1
|
Raposa J, Vazquez JA. New pharmacotherapeutic strategies for drug-resistant Candida infections: a review. Expert Opin Pharmacother 2025:1-11. [PMID: 39587055 DOI: 10.1080/14656566.2024.2433605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Candida species produce a wide array of infections ranging from mucocutaneous to systemic infections. Candida albicans remains the most common species identified; however, the non-albicans Candida species have continued to increase as the diagnosis and therapeutic regimens have progressed. AREAS COVERED This review with discussion of the various Candida species, especially the non-albicans species, some of the important mechanisms of resistance, and newer in vitro and clinical studies describing the recent and novel antifungal options such as rezafungin, ibrexafungerp, and oteseconazole, along with a novel antifungal, fosmanogepix. EXPERT OPINION Initial antifungal therapy is frequently obsolete due to the expansion of antifungal resistance. This is especially true with C. glabrata, C. krusei, and most recently with C. auris. The newer and novel antifungals discussed here will add valuable tools to our antifungal armamentarium to be able to appropriately and adequately treat and manage these difficult infections. Each of the antifungals has unique and novel properties that will expand the arsenal useful to treat these fungal infections in the years to come.
Collapse
Affiliation(s)
- Jesse Raposa
- Division of Infectious Disease, Department of Medicine, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Jose A Vazquez
- Division of Infectious Disease, Department of Medicine, Medical College of Georgia/Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
Tian S, Wu Y, Li H, Rong C, Wu N, Chu Y, Jiang N, Zhang J, Shang H. Evolutionary accumulation of FKS1 mutations from clinical echinocandin-resistant Candida auris. Emerg Microbes Infect 2024; 13:2377584. [PMID: 38989545 PMCID: PMC11265302 DOI: 10.1080/22221751.2024.2377584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Drug resistance to echinocandins, first-line drugs used to treat Candida auris infection, is rapidly emerging. However, the accumulation of mutations in genes other than FKS1 (before an isolate develops to resistance via FKS1 mutations), remains poorly understood. Methods: Four clinical cases and 29 isolates associated with the incremental process of echinocandin resistance were collected and analyzed using antifungal drug susceptibility testing and genome sequencing to assess the evolution of echinocandin resistance. FINDINGS Six echinocandin minimum inhibitory concentration (MIC)-elevated C. auris strains and seven resistant strains were isolated from the urinary system of patients receiving echinocandin treatment. Meanwhile, phylogenetic analyses illustrated that the echinocandin-resistant strains were closely related to other strains in the same patient. Genomic data revealed that the echinocandin-resistant strains had FKS1 mutations. Furthermore, three categories (ECN-S/E/R) of non-synonymous mutant SNP genes (such as RBR3, IFF6, MKC1, MPH1, RAD2, and MYO1) in C. auris appeared to be associated with the three-stage-evolutionary model of echinocandin resistance in C. glabrata: cell wall stress, drug adaptation, and genetic escape (FKS mutation). INTERPRETATION Echinocandin-resistant C. auris undergoes spatial and temporal phase changes closely related to echinocandin exposure, particularly in the urinary system. These findings suggest that FKS1 mutations mediate an evolutionary accumulation of echinocandin resistance followed by modulation of chromosome remodelling and DNA repair processes that ultimately lead to FKS1 hot spot mutations and the development of drug resistance. This study provides an in-depth exploration of the molecular pathways involved in the evolution of Candida auris echinocandin resistance.
Collapse
Affiliation(s)
- Sufei Tian
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yusheng Wu
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hailong Li
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China
- NHC Key Laboratory of AIDS Prevention and Treatment, The First Hospital of China Medical University, China Medical University, Shenyang, People’s Republic of China
| | - Chen Rong
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Na Wu
- Department of Infectious Diseases, the First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yunzhuo Chu
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Ning Jiang
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Jingping Zhang
- Department of Infectious Diseases, the First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hong Shang
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People’s Republic of China
- NHC Key Laboratory of AIDS Prevention and Treatment, The First Hospital of China Medical University, China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
3
|
Bednarek A, Kabut A, Rapala-Kozik M, Satala D. Exploring the effects of culture conditions on Yapsin ( YPS) gene expression in Nakaseomyces glabratus. Open Life Sci 2024; 19:20220995. [PMID: 39655190 PMCID: PMC11627043 DOI: 10.1515/biol-2022-0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Nakaseomyces glabratus, previously known as Candida glabrata, has the great potential to cause systemic fungal infections despite its similarity to baker's yeast. Its pathogenicity is attributed to the production of numerous virulence factors, among which the YPS genes (YPS1-YPS11) encoding aspartyl proteases have yet to be sufficiently characterized, and limited studies suggest their involvement in cellular homeostasis. The study's novelty is an investigation of the role of YPS in N. glabratus's ability to adapt to different host environments. For this purpose, we isolated RNA from N. glabratus cells grown in both host niche-mimicking culture media, such as artificial saliva (AS) and vagina-simulating media (VS), as well as standard yeast media (RPMI 1640 and YPDA). We then performed quantitative real-time PCR to evaluate YPS gene expression at different growth phases. At the early logarithmic phase, we observed a general increase in the expression levels of YPS genes; however, at the stationary phase, high expression levels were maintained for YPS7 in RPMI 1640 and YPDA media and YPS6 in RPMI 1640 and AS media. In addition, although the VS medium does not promote the proliferation of N. glabratus, the yeast can survive in an acidic environment, and the significantly overexpressed gene is YPS7. These findings underscore the significant modulation of N. glabratus YPS gene expression in response to external environmental conditions. This research provides insights into the molecular basis of N. glabratus pathogenicity and highlights new potential targets for antifungal therapy.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Kabut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
4
|
Williams CC, Gregory JB, Usher J. Understanding the clinical and environmental drivers of antifungal resistance in the One Health context. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001512. [PMID: 39475703 PMCID: PMC11524418 DOI: 10.1099/mic.0.001512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024]
Abstract
Antifungal drugs have had a tremendous impact on human health and the yields of crops. However, in recent years, due to usage both in a health setting and in agriculture, there has been a rapid emergence of antifungal drug resistance that has outpaced novel compound discovery. It is now globally recognized that new strategies to tackle fungal infection are urgently needed, with such approaches requiring the cooperation of both sectors and the development of robust antifungal stewardship rationales. In this review, we examine the current antifungal regimes in clinical and agricultural settings, focusing on two pathogens of importance, Candida auris and Aspergillus fumigatus, examining their drivers of antifungal resistance, the impact of dual-use azoles and the impact agricultural practices have on driving the emergence of resistance. Finally, we postulate that a One Health approach could offer a viable alternative to prolonging the efficacy of current antifungal agents.
Collapse
Affiliation(s)
- Catrin C. Williams
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jack B. Gregory
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
5
|
Conway TP, Simonicova L, Moye-Rowley WS. Overlapping coactivator function is required for transcriptional activation by the Candida glabrata Pdr1 transcription factor. Genetics 2024; 228:iyae115. [PMID: 39028831 DOI: 10.1093/genetics/iyae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024] Open
Abstract
Azole resistance in the pathogenic yeast Candida glabrata is a serious clinical complication and increasing in frequency. The majority of resistant organisms have been found to contain a substitution mutation in the Zn2Cys6 zinc cluster-containing transcription factor Pdr1. These mutations typically lead to this factor driving high, constitutive expression of target genes like the ATP-binding cassette transporter-encoding gene CDR1. Overexpression of Cdr1 is required for the observed elevated fluconazole resistance exhibited by strains containing one of these hyperactive PDR1 alleles. While the identity of hyperactive PDR1 alleles has been extensively documented, the mechanisms underlying how these gain-of-function (GOF) forms of Pdr1 lead to elevated target gene transcription are not well understood. We have used a tandem affinity purification-tagged form of Pdr1 to identify coactivator proteins that biochemically purify with the wild-type and 2 different GOF forms of Pdr1. Three coactivator proteins were found to associate with Pdr1: the SWI/SNF complex Snf2 chromatin remodeling protein and 2 different components of the SAGA complex, Spt7 and Ngg1. We found that deletion mutants lacking either SNF2 or SPT7 exhibited growth defects, even in the absence of fluconazole challenge. To overcome these issues, we employed a conditional degradation system to acutely deplete these coactivators and determined that loss of either coactivator complex, SWI/SNF or SAGA, caused defects in Pdr1-dependent transcription. A double degron strain that could be depleted for both SWI/SNF and SAGA exhibited a profound defect in PDR1 autoregulation, revealing that these complexes work together to ensure high-level Pdr1-dependent gene transcription.
Collapse
Affiliation(s)
- Thomas P Conway
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lucia Simonicova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Koren V, Ben-Zeev E, Voronov I, Fridman M. Chiral Fluorescent Antifungal Azole Probes Detect Resistance, Uptake Dynamics, and Subcellular Distribution in Candida Species. JACS AU 2024; 4:3157-3169. [PMID: 39211628 PMCID: PMC11350599 DOI: 10.1021/jacsau.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Azoles are essential for fungal infection treatment, yet the increasing resistance highlights the need for innovative diagnostic tools and strategies to revitalize this class of antifungals. We developed two enantiomers of a fluorescent antifungal azole probe (1 S and 1 R ), analyzing 60 Candida strains via live-cell microscopy. A database of azole distribution images in strains of Candida albicans, Candida glabrata, and Candida parapsilosis, among the most important pathogenic Candida species, was established and analyzed. This analysis revealed distinct populations of yeast cells based on the correlation between fluorescent probe uptake and cell diameter. Varied uptake levels and subcellular distribution patterns were observed in C. albicans, C. glabrata, and C. parapsilosis, with the latter displaying increased localization to lipid droplets. Comparison of the more potent fluorescent antifungal azole probe enantiomer 1 S with the moderately potent enantiomer 1 R highlighted time-dependent differences in the uptake profiles. The former displayed a marked elevation in uptake after approximately 150 min, indicating the time required for significant cell permeabilization to occur and its association with the azole's antifungal activity potency. Divergent uptake levels between susceptible and high efflux-based azole-resistant strains were detected, offering a rapid diagnostic approach for identifying azole resistance. This study highlights unique insights achievable through fluorescent antifungal azole probes, unraveling the complexities of azole resistance, subcellular dynamics, and uptake within fungal pathogens.
Collapse
Affiliation(s)
- Vlad Koren
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Ben-Zeev
- Ilana
and Pascal Mantoux Institute for Bioinformatics and Nancy and Stephen
Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ivan Voronov
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Arastehfar A, Daneshnia F, Floyd DJ, Jeffries NE, Salehi M, Perlin DS, Ilkit M, Lass-Flöerl C, Mansour MK. Echinocandin persistence directly impacts the evolution of resistance and survival of the pathogenic fungus Candida glabrata. mBio 2024; 15:e0007224. [PMID: 38501869 PMCID: PMC11005346 DOI: 10.1128/mbio.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Recent epidemiological studies documented an alarming increase in the prevalence of echinocandin-resistant (ECR) Candida glabrata blood isolates. ECR isolates are known to arise from a minor subpopulation of a clonal population, termed echinocandin persisters. Although it is believed that isolates with a higher echinocandin persistence (ECP) are more likely to develop ECR, the implication of ECP needs to be better understood. Moreover, replacing laborious and time-consuming traditional approaches to determine ECP levels with rapid, convenient, and reliable tools is imperative to advance our understanding of this emerging concept in clinical practice. Herein, using extensive ex vivo and in vivo systemic infection models, we showed that high ECP isolates are less effectively cleared by micafungin treatment and exclusively give rise to ECR colonies. Additionally, we developed a flow cytometry-based tool that takes advantage of a SYTOX-based assay for the stratification of ECP levels. Once challenged with various collections of echinocandin-susceptible blood isolates, our assay reliably differentiated ECP levels in vitro and predicted ECP levels in real time under ex vivo and in vivo conditions when compared to traditional methods relying on colony-forming unit counting. Given the high and low ECP predictive values of 92.3% and 82.3%, respectively, our assay showed a high agreement with traditional approach. Collectively, our study supports the concept of ECP level determination in clinical settings and provides a robust tool scalable for high-throughput settings. Application of this tool facilitates the interrogation of mutant and drug libraries to further our understanding of persister biology and designing anti-persister therapeutics. IMPORTANCE Candida glabrata is a prevalent fungal pathogen able to replicate inside macrophages and rapidly develop resistance against frontline antifungal echinocandins. Multiple studies have shown that echinocandin resistance is fueled by the survival of a small subpopulation of susceptible cells surviving lethal concentrations of echinocandins. Importantly, bacterial pathogens that exhibit high antibiotic persistence also impose a high burden and generate more antibiotic-resistant colonies. Nonetheless, the implications of echinocandin persistence (ECP) among the clinical isolates of C. glabrata have not been defined. Additionally, ECP level determination relies on a laborious and time-consuming method, which is prone to high variation. By exploiting in vivo systemic infection and ex vivo models, we showed that C. glabrata isolates with a higher ECP are associated with a higher burden and more likely develop echinocandin resistance upon micafungin treatment. Additionally, we developed an assay that reliably determines ECP levels in real time. Therefore, our study identified C. glabrata isolates displaying high ECP levels as important entities and provided a reliable and convenient tool for measuring echinocandin persistence, which is extendable to other fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Farnaz Daneshnia
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Daniel J. Floyd
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Mostafa Salehi
- Department Industrial Engineering Faculty of K.N., Toosi University of Technology, Tehran, Iran
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Türkiye
| | - Cornelia Lass-Flöerl
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Innsbruck, Austria
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Yang F, Berman J. Beyond resistance: antifungal heteroresistance and antifungal tolerance in fungal pathogens. Curr Opin Microbiol 2024; 78:102439. [PMID: 38401284 PMCID: PMC7616270 DOI: 10.1016/j.mib.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
Fungal infections are increasing globally, causing alarmingly high mortality and economic burden. In addition to antifungal resistance, other more subtle drug responses appear to increase the likelihood of treatment failures. These responses include heteroresistance and tolerance, terms that are more well-defined for antibacterial drugs, but are also evident in pathogenic fungi. Here, we compare these antifungal responses with similarly named antibacterial responses, and we review recent advances in how we understand the routes by which antifungal heteroresistance and tolerance emerge.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Maniah K. Anticandidal effectiveness of greenly synthesized zinc oxide nanoparticles against candidal pathogens. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 58:1097-1110. [PMID: 38351615 DOI: 10.1080/10934529.2024.2315922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024]
Abstract
Drug resistance of pathogenic candidal strains to conventional antifungal agents represents a significant health issue contributing to high morbidity worldwide. Hence, the aim of the current study focused on evaluating the antifungal and synergistic activities of the green synthesized zinc oxide nanoparticles formulated using Laurus nobilis leaf extract. The biogenic ZnONPs were hexagonal in shape with average particle size diameter of 37.98 nm and pure crystalline structure as detected by XRD data. The highest antifungal activity of biogenic ZnONPs was detected against Candida parapsilosis strain demonstrating relative inhibitory zone diameters of 17.13 ± 0.74 and 25.78 ± 0.47 mm, at the concentrations of 100 and 200 µg/disk, respectively. Moreover, the biogenic ZnONPs demonstrated the highest synergistic activity with clotrimazole antifungal agent against Candida glabrata followed by Candida auris strains. MTT assay revealed that the biogenic ZnONPs showed low toxicity demonstrating relative IC50 value of 774.45 µg/mL against normal lung fibroblast cells which further affirmed their biosafety for application. In conclusion, the bioinspired ZnONPs could be utilized for the formulation of effective antifungal agents against drug resistant candidal strains and also could be combined with antifungal agents to boost their antifungal efficiency.
Collapse
Affiliation(s)
- Khalid Maniah
- Department of Biology, King Khalid Military Academy, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Aldejohann AM, Menner C, Thielemann N, Martin R, Walther G, Kurzai O. In vitro activity of ibrexafungerp against clinically relevant echinocandin-resistant Candida strains. Antimicrob Agents Chemother 2024; 68:e0132423. [PMID: 38206004 PMCID: PMC10848775 DOI: 10.1128/aac.01324-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/22/2023] [Indexed: 01/12/2024] Open
Abstract
Invasive candidiasis is a major hospital-acquired infection. Usually, echinocandins are considered first-line treatment. However, resistant phenotypes have emerged. Ibrexafungerp (IBX) is a new antifungal substance with potent anti-Candida activity. We challenged IBX with a library of 192 pheno-/genotypically echinocandin-resistant Candida isolates, focusing on the substance susceptibility, its activity on certain FKS hotspot (HS) mutated strains, and applying WTULs (wild-type upper limits). Therefore, a 9-year-old strain and patient data collection provided by the German National Reference Center for Invasive Fungal Infections were analyzed. Species identification was confirmed through ITS-sequencing. Molecular susceptibility testing was performed by sequencing HS of the FKS gene. Anidulafungin (AND) and IBX EUCAST-broth-microdilution was conducted. The four most common echinocandin-resistance mediating mutations were found in Candida glabrata [112/192 isolates; F659-(43×) and S663-(48×)] and Candida albicans [63/192 isolates; F641-(15×) and S645-(39×)]. Mutations at the HS-start sequence were associated with higher IBX MIC-values (F659 and F641 (MIC 50/90 mg/L: >4/>4 and 2/4 mg/L) in comparison to AND (F659 and F641 (MIC 50/90: 1/4 and 0.25/1 mg/L). MIC-values in HS-center mutations were almost equal [MIC50/90 in S663: 2/4 (AND and IBX); in S645: 0.5/1 (AND) and 0.25/1 (IBX) mg/L]. In total, 61 vs 78 of 192 echinocandin-resistant isolates may be classified as IBX wild type by applying WTULs, whereas the most prominent effect was seen in C. albicans [48% (30/63) vs 70% (44/63)]. IBX shows in vitro activity against echinocandin-resistant Candida and thus is an addition to the antifungal armory. However, our data suggest that this effect is more pronounced in C. albicans and strains harboring mutations, affecting the HS-center.
Collapse
Affiliation(s)
| | - Carolina Menner
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Nadja Thielemann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ronny Martin
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Grit Walther
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| |
Collapse
|
11
|
Dunaiski CM, Kock MM, Chan WY, Ismail A, Peters RPH. Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia. Med Mycol 2024; 62:myae009. [PMID: 38308518 DOI: 10.1093/mmy/myae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024] Open
Abstract
Candida glabrata is the most common non-albicans Candida species that causes vulvovaginal candidiasis (VVC). Given the intrinsically low susceptibility of C. glabrata to azole drugs, investigations into C. glabrata prevalence, fungal susceptibility profile, and molecular epidemiology are necessary to optimise the treatment of VVC. This molecular epidemiological study was conducted to determine antifungal drug profile, single nucleotide polymorphisms (SNPs) associated with phenotypic antifungal resistance and epidemic diversity of C. glabrata isolates from women with VVC in Namibia. Candida glabrata isolates were identified using phenotypic and molecular methods. Antifungal susceptibility of strains was determined for fluconazole, itraconazole, amphotericin B, and anidulafungin. Whole genome sequencing was used to determine SNPs in antifungal resistance genes and sequence type (ST) allocation. Among C. glabrata isolates, all (20/20; 100%) exhibited phenotypic resistance to the azole class antifungal drug, (fluconazole), and phenotypic susceptibility to the polyene class (amphotericin B), and the echinocandins (anidulafungin). Non-synonymous SNPs were identified in antifungal resistance genes of all fluconazole-resistant C. glabrata isolates including ERG6 (15%), ERG7 (15%), CgCDR1 (25%), CgPDR1 (60%), SNQ2 (10%), FKS1 (5.0%), FKS2 (5.0%), CgFPS1 (5.0%), and MSH2 (15%). ST15 (n = 8/20, 40%) was predominant. This study provides important insight into phenotypic and genotypic antifungal resistance across C. glabrata isolates from women with VVC in Namibia. In this study, azole resistance is determined by an extensive range of SNPs, while the observed polyene and echinocandin resistance-associated SNPs despite phenotypic susceptibility require further investigation.
Collapse
Affiliation(s)
- Cara M Dunaiski
- Namibia University of Sciences and Technology, Department of Health and Applied Sciences, Windhoek 10005, Namibia
- University of Pretoria, Department of Medical Microbiology, Pretoria 0001, South Africa
| | - Marleen M Kock
- University of Pretoria, Department of Medical Microbiology, Pretoria 0001, South Africa
- National Health Laboratory Service, Tshwane, Academic Division, Pretoria 3191, South Africa
| | - Wai Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0081, South Africa
- Right to care, Centurion 0157, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Remco P H Peters
- University of Pretoria, Department of Medical Microbiology, Pretoria 0001, South Africa
- University of Cape Town, Division of Medical Microbiology, Cape Town 7701, South Africa
- Foundation for Professional Development, Research Unit, East London 5217, South Africa
| |
Collapse
|
12
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Cabrera N, Ilkit M, Desai JV, Gabaldón T, Shor E, Perlin DS. A multidimensional assessment of in-host fitness costs of drug resistance in the opportunistic fungal pathogen Candida glabrata. FEMS Yeast Res 2024; 24:foae035. [PMID: 39545363 PMCID: PMC11631428 DOI: 10.1093/femsyr/foae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Drug-resistant microbes typically carry mutations in genes involved in critical cellular functions and may therefore be less fit under drug-free conditions than susceptible strains. Candida glabrata is a prevalent opportunistic yeast pathogen with a high rate of fluconazole resistance (FLZR), echinocandin resistance (ECR), and multidrug resistance (MDR) relative to other Candida. However, the fitness of C. glabrata MDR isolates, particularly in the host, is poorly characterized, and studies of FLZR isolate fitness have produced contradictory findings. Two important host niches for C. glabrata are macrophages, in which it survives and proliferates, and the gut. Herein, we used a collection of clinical and lab-derived C. glabrata isolates to show that FLZR C. glabrata isolates are less fit inside macrophages than susceptible isolates and that this fitness cost is reversed by acquiring ECR mutations. Interestingly, dual-RNAseq revealed that macrophages infected with drug-resistant isolates mount an inflammatory response whereas intracellular drug-resistant cells downregulate processes required for in-host adaptation. Furthermore, drug-resistant isolates were outcompeted by their susceptible counterparts during gut colonization and in infected kidneys, while showing comparable fitness in the spleen. Collectively, our study shows that macrophage-rich organs, such as the spleen, favor the retention of MDR isolates of C. glabrata.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, United States
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam1012 WX, The Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Nathaly Cabrera
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, 01330 Adana, Turkey
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC 20057, United States
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC 20057, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| |
Collapse
|
13
|
Villanueva-Lozano H, Trejo-Castro AI, Carrion-Alvarez D, Lozano-Díaz ST, Martinez-Torteya A. A Bibliometric Review on Candida auris of the First Fifteen Years of Research (2009-2023). BIOMED RESEARCH INTERNATIONAL 2023; 2023:2385018. [PMID: 37869631 PMCID: PMC10586903 DOI: 10.1155/2023/2385018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Introduction Candida auris is a relatively novel pathogen first described in 2009 in Japan. It has increased its presence worldwide, becoming a public health concern due to its innate resistance to antifungals and outbreak potential. Methods We performed a query using the word "Candida auris" from the Scopus database, further performing a bibliometric analysis with the open-source R package Bibliometrix. Results 907 original articles were retrieved, allowing us to map the principal authors, papers, journals, and countries involved in this yeast research, as well as analyze current and future trends and the number of published articles. Conclusion C. auris will continue to be a pivotal point in fungal resistance research, either for a better understanding of its resistance and pathogenic mechanisms or for developing novel drugs.
Collapse
Affiliation(s)
- Hiram Villanueva-Lozano
- Internal Medicine Department, ISSSTE Regional Monterrey, Monterrey 64380, Nuevo Leon, Mexico
| | - Alejandro I. Trejo-Castro
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey 64710, Nuevo Leon, Mexico
- Bicultural Nursing Program, Instituto Humanístico de la Salud, Nuevo Laredo 88000, Tamaulipas, Mexico
| | - Diego Carrion-Alvarez
- Internal Medicine Department, ISSSTE Regional Monterrey, Monterrey 64380, Nuevo Leon, Mexico
- Health Sciences, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo Leon, Mexico
| | - Sofía T. Lozano-Díaz
- Health Sciences, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo Leon, Mexico
| | - Antonio Martinez-Torteya
- School of Engineering and Technology, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo Leon, Mexico
| |
Collapse
|
14
|
Singh A, Kaur A, Chowdhary A. Fungal pathogens and COVID-19. Curr Opin Microbiol 2023; 75:102365. [PMID: 37625261 DOI: 10.1016/j.mib.2023.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
COVID-19 pandemic highlighted the complications of secondary fungal infections that occurred globally in severe cases of coronavirus disease managed in the intensive care units. Furthermore, varied underlying host factors, such as preexisting immunosuppression, the use of immunomodulatory agents, and invasive procedures predisposing lung tissues to fungal colonization and proliferation, caused increased susceptibility to fungal infections in COVID-19 patient populations. These invasive fungal infections directly impact the overall length of hospitalization and mortality. The most commonly reported fungal infections in patients with COVID-19 include aspergillosis, invasive candidiasis, and mucormycosis. An overall worldwide increase in the prevalence of candidiasis and aspergillosis was observed in COVID-19 patients , whereas outbreaks of mucormycosis were mainly recorded from India. Diagnostic challenges and limited antifungal treatment options make secondary fungal infections among COVID-19 patients more burdensome, which results in improper management and increased mortality.
Collapse
Affiliation(s)
- Ashutosh Singh
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Amtoj Kaur
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The increasing incidence of drug-resistant Candida brings a new challenge to the treatment of invasive candidiasis. Although cross-resistance among azoles and echinocandins was generally uncommon, reports of multidrug-resistant (MDR) Candida markedly increased in the last decade. The purpose of this review is to understand mechanisms and risk factors for resistance and how to tackle antifungal resistance. RECENT FINDINGS The paper describes the action of the three main classes of antifungals - azoles, echinocandins and polyenes - and Candida's mechanisms of resistance. The current evolution from cross-resistance to multiresistance among Candida explains the modern glossary - multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) - imported from bacteria. MDR Candida most commonly involves acquired resistance in species with intrinsic resistance, therefore it mostly involves C. glabrata, C. parapsilosis, C. krusei, C guilliermondii or C. auris , which is intrinsically multidrug resistant. Finally, strategies to tackle antifungal resistance became clearer, ideally implemented through antifungal stewardship. SUMMARY Avoiding antifungal's overuse and selecting the best drug, dose and duration, when they are needed, is fundamental. Knowledge of risk factors for resistance, microbiological diagnosis to the species, use of susceptibility test supported by antifungal stewardship programs help attaining effective therapy and sustaining the effectiveness of the current antifungal armamentarium.
Collapse
Affiliation(s)
- José-Artur Paiva
- Intensive Care Medicine Department, Centro Hospitalar Universitário S. João, Porto, Portugal
- Department of Medicine, Faculty of Medicine of University of Porto, Porto, Portugal
- Grupo de Infeção e Sepsis, Porto, Portugal
| | - José Manuel Pereira
- Intensive Care Medicine Department, Centro Hospitalar Universitário S. João, Porto, Portugal
- Department of Medicine, Faculty of Medicine of University of Porto, Porto, Portugal
- Grupo de Infeção e Sepsis, Porto, Portugal
| |
Collapse
|
16
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
17
|
Daneshnia F, Arastehfar A, Lombardi L, Binder U, Scheler J, Vahedi Shahandashti R, Hagen F, Lass-Flörl C, Mansour MK, Butler G, Perlin DS. Candida parapsilosis isolates carrying mutations outside FKS1 hotspot regions confer high echinocandin tolerance and facilitate the development of echinocandin resistance. Int J Antimicrob Agents 2023; 62:106831. [PMID: 37121442 DOI: 10.1016/j.ijantimicag.2023.106831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Candida parapsilosis is a significant cause of candidemia worldwide. Echinocandin-resistant (ECR) and echinocandin-tolerant (ECT) C. parapsilosis isolates have been reported in various countries but are rare. Resistance and tolerance are predominantly caused by mutations related to the hotspot (HS) regions of the FKS1 gene. A relatively high proportion of clinical C. parapsilosis isolates carrying mutations outside the HS regions has been noted in some studies, but an association with echinocandin (EC) resistance or tolerance was not explored. Herein, CRISPR-Cas9 was used and the association between amino acid substitution in FKS1 outside HS 1/2 (V595I, S745L, M1328I, F1386S, and A1422G) with EC susceptibility profile was delineated. None of the mutations conferred EC resistance, but they resulted in a significantly higher level of EC tolerance than the parental isolate, ATCC 22019. When incubated on agar plates containing ECs, specifically caspofungin and micafungin, ECR colonies were exclusively observed among ECT isolates, particularly mutants carrying V595I, S745L, and F1386S. Additionally, mutants had significantly better growth rates in yeast extract peptone dextrose (YPD) and YPD containing agents inducing membrane and oxidative stresses. The mutants had a trivial fitness cost in the Galleria mellonella model relative to ATCC 22019. Collectively, this study supports epidemiological studies to catalog mutations occurring outside the HS regions of FKS1, even if they do not confer EC resistance. These mutations are important as they potentially confer a higher level of EC tolerance and a higher propensity to develop EC resistance, therefore unveiling a novel mechanism of EC tolerance in C. parapsilosis. The identification of EC tolerance in C. parapsilosis may have direct clinical benefit in patient management.
Collapse
Affiliation(s)
- Farnaz Daneshnia
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 USA; Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Ulrike Binder
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Jakob Scheler
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Roya Vahedi Shahandashti
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Ferry Hagen
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, 1012 WX, The Netherlands; Westerdijk Fungal Biodiversity Institute, Utrecht, 3584CT, The Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | - Cornelia Lass-Flörl
- Medical University Innsbruck, Institute of Hygiene and Medical Microbiology, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 USA; Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07710, USA; Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA.
| |
Collapse
|
18
|
Naicker SD, Shuping L, Zulu TG, Mpembe RS, Mhlanga M, Tsotetsi EM, Maphanga TG, Govender NP. Epidemiology and susceptibility of Nakaseomyces (formerly Candida) glabrata bloodstream isolates from hospitalised adults in South Africa. Med Mycol 2023; 61:myad057. [PMID: 37336590 DOI: 10.1093/mmy/myad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
During 2016-2017, Nakaseomyces glabrata (formerly Candida glabrata) caused 14% of cases of candidaemia in South Africa. We aimed to describe the clinical characteristics of adults with N. glabrata candidaemia at 20 sentinel hospitals (accounting for 20% (172/917) of cases) and the antifungal susceptibility of the corresponding isolates. A higher proportion of patients with N. glabrata candidaemia were older (median age: 55 years [interquartile range (IQR): 41-65 years] vs. 49 years [IQR: 35-63 years]; p = 0.04), female (87/164, 53% vs. 283/671, 42%; p = 0.01), admitted to a public-sector hospital (152/172, 88% vs. 470/745, 63%; p < 0.001), treated with fluconazole only (most with suboptimal doses) (51/95, 54% vs. 139/361, 39%; p < 0.001), and had surgery (47/172, 27% vs. 123/745, 17%; p = 0.001) and a shorter hospital stay (median 7 days [IQR: 2-20 days] vs. 13 days [IQR: 4-27 days]; p < 0.001) compared to patients with other causes of candidaemia. Eight N. glabrata isolates (6%, 8/131) had minimum inhibitory concentrations in the intermediate or resistant range for ≥ 1 echinocandin and a R1377K amino acid substitution encoded by the hotspot 2 region of the FKS2 gene. Only 11 isolates (8%, 11/131) were resistant to fluconazole. Patients with confirmed N. glabrata candidaemia are recommended to be treated with an echinocandin (or polyene), thus further guideline training is required.
Collapse
Affiliation(s)
- Serisha D Naicker
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Liliwe Shuping
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Thokozile G Zulu
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ruth S Mpembe
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Mabatho Mhlanga
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ernest M Tsotetsi
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Tsidiso G Maphanga
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P Govender
- Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infection and Immunity, St George's University of London, London and Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
19
|
Daneshnia F, de Almeida Júnior JN, Ilkit M, Lombardi L, Perry AM, Gao M, Nobile CJ, Egger M, Perlin DS, Zhai B, Hohl TM, Gabaldón T, Colombo AL, Hoenigl M, Arastehfar A. Worldwide emergence of fluconazole-resistant Candida parapsilosis: current framework and future research roadmap. THE LANCET. MICROBE 2023; 4:e470-e480. [PMID: 37121240 PMCID: PMC10634418 DOI: 10.1016/s2666-5247(23)00067-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 05/02/2023]
Abstract
Candida parapsilosis is one of the most commen causes of life-threatening candidaemia, particularly in premature neonates, individuals with cancer of the haematopoietic system, and recipients of organ transplants. Historically, drug-susceptible strains have been linked to clonal outbreaks. However, worldwide studies started since 2018 have reported severe outbreaks among adults caused by fluconazole-resistant strains. Outbreaks caused by fluconazole-resistant strains are associated with high mortality rates and can persist despite strict infection control strategies. The emergence of resistance threatens the efficacy of azoles, which is the most widely used class of antifungals and the only available oral treatment option for candidaemia. The fact that most patients infected with fluconazole-resistant strains are azole-naive underscores the high potential adaptability of fluconazole-resistant strains to diverse hosts, environmental niches, and reservoirs. Another concern is the multidrug-resistant and echinocandin-tolerant C parapsilosis isolates, which emerged in 2020. Raising awareness, establishing effective clinical interventions, and understanding the biology and pathogenesis of fluconazole-resistant C parapsilosis are urgently needed to improve treatment strategies and outcomes.
Collapse
Affiliation(s)
- Farnaz Daneshnia
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - João N de Almeida Júnior
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, University of Çukurova, Adana, Türkiye
| | - Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Austin M Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA; Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, USA
| | - Marilyn Gao
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Matthias Egger
- Division of Infectious Diseases, ECMM Excellence Center, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Department of Medical Sciences, Hackensack School of Medicine, Nutley, NJ, USA; Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Bing Zhai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine and Human Oncology, and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center, Barcelona, Spain; Institute for Research in Biomedicine, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Bio TechMed, Graz, Austria; Translational Medical Mycology Research Group, Medical University of Graz, Graz, Austria.
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Soriano A, Honore PM, Puerta-Alcalde P, Garcia-Vidal C, Pagotto A, Gonçalves-Bradley DC, Verweij PE. Invasive candidiasis: current clinical challenges and unmet needs in adult populations. J Antimicrob Chemother 2023:7176280. [PMID: 37220664 DOI: 10.1093/jac/dkad139] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Invasive candidiasis (IC) is a serious infection caused by several Candida species, and the most common fungal disease in hospitals in high-income countries. Despite overall improvements in health systems and ICU care in the last few decades, as well as the development of different antifungals and microbiological techniques, mortality rates in IC have not substantially improved. The aim of this review is to summarize the main issues underlying the management of adults affected by IC, focusing on specific forms of the infection: IC developed by ICU patients, IC observed in haematological patients, breakthrough candidaemia, sanctuary site candidiasis, intra-abdominal infections and other challenging infections. Several key challenges need to be tackled to improve the clinical management and outcomes of IC patients. These include the lack of global epidemiological data for IC, the limitations of the diagnostic tests and risk scoring tools currently available, the absence of standardized effectiveness outcomes and long-term data for IC, the timing for the initiation of antifungal therapy and the limited recommendations on the optimal step-down therapy from echinocandins to azoles or the total duration of therapy. The availability of new compounds may overcome some of the challenges identified and increase the existing options for management of chronic Candida infections and ambulant patient treatments. However, early identification of patients that require antifungal therapy and treatment of sanctuary site infections remain a challenge and will require further innovations.
Collapse
Affiliation(s)
- Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona, IDIBAPS, CIBERINF, University of Barcelona, Barcelona, Spain
| | - Patrick M Honore
- CHU UCL Godinne Namur, UCL Louvain Medical School, Namur, Belgium
| | - Pedro Puerta-Alcalde
- Department of Infectious Diseases, Hospital Clinic of Barcelona, IDIBAPS, CIBERINF, University of Barcelona, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Department of Infectious Diseases, Hospital Clinic of Barcelona, IDIBAPS, CIBERINF, University of Barcelona, Barcelona, Spain
| | | | | | - Paul E Verweij
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| |
Collapse
|
21
|
Arastehfar A, Daneshnia F, Cabrera N, Penalva-Lopez S, Sarathy J, Zimmerman M, Shor E, Perlin DS. Macrophage internalization creates a multidrug-tolerant fungal persister reservoir and facilitates the emergence of drug resistance. Nat Commun 2023; 14:1183. [PMID: 36864040 PMCID: PMC9981703 DOI: 10.1038/s41467-023-36882-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Candida glabrata is a major fungal pathogen notable for causing recalcitrant infections, rapid emergence of drug-resistant strains, and its ability to survive and proliferate within macrophages. Resembling bacterial persisters, a subset of genetically drug-susceptible C. glabrata cells can survive lethal exposure to the fungicidal echinocandin drugs. Herein, we show that macrophage internalization induces cidal drug tolerance in C. glabrata, expanding the persister reservoir from which echinocandin-resistant mutants emerge. We show that this drug tolerance is associated with non-proliferation and is triggered by macrophage-induced oxidative stress, and that deletion of genes involved in reactive oxygen species detoxification significantly increases the emergence of echinocandin-resistant mutants. Finally, we show that the fungicidal drug amphotericin B can kill intracellular C. glabrata echinocandin persisters, reducing emergence of resistance. Our study supports the hypothesis that intra-macrophage C. glabrata is a reservoir of recalcitrant/drug-resistant infections, and that drug alternating strategies can be developed to eliminate this reservoir.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, 1012 WX, The Netherlands
| | - Nathaly Cabrera
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Suyapa Penalva-Lopez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Jansy Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA.
| |
Collapse
|
22
|
Sah SK, Yadav A, Rustchenko E. At least 10 genes on chromosome 5 of Candida albicans are downregulated in concert to control cell wall and to confer adaptation to caspofungin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527048. [PMID: 36798197 PMCID: PMC9934586 DOI: 10.1101/2023.02.06.527048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Candida albicans is part of normal microbiota, however, can cause superficial and life threatening infection in immune-compromised individuals. Drugs from echinocandin (ECN) class that disrupt cell wall synthesis, are being used as a major treatment strategy against candidiasis. As the use of ECNs for the treatment of candidiasis is increasing, resistance against ECNs is also emerging. Previously, we reported involvement of 5 chromosome 2 (Ch2) genes in adaptation to ECN drugs. Here, we explored 22 candidate-genes on Ch5 that are consistently downregulated in independent mutants adapted to caspofungin (CAS), for their role in ECN adaptation. We also compared cell wall remodelling in CAS-adapted mutants and in 10 knockouts (KOs) from Ch5. Independent KO experiments as combined with broth microdilution assay, demonstrated that, as expected, 10 out of 22 Ch5 genes decrease ECN susceptibility by controlling the levels of three major components of the cell wall, glucan, mannan, and chitin. Some KOs decreased glucan or increased chitin or both. Similar cell wall remodelling, decreased glucan and increased chitin, was found in CAS-adapted mutants with no ploidy change. Some other KOs had no glucan change, but increased the level of either mannan or chitin. Our results identify the function of two uncharacterized genes, orf19.970 and orf19.4149.1, and expand the functions of DUS4, RPS25B, UAP1, URA7, RPO26, HAS1 , and CKS1 . The function of CHT2 , as negative regulator of ECN susceptibility, has been previously established. Importantly, half of the above genes are essential indicating that essential processes are involved in cell wall remodelling for adaptation to ECNs. Also important, orf19.970 and orf19.4149.1 have no human orthologues. Finally, our work shows that multiple mechanisms are used by C. albicans cells to remodel cell wall in order to adapt to CAS. This work continues to identify common pathways that are involved in drug adaptation, as well as new genes controlling ECN susceptibility and reveals new targets for development of novel antifungal drugs.
Collapse
|
23
|
Savin N, Erofeev A, Kolmogorov V, Salikhov S, Efremov Y, Timashev P, Grammatikova N, Levshin I, Edwards C, Korchev Y, Gorelkin P. Scanning ion-conductance microscopy technique for studying the topography and mechanical properties of Candida parapsilosis yeast microorganisms. Biomater Sci 2023; 11:611-617. [PMID: 36477151 DOI: 10.1039/d2bm00964a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Super-resolution microscopy is widely used in the development of novel antimicrobial testing in vitro. In the presented work, a scanning protocol was developed by the method of scanning ion-conducting microscopy (SICM), which makes it possible to study microorganisms without rigid fixation and in saline, obtaining an index map of nanosized structures. The effect of azole and echinocandins drugs on the morphology and mechanical properties of Candida parapsilosis yeast was studied. The findings are consistent with previously proposed drug mechanisms and reports that have examined antifungal agents using AFM, SEM, and TEM. We have shown that the SICM method is capable of scanning and detecting the nanomechanical properties of yeast non-invasively.
Collapse
Affiliation(s)
| | - Alexander Erofeev
- NUST MISiS, Moscow, Russian Federation. .,Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vasilii Kolmogorov
- NUST MISiS, Moscow, Russian Federation. .,Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Yuri Efremov
- Institute for Regenerative Medicine I. M. Sechenov, Moscow, Russian Federation
| | - Peter Timashev
- Institute for Regenerative Medicine I. M. Sechenov, Moscow, Russian Federation.,World-class Research Center "Digital Biodesign and Personalized Healthcare", Moscow, Russian Federation.,Chemistry department Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - Igor Levshin
- G. F. Gauze Research Institute for New Antibiotics, Moscow, Russian Federation
| | | | | | | |
Collapse
|
24
|
Morales Junior R, Telles JP, Kwiatkowski SYC, Juodinis VD, de Souza DC, Santos SRCJ. Pharmacokinetic and pharmacodynamic considerations of antibiotics and antifungals in liver transplantation recipients. Liver Transpl 2023; 29:91-102. [PMID: 35643926 DOI: 10.1002/lt.26517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
The liver plays a major role in drug metabolism. Liver transplantation impacts the intrinsic metabolic capability and extrahepatic mechanisms of drug disposition and elimination. Different levels of inflammation and oxidative stress during transplantation, the process of liver regeneration, and the characteristics of the graft alter the amount of functional hepatocytes and activity of liver enzymes. Binding of drugs to plasma proteins is affected by the hyperbilirubinemia status and abnormal synthesis of albumin and alpha-1-acid glycoproteins. Postoperative intensive care complications such as biliary, circulatory, and cardiac also impact drug distribution. Renally eliminated antimicrobials commonly present reduced clearance due to hepatorenal syndrome and the use of nephrotoxic immunosuppressants. In addition, liver transplantation recipients are particularly susceptible to multidrug-resistant infections due to frequent manipulation, multiple hospitalizations, invasive devices, and frequent use of empiric broad-spectrum therapy. The selection of appropriate anti-infective therapy must consider the pathophysiological changes after transplantation that impact the pharmacokinetics and pharmacodynamics of antibiotics and antifungal drugs.
Collapse
Affiliation(s)
- Ronaldo Morales Junior
- Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil.,Pediatric Intensive Care Unit, Department of Pediatrics , Hospital Sírio-Libanês , São Paulo , Brazil
| | - João Paulo Telles
- Department of Infectious Diseases , AC Camargo Cancer Center , São Paulo , Brazil
| | | | - Vanessa D'Amaro Juodinis
- Pediatric Intensive Care Unit, Department of Pediatrics , Hospital Sírio-Libanês , São Paulo , Brazil
| | - Daniela Carla de Souza
- Pediatric Intensive Care Unit, Department of Pediatrics , Hospital Sírio-Libanês , São Paulo , Brazil
| | | |
Collapse
|
25
|
Multiple Genes of Candida albicans Influencing Echinocandin Susceptibility in Caspofungin-Adapted Mutants. Antimicrob Agents Chemother 2022; 66:e0097722. [PMID: 36354349 PMCID: PMC9765025 DOI: 10.1128/aac.00977-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes invasive infections in immunocompromised individuals. Despite the high anticandidal activity among the echinocandins (ECNs), a first-line therapy, resistance remains an issue. Furthermore, many clinical isolates display decreased ECN susceptibility, a physiological state which is thought to lead to resistance. Determining the factors that can decrease susceptibility is of high importance. We searched for such factors genome-wide by comparing the transcriptional profiles of five mutants that acquired decreased caspofungin susceptibility in vitro in the absence of canonical FKS1 resistance mutations. The mutants were derived from two genetic backgrounds and arose due to independent mutational events, some with monosomic chromosome 5 (Ch5). We found that the mutants exhibit common transcriptional changes. In particular, all mutants upregulate five genes from Ch2 in concert. Knockout experiments show that all five genes positively influence caspofungin and anidulafungin susceptibility and play a role in regulating the cell wall mannan and glucan contents. The functions of three of these genes, orf19.1766, orf19.6867, and orf19.5833, were previously unknown, and our work expands the known functions of LEU42 and PR26. Importantly, orf19.1766 and LEU42 have no human orthologues. Our results provide important clues as to basic mechanisms of survival in the presence of ECNs while identifying new genes controlling ECN susceptibility and revealing new targets for the development of novel antifungal drugs.
Collapse
|
26
|
Pais P, Galocha M, Takahashi-Nakaguchi A, Chibana H, Teixeira MC. Multiple genome analysis of Candida glabrata clinical isolates renders new insights into genetic diversity and drug resistance determinants. MICROBIAL CELL (GRAZ, AUSTRIA) 2022; 9:174-189. [PMID: 36448018 PMCID: PMC9662024 DOI: 10.15698/mic2022.11.786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2023]
Abstract
The emergence of drug resistance significantly hampers the treatment of human infections, including those caused by fungal pathogens such as Candida species. Candida glabrata ranks as the second most common cause of candidiasis worldwide, supported by rapid acquisition of resistance to azole and echinocandin antifungals frequently prompted by single nucleotide polymorphisms (SNPs) in resistance associated genes, such as PDR1 (azole resistance) or FKS1/2 (echinocandin resistance). To determine the frequency of polymorphisms and genome rearrangements as the possible genetic basis of C. glabrata drug resistance, we assessed genomic variation across 94 globally distributed isolates with distinct resistance phenotypes, whose sequence is deposited in GenBank. The genomes of three additional clinical isolates were sequenced, in this study, including two azole resistant strains that did not display Gain-Of-Function (GOF) mutations in the transcription factor encoding gene PDR1. Genomic variations in susceptible isolates were used to screen out variants arising from genome diversity and to identify variants exclusive to resistant isolates. More than half of the azole or echinocandin resistant isolates do not possess exclusive polymorphisms in PDR1 or FKS1/2, respectively, providing evidence of alternative genetic basis of antifungal resistance. We also identified copy number variations consistently affecting a subset of chromosomes. Overall, our analysis of the genomic and phenotypic variation across isolates allowed to pinpoint, in a genome-wide scale, genetic changes enriched specifically in antifungal resistant strains, which provides a first step to identify additional determinants of antifungal resistance. Specifically, regarding the newly sequenced strains, a set of mutations/genes are proposed to underlie the observed unconventional azole resistance phenotype.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | | | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Miguel C. Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
27
|
Basharat Z, Khan K, Jalal K, Alnasser SM, Majeed S, Zehra M. Inferring Therapeutic Targets in Candida albicans and Possible Inhibition through Natural Products: A Binding and Physiological Based Pharmacokinetics Snapshot. Life (Basel) 2022; 12:1743. [PMID: 36362898 PMCID: PMC9692583 DOI: 10.3390/life12111743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 09/10/2024] Open
Abstract
Despite being responsible for invasive infections, fungal pathogens have been underrepresented in computer aided therapeutic target mining and drug design. Excess of Candida albicans causes candidiasis, causative of thrush and vaginal infection due to off-balance. In this study, we attempted to mine drug targets (n = 46) using a subtractive proteomic approach in this pathogenic yeast and screen natural products with inhibition potential against fructose-bisphosphate aldolase (FBA) of the C. albicans. The top compound selected on the basis of best docking score from traditional Indian medicine/Ayurvedic library was (4-Hydroxybenzyl)thiocarbamic acid, from the ZINC FBA inhibitor library was ZINC13507461 (IUPAC name: [(2R)-2-hydroxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate), and from traditional Tibetan medicine/Sowa rigpa was Chelerythrine (IUPAC name: 1,2-Dimethoxy-12-methyl-9H-[1,3]benzodioxolo[5,6-c]phenanthridin-12-ium), compared to the control (2E)-1-(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine. No Ames toxicity was predicted for prioritized compounds while control depicted this toxicity. (4-Hydroxybenzyl)thiocarbamic acid showed hepatotoxicity, while Chelerythrine depicted hERG inhibition, which can lead to QT syndrome, so we recommend ZINC13507461 for further testing in lab. Pharmacological based pharmacokinetic modeling revealed that it has low bioavailability and hence, absorption in healthy state. In cirrhosis and renal impairment, absorption and plasma accumulation increased so we recommend further investigation into this occurrence and recommend high dosage in further tests to increase bioavailability.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sania Majeed
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Marium Zehra
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
28
|
Schleker ESM, Buschmann S, Xie H, Welsch S, Michel H, Reinhart C. Structural and functional investigation of ABC transporter STE6-2p from Pichia pastoris reveals unexpected interaction with sterol molecules. Proc Natl Acad Sci U S A 2022; 119:e2202822119. [PMID: 36256814 PMCID: PMC9618074 DOI: 10.1073/pnas.2202822119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are multidomain transmembrane proteins, which facilitate the transport of various substances across cell membranes using energy derived from ATP hydrolysis. They are important drug targets since they mediate decreased drug susceptibility during pharmacological treatments. For the methylotrophic yeast Pichia pastoris, a model organism that is a widely used host for protein expression, the role and function of its ABC transporters is unexplored. In this work, we investigated the Pichia ABC-B transporter STE6-2p. Functional investigations revealed that STE6-2p is capable of transporting rhodamines in vivo and is active in the presence of verapamil and triazoles in vitro. A phylogenetic analysis displays homology among multidrug resistance (MDR) transporters from pathogenic fungi to human ABC-B transporters. Further, we present high-resolution single-particle electron cryomicroscopy structures of an ABC transporter from P. pastoris in the apo conformation (3.1 Å) and in complex with verapamil and adenylyl imidodiphosphate (AMP-PNP) (3.2 Å). An unknown density between transmembrane helices 4, 5, and 6 in both structures suggests the presence of a sterol-binding site of unknown function.
Collapse
Affiliation(s)
- E. Sabine M. Schleker
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sabine Buschmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Christoph Reinhart
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Wang Q, Cai X, Li Y, Zhao J, Liu Z, Jiang Y, Meng L, Li Y, Pan S, Ai X, Zhang F, Li R, Zheng B, Wan Z, Liu W. Molecular identification, antifungal susceptibility, and resistance mechanisms of pathogenic yeasts from the China antifungal resistance surveillance trial (CARST-fungi) study. Front Microbiol 2022; 13:1006375. [PMID: 36274705 PMCID: PMC9583154 DOI: 10.3389/fmicb.2022.1006375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
To have a comprehensive understanding of epidemiology and antifungal susceptibilities in pathogenic yeasts, the China Antifungal Resistance Surveillance Trial (CARST-fungi) study was conducted. All yeast isolates were identified by ribosomal DNA sequencing. Antifungal susceptibilities were performed using CLSI M27-A4 broth microdilution method. Sequence and expression level of resistant-related genes in resistant/non-wide-type (NWT) Candida isolates were analyzed. Totally 269 nonduplicate yeast isolates from 261 patients were collected. About half of the yeast isolates (127, 47.2%) were recovered from blood, followed by ascetic fluid (46, 17.1%). C. albicans remained the most prevalent (120, 44.6%), followed by C. parapsilosis complex (50, 18.6%), C. tropicalis (40, 14.9%), and C. glabrata (36, 13.4%). Fourteen (11.7%) C. albicans isolates and 1 (2.0%) C. parapsilosis isolate were resistant/NWT to triazoles. Only 42.5% (17/40) C. tropicalis were susceptible/WT to all the triazoles, with 19 (47.5%) isolates NWT to posaconazole and 8 (20%) cross-resistant to triazoles. Among C. glabrata, 20 (55.6%) and 8 (22.2%) isolates were resistant/NWT to voriconazole and posaconazole, respectively, and 4 (10.3%) isolates were cross-resistant to triazoles. Isavuconazole was the most active triazole against common Candida isolates. Except for 2 isolates of C. glabrata cross-resistant to echinocandins which were also NWT to POS and defined as multidrug-resistant, echinocandins exhibit good activity against common Candida species. All isolates were WT to AMB. For less common species, Rhodotorula mucilaginosa exhibited high MICs to echinocandins and FLC, and 1 isolate of Trichosporon asahii showed high MICs to all the antifungals except AMB. Among triazole-resistant Candida isolates, ERG11 mutations were detected in 10/14 C. albicans and 6/23 C. tropicalis, while 21/23 C. tropicalis showed MDR1 overexpression. Overexpression of CDR1, CDR2, and SNQ2 exhibited in 14, 13, and 8 of 25 triazole-resistant C. glabrata isolates, with 5 isolates harboring PDR1 mutations and 2 echinocandins-resistant isolates harboring S663P mutation in FKS2. Overall, the CARST-fungi study demonstrated that although C. albicans remain the most predominant species, non-C. albicans species accounted for a high proportion. Triazole-resistance is notable among C. tropicalis and C. glabrata. Multidrug-resistant isolates of C. glabrata and less common yeast have been emerging.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Dermatology and Venereology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
| | - Xuan Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Jianhong Zhao
- Department of Clinical Laboratory Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyong Liu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Jiang
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ling Meng
- Lanzhou University Second Hospital, Lanzhou, China
| | - Yanming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Shiyang Pan
- First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoman Ai
- Department of Medical Laboratory, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Zhang
- Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruoyu Li
- Department of Dermatology and Venereology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venereology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venereology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Peking University, Beijing, China
- *Correspondence: Wei Liu,
| |
Collapse
|
30
|
Nationwide Surveillance of Antifungal Resistance of Candida Bloodstream Isolates in South Korean Hospitals: Two Year Report from Kor-GLASS. J Fungi (Basel) 2022; 8:jof8100996. [PMID: 36294562 PMCID: PMC9604804 DOI: 10.3390/jof8100996] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
We incorporated nationwide Candida antifungal surveillance into the Korea Global Antimicrobial Resistance Surveillance System (Kor-GLASS) for bacterial pathogens. We prospectively collected and analyzed complete non-duplicate blood isolates and information from nine sentinel hospitals during 2020−2021, based on GLASS early implementation protocol for the inclusion of Candida species. Candida species ranked fourth among 10,758 target blood pathogens and second among 4050 hospital-origin blood pathogens. Among 766 Candida blood isolates, 87.6% were of hospital origin, and 41.3% occurred in intensive care unit patients. Adults > 60 years of age accounted for 75.7% of cases. Based on species-specific clinical breakpoints, non-susceptibility to fluconazole, voriconazole, caspofungin, micafungin, and anidulafungin was found in 21.1% (154/729), 4.0% (24/596), 0.1% (1/741), 0.0% (0/741), and 0.1% (1/741) of the isolates, respectively. Fluconazole resistance was determined in 0% (0/348), 2.2% (3/135, 1 Erg11 mutant), 5.3% (7/133, 6 Pdr1 mutants), and 5.6% (6/108, 4 Erg11 and 1 Cdr1 mutants) of C. albicans, C. tropicalis, C. glabrata, and C. parapsilosis isolates, respectively. An echinocandin-resistant C. glabrata isolate harbored an F659Y mutation in Fks2p. The inclusion of Candida species in the Kor-GLASS system generated well-curated surveillance data and may encourage global Candida surveillance efforts using a harmonized GLASS system.
Collapse
|
31
|
Gow NAR, Johnson C, Berman J, Coste AT, Cuomo CA, Perlin DS, Bicanic T, Harrison TS, Wiederhold N, Bromley M, Chiller T, Edgar K. The importance of antimicrobial resistance in medical mycology. Nat Commun 2022; 13:5352. [PMID: 36097014 PMCID: PMC9466305 DOI: 10.1038/s41467-022-32249-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 01/08/2023] Open
Abstract
Prior to the SARS-CoV-2 pandemic, antibiotic resistance was listed as the major global health care priority. Some analyses, including the O'Neill report, have predicted that deaths due to drug-resistant bacterial infections may eclipse the total number of cancer deaths by 2050. Although fungal infections remain in the shadow of public awareness, total attributable annual deaths are similar to, or exceeds, global mortalities due to malaria, tuberculosis or HIV. The impact of fungal infections has been exacerbated by the steady rise of antifungal drug resistant strains and species which reflects the widespread use of antifungals for prophylaxis and therapy, and in the case of azole resistance in Aspergillus, has been linked to the widespread agricultural use of antifungals. This review, based on a workshop hosted by the Medical Research Council and the University of Exeter, illuminates the problem of antifungal resistance and suggests how this growing threat might be mitigated.
Collapse
Affiliation(s)
- Neil A R Gow
- MRC Centre for Medical Mycology, School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Carolyn Johnson
- Medical Research Council, Polaris House, Swindon, SN2 1FL, UK.
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 418 Britannia Building, Ramat Aviv, 69978, Israel
| | - Alix T Coste
- Microbiology Institute, University Hospital Lausanne, rue du Bugnon 48, 1011, Lausanne, Switzerland
| | - Christina A Cuomo
- (CAC) Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian health, Nutley, NJ, 07110, USA
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK
- Clinical Academic Group in Infection, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Thomas S Harrison
- MRC Centre for Medical Mycology, School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK
- Institute of Infection and Immunity, St George's University of London, London, SW17 0RE, UK
- Clinical Academic Group in Infection, St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Nathan Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Mike Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, CTF Building, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Tom Chiller
- Center for Disease Control and Prevention Mycotic Disease Branch 1600 Clifton Rd, MSC-09, Atlanta, 30333, GA, USA
| | - Keegan Edgar
- Center for Disease Control and Prevention Mycotic Disease Branch 1600 Clifton Rd, MSC-09, Atlanta, 30333, GA, USA
| |
Collapse
|
32
|
Jenull S, Shivarathri R, Tsymala I, Penninger P, Trinh PC, Nogueira F, Chauhan M, Singh A, Petryshyn A, Stoiber A, Chowdhary A, Chauhan N, Kuchler K. Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris. mBio 2022; 13:e0079922. [PMID: 35968956 PMCID: PMC9426441 DOI: 10.1128/mbio.00799-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris emerged as a human fungal pathogen only during the past decade. Remarkably, C. auris displays high degrees of genomic diversity and phenotypic plasticity, with four major clades causing hospital outbreaks with high mortality and morbidity rates. C. auris can show clinical resistance to all classes of antifungal drugs, including echinocandins that are usually recommended as first-line therapies for invasive candidiasis. Here, we exploit transcriptomics coupled with phenotypic profiling to characterize a set of clinical C. auris isolates displaying pronounced echinocandin resistance (ECN-R). A hot spot mutation in the echinocandin FKS1 target gene is present in all resistant isolates. Moreover, ECN-R strains share a core signature set of 362 genes differentially expressed in ECN-R isolates. Among others, mitochondrial gene expression and genes affecting cell wall function appear to be the most prominent, with the latter correlating well with enhanced adhesive traits, increased cell wall mannan content, and altered sensitivity to cell wall stress of ECN-R isolates. Moreover, ECN-R phenotypic signatures were also linked to pathogen recognition and interaction with immune cells. Hence, transcriptomics paired with phenotyping is a suitable tool to predict resistance and fitness traits as well as treatment outcomes in pathogen populations with complex phenotypic diversity. IMPORTANCE The surge in antimicrobial drug resistance in some bacterial and fungal pathogens constitutes a significant challenge to health care facilities. The emerging human fungal pathogen Candida auris has been particularly concerning, as isolates can display pan-antifungal resistance traits against all drugs, including echinocandins. However, the mechanisms underlying this phenotypic diversity remain poorly understood. We identify transcriptomic signatures in C. auris isolates resistant to otherwise fungicidal echinocandins. We identify a set of differentially expressed genes shared by resistant strains compared to unrelated susceptible isolates. Moreover, phenotyping demonstrates that resistant strains show distinct behaviors, with implications for host-pathogen interactions. Hence, this work provides a solid basis to identify the mechanistic links between antifungal multidrug resistance and fitness costs that affect the interaction of C. auris with host immune defenses.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Raju Shivarathri
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Irina Tsymala
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Phan-Canh Trinh
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Filomena Nogueira
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- CCRI-St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|
33
|
Gerstein AC, Sethi P. Experimental evolution of drug resistance in human fungal pathogens. Curr Opin Genet Dev 2022; 76:101965. [PMID: 35952557 DOI: 10.1016/j.gde.2022.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
Experimental evolution in vitro is a powerful tool to uncover the factors that contribute to resistance evolution and understand the genetic basis of adaptation. Here, we discuss recent experimental evolution studies from human fungal pathogens. We synthesize the results to highlight the common threads that influence resistance acquisition. The picture that emerges is that drug resistance consistently appears readily and rapidly. Mutations are often found in an overlapping set of genes and genetic pathways known to be involved in drug resistance, including whole or partial chromosomal aneuploidy. The likelihood of acquiring resistance and cross-resistance between drugs seems to be influenced by the specific drug (not just drug class), level of drug, and strain genetic background. We discuss open questions, such as the potential for increases in drug tolerance to evolve in static drugs. We highlight opportunities to use this framework to probe how different factors influence the rate and nature of adaptation to antifungal drugs in fungal microbes through a call for increased reporting on all replicates that were evolved, not just those that acquired resistance.
Collapse
Affiliation(s)
- Aleeza C Gerstein
- Department of Microbiology, The University of Manitoba, 45 Chancellor Circle, 213 Buller Building, R3T 2N2, Canada; Department of Statistics, The University of Manitoba, 45 Chancellor Circle, 318 Machray Hall, R3T 2N2, Canada.
| | - Parul Sethi
- Department of Microbiology, The University of Manitoba, 45 Chancellor Circle, 213 Buller Building, R3T 2N2, Canada
| |
Collapse
|
34
|
Yu S, Paderu P, Lee A, Eirekat S, Healey K, Chen L, Perlin DS, Zhao Y. Histone Acetylation Regulator Gcn5 Mediates Drug Resistance and Virulence of Candida glabrata. Microbiol Spectr 2022; 10:e0096322. [PMID: 35658596 PMCID: PMC9241792 DOI: 10.1128/spectrum.00963-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023] Open
Abstract
Candida glabrata is poised to adapt to drug pressure rapidly and acquire antifungal resistance leading to therapeutic failure. Given the limited antifungal armamentarium, there is an unmet need to explore new targets or therapeutic strategies for antifungal treatment. The lysine acetyltransferase Gcn5 has been implicated in the pathogenesis of C. albicans. Yet how Gcn5 functions and impacts antifungal resistance in C. glabrata is unknown. Disrupting GCN5 rendered C. glabrata cells more sensitive to various stressors, partially reverted resistance in drug-resistant mutants, and attenuated the emergence of resistance compared to wild-type cells. RNA sequencing (RNA-seq) analysis revealed transcriptomic changes involving multiple biological processes and different transcriptional responses to antifungal drugs in gcn5Δ cells compared to wild-type cells. GCN5 deletion also resulted in reduced intracellular survival within THP-1 macrophages. In summary, Gcn5 plays a critical role in modulating the virulence of C. glabrata and regulating its response to antifungal pressure and host defense. IMPORTANCE As an important and successful human pathogen, Candida glabrata is known for its swift adaptation and rapid acquisition of resistance to the most commonly used antifungal agents, resulting in therapeutic failure in clinical settings. Here, we describe that the histone acetyltransferase Gcn5 is a key factor in adapting to antifungal pressure and developing resistance in C. glabrata. The results provide new insights into epigenetic control over the drug response in C. glabrata and may be useful for drug target discovery and the development of new therapeutic strategies to combat fungal infections.
Collapse
Affiliation(s)
- Shuying Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, People’s Republic of China
| | - Padmaja Paderu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Annie Lee
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sami Eirekat
- Department of Biology, William Paterson University, Wayne, New Jersey, USA
| | - Kelley Healey
- Department of Biology, William Paterson University, Wayne, New Jersey, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| |
Collapse
|
35
|
Domán M, Bányai K. COVID-19-Associated Fungal Infections: An Urgent Need for Alternative Therapeutic Approach? Front Microbiol 2022; 13:919501. [PMID: 35756020 PMCID: PMC9218862 DOI: 10.3389/fmicb.2022.919501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Secondary fungal infections may complicate the clinical course of patients affected by viral respiratory diseases, especially those admitted to intensive care unit. Hospitalized COVID-19 patients are at increased risk of fungal co-infections exacerbating the prognosis of disease due to misdiagnosis that often result in treatment failure and high mortality rate. COVID-19-associated fungal infections caused by predominantly Aspergillus and Candida species, and fungi of the order Mucorales have been reported from several countries to become significant challenge for healthcare system. Early diagnosis and adequate antifungal therapy is essential to improve clinical outcomes, however, drug resistance shows a rising trend highlighting the need for alternative therapeutic agents. The purpose of this review is to summarize the current knowledge on COVID-19-associated mycoses, treatment strategies and the most recent advancements in antifungal drug development focusing on peptides with antifungal activity.
Collapse
Affiliation(s)
- Marianna Domán
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary.,Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
36
|
Gupta H, Gupta P, Kairamkonda M, Poluri KM. Molecular investigations on Candida glabrata clinical isolates for pharmacological targeting. RSC Adv 2022; 12:17570-17584. [PMID: 35765448 PMCID: PMC9194923 DOI: 10.1039/d2ra02092k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Prevalence of drug resistant C. glabrata strains in hospitalized immune-compromised patients with invasive fungal infections has increased at an unexpected pace. This has greatly pushed researchers in identification of mutations/variations in clinical isolates for better assessment of the prevailing drug resistance trends and also for updating of antifungal therapy regime. In the present investigation, the clinical isolates of C. glabrata were comprehensively characterized at a molecular level using metabolic profiling and transcriptional expression analysis approaches in combination with biochemical, morphological and chemical profiling methods. Biochemically, significant variations in azole susceptibility, surface hydrophobicity, and oxidative stress generation were observed among the isolates as compared to wild-type. The 1H NMR profiling identified 18 differential metabolites in clinical strains compared to wild-type and were classified into five categories, that include: sugars (7), amino acids and their derivatives (7), nitrogen bases (3) and coenzymes (1). Transcriptional analysis of selective metabolic and regulatory enzymes established that the major differences were found in cell membrane stress, carbohydrate metabolism, amino acid biosynthesis, ergosterol pathway and turnover of nitrogen bases. This detailed molecular level/metabolic fingerprint study is a useful approach for differentiating pathogenic/clinical isolates to that of wild-type. This study comprehensively delineated the differential cellular pathways at a molecular level that have been re-wired by the pathogenic clinical isolates for enhanced pathogenicity and virulence traits.
Collapse
Affiliation(s)
- Hrishikesh Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India
| |
Collapse
|
37
|
Hoenigl M, Sprute R, Arastehfar A, Perfect JR, Lass-Flörl C, Bellmann R, Prattes J, Thompson GR, Wiederhold NP, Al Obaidi MM, Willinger B, Arendrup MC, Koehler P, Oliverio M, Egger M, Schwartz IS, Cornely OA, Pappas PG, Krause R. Invasive candidiasis: Investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opin Investig Drugs 2022; 31:795-812. [PMID: 35657026 PMCID: PMC9339492 DOI: 10.1080/13543784.2022.2086120] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The epidemiology of invasive Candida infections is evolving. Infections caused by non-albicans Candida spp. are increasing; however, the antifungal pipeline is more promising than ever and is enriched with repurposed drugs and agents that have new mechanisms of action. Despite progress, unmet needs in the treatment of invasive candidiasis remain and there are still too few antifungals that can be administered orally or that have CNS penetration. AREAS COVERED The authors shed light on those antifungal agents active against Candida that are in late-stage clinical development. Mechanisms of action and key pharmacokinetic and pharmacodynamic properties are discussed. Insights are offered on the potential future roles of the investigational agents MAT-2203, oteseconazole, ATI-2307, VL-2397, NP-339, and the repurposed drug miltefosine. EXPERT OPINION Ibrexafungerp and fosmanogepix have novel mechanisms of action and will provide effective options for the treatment of Candida infections (including those caused by multiresistant Candida spp). Rezafungin, an echinocandin with an extended half-life allowing for once weekly administration, will be particularly valuable for outpatient treatment and prophylaxis. Despite this, there is an urgent need to garner clinical data on investigational drugs, especially in the current rise of azole-resistant and multi-drug resistant Candida spp.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA.,Clinical and Translational Fungal - Working Group, University of California San Diego, La Jolla, CA
| | - Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - John R Perfect
- Division of Infectious Diseases and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Excellence Center for Medical Mycology (ECMM), Medical University of Innsbruck, Innsbruck, Austria
| | - Romuald Bellmann
- Clinical Pharmacokinetics Unit, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases and Department of Medical Microbiology and Immunology, University of California Davis Medical Center
| | - Nathan P Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohanad M Al Obaidi
- Division of Infectious Diseases, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Maiken C Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Matteo Oliverio
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| | - Peter G Pappas
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Krause
- Division of Infectious Diseases, Excellence Center for Medical Mycology (ECMM), Medical University of Graz, Graz, Austria
| |
Collapse
|
38
|
Castanheira M, Deshpande LM, Davis AP, Carvalhaes CG, Pfaller MA. Azole Resistance in Candida glabrata Clinical Isolates from Global Surveillance is Associated with Efflux Overexpression. J Glob Antimicrob Resist 2022; 29:371-377. [DOI: 10.1016/j.jgar.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
|
39
|
Li X, He L, Krom BP, Cheng L, de Soet JJ, Deng DM. Niacin Limitation Promotes Candida glabrata Adhesion to Abiotic Surfaces. Pathogens 2022; 11:pathogens11040387. [PMID: 35456062 PMCID: PMC9028596 DOI: 10.3390/pathogens11040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Candida glabrata is a prevalent fungal pathogen in humans, which is able to adhere to host cells and abiotic surfaces. Nicotinic acid (NA) limitation has been shown to promote the adherence of C. glabrata to human epithelial cells. Clinically, the elderly and hospitalized patients who are prone to C. glabrata–related denture stomatitis often suffer from vitamin deficiency. This study aimed to investigate C. glabrata adhesion to abiotic surfaces, including acrylic resin (a denture material) surfaces, cell surface hydrophobicity and adhesion gene expression. C. glabrata CBS138 was grown in media containing decreasing NA concentrations (40, 0.4, 0.04 and 0.004 µM). Adherence of C. glabrata to glass coverslips and acrylic resin was analyzed. C. glabrata adhesion to both surfaces generally increased with decreasing NA concentrations. The highest adhesion was found for the cells grown with 0.004 µM NA. The cell surface hydrophobicity test indicated that NA limitation enhanced hydrophobicity of C. glabrata cells. Quantitative PCR showed that of all adhesion genes tested, EPA1, EPA3 and EPA7 were significantly up-regulated in both 0.004 µM NA and 0.04 µM NA groups compared to those in the 40 µM NA group. No significant up- or down-regulation under NA limitation was observed for the other tested adhesion genes, namely AWP3, AWP4, AWP6 and EPA6. NA limitation resulted in increased expression of some adhesion genes, higher surface hydrophobicity of C. glabrata and enhanced adhesion to abiotic surfaces. NA deficiency is likely a risk factor for C. glabrata–related denture stomatitis in the elderly.
Collapse
Affiliation(s)
- Xiaolan Li
- Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Sun Yat-sen University, Guangzhou 510055, China
- Academic Centre for Dentistry Amsterdam (ACTA), Department of Preventive Dentistry, Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands; (B.P.K.); (J.J.d.S.); (D.M.D.)
- Correspondence:
| | - Libang He
- West China School of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Sichuan University, Chengdu 610041, China; (L.H.); (L.C.)
| | - Bastiaan P. Krom
- Academic Centre for Dentistry Amsterdam (ACTA), Department of Preventive Dentistry, Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands; (B.P.K.); (J.J.d.S.); (D.M.D.)
| | - Lei Cheng
- West China School of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, Sichuan University, Chengdu 610041, China; (L.H.); (L.C.)
| | - Johannes J. de Soet
- Academic Centre for Dentistry Amsterdam (ACTA), Department of Preventive Dentistry, Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands; (B.P.K.); (J.J.d.S.); (D.M.D.)
| | - Dong M. Deng
- Academic Centre for Dentistry Amsterdam (ACTA), Department of Preventive Dentistry, Universiteit van Amsterdam and Vrije Universiteit, 1081 LA Amsterdam, The Netherlands; (B.P.K.); (J.J.d.S.); (D.M.D.)
| |
Collapse
|
40
|
Georgiou PC, Arendrup MC, Meletiadis J. Early phenotypic detection of fluconazole- and anidulafungin-resistant Candida glabrata isolates. J Antimicrob Chemother 2022; 77:1655-1661. [PMID: 35323941 PMCID: PMC9840476 DOI: 10.1093/jac/dkac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/15/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Increased fluconazole and echinocandin resistance in Candida glabrata requires prompt detection in routine settings. A phenotypic test based on the EUCAST E.DEF 7.3.2 protocol was developed for the detection of fluconazole- and anidulafungin-resistant isolates utilizing the colorimetric dye XTT. METHODS Thirty-one clinical C. glabrata isolates, 11 anidulafungin resistant and 14 fluconazole resistant, were tested. After optimization studies, 0.5-2.5 × 105 cfu/mL of each isolate in RPMI 1640 + 2% d-glucose medium containing 100 mg/L XTT + 0.78 μΜ menadione and 0.06 mg/L anidulafungin (S breakpoint) or 16 mg/L fluconazole (I breakpoint) in 96-well flat-bottom microtitration plates were incubated at 37°C for 18 h; we also included drug-free wells. XTT absorbance was measured at 450 nm every 15 min. Differences between the drug-free and the drug-treated wells were assessed using Student's t-test at different timepoints. ROC curves were used in order to identify the best timepoint and cut-off. RESULTS The XTT absorbance differences between fluconazole-containing and drug-free wells were significantly lower for the resistant isolates compared with susceptible increased exposure isolates (0.08 ± 0.05 versus 0.25 ± 0.06, respectively, P = 0.005) at 7.5 h, with a difference of <0.157 corresponding to 100% sensitivity and 94% specificity for detection of resistance. The XTT absorbance differences between anidulafungin-containing and drug-free wells were significantly lower for the resistant isolates compared with susceptible isolates (0.08 ± 0.07 versus 0.200 ± 0.03, respectively, P < 0.001) at 5 h, with a difference of <0.145 corresponding to 91% sensitivity and 100% specificity, irrespective of underlying mutations. CONCLUSIONS A simple, cheap and fast phenotypic test was developed for detection of fluconazole- and anidulafungin-resistant C. glabrata isolates.
Collapse
Affiliation(s)
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institute, Copenhagen, Denmark,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
41
|
Surveillance of Antifungal Resistance in Candidemia Fails to Inform Antifungal Stewardship in European Countries. J Fungi (Basel) 2022; 8:jof8030249. [PMID: 35330251 PMCID: PMC8950249 DOI: 10.3390/jof8030249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The increasing burden of candidemia and the emergence of resistance, especially among non-Candida albicans strains, represent a new threat for public health. We aimed to assess the status of surveillance and to identify publicly accessible resistance data in Candida spp blood isolates from surveillance systems and epidemiological studies in 28 European and 4 European Free Trade Association member states. Methods: A systematic review of national and international surveillance networks, from 2015 to 2020, and peer-reviewed epidemiological surveillance studies, from 2005 to 2020, lasting for at least 12 consecutive months and with at least two centers involved, was completed to assess reporting of resistance to amphotericin B, azoles, and echinocandins in C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, and C. auris. Results: Only 5 (Austria, Italy, Norway, Spain, and United Kingdom) of 32 countries provided resistance data for Candida spp blood isolates. Among 322 surveillance studies identified, 19 were included from Belgium, Denmark, Iceland, Italy, Portugal, Spain, Sweden, Switzerland, and United Kingdom. C. albicans and C. glabrata were the most monitored species, followed by C. parapsilosis and C. tropicalis. C. krusei was not included in any national surveillance system; 13 studies assessed resistance. No surveillance system or study reported resistance for C. auris. Fluconazole, voriconazole, caspofungin, and amphotericin B resistance in C. albicans, C. glabrata, and C. parapsilosis were the most common drug–species combination monitored. Quality of surveillance data was poor, with only two surveillance systems reporting microbiological methods and clinical data. High heterogeneity was observed in modalities of reporting, data collection, and definitions. Conclusion: Surveillance of antifungal resistance in Candida spp blood-isolates is fragmented and heterogeneous, delaying the application of a translational approach to the threat of antifungal resistance and the identification of proper targets for antifungal stewardship activities. International efforts are needed to implement antifungal resistance surveillance programs in order to adequately monitor antifungal resistance.
Collapse
|
42
|
Mamali V, Siopi M, Charpantidis S, Samonis G, Tsakris A, Vrioni G. Increasing Incidence and Shifting Epidemiology of Candidemia in Greece: Results from the First Nationwide 10-Year Survey. J Fungi (Basel) 2022; 8:jof8020116. [PMID: 35205870 PMCID: PMC8879520 DOI: 10.3390/jof8020116] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, candidemia displays geographical variety in terms of epidemiology and incidence. In that respect, a nationwide Greek study was conducted, reporting the epidemiology of Candida bloodstream infections and susceptibility of isolates to antifungal agents providing evidence for empirical treatment. All microbiologically confirmed candidemia cases in patients hospitalized in 28 Greek centres during the period 2009–2018 were recorded. The study evaluated the incidence of infection/100,000 inhabitants, species distribution, and antifungal susceptibilities of isolated strains. Overall, 6057 candidemic episodes occurred during the study period, with 3% of them being mixed candidemias. The average annual incidence was 5.56/100,000 inhabitants, with significant increase over the years (p = 0.0002). C. parapsilosis species complex (SC) was the predominant causative agent (41%), followed by C. albicans (37%), C. glabrata SC (10%), C. tropicalis (7%), C. krusei (1%), and other rare Candida spp. (4%). C. albicans rates decreased from 2009 to 2018 (48% to 31%) in parallel with a doubling incidence of C. parapsilosis SC rates (28% to 49%, p < 0.0001). Resistance to amphotericin B and flucytosine was not observed. Resistance to fluconazole was detected in 20% of C. parapsilosis SC isolates, with a 4% of them being pan-azole-resistant. A considerable rising rate of resistance to this agent was observed over the study period (p < 0.0001). Echinocandin resistance was found in 3% of C. glabrata SC isolates, with 70% of them being pan-echinocandin-resistant. Resistance rate to this agent was stable over the study period. This is the first multicentre nationwide study demonstrating an increasing incidence of candidemia in Greece with a species shift toward C. parapsilosis SC. Although the overall antifungal resistance rates remain relatively low, fluconazole-resistant C. parapsilosis SC raises concern.
Collapse
Affiliation(s)
- Vasiliki Mamali
- Department of Microbiology, Tzaneio General Hospital, 18536 Piraeus, Greece;
| | - Maria Siopi
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stefanos Charpantidis
- Department of Microbiology, “Elena Venizelou” Maternity Hospital, 11521 Athens, Greece;
| | - George Samonis
- Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-746-2129
| | | |
Collapse
|
43
|
Murphy SE, Bicanic T. Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis. Front Cell Infect Microbiol 2022; 11:759408. [PMID: 34970504 PMCID: PMC8713075 DOI: 10.3389/fcimb.2021.759408] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Candida species are the leading cause of invasive fungal infections worldwide and are associated with acute mortality rates of ~50%. Mortality rates are further augmented in the context of host immunosuppression and infection with drug-resistant Candida species. In this review, we outline antifungal drugs already in clinical use for invasive candidiasis and candidaemia, their targets and mechanisms of resistance in clinically relevant Candida species, encompassing not only classical resistance, but also heteroresistance and tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical development, including their spectrum of activity, antifungal target, clinical trial data and potential in treatment of drug-resistant Candida. Lastly, we discuss the use of combination therapy between conventional and repurposed agents as a potential strategy to combat the threat of emerging resistance in Candida.
Collapse
Affiliation(s)
- Sarah E Murphy
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom.,Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
44
|
Wang Q, Li Y, Cai X, Li R, Zheng B, Yang E, Liang T, Yang X, Wan Z, Liu W. Two Sequential Clinical Isolates of Candida glabrata with Multidrug-Resistance to Posaconazole and Echinocandins. Antibiotics (Basel) 2021; 10:antibiotics10101217. [PMID: 34680798 PMCID: PMC8532709 DOI: 10.3390/antibiotics10101217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Candida glabrata is one of the most prevalent causative pathogens of invasive candidiasis, and multidrug-resistant strains are emerging. We identified two clinical isolates of C. glabrata, BMU10720 and BMU10722 sequentially isolated from one patient with multidrug-resistance to posaconazole (POS), caspofungin (CAS), micafungin (MCF), and anidulafungin (ANF). Overexpression of ERG11 in BMU10720 and CDR1 in BMU10722 were detected at basal level. When exposed to POS, CDR1 was significantly up-regulated in both isolates compared with susceptible reference strain, while ERG11 was up-regulated considerably only in BMU10720. PDR1 sequencing revealed that both isolates harbored P76S, P143T, and D243N substitutions, while ERG11 was intact. Cdr1 inhibitor FK520 reversed POS-resistance by down-regulating ERG11 expression. FKS sequencing revealed that both isolates harbored S663P substitution in FKS2, and four single nucleotide polymorphisms (SNPs) existed in FKS2 genes between BMU10720 and BMU10722, while FKS1 was intact. Both FKS1 and FKS2 were up-regulated by CAS in BMU10720 and BMU10722. FK520 down-regulated FKS2 expression induced by CAS through inhibiting calcineurin, resulting in synergic effect with echinocandins as well as Congo Red and Calcofluor White, two cell wall-perturbing agents. In conclusion, the multidrug-resistance of C. glabrata isolates in our study was conferred by different mechanisms. CDR1 and ERG11 overexpression in one isolate and only CDR1 overexpression in the other isolate may mediate POS-resistance. S663P mutation in FKS2 and up-regulation of FKS2 may contribute to echinocandin-resistance in both isolates.
Collapse
Affiliation(s)
- Qiqi Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China; (Q.W.); (R.L.); (T.L.); (X.Y.); (Z.W.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| | - Yun Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China; (Y.L.); (B.Z.)
| | - Xuan Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China; (Q.W.); (R.L.); (T.L.); (X.Y.); (Z.W.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China; (Y.L.); (B.Z.)
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China;
| | - Tianyu Liang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China; (Q.W.); (R.L.); (T.L.); (X.Y.); (Z.W.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| | - Xinyu Yang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China; (Q.W.); (R.L.); (T.L.); (X.Y.); (Z.W.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China; (Q.W.); (R.L.); (T.L.); (X.Y.); (Z.W.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
| | - Wei Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China; (Q.W.); (R.L.); (T.L.); (X.Y.); (Z.W.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- Research Center for Medical Mycology, Peking University, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- Correspondence: ; Tel.: +86-10-8357-3075
| |
Collapse
|
45
|
Vu BG, Stamnes MA, Li Y, Rogers PD, Moye-Rowley WS. The Candida glabrata Upc2A transcription factor is a global regulator of antifungal drug resistance pathways. PLoS Genet 2021; 17:e1009582. [PMID: 34591857 PMCID: PMC8509923 DOI: 10.1371/journal.pgen.1009582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/12/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023] Open
Abstract
The most commonly used antifungal drugs are the azole compounds, which interfere with biosynthesis of the fungal-specific sterol: ergosterol. The pathogenic yeast Candida glabrata commonly acquires resistance to azole drugs like fluconazole via mutations in a gene encoding a transcription factor called PDR1. These PDR1 mutations lead to overproduction of drug transporter proteins like the ATP-binding cassette transporter Cdr1. In other Candida species, mutant forms of a transcription factor called Upc2 are associated with azole resistance, owing to the important role of this protein in control of expression of genes encoding enzymes involved in the ergosterol biosynthetic pathway. Recently, the C. glabrata Upc2A factor was demonstrated to be required for normal azole resistance, even in the presence of a hyperactive mutant form of PDR1. Using genome-scale approaches, we define the network of genes bound and regulated by Upc2A. By analogy to a previously described hyperactive UPC2 mutation found in Saccharomyces cerevisiae, we generated a similar form of Upc2A in C. glabrata called G898D Upc2A. Analysis of Upc2A genomic binding sites demonstrated that wild-type Upc2A binding to target genes was strongly induced by fluconazole while G898D Upc2A bound similarly, irrespective of drug treatment. Transcriptomic analyses revealed that, in addition to the well-described ERG genes, a large group of genes encoding components of the translational apparatus along with membrane proteins were responsive to Upc2A. These Upc2A-regulated membrane protein-encoding genes are often targets of the Pdr1 transcription factor, demonstrating the high degree of overlap between these two regulatory networks. Finally, we provide evidence that Upc2A impacts the Pdr1-Cdr1 system and also modulates resistance to caspofungin. These studies provide a new perspective of Upc2A as a master regulator of lipid and membrane protein biosynthesis. In the pathogenic yeast Candida glabrata, expression of the genes encoding enzymes in the ergosterol biosynthetic pathway is controlled by the transcription factor Upc2A. C. glabrata has a low intrinsic susceptibility to azole therapy and acquires fluconazole resistance at high frequency. These azole resistant mutants typically contain substitution mutations in a gene encoding the transcription factor Pdr1. Pdr1 does not appear to regulate ergosterol genes and instead induces expression of genes encoding drug transport proteins like CDR1. Here we establish that extensive overlap exists between the regulatory networks defined by Upc2A and Pdr1. Genomic approaches are used to describe the hundreds of genes regulated by Upc2A that far exceed the well-described impact of this factor on genes involved in ergosterol biosynthesis. The overlap between Upc2A and Pdr1 is primarily described by co-regulation of genes encoding membrane transporters like CDR1. We provide evidence that Upc2A impacts the transcriptional control of the FKS1 gene, producing a target of a second major class of antifungal drugs, the echinocandins. Our data are consistent with Upc2A playing a role as a master regulator coordinating the synthesis of membrane structural components, both at the level of lipids and proteins, to produce properly functional biological membranes.
Collapse
Affiliation(s)
- Bao Gia Vu
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yu Li
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - P. David Rogers
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
46
|
Arastehfar A, Marcet-Houben M, Daneshnia F, Taj-Aldeen S, Batra D, Lockhart S, Shor E, Gabaldón T, Perlin D. Comparative genomic analysis of clinical Candida glabrata isolates identifies multiple polymorphic loci that can improve existing multilocus sequence typing strategy. Stud Mycol 2021; 100:100133. [PMID: 34909054 PMCID: PMC8640552 DOI: 10.1016/j.simyco.2021.100133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Candida glabrata is the second leading cause of candidemia in many countries and is one of the most concerning yeast species of nosocomial importance due to its increasing rate of antifungal drug resistance and emerging multidrug-resistant isolates. Application of multilocus sequence typing (MLST) to clinical C. glabrata isolates revealed an association of certain sequence types (STs) with drug resistance and mortality. The current C. glabrata MLST scheme is based on single nucleotide polymorphisms (SNPs) at six loci and is therefore relatively laborious and costly. Furthermore, only a few high-quality C. glabrata reference genomes are available, limiting rapid analysis of clinical isolates by whole genome sequencing. In this study we provide long-read based assemblies for seven additional clinical strains belonging to three different STs and use this information to simplify the C. glabrata MLST scheme. Specifically, a comparison of these genomes identified highly polymorphic loci (HPL) defined by frequent insertions and deletions (indels), two of which proved to be highly resolutive for ST. When challenged with 53 additional isolates, a combination of TRP1 (a component of the current MLST scheme) with either of the two HPL fully recapitulated ST identification. Therefore, our comparative genomic analysis identified a new typing approach combining SNPs and indels and based on only two loci, thus significantly simplifying ST identification in C. glabrata. Because typing tools are instrumental in addressing numerous clinical and biological questions, our new MLST scheme can be used for high throughput typing of C. glabrata in clinical and research settings.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - F. Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | | | - D. Batra
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - S.R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - E. Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
| | - T. Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona 29, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
- Hackensack Meridian Health School of Medicine, Nutley, NJ, 07710, USA
- Georgetown University Lombardi Comprehensive Cancer Center, Department of Microbiology and Immunology, Washington, DC, 20057, USA
| |
Collapse
|
47
|
Garcia-Rubio R, Jimenez-Ortigosa C, DeGregorio L, Quinteros C, Shor E, Perlin DS. Multifactorial Role of Mitochondria in Echinocandin Tolerance Revealed by Transcriptome Analysis of Drug-Tolerant Cells. mBio 2021; 12:e0195921. [PMID: 34372698 PMCID: PMC8406274 DOI: 10.1128/mbio.01959-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fungal infections cause significant mortality and morbidity worldwide, and the limited existing antifungal reservoir is further weakened by the emergence of strains resistant to echinocandins, a first line of antifungal therapy. Candida glabrata is an opportunistic fungal pathogen that rapidly develops mutations in the echinocandin drug target β-1,3-glucan synthase (GS), which are associated with drug resistance and clinical failure. Although echinocandins are considered fungicidal in Candida sp., a subset of C. glabrata cells survive echinocandin exposure, forming a drug-tolerant cell reservoir, from which resistant mutations are thought to emerge. Despite their importance, the physiology of rare drug-tolerant cells is poorly understood. We used fluorescence-activated cell sorting to enrich for echinocandin-tolerant cells, followed by modified single-cell RNA sequencing to examine their transcriptional landscape. This analysis identified a transcriptional signature distinct from the stereotypical yeast environmental stress response and characterized by upregulation of pathways involved in chromosome structure and DNA topology and downregulation of oxidative stress responses, of which the latter was observed despite increased levels of reactive oxygen species. Further analyses implicated mitochondria in echinocandin tolerance, wherein inhibitors of mitochondrial complexes I and IV reduced echinocandin-mediated cell killing, but mutants lacking various mitochondrial components all showed an echinocandin hypotolerant phenotype. Finally, GS enzyme complexes purified from mitochondrial mutants exhibited normal in vitro inhibition kinetics, indicating that mitochondrial defects influence cell survival downstream of the drug-target interaction. Together, these results provide new insights into the C. glabrata response to echinocandins and reveal a multifactorial role of mitochondria in echinocandin tolerance. IMPORTANCE Echinocandin drugs are a first-line therapy to treat invasive candidiasis, which is a major source of morbidity and mortality worldwide. The opportunistic fungal pathogen Candida glabrata is a prominent bloodstream fungal pathogen, and it is notable for rapidly developing echinocandin-resistant strains associated with clinical failure. Echinocandin resistance is thought to emerge within a small echinocandin-tolerant subset of C. glabrata cells that are not killed by drug exposure, but mechanisms underlying echinocandin tolerance are still unknown. Here, we describe the unique transcriptional signature of echinocandin-tolerant cells and the results of follow-up analyses, which reveal a multifactorial role of mitochondria in C. glabrata echinocandin tolerance. In particular, although chemical inhibition of respiratory chain enzymes increased echinocandin tolerance, deletion of multiple mitochondrial components made C. glabrata cells hypotolerant to echinocandins. Together, these results provide new insights into the C. glabrata response to echinocandins and reveal the involvement of mitochondria in echinocandin tolerance.
Collapse
Affiliation(s)
- Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Lucius DeGregorio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Christopher Quinteros
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian Health School of Medicine, Nutley, New Jersey, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian Health School of Medicine, Nutley, New Jersey, USA
- Lombardi Comprehensive Cancer Center, Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
48
|
Phenotypic and Genotypic Characterization of Intestinal Candida spp. in Tunisia. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Yeasts naturally colonize the mammalian digestive tract and play an important role in health and disease. This community is composed of commensal yeasts, mostly Candida and Saccharomyces described as a part of the intestinal mycobiome and could be associated with resident or transient flora. Objectives: The aim of our study was to perform the phenotypic and genotypic characterization of culturable Candida isolates present in stool specimens of healthy Tunisian individuals and to evaluate their antifungal susceptibility. Methods: Yeasts were recovered from 46 stool samples cultured on Sabouraud dextrose agar at 37°C. Species were identified using conventional methods and ITS-PCR sequencing. Candida isolates were tested by exploring their tolerance to oxidative stress and extreme acidic conditions. In addition, their biofilm formation ability and in vitro resistance to antifungals was determined by the VITEK 2 system. Results: The identification by sequencing the ITS1-5.8S-ITS2 region of the 56 yeast strains isolated from 37 stool samples revealed that Candida was the dominant genus and was represented by Candida albicans (n = 21), C. parapsilosis (n = 10), C. glabrata (n = 9), and C. krusei (n = 9). In contrast, the other genera, including Trichosporon, Geotrichum, and Rhodotorula, were sporadically occurring. We found that most Candida isolates were able to form biofilms under oxidative stress and extreme pH conditions. Regarding antifungal susceptibility, a higher resistance rate to fluconazole was revealed in comparison to caspofungin and micafungin. However, no resistance was revealed against voriconazole, amphotericin B, and 5-flucytosine. Conclusions: This is the first work-generated data on cultivable yeasts from stool specimens of healthy individuals in Tunisia. Further metagenomic studies with a larger sample size are needed to better characterize the intestinal mycobiota.
Collapse
|
49
|
Aldejohann AM, Herz M, Martin R, Walther G, Kurzai O. Emergence of resistant Candida glabrata in Germany. JAC Antimicrob Resist 2021; 3:dlab122. [PMID: 34377983 PMCID: PMC8346698 DOI: 10.1093/jacamr/dlab122] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Background Candida glabrata is the second leading fungal pathogen causing candidaemia and invasive candidiasis in Europe. This yeast is recognized for its rapid ability to acquire antifungal drug resistance. Objectives We systematically evaluated 176 C. glabrata isolates submitted to the German National Reference Center for Invasive Fungal Infections (NRZMyk) between 2015 and 2019 with regard to echinocandin and fluconazole susceptibility. Methods Susceptibility testing was performed using a reference protocol (EUCAST) and a range of commercial assays. Hot spot regions of the echinocandin target FKS genes were sequenced using Sanger sequencing. Results In total, 84 of 176 isolates were initially classified as anidulafungin-resistant based on EUCAST testing. Of those, 71 harboured mutations in the glucan synthase encoding FKS genes (13% in FKS1, 87% in FKS2). Significant differences in anidulafungin MICs were found between distinct mutation sites. 11 FKS wild-type (WT) isolates initially classified as resistant exhibited anidulafungin MICs fluctuating around the interpretation breakpoint upon re-testing with multiple assays. Two FKS WT isolates consistently showed high anidulafungin MICs and thus must be considered resistant despite the absence of target gene mutations. Over one-third of echinocandin-resistant strains displayed concomitant fluconazole resistance. Of those, isolates linked to bloodstream infection carrying a change at Ser-663 were associated with adverse clinical outcome. Conclusions Resistant C. glabrata strains are emerging in Germany. Phenotypic echinocandin testing can result in misclassification of susceptible strains. FKS genotyping aids in detecting these strains, however, echinocandin resistance may occur despite a wild-type FKS genotype.
Collapse
Affiliation(s)
| | - Michaela Herz
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ronny Martin
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Grit Walther
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.,National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology- Hans Knoell Institute, Jena, Germany
| |
Collapse
|
50
|
Garcia-Rubio R, Hernandez RY, Clear A, Healey KR, Shor E, Perlin DS. Critical Assessment of Cell Wall Integrity Factors Contributing to in vivo Echinocandin Tolerance and Resistance in Candida glabrata. Front Microbiol 2021; 12:702779. [PMID: 34305871 PMCID: PMC8298035 DOI: 10.3389/fmicb.2021.702779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Fungal infections are on the rise, and emergence of drug-resistant Candida strains refractory to treatment is particularly alarming. Resistance to azole class antifungals, which have been extensively used worldwide for several decades, is so high in several prevalent fungal pathogens, that another drug class, the echinocandins, is now recommended as a first line antifungal treatment. However, resistance to echinocandins is also prominent, particularly in certain species, such as Candida glabrata. The echinocandins target 1,3-β-glucan synthase (GS), the enzyme responsible for producing 1,3-β-glucans, a major component of the fungal cell wall. Although echinocandins are considered fungicidal, C. glabrata exhibits echinocandin tolerance both in vitro and in vivo, where a subset of the cells survives and facilitates the emergence of echinocandin-resistant mutants, which are responsible for clinical failure. Despite this critical role of echinocandin tolerance, its mechanisms are still not well understood. Additionally, most studies of tolerance are conducted in vitro and are thus not able to recapitulate the fungal-host interaction. In this study, we focused on the role of cell wall integrity factors in echinocandin tolerance in C. glabrata. We identified three genes involved in the maintenance of cell wall integrity - YPS1, YPK2, and SLT2 - that promote echinocandin tolerance both in vitro and in a mouse model of gastrointestinal (GI) colonization. In particular, we show that mice colonized with strains carrying deletions of these genes were more effectively sterilized by daily caspofungin treatment relative to mice colonized with the wild-type parental strain. Furthermore, consistent with a role of tolerant cells serving as a reservoir for generating resistant mutations, a reduction in tolerance was associated with a reduction in the emergence of resistant strains. Finally, reduced susceptibility in these strains was due both to the well described FKS-dependent mechanisms and as yet unknown, FKS-independent mechanisms. Together, these results shed light on the importance of cell wall integrity maintenance in echinocandin tolerance and emergence of resistance and lay the foundation for future studies of the factors described herein.
Collapse
Affiliation(s)
- Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Rosa Y. Hernandez
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Alissa Clear
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Kelley R. Healey
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|