1
|
Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:67. [PMID: 39791825 PMCID: PMC11723170 DOI: 10.3390/nano15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials. In this context, Galleria mellonella could represent a valid alternative to traditional mammalian and non-mammalian animal models, due to its low cost, ease of handling, and valuable biological properties to investigate host-pathogen interactions. The purpose of this review is to provide an updated overview of the literature concerning the use of G. mellonella larvae as an animal model to evaluate safety and efficacy of nanoparticles and nanomaterials, particularly, of those that are used or are under investigation to combat microbial pathogens.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
2
|
Luigia Vommaro M, Korša A, Sofia Lindeza A, Giglio A, Kurtz J. The combined effect of herbicide and Bacillus thuringiensis exposure delays development in the red flour beetle. J Invertebr Pathol 2024; 207:108227. [PMID: 39477143 DOI: 10.1016/j.jip.2024.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
The use of herbicides and their long persistence in the environment have raised concerns about potential harm to ecosystems and human health. However, there is a gap in the knowledge regarding the effects of continuous exposure to residues or admitted field doses on non-target organisms such as insects that inhabit croplands and play key ecological roles. Furthermore, the potential impact of this exposure on host-pathogen interactions remains largely unstudied. This study adopted an eco-immunological perspective, investigating the influence of herbicides on an organism's interaction with natural pathogens. The impact of this combination of multiple stressors was studied in larvae of the red flour beetle, Tribolium castaneum Herbst, 1797, previously treated with a pendimethalin-based commercial formulation (PND) and exposed to the natural entomopathogen Bacillus thuringiensis (1x109, 1x1010 cells/mL). The effects of three PND concentrations (i.e. a recommended field rate, a soil contaminant concentration and the maximum residue limit admitted in grain in EU countries: 4L/ha, 13 and 0.05 ppm, respectively) on life history traits such as developmental time, pupation rate and survival rate and the expression levels of antimicrobial peptides (AMPs) were assessed. The results showed that even at doses considered safe for human consumption or field application, exposure to PND had an impact on beetle larvae, affecting their vulnerability to B. thuringiensis. The combined experience of exposure to PND and B. thuringiensis at the larval stage resulted in a delay of larval development, a reduction in the number of pupae and emerging adults, and alterations in their body condition. Moreover, changes in the expression levels of the analysed AMPs, including Attacin 1, Defensin 2 and Coleoptericin 2, were recorded as markers for immune activity against the bacterium. The findings of this study highlight the general need for further studies on the effects of commonly used herbicides on the physiology of non-target organisms and on host-pathogen interactions at the community level. Additionally, there is a need for the establishment of revised residual levels that are deemed non-toxic to soil organisms and humans.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, Cosenza, Italy; Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ana Korša
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ana Sofia Lindeza
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Joachim Kurtz
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
3
|
de Abreu Almeida M, Baeza LC, Silva LBR, Bernardes-Engemann AR, Almeida-Silva F, Coelho RA, de Andrade IB, Corrêa-Junior D, Frases S, Zancopé-Oliveira RM, Alanio A, Taborda CP, Almeida-Paes R. Auranofin is active against Histoplasma capsulatum and reduces the expression of virulence-related genes. PLoS Negl Trop Dis 2024; 18:e0012586. [PMID: 39374315 PMCID: PMC11495550 DOI: 10.1371/journal.pntd.0012586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Auranofin is an approved anti-rheumatic drug that has a broad-range inhibitory action against several microorganisms, including human pathogenic fungi. The auranofin activity against Histoplasma capsulatum, the dimorphic fungus that causes histoplasmosis, has not been properly addressed. Since there are few therapeutic options for this life-threatening systemic mycosis, this study evaluated the effects of auranofin on H. capsulatum growth and expression of virulence factors. METHODOLOGY/PRINCIPAL FINDINGS Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) of auranofin against 15 H. capsulatum strains with distinct genetic backgrounds were determined using the yeast form of the fungus and a microdilution protocol. Auranofin activity was also assessed on a macrophage model of infection and on a Tenebrio molitor invertebrate animal model. Expression of virulence-related genes was compared between auranofin treated and untreated H. capsulatum yeast cells using a quantitative PCR assay. Auranofin affected the growth of different strains of H. capsulatum, with MIC and MFC values ranging from 1.25 to 5.0 μM and from 2.5 to >10 μM, respectively. Auranofin was able to kill intracellular H. capsulatum yeast cells and conferred protection against the fungus in the experimental animal model of infection. Moreover, the expression of catalase A, HSP70, superoxide dismutase, thioredoxin reductase, serine proteinase, cytochrome C peroxidase, histone 2B, formamidase, metallopeptidase, Y20 and YPS3 proteins were reduced after six hours of auranofin treatment. CONCLUSIONS/SIGNIFICANCE: Auranofin is fungicidal against H. capsulatum and reduces the expression of several virulence-related genes, which makes this anti-rheumatic drug a good candidate for new medicines against histoplasmosis.
