struggle between the host immune system and the physiological strategies of the fungi to maintain cellular viability is complex. In this brief review, we highlight the relevance of drug resistance phenotypes in fungi of clinical significance, taking into consideration their physiopathology and how the scientific community could orchestrate their efforts to avoid fungal infection dissemination and deaths.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- Correspondence:
| |
Collapse
|
38
|
Nikitina LE, Lisovskaya S A, Gilfanov IR, Pavelyev R S, Ostolopovskaya OV, Fedyunina IV, Kiselev SV, Azizova ZR, Pestova SV, Izmest’ev ES, Rubtsova SA, Akhverdiev RF, Gerasimov AV, Sarbazyan EA, Shipina OT, Boichuk SV, Izmailov AG. Thioterpenoids of the Bornane Series with Potent Activity Against Opportunistic Micromycetes. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
39
|
Al-Hmadi HB, Majdoub S, Chaabane-Banaoues R, Nardoni S, El Mokni R, Dhaouadi H, Piras A, Babba H, Porcedda S, Hammami S. Chemical composition, antifungal and antibiofilm activities of essential oils from Glycyrrhiza foetida (Desf.) growing in Tunisia. Biomed Chromatogr 2023; 37:e5596. [PMID: 36740815 DOI: 10.1002/bmc.5596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
This study was designated to investigate the chemical composition, the antifungal activity and antibiofilm properties of Glycyrrhiza foetida (Desf.) growing in Tunisia and recognized for its pharmacological and therapeutic effects. The chemical analysis of essential oil samples prepared via hydrodistillation of the aerial parts was performed by gas chromatography-mass spectrometry (GC-MS). Moreover, the antifungal activity of G. foetida essential oil was developed against three dermatophyte strains, two molds and Candida spp. yeasts using the broth microdilution assay. According to the percentages, the main constituents are δ-cadinene (13.9%), (E)-caryophyllene (13.2%) and γ-cadinene (8.3%). The efficiency of the essential oil in inhibiting Candida albicans biofilms formation was also evaluated in terms of inhibitory percentages. The results showed that C. albicans and Microsporum canis were the most sensitive to G. foetida essential oil with a complete inhibition at 0.4 and 0.2 mg ml-1 , respectively. Candida albicans biofilm development was reduced by 80% by the volatile oil at a concentration of 0.8 mg ml-1 . The essential oil of G. foetida has a promising role in the control of fungal agents with medical interest and in inhibition of Candida biofilm development.
Collapse
Affiliation(s)
- Hekmat B Al-Hmadi
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia.,Department of Chemistry, College of Medicine, AL-Muthanna University, Samawah, Iraq
| | - Siwar Majdoub
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Raja Chaabane-Banaoues
- LP3M: Laboratory of Medical and Molecular Parasitology-Mycology, B Clinical Biology Department Faculty of Pharmacy, 1 Avicenne Street, University of Monastir, Monastir, Tunisia
| | - Simona Nardoni
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Ridha El Mokni
- Laboratory of Botany, Cryptogamy and Plant Biology, Department of Pharmaceutical Sciences "A", Faculty of Pharmacy of Monastir BP 207, Avenue Avicenna, University of Monastir, Monastir, Tunisia
| | - Hatem Dhaouadi
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Alessandra Piras
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Hamouda Babba
- LP3M: Laboratory of Medical and Molecular Parasitology-Mycology, B Clinical Biology Department Faculty of Pharmacy, 1 Avicenne Street, University of Monastir, Monastir, Tunisia
| | - Silvia Porcedda
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Saoussen Hammami
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| |
Collapse
|
40
|
Lee MS, Hussein HR, Chang SW, Chang CY, Lin YY, Chien Y, Yang YP, Kiew LV, Chen CY, Chiou SH, Chang CC. Nature-Inspired Surface Structures Design for Antimicrobial Applications. Int J Mol Sci 2023; 24:1348. [PMID: 36674860 PMCID: PMC9865960 DOI: 10.3390/ijms24021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Surface contamination by microorganisms such as viruses and bacteria may simultaneously aggravate the biofouling of surfaces and infection of wounds and promote cross-species transmission and the rapid evolution of microbes in emerging diseases. In addition, natural surface structures with unique anti-biofouling properties may be used as guide templates for the development of functional antimicrobial surfaces. Further, these structure-related antimicrobial surfaces can be categorized into microbicidal and anti-biofouling surfaces. This review introduces the recent advances in the development of microbicidal and anti-biofouling surfaces inspired by natural structures and discusses the related antimicrobial mechanisms, surface topography design, material application, manufacturing techniques, and antimicrobial efficiencies.
Collapse
Grants
- 110VACS-003 Establishment of Regenerative Medicine and Cell Therapy Platform of Veterans General Hospital system
- 110VACS-007 Establishment of epidemic prevention and research platform in the veterans medical system for the control of emerging infectious diseases
- MOHW108-TDU-B-211-133001 Ministry of Health and Welfare
- MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1 VGH, TSGH, NDMC, AS Joint Research Program
- VTA108-V1-5-3 VGH, TSGH, NDMC, AS Joint Research Program
- VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- NSTC 111-2321-B-A49-007 National Science and Technology Council, Taiwan
- NSTC 111-2112-M-A49-025 National Science and Technology Council, Taiwan
- MOST 108-2320-B-010-019-MY3 National Science and Technology Council, Taiwan
- MOST 109-2327-B-010-007 National Science and Technology Council, Taiwan
- MOST 109-2327-B-016-002 National Science and Technology Council, Taiwan
- NSTC 111-2927-I-A49-004 National Science and Technology Council, Taiwan
- IIRG003B-19FNW Universiti Malaya and the Ministry of Higher Education, Malaysia
Collapse
Affiliation(s)
- Meng-Shiue Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hussein Reda Hussein
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Egypt
| | - Sheng-Wen Chang
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
- Department of French Language and Literature, National Central University, Taoyuan City 320317, Taiwan
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Lik-Voon Kiew
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching-Yun Chen
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2 B), National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
41
|
Anju VT, Busi S, Imchen M, Kumavath R, Mohan MS, Salim SA, Subhaswaraj P, Dyavaiah M. Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies. Antibiotics (Basel) 2022; 11:antibiotics11121731. [PMID: 36551388 PMCID: PMC9774821 DOI: 10.3390/antibiotics11121731] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Biofilms are population of cells growing in a coordinated manner and exhibiting resistance towards hostile environments. The infections associated with biofilms are difficult to control owing to the chronicity of infections and the emergence of antibiotic resistance. Most microbial infections are contributed by polymicrobial or mixed species interactions, such as those observed in chronic wound infections, otitis media, dental caries, and cystic fibrosis. This review focuses on the polymicrobial interactions among bacterial-bacterial, bacterial-fungal, and fungal-fungal aggregations based on in vitro and in vivo models and different therapeutic interventions available for polymicrobial biofilms. Deciphering the mechanisms of polymicrobial interactions and microbial diversity in chronic infections is very helpful in anti-microbial research. Together, we have discussed the role of metagenomic approaches in studying polymicrobial biofilms. The outstanding progress made in polymicrobial research, especially the model systems and application of metagenomics for detecting, preventing, and controlling infections, are reviewed.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
- Correspondence:
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala 671316, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Mahima S. Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pattnaik Subhaswaraj
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, Sambalpur 768019, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
42
|
Biofilms and Benign Colonic Diseases. Int J Mol Sci 2022; 23:ijms232214259. [PMID: 36430737 PMCID: PMC9698058 DOI: 10.3390/ijms232214259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The colon has a very large surface area that is covered by a dense mucus layer. The biomass in the colon includes 500-1000 bacterial species at concentrations of ~1012 colony-forming units per gram of feces. The intestinal epithelial cells and the commensal bacteria in the colon have a symbiotic relationship that results in nutritional support for the epithelial cells by the bacteria and maintenance of the optimal commensal bacterial population by colonic host defenses. Bacteria can form biofilms in the colon, but the exact frequency is uncertain because routine methods to undertake colonoscopy (i.e., bowel preparation) may dislodge these biofilms. Bacteria in biofilms represent a complex community that includes living and dead bacteria and an extracellular matrix composed of polysaccharides, proteins, DNA, and exogenous debris in the colon. The formation of biofilms occurs in benign colonic diseases, such as inflammatory bowel disease and irritable bowel syndrome. The development of a biofilm might serve as a marker for ongoing colonic inflammation. Alternatively, the development of biofilms could contribute to the pathogenesis of these disorders by providing sanctuaries for pathogenic bacteria and reducing the commensal bacterial population. Therapeutic approaches to patients with benign colonic diseases could include the elimination of biofilms and restoration of normal commensal bacteria populations. However, these studies will be extremely difficult unless investigators can develop noninvasive methods for measuring and identifying biofilms. These methods that might include the measurement of quorum sensing molecules, measurement of bile acids, and identification of bacteria uniquely associated with biofilms in the colon.
Collapse
|
43
|
Candida albicans Promotes the Antimicrobial Tolerance of Escherichia coli in a Cross-Kingdom Dual-Species Biofilm. Microorganisms 2022; 10:microorganisms10112179. [PMID: 36363771 PMCID: PMC9696809 DOI: 10.3390/microorganisms10112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Cross-kingdom multi-species biofilms consisting of fungi and bacteria are often resistant to antimicrobial treatment, leading to persistent infections. We evaluated whether the presence of Candida albicans affects the antibacterial tolerance of Escherichia coli in dual-species biofilms and explored the underlying mechanism. We found that the survival of E. coli in the presence of antibacterial drugs was higher in dual-species biofilms compared to single-species biofilms. This tolerance-inducing effect was observed in E. coli biofilms that were treated with a C. albicans culture supernatant. To explore the antibacterial tolerance-inducing factor contained in the culture supernatant and identify the tolerance mechanism, a heated supernatant, a supernatant treated with lyticase, DNase, and proteinase K, or a supernatant added to a drug efflux pump inhibitor were used. However, the tolerance-inducing activity was not lost, indicating the existence of some other mechanisms. Ultrafiltration revealed that the material responsible for tolerance-inducing activity was <10 kDa in size. This factor has not yet been identified and needs further studies to understand the mechanisms of action of this small molecule precisely. Nevertheless, we provide experimental evidence that Candida culture supernatant induces E. coli antibacterial tolerance in biofilms. These findings will guide the development of new treatments for dual-species biofilm infections.
Collapse
|
44
|
Wu H, Zhao F, Li Q, Huang J, Ju J. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci Nutr 2022; 64:2695-2707. [PMID: 36129051 DOI: 10.1080/10408398.2022.2124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Baked food is one of the most important staple foods in people's life, but its shelf life is limited. In addition, the spoilage of baked food caused by microbial deterioration will not only cause huge economic losses, but also pose a serious threat to human health. At present, due to the improvement of consumers' health awareness, the use of chemical preservatives has been gradually restricted. Compared with other types of synthetic preservatives, essential oils are becoming more and more popular because they are in line with the current development trend of "green," "safety" and "health" of food additives. Therefore, in this paper, we first summarized the main factors affecting the fungal contamination of baked food. Then analyzed the antifungal activity and mechanism of essential oil. Finally, we comprehensively summarized the application strategy of essential oil in the preservation of baked food. This review is of great significance for fully understanding the antifungal mechanism of essential oils and promoting the application of essential oils in the preservation of baked food.
Collapse
Affiliation(s)
- Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Fangyuan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Qianyu Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jinglin Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| | - Jian Ju
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
- Qingdao Special Food Research Institute, Qingdao, People's Republic of China
| |
Collapse
|
45
|
Sousa IS, Mello TP, Pereira EP, Granato MQ, Alviano CS, Santos ALS, Kneipp LF. Biofilm Formation by Chromoblastomycosis Fungi Fonsecaea pedrosoi and Phialophora verrucosa: Involvement with Antifungal Resistance. J Fungi (Basel) 2022; 8:jof8090963. [PMID: 36135688 PMCID: PMC9504689 DOI: 10.3390/jof8090963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with chromoblastomycosis (CBM) suffer chronic tissue lesions that are hard to treat. Considering that biofilm is the main growth lifestyle of several pathogens and it is involved with both virulence and resistance to antimicrobial drugs, we have investigated the ability of CBM fungi to produce this complex, organized and multicellular structure. Fonsecaea pedrosoi and Phialophora verrucosa conidial cells were able to adhere on a polystyrene abiotic substrate, differentiate into hyphae and produce a robust viable biomass containing extracellular matrix. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed the tridimensional architecture of the mature biofilms, revealing a dense network of interconnected hyphae, inner channels and amorphous extracellular polymeric material. Interestingly, the co-culture of each fungus with THP-1 macrophage cells, used as a biotic substrate, induced the formation of a mycelial trap covering and damaging the macrophages. In addition, the biofilm-forming cells of F. pedrosoi and P. verrucosa were more resistant to the conventional antifungal drugs than the planktonic-growing conidial cells. The efflux pump activities of P. verrucosa and F. pedrosoi biofilms were significantly higher than those measured in conidia. Taken together, the data pointed out the biofilm formation by CBM fungi and brought up a discussion of the relevance of studies about their antifungal resistance mechanisms.
Collapse
Affiliation(s)
- Ingrid S. Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Elaine P. Pereira
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Celuta S. Alviano
- Laboratório de Estrutura de Microrganismos, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Correspondence:
| |
Collapse
|
46
|
Costa PDS, Prado A, Bagon NP, Negri M, Svidzinski TIE. Mixed Fungal Biofilms: From Mycobiota to Devices, a New Challenge on Clinical Practice. Microorganisms 2022; 10:microorganisms10091721. [PMID: 36144323 PMCID: PMC9506030 DOI: 10.3390/microorganisms10091721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that allow the evaluation of fungal morphology and the identification of the etiologic agent of mycosis. Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that enable the examination of the fungi for further identification of the etiological agent of the mycosis. The isolation of fungi from pure cultures is typically recommended, as when more than one species is identified, the second agent is considered a contaminant. Fungi mostly survive in highly organized communities that provoke changes in phenotypic profile, increase resistance to antifungals and environmental stresses, and facilitate evasion from the immune system. Mixed fungal biofilms (MFB) harbor more than one fungal species, wherein exchange can occur that potentialize the effects of these virulence factors. However, little is known about MFB and their role in infectious processes, particularly in terms of how each species may synergistically contribute to the pathogenesis. Here, we review fungi present in MFB that are commensals of the human body, forming the mycobiota, and how their participation in MFB affects the maintenance of homeostasis. In addition, we discuss how MFB are formed on both biotic and abiotic surfaces, thus being a significant reservoir of microorganisms that have already been associated in infectious processes of high morbidity and mortality.
Collapse
|
47
|
|
48
|
Cai Z, Mo Z, Zheng S, Lan S, Xie S, Lu J, Tang C, Shen Z. Flavaspidic acid BB combined with mupirocin improves its anti-bacterial and anti-biofilm activities against Staphylococcus epidermidis. BMC Microbiol 2022; 22:179. [PMID: 35840879 PMCID: PMC9284735 DOI: 10.1186/s12866-022-02578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The increase in drug-resistant opportunistic pathogenic bacteria, especially of antibiotic-resistant Staphylococcus epidermidis (S. epidermidis), has led to difficulties in the treatment of skin and soft tissue infections (SSTI). The major reason for bacterial resistance is the formation of bacterial biofilm. Here, we report a promising combination therapy of flavaspidic acid BB (BB) and mupirocin, which can effectively eradicate the biofilm of S. epidermidis and eliminate its drug resistance. RESULT The susceptibility test showed that the combination of BB and mupirocin has good antibacterial and antibiofilm activities, and the fractional inhibitory concentration index (FICI) of BB combined with mupirocin was 0.51 ± 0.00 ~ 0.75 ± 0.05, showing synergistic effect. Moreover, the time-kill curve assay results indicated that the combination of drugs can effectively inhibit the planktonic S. epidermidis. After drugs treatment, the drug-combination showed significantly inhibitory effects on the metabolic activity and total biomass in each stage of biofilm formation. The synergistic effect is likely related to the adhesion between bacteria, which is confirmed by field emission scanning electron microscope. And the expression level of aap, sarA and agrA genes were detected by real-time quantitative PCR (qRT-PCR). CONCLUSION Our study provides the experimental data for the use of BB for the clinical treatment of skin infections and further demonstrate the potential of BB as a novel biofilm inhibitor.
Collapse
Affiliation(s)
- Zhiling Cai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zitong Mo
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiqian Zheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shihua Lan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shengjun Xie
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinghui Lu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunping Tang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhibin Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China.
- Guangdong Cosmetics Engineering &Technology Research Center, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
49
|
Zuzarte M, Salgueiro L. Essential Oils in Respiratory Mycosis: A Review. Molecules 2022; 27:molecules27134140. [PMID: 35807386 PMCID: PMC9268412 DOI: 10.3390/molecules27134140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 01/08/2023] Open
Abstract
Respiratory mycosis is a major health concern, due to the expanding population of immunosuppressed and immunocompromised patients and the increasing resistance to conventional antifungals and their undesired side-effects, thus justifying the development of new therapeutic strategies. Plant metabolites, namely essential oils, represent promising preventive/therapeutic strategies due to their widely reported antifungal potential. However, regarding fungal infections of the respiratory tract, information is disperse and no updated compilation on current knowledge is available. Therefore, the present review aims to gather and systematize relevant information on the antifungal effects of several essential oils and volatile compounds against the main type of respiratory mycosis that impact health care systems. Particular attention is paid to Aspergillus fumigatus, the main pathogen involved in aspergillosis, Candida auris, currently emerging as a major pathogen in certain parts of the world, and Cryptococcus neoformans, one of the main pathogens involved in pulmonary cryptococcosis. Furthermore, the main mechanisms of action underlying essential oils’ antifungal effects and current limitations in clinical translation are presented. Overall, essential oils rich in phenolic compounds seem to be very effective but clinical translation requires more comprehensive in vivo studies and human trials to assess the efficacy and tolerability of these compounds in respiratory mycosis.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
- Correspondence:
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Sciences and Technology, Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
50
|
Bharti S, Zakir F, Mirza MA, Aggarwal G. Antifungal biofilm strategies: a less explored area in wound management. Curr Pharm Biotechnol 2022; 23:1497-1513. [PMID: 35410595 DOI: 10.2174/1389201023666220411100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Background- The treatment of wound associated infections has always remained a challenge for clinicians with the major deterring factor being microbial biofilms, majorly bacterial or fungal. Biofilm infections are becoming a global concern owing to resistance against antimicrobials. Fungal biofilms are formed by a wide variety of fungal pathogens namely Candida sp., Aspergillus fumigates, Trichosporon sp., Saccharomyces cerevisiae, Cryptococcus neoformans, among others. The rising cases of fungal biofilm resistance add to the burden of wound care. Additionally, with increase in the number of surgical procedures, transplantation and the exponential use of medical devices, fungal bioburden is on the rise. Objectives- The review discusses the methods of biofilm formation and the resistance mechanisms against conventional treatments. The potential of novel delivery strategies and the mechanisms involved therein are highlighted. Further, the prospects of nanotechnology based medical devices to combat fungal biofilm resistance have also been explored. Some of the clinical trials and up-to-date patent technologies to eradicate the biofilms are also mentioned. Conclusion- Due to the many challenges faced in preventing/eradicating biofilms, only a handful of approaches have been able to make it to the market. Fungal biofilms are a fragmentary area which needs further exploration.
Collapse
Affiliation(s)
- Shilpa Bharti
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Foziyah Zakir
- Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|