Collapse
Affiliation(s)
- Marcos de Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Lilian Cristiane Baeza
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Leandro B. R. Silva
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Andréa Reis Bernardes-Engemann
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia, FAPERJ, Rio de Janeiro, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Alexandre Alanio
- Institut Pasteur, Université Paris Cité, Centre National de Référence Mycoses Invasives et Antifongiques, Groupe de recherche Mycologie Translationnelle, Département de Mycologie, Paris, France
| | - Carlos Pelleschi Taborda
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Rede Micologia, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Silva AP, Cordeiro MLDS, Aquino-Martins VGDQ, de Moura Melo LF, Paiva WDS, Naliato GFDS, Theodoro RC, Meneses CHSG, Rocha HAO, Scortecci KC. Prospecting of the Antioxidant Activity from Extracts Obtained from Chañar ( Geoffroea decorticans) Seeds Evaluated In Vitro and In Vivo Using the Tenebrio molitor Model. Nutrients 2024; 16:2813. [PMID: 39275132 PMCID: PMC11396818 DOI: 10.3390/nu16172813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024] Open
Abstract
Geoffroea decorticans, commonly known as Chañar, is a native Chilean plant widely used in folk medicine for its expectorant, pain relief, and antinociceptive properties. This study explored the antioxidant, cytotoxic, and protective effects of its ethanolic (EE) and aqueous (EA) seed extracts against oxidative stress induced by copper sulfate, using both in vitro and in vivo approaches. Phytochemical analyses revealed the presence of phenolic compounds and flavonoids in the extracts. High-Performance Liquid Chromatography (HPLC) coupled with Gas Chromatography-Mass Spectrometry/Mass Spectrometry (GC-MS/MS) identified significant components such as phytol, alpha-tocopherol, vitexin, and rutin, with the EE being particularly rich in phytol and vitexin. Antioxidant assays-measuring the total antioxidant capacity (TAC), reducing power, DPPH radical scavenging, and copper and iron chelation-confirmed their potent antioxidant capabilities. Both extracts were non-cytotoxic and provided protection against CuSO4-induced oxidative stress in the 3T3 cell line. Additionally, the use of Tenebrio molitor as an invertebrate model underscored the extracts' antioxidant and protective potentials, especially that of the EE. In conclusion, this study highlights the significant antioxidant and protective properties of Chañar seed extracts, particularly the ethanolic extract, in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Ariana Pereira Silva
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Maria Lucia da Silva Cordeiro
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luciana Fentanes de Moura Melo
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Weslley de Souza Paiva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Georggia Fatima da Silva Naliato
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Raquel Cordeiro Theodoro
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Carlos Henrique Salvino Gadelha Meneses
- Laboratório de Biotecnologia Vegetal (LBV), Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Estadual da Paraiba (UEPB), Campina Grande 58429-500, PB, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
- Programa de Pós-Graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| |
Collapse
|
5
|
Ramos LS, Fernandes MF, Santos HLC, Picão RC, Branquinha MH, Santos ALS. Candida spp. isolated from recreational coastal waters of Rio de Janeiro - Brazil: Focus on antifungal resistance and virulence attributes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174662. [PMID: 38997029 DOI: 10.1016/j.scitotenv.2024.174662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
The use of recreational waters is a widespread activity worldwide, and one of the risks associated with this practice is the exposure of bathers to microorganisms that may arise due to pollution caused by inadequate infrastructure and sanitation. In the present work, we isolated Candida spp. (n = 24) from five recreational beaches in Rio de Janeiro, Brazil, in order to evaluate their susceptibility to antifungals, the production of virulence attributes and the in vivo virulence using Tenebrio molitor larvae as a model. The ITS1-5.8S-ITS2 gene sequencing identified thirteen isolates (54.1 %) as C. tropicalis, seven (29.1 %) as C. krusei (Pichia kudriavzevii), one (4.2 %) as C. rugosa (Diutina rugosa), one (4.2 %) as C. mesorugosa (Diutina mesorugosa), one (4.2 %) as C. utilis (Cyberlindnera jadinii) and one (4.2 %) as C. parapsilosis. C. tropicalis isolates showed resistance to azoles and susceptibility to amphotericin B, flucytosine and caspofungin. C. krusei isolates were resistant to fluconazole, caspofungin and itraconazole, with 42.8 % resistance to flucytosine, besides susceptibility to voriconazole and amphotericin B. The remaining species were susceptible to all tested antifungals. All Candida isolates adhered to abiotic surfaces and formed biofilm on polystyrene, albeit to varying degrees, and produced aspartic protease and hemolytic activity, which are considered fungal virulence attributes. C. tropicalis, C. krusei and C. utilis isolates produced phytase, while the only esterase producer was C. tropicalis. Regarding resistance to osmotic stress, all isolates of C. tropicalis, C. parapsilosis and C. mesorugosa grew up to 7.5 % NaCl; the remaining isolates grew up to 1.87-3.75 % NaCl. The mortality caused by fungal challenges in T. molitor larvae was variable, with C. tropicalis, C. utilis and C. parapsilosis being more virulent than C. krusei and C. rugosa complex. Collectively, the presence of these yeasts, particularly the virulent and resistant isolates, in recreational waters can pose a significant health risk to bathers.
Collapse
Affiliation(s)
- Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana F Fernandes
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena L C Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Renata C Picão
- Laboratório de Investigação em Microbiologia Médica, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Frota HF, Lorentino CMA, Barbosa PF, Ramos LS, Barcellos IC, Giovanini L, Souza LOP, Oliveira SSC, Abosede OO, Ogunlaja AS, Pereira MM, Branquinha MH, Santos ALS. Antifungal potential of the new copper(II)-theophylline/1,10-phenanthroline complex against drug-resistant Candida species. Biometals 2024; 37:321-336. [PMID: 37917351 DOI: 10.1007/s10534-023-00549-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Candida spp. are the commonest fungal pathogens worldwide. Antifungal resistance is a problem that has prompted the discovery of novel anti-Candida drugs. Herein, 25 compounds, some of them containing copper(II), cobalt(II) and manganese(II) ions, were initially evaluated for inhibiting the growth of reference strains of Candida albicans and Candida tropicalis. Eight (32%) of the compounds inhibited the proliferation of these yeasts, displaying minimum inhibitory concentrations (MICs) ranging from 31.25 to 250 μg/mL and minimum fungicidal concentration (MFCs) from 62.5 to 250 μg/mL. Drug-likeness/pharmacokinetic calculated by SwissADME indicated that the 8 selected compounds were suitable for use as topical drugs. The complex CTP, Cu(theo)2phen(H2O).5H2O (theo = theophylline; phen = 1,10-phenanthroline), was chosen for further testing against 10 medically relevant Candida species that were resistant to fluconazole/amphotericin B. CTP demonstrated a broad spectrum of action, inhibiting the growth of all 20 clinical fungal isolates, with MICs from 7.81 to 62.5 μg/mL and MFCs from 15.62 to 62.5 μg/mL. Conversely, CTP did not cause lysis in erythrocytes. The toxicity of CTP was evaluated in vivo using Galleria mellonella and Tenebrio molitor. CTP had no or low levels of toxicity at doses ranging from 31.25 to 250 μg/mL for 5 days. After 24 h of treatment, G. mellonella larvae exhibited high survival rates even when exposed to high doses of CTP (600 μg/mL), with the 50% cytotoxic concentration calculated as 776.2 μg/mL, generating selectivity indexes varying from 12.4 to 99.4 depending on each Candida species. These findings suggest that CTP could serve as a potential drug to treat infections caused by Candida species resistant to clinically available antifungals.
Collapse
Affiliation(s)
- Heloisa F Frota
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil
- Programa de Pós-Graduação Em Bioquímica (PPGBq), Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-909, Brazil
| | - Carolline M A Lorentino
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil
| | - Pedro F Barbosa
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil
| | - Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil
| | - Iuri C Barcellos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, 20270-220, Brazil
| | - Lucas Giovanini
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil
| | - Lucieri O P Souza
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil
| | - Simone S C Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil
| | - Olufunso O Abosede
- Department of Chemistry, Federal University Otuoke, P.M.B 126, Yenagoa, Bayelsa State, Nigeria
- Department of Chemistry, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031, South Africa
| | - Adeniyi S Ogunlaja
- Department of Chemistry, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031, South Africa
| | - Matheus M Pereira
- Chemical Engineering Processes and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-901, Brazil.
- Programa de Pós-Graduação Em Bioquímica (PPGBq), Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-909, Brazil.
- Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
7
|
Rakovitsky N, Temkin E, Hameir A, Lurie-Weinberger M, Keren-Paz A, Carmeli Y. Zophobas morio larvae as a novel model for the study of Acinetobacter virulence and antimicrobial resistance. Front Microbiol 2024; 15:1375787. [PMID: 38476953 PMCID: PMC10927975 DOI: 10.3389/fmicb.2024.1375787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The use of mammalian models for in vivo testing of bacterial virulence raises ethical concerns and is expensive and time-consuming. As an alternative, non-mammalian models are sought. Galleria mellonella larvae have been used as a model to study several bacterial pathogens. However, their maintenance is challenging, and commercial supply is low. In this study, we aimed to establish the Zophobas morio larvae as an alternative non-mammalian model for the evaluation of the pathogenicity and antimicrobial susceptibility of Acinetobacter baumannii. We infected Z. morio with Acinetobacter strains and determined the optimal temperature and inoculum. To visualize the bacterial distribution within the larvae, hematoxylin and eosin (H&E) staining was performed. Next, a survival model of infected larvae was established, and virulence was compared between strains. The effect of antimicrobial treatment in relation to antibiotic susceptibility was studied. Our results demonstrate that Z. morio can be used as a model system for in vivo studies of A. baumannii.
Collapse
Affiliation(s)
- Nadya Rakovitsky
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Elizabeth Temkin
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Amichay Hameir
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Mor Lurie-Weinberger
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Alona Keren-Paz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Vommaro ML, Zanchi C, Angelone T, Giglio A, Kurtz J. Herbicide exposure alters the effect of the enthomopathogen Beauveria bassiana on immune gene expression in mealworm beetles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122662. [PMID: 37778488 DOI: 10.1016/j.envpol.2023.122662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Concerns have grown worldwide about the potentially far-reaching effects of herbicides on functional biodiversity in agroecosystems. Repeated applications over time can lead to accumulation of residues in soil, water, and food and may have negative impacts on non-target organisms. However, the effects of herbicide residues on interspecific relationships, such as host-pathogen interactions, are poorly studied. In this study, we evaluated the effects of two different concentrations of a commercial pendimethalin-based formulation (PND), the residual contamination (S, 13 ppm) in treated soils and the maximum residue level allowed by the European Commission in cereals (EU, 0.05 ppm). We tested the effect of PND on the biological interaction between the mealworm beetle Tenebrio molitor Linnaeus, 1758 and the entomopathogenic fungus Beauveria bassiana Vuillemin, 1912 (Bb, strain KVL 03-144) at two concentrations (LC50 5 × 105 conidia mL-1 and LC100 1 × 107 conidia mL-1). We checked the survival of beetles exposed to PND or/and inoculated with B. bassiana, the expression of four antimicrobial peptides (AMPs), and finally how PND affects in vitro germination of fungus. The exposure to PND had no significant effects on the survival of either control or Bb-exposed beetles. In the mealworm beetle, upregulation of gene expression of the inducible AMPs Tenecin 1, 2, and 4 was observed in PND-treated beetles after inoculation with Bb, while the levels of the non-inducible AMP Tenecin 3 were similar between treatments. In conclusion, our findings demonstrate that admitted residual doses of currently used herbicides modify an important component of the inducible immune response of an insect. This did not translate into an effect on the survival to B. bassiana in our system. However, residual doses of the herbicide at 13 ppm may temporarily affect fungal germination. These results raise questions about the compatibility of bioinsecticides with synthetic pesticides and the effects of herbicide residues on host-pathogen interactions.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy; Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany.
| | - Caroline Zanchi
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany; Institute for Biology, Freie Universität Berlin, Königin-Luise Str. 1-3, 14 195, Berlin, Germany
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Joachim Kurtz
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany
| |
Collapse
|
9
|
Sousa JPAD, Sousa JMSD, Rodrigues RRL, Nunes TADL, Machado YAA, Araujo ACD, da Silva IGM, Barros-Cordeiro KB, Báo SN, Alves MMDM, Mendonça-Junior FJB, Rodrigues KADF. Antileishmanial activity of 2-amino-thiophene derivative SB-200. Int Immunopharmacol 2023; 123:110750. [PMID: 37536181 DOI: 10.1016/j.intimp.2023.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/28/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Leishmaniasis, presenting the highest number of cases worldwide is one of the most serious Neglected Tropical Diseases (NTDs). Clinical manifestations are intrinsically related to the host's immune response making immunomodulatory substances the target of numerous studies on antileishmanial activity. The currently available drugs used for treatment present various problems including high toxicity, low efficacy, and associated drug resistance. The search for therapeutic alternatives is urgent, and in this context, thiophene derivatives appear to be a promising therapeutic alternative (many have shown promising anti-leishmanial activity). The objective of this study was to investigate the antileishmanial activity of the 2-amino-thiophenic derivative SB-200. The thiophenic derivative was effective in inhibiting the growth of Leishmania braziliensis, Leishmania major, and Leishmania infantum promastigotes, obtaining respective IC50 values of 4.25 μM, 4.65 μM, and 3.96 μM. For L. infantum, it was demonstrated that the antipromastigote effect of SB-200 is associated with cell membrane integrity losses, and with morphological changes observed during scanning and transmission electron microscopy. Cytotoxicity was performed for J774.A1 macrophages and VERO cells, to obtain a CC50 of 42.52 μM and a SI of 10.74 for macrophages and a CC50 of 39.2 μM and an SI of 9.89 for VERO cells. The anti-amastigote activity of SB-200 revealed an IC50 of 2.85 μM and an SI of 14.97 against macrophages and SI of 13.8 for VERO cells. The anti-amastigote activity of SB-200 is associated with in vitro immunomodulation. For acute toxicity, SB-200 against Zophobas morio larvae permitted 100% survival. We conclude that the 2-amino-thiophenic derivative SB-200 is a promising candidate for in vivo anti-leishmania drug tests to evaluate its activity, efficacy, and safety.
Collapse
Affiliation(s)
- João Paulo Araujo de Sousa
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brasil
| | - Julyanne Maria Saraiva de Sousa
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brasil
| | - Raiza Raianne Luz Rodrigues
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brasil
| | - Thais Amanda de Lima Nunes
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brasil
| | - Yasmim Alves Aires Machado
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brasil
| | - Alexandre Carvalho de Araujo
- Infectious Disease Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brasil
| | - Ingrid Gracielle Martins da Silva
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Karine Brenda Barros-Cordeiro
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Sônia Nair Báo
- Microscopy and Microanalysis Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Michel Muálem de Moraes Alves
- Laboratory of Antileishmania Activity, Medicinal Plants Research Center, Federal University of Piauí, Teresina 64049-550, Brazil
| | | | | |
Collapse
|
10
|
Fusco-Almeida AM, de Matos Silva S, dos Santos KS, de Lima Gualque MW, Vaso CO, Carvalho AR, Medina-Alarcón KP, Pires ACMDS, Belizario JA, de Souza Fernandes L, Moroz A, Martinez LR, Ruiz OH, González Á, Mendes-Giannini MJS. Alternative Non-Mammalian Animal and Cellular Methods for the Study of Host-Fungal Interactions. J Fungi (Basel) 2023; 9:943. [PMID: 37755051 PMCID: PMC10533014 DOI: 10.3390/jof9090943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
In the study of fungal pathogenesis, alternative methods have gained prominence due to recent global legislation restricting the use of mammalian animals in research. The principle of the 3 Rs (replacement, reduction, and refinement) is integrated into regulations and guidelines governing animal experimentation in nearly all countries. This principle advocates substituting vertebrate animals with other invertebrate organisms, embryos, microorganisms, or cell cultures. This review addresses host-fungus interactions by employing three-dimensional (3D) cultures, which offer more faithful replication of the in vivo environment, and by utilizing alternative animal models to replace traditional mammals. Among these alternative models, species like Caenorhabditis elegans and Danio rerio share approximately 75% of their genes with humans. Furthermore, models such as Galleria mellonella and Tenebrio molitor demonstrate similarities in their innate immune systems as well as anatomical and physiological barriers, resembling those found in mammalian organisms.
Collapse
Affiliation(s)
- Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Samanta de Matos Silva
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Kelvin Sousa dos Santos
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Angélica Romão Carvalho
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Kaila Petrolina Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Ana Carolina Moreira da Silva Pires
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Jenyffie Araújo Belizario
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Lígia de Souza Fernandes
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Andrei Moroz
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| | - Luis R. Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Orville Hernandez Ruiz
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
- Cellular and Molecular Biology Group University of Antioquia, Corporation for Biological Research, Medellin 050010, Colombia
| | - Ángel González
- Basic and Applied Microbiology Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellin 050010, Colombia; (O.H.R.); (Á.G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Science, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, SP, Brazil; (A.M.F.-A.); (S.d.M.S.); (K.S.d.S.); (M.W.d.L.G.); (C.O.V.); (A.R.C.); (K.P.M.-A.); (A.C.M.d.S.P.); (J.A.B.); (L.d.S.F.); (A.M.)
| |
Collapse
|
11
|
da Silva Cordeiro ML, de Queiroz Aquino-Martins VG, da Silva AP, Naliato GFS, Silveira ER, Theodoro RC, da Santos DYAC, Rocha HAO, Scortecci KC. Exploring the Antioxidant Potential of Talisia esculenta Using In Vitro and In Vivo Approaches. Nutrients 2023; 15:3855. [PMID: 37686887 PMCID: PMC10490396 DOI: 10.3390/nu15173855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Medicinal plants, such as Talisia esculenta, are rich in antioxidant biomolecules, which are used in the treatment and prevention of many diseases. The antioxidant potential of T. esculenta extracts obtained from leaves and fruit peels was investigated using biochemical and 3T3 cell line assays as well as in vivo assays using an organism model Tenebrio molitor. Four extracts were tested: hydroethanolic extracts from leaves (HF) and from fruit peels (HC), and infusion extracts from leaves (IF) and from fruit peels (IC). The biochemical assays demonstrated an antioxidant capacity verified by TAC, reducing power, DPPH, and copper chelating assays. None of the extracts exhibited cytotoxicity against 3T3 cells, instead offering a protection against CuSO4-induced oxidative stress. The antioxidant activity observed in the extracts, including their role as free radical scavengers, copper chelators, and stress protectors, was further confirmed by T. molitor assays. The CLAE-DAD analysis detected phenolic compounds, including gallic acid, rutin, and quercitrin, as the main constituents of the samples. This study highlights that leaf and fruit peels extracts of T. esculenta could be effective protectors against ROS and copper-induced stress in cellular and invertebrate models, and they should be considered as coadjutants in the treatment and prevention of diseases related to oxidative stress and for the development of natural nutraceutical products.
Collapse
Affiliation(s)
- Maria Lúcia da Silva Cordeiro
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| | - Verônica Giuliani de Queiroz Aquino-Martins
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| | - Ariana Pereira da Silva
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| | - Georggia Fatima Silva Naliato
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Elielson Rodrigo Silveira
- Laboratório de Fitoquímica, Departamento de Botânica, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Raquel Cordeiro Theodoro
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
- Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59077-080, RN, Brazil
| | - Deborah Yara Alves Cursino da Santos
- Laboratório de Fitoquímica, Departamento de Botânica, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil; (E.R.S.); (D.Y.A.C.d.S.)
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Katia Castanho Scortecci
- Laboratório de Transformação de Plantas e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (M.L.d.S.C.); (V.G.d.Q.A.-M.); (A.P.d.S.)
- Programa de Pós-graduação em Bioquímica e Biologia Molecular, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil; (G.F.S.N.); (R.C.T.); (H.A.O.R.)
| |
Collapse
|
12
|
Ribeiro IMM, de Sousa VC, Melo ECS, Carvalho RDCVD, Santos MDSD, Neto JADON, Melo DSD, Teixeira LSDA, Citó AMDGL, Moura AKS, Arcanjo DDR, Carvalho FADA, Alves MMDM, Mendonça ILD. Antileishmania and immunomodulatory potential of cashew nut shell liquid and cardanol. Toxicol In Vitro 2023; 87:105524. [PMID: 36435415 DOI: 10.1016/j.tiv.2022.105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Conventional treatments for leishmaniasis have caused serious adverse effects, poor tolerance, development of resistant strains. Natural products have been investigated as potential therapeutic alternatives. The cashew nut shell liquid (CNSL) is a natural source of phenolic compounds with several biological activities, where cardanol (CN) is considered one of the most important and promising compounds. This study aimed to evaluate antileishmanial, cytotoxic and immunomodulatory activities of CNSL and CN. Both showed antileishmanial potential, with IC50 for CNSL and CN against Leishmania infantum: 148.12 and 56.74 μg/mL; against Leishmania braziliensis: 85.71 and 64.28 μg/mL; against Leishmania major: 153.56 and 122.31 μg/mL, respectively. The mean cytotoxic concentrations (CC50) of CNSL and CN were 37.51 and 31.44 μg/mL, respectively. CNSL and CN significantly reduced the percentage of infected macrophages, with a selectivity index (SI) >20 for CN. CNSL and cardanol caused an increase in phagocytic capacity and lysosomal volume. Survival rates of Zophobas morio larvae at doses of 3; 30 and 300 mg/kg were: 85%, 75% and 60% in contact with CNSL and 85%, 60% and 40% in contact with CN, respectively. There was a significant difference between the survival curves of larvae when treated with CN, demonstrating a significant acute toxicity for this substance. Additional investigations are needed to evaluate these substances in the in vivo experimental infection model.
Collapse
Affiliation(s)
- Iuliana Marjory Martins Ribeiro
- Programa de Pós-Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Valéria Carlos de Sousa
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | | | | | | | - Danielly Silva de Melo
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | | | | | - Daniel Dias Rufino Arcanjo
- Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Departamento de Biofísica e Fisiologia, Universidade Federal do Piauí, Teresina, Piauí, Brazil.
| | | | - Michel Muálem de Moraes Alves
- Programa de Pós-Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Núcleo de Pesquisas em Plantas Medicinais, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Departamento de Morfofisiologia Veterinária, Universidade Federal do Piauí, Teresina, Piauí, Brazil.
| | - Ivete Lopes de Mendonça
- Programa de Pós-Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil; Departamento de Clínica e Cirurgia Veterinária, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
13
|
Ramos LS, Mokus L, Frota HF, Santos MV, Oliveira SSC, Oliveira MME, Costa GL, Alves AL, Bernardes-Engemann AR, Orofino-Costa R, Aor AC, Branquinha MH, Santos ALS. SARS-CoV-2 Post-Infection and Sepsis by Saccharomyces cerevisiae: A Fatal Case Report-Focus on Fungal Susceptibility and Potential Virulence Attributes. Trop Med Infect Dis 2023; 8:tropicalmed8020099. [PMID: 36828515 PMCID: PMC9963862 DOI: 10.3390/tropicalmed8020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for approximately 6.8 million deaths worldwide, threatening more than 753 million individuals. People with severe coronavirus disease-2019 (COVID-19) infection often exhibit an immunosuppression condition, resulting in greater chances of developing co-infections with bacteria and fungi, including opportunistic yeasts belonging to the Saccharomyces and Candida genera. In the present work, we have reported the case of a 75-year-old woman admitted at a Brazilian university hospital with an arterial ulcer in the left foot, which was being prepared for surgical amputation. The patient presented other underlying diseases and presented positive tests for COVID-19 prior to hospitalization. She received antimicrobial treatment, but her general condition worsened quickly, leading to death by septic shock after 4 days of hospitalization. Blood samples collected on the day she died were positive for yeast-like organisms, which were later identified as Saccharomyces cerevisiae by both biochemical and molecular methods. The fungal strain exhibited low minimal inhibitory concentration values for the antifungal agents tested (amphotericin B, 5-flucytosine, caspofungin, fluconazole and voriconazole), and it was able to produce important virulence factors, such as extracellular bioactive molecules (e.g., aspartic peptidase, phospholipase, esterase, phytase, catalase, hemolysin and siderophore) and biofilm. Despite the activity against planktonic cells, the antifungals were not able to impact the mature biofilm parameters (biomass and viability). Additionally, the S. cerevisiae strain caused the death of Tenebrio molitor larvae, depending on the fungal inoculum, and larvae immunosuppression with corticosteroids increased the larvae mortality rate. In conclusion, the present study highlighted the emergence of S. cerevisiae as an opportunistic fungal pathogen in immunosuppressed patients presenting several severe comorbidities, including COVID-19 infection.
Collapse
Affiliation(s)
- Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Luca Mokus
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Heloisa F. Frota
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Marcos V. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Simone S. C. Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Manoel M. E. Oliveira
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Gisela L. Costa
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Ana Luísa Alves
- Unidade Docente-Assistencial de Dermatologia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Andréa R. Bernardes-Engemann
- Laboratório de Micologia, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Rosane Orofino-Costa
- Unidade Docente-Assistencial de Dermatologia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
- Laboratório de Micologia, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Ana Carolina Aor
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Laboratório de Micologia, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, Brazil
- Correspondence: (M.H.B.); (A.L.S.S.)
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, Brazil
- Correspondence: (M.H.B.); (A.L.S.S.)
| |
Collapse
|
14
|
da Silva AF, Farias JR, Franco DCG, Galiza AA, Motta EP, Oliveira ADS, Vasconcelos CC, Cartágenes MDSDS, da Rocha CQ, da Silva MCP, Lopes AJO, do Nascimento FRF, Monteiro CA, Guerra RNM. Anti- Candida albicans Activity of Ononin and Other Secondary Metabolites from Platonia Insignis MART. Metabolites 2022; 12:1014. [PMID: 36355097 PMCID: PMC9696916 DOI: 10.3390/metabo12111014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2023] Open
Abstract
Candida albicans is a human pathogen that is part of the healthy microbiome. However, it is often associated with opportunistic fungal infections. The treatment of these infections is challenging because prolonged exposure to antifungal drugs can culminate in fungal resistance during therapy, and there is a limited number of available drugs. Therefore, this study investigated the antifungal activity of ononin by in silico and in vitro assays, and in Tenebrio molitor as an alternative in vivo model of infection caused by C. albicans. Ononin is an isoflavone glycoside derived from formononetin that has various biological activities. According in silico evaluation, ononin showed the best electron affinity in molecular docking with CaCYP51, with a binding free energy of -10.89 kcal/mol, superior to that of the antifungal drugs fluconazole and posaconazole. The ononin + CaCYP51 complex formed hydrogen bonds with Tyr132, Ser378, Phe380, and Met508, as well as hydrophobic connections with Tyr118, Leu121, Phe126, Leu131, Ile304, and Leu309, and interactions with the heme group. Ononin exerted anti-Candida albicans activity, with MIC between 3.9 and 7.8 µg/mL, and inhibited young and mature biofilms, with a reduction in cell density and metabolic activity of 50 to 80%. The compound was not cytotoxic to sheep red blood cells at concentrations up to 1000 µg/mL. Larvae of the mealworm T. molitor were used as an alternative in vivo model of C. albicans infection. Ononin was able to prolong larval survival at concentrations of 0.5, 1, and 5 mg/kg, and was not toxic up to a concentration of 20 mg/kg. Moreover, ononin reduced the fungal charge in treated animals. In conclusion, our results suggest that ononin has anti-Candida albicans activity and is a potential candidate for the development of new therapeutic alternatives.
Collapse
Affiliation(s)
- Anderson França da Silva
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Biotechnology-RENORBIO, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Josivan Regis Farias
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Danielle Cristine Gomes Franco
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Andrea Araruna Galiza
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Biotechnology-RENORBIO, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Elizangela Pestana Motta
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Aluísio da Silva Oliveira
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | - Maria do Socorro de Sousa Cartágenes
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
- Laboratory of Experimental Study of Pain, Department of Physiological Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | - Mayara Cristina Pinto da Silva
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Alberto Jorge Oliveira Lopes
- Federal Institute of Science Education and Technology of Maranhão-Campus Santa Inês, Santa Inês 65300-000, Brazil
| | - Flavia Raquel Fernandes do Nascimento
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Cristina Andrade Monteiro
- Department of Biology, Federal Institute of Science Education and Technology of Maranhão, São Luís 65030-005, Brazil
| | - Rosane Nassar Meireles Guerra
- Laboratory of Immunophysiolgy, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Biotechnology-RENORBIO, Federal University of Maranhão, São Luís 65080-805, Brazil
- Program in Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil
| |
Collapse
|
15
|
Petronio Petronio G, Pietrangelo L, Cutuli MA, Magnifico I, Venditti N, Guarnieri A, Abate GA, Yewhalaw D, Davinelli S, Di Marco R. Emerging Evidence on Tenebrio molitor Immunity: A Focus on Gene Expression Involved in Microbial Infection for Host-Pathogen Interaction Studies. Microorganisms 2022; 10:1983. [PMID: 36296259 PMCID: PMC9611967 DOI: 10.3390/microorganisms10101983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 08/13/2023] Open
Abstract
In recent years, the scientific community's interest in T. molitor as an insect model to investigate immunity and host-pathogen interactions has considerably increased. The reasons for this growing interest could be explained by the peculiar features of this beetle, which offers various advantages compared to other invertebrates models commonly used in laboratory studies. Thus, this review aimed at providing a broad view of the T. molitor immune system in light of the new scientific evidence on the developmental/tissue-specific gene expression studies related to microbial infection. In addition to the well-known cellular component and humoral response process, several studies investigating the factors associated with T. molitor immune response or deepening of those already known have been reported. However, various aspects remain still less understood, namely the possible crosstalk between the immune deficiency protein and Toll pathways and the role exerted by T. molitor apolipoprotein III in the expression of the antimicrobial peptides. Therefore, further research is required for T. molitor to be recommended as an alternative insect model for pathogen-host interaction and immunity studies.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Getnet Atinafu Abate
- Department of Biology, College of Natural Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma P.O. Box 307, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Sergio Davinelli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
16
|
El-Kamand S, Steiner M, Ramirez C, Halliday C, Chen SCA, Papanicolaou A, Morton CO. Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype. Pathogens 2022; 11:pathogens11040428. [PMID: 35456102 PMCID: PMC9029132 DOI: 10.3390/pathogens11040428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The fungus Aspergillus fumigatus, the cause of invasive aspergillosis (IA), is a serious risk to transplant patients and those with respiratory diseases. Host immune suppression is considered the most important factor for the development of IA. Less is known about the importance of fungal virulence in the development of IA including the significance of variation between isolates. In this study, isolates of A. fumigatus from cases diagnosed as having proven IA or colonisation (no evidence of IA) were compared in assays to measure isolate virulence. These assays included the measurement of radial growth and protease production on agar, sensitivity to UV light and oxidative stressors, and virulence in Tenebrio molitor (mealworm) larvae. These assays did not reveal obvious differences in virulence between the two groups of isolates; this provided the impetus to conduct genomic analysis. Whole genome sequencing and analysis did not allow grouping into coloniser or IA isolates. However, focused analysis of single nucleotide polymorphisms revealed variation in three putative genes: AFUA_5G09420 (ccg-8), AFUA_4G00330, and AFUA_4G00350. These are known to be responsive to azole exposure, and ccg-8 deletion leads to azole hypersensitivity in other fungi. A. fumigatus virulence is challenging, but the findings of this study indicate that further research into the response to oxidative stress and azole exposure are required to understand the development of IA.
Collapse
Affiliation(s)
- Sam El-Kamand
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Martina Steiner
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Carl Ramirez
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW 2145, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, NSW 2753, Australia
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| | - Charles Oliver Morton
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| |
Collapse
|
17
|
Vargas-Macías AP, Gómez-Gaviria M, García-Carnero LC, Mora-Montes HM. Current Models to Study the Sporothrix-Host Interaction. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:833111. [PMID: 37746241 PMCID: PMC10512367 DOI: 10.3389/ffunb.2022.833111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 09/26/2023]
Abstract
Sporotrichosis is a worldwide distributed subcutaneous mycosis that affects mammals, including human beings. The infection is caused by members of the Sporothrix pathogenic clade, which includes Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa. The fungus can be acquired through traumatic inoculation of conidia growing in vegetal debris or by zoonotic transmission from sick animals. Although is not considered a life-threatening disease, it is an emergent health problem that affects mostly immunocompromised patients. The sporotrichosis causative agents differ in their virulence, host range, and sensitivity to antifungal drugs; therefore, it is relevant to understand the molecular bases of their pathogenesis, interaction with immune effectors, and mechanisms to acquired resistance to antifungal compounds. Murine models are considered the gold standard to address these questions; however, some alternative hosts offer numerous advantages over mammalian models, such as invertebrates like Galleria mellonella and Tenebrio molitor, or ex vivo models, which are useful tools to approach questions beyond virulence, without the ethical or budgetary features associated with the use of animal models. In this review, we analyze the different models currently used to study the host-Sporothrix interaction.
Collapse
Affiliation(s)
| | | | | | - Héctor M. Mora-Montes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
18
|
Lozoya-Pérez NE, García-Carnero LC, Martínez-Álvarez JA, Martínez-Duncker I, Mora-Montes HM. Tenebrio molitor as an Alternative Model to Analyze the Sporothrix Species Virulence. Infect Drug Resist 2021; 14:2059-2072. [PMID: 34113132 PMCID: PMC8184153 DOI: 10.2147/idr.s312553] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/16/2021] [Indexed: 01/14/2023] Open
Abstract
Background Sporotrichosis is an increasing threat for humans, affecting mainly skin and subcutaneous tissues but that can cause disseminated infection in immunocompromised patients. Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa are the main etiological agents of this mycosis, and each species show different virulence levels. The gold standard to assess fungal virulence is the mouse model that is expensive and time-consuming. Thus, invertebrate models have been reported as an alternative for the evaluation of fungal virulence. Here, we assessed whether Tenebrio molitor larvae could be a new alternative to study Sporothrix spp. virulence. Methods T. molitor larvae were inoculated with different doses of S. schenckii, S. brasiliensis, and S. globosa, and animal mortality, cytotoxicity, and immunological parameters were analyzed, including the ability to stimulate immunological priming. Results Mortality curves demonstrated that yeast-like cells were the best fungal morphology to kill larvae and showed a similar ranking in virulence than that reported in other animal models, ie, being S. brasiliensis and S. globosa the species with the highest and lowest virulence, respectively. The usefulness of this model was validated with the analysis of several S. schenckii strains with different virulence degrees, and changes in cytotoxicity, humoral and cellular immunological parameters. Low-virulence strains stimulated low levels of cytotoxicity, phenoloxidase activity, and hemocyte countings, and these immunological cells poorly uptake fungi. Moreover, using recombinant Gp70 from S. schenckii immunological priming was stimulated in larvae and this protected against a lethal dose of fungal cells from any of the three species under study. Conclusion The study demonstrated that T. molitor larvae are an appropriate alternative invertebrate model to analyze the virulence of S. schenckii, S. brasiliensis, and S. globosa. Additionally, hemocyte levels, phenoloxidase activity, cytotoxicity, uptake by hemocytes, and immunological priming are biological parameters that can be used to study the Sporothrix-T. molitor interaction.
Collapse
Affiliation(s)
- Nancy E Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, México
| | - Laura C García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, México
| | - José A Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, México
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36050, México
| |
Collapse
|
19
|
Torres M, de Cock H, Celis Ramírez AM. In Vitro or In Vivo Models, the Next Frontier for Unraveling Interactions between Malassezia spp. and Hosts. How Much Do We Know? J Fungi (Basel) 2020; 6:jof6030155. [PMID: 32872112 PMCID: PMC7558575 DOI: 10.3390/jof6030155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia is a lipid-dependent genus of yeasts known for being an important part of the skin mycobiota. These yeasts have been associated with the development of skin disorders and cataloged as a causal agent of systemic infections under specific conditions, making them opportunistic pathogens. Little is known about the host-microbe interactions of Malassezia spp., and unraveling this implies the implementation of infection models. In this mini review, we present different models that have been implemented in fungal infections studies with greater attention to Malassezia spp. infections. These models range from in vitro (cell cultures and ex vivo tissue), to in vivo (murine models, rabbits, guinea pigs, insects, nematodes, and amoebas). We additionally highlight the alternative models that reduce the use of mammals as model organisms, which have been gaining importance in the study of fungal host-microbe interactions. This is due to the fact that these systems have been shown to have reliable results, which correlate with those obtained from mammalian models. Examples of alternative models are Caenorhabditis elegans, Drosophila melanogaster, Tenebrio molitor, and Galleria mellonella. These are invertebrates that have been implemented in the study of Malassezia spp. infections in order to identify differences in virulence between Malassezia species.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
| | - Hans de Cock
- Microbiology, Department of Biology, Faculty of Science, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1 N° 18A—12, Bogotá, Bogotá D.C. 11711, Colombia;
- Correspondence:
| |
Collapse
|
20
|
Silva MG, de Curcio JS, Silva-Bailão MG, Lima RM, Tomazett MV, de Souza AF, Cruz-Leite VRM, Sbaraini N, Bailão AM, Rodrigues F, Pereira M, Gonçales RA, de Almeida Soares CM. Molecular characterization of siderophore biosynthesis in Paracoccidioides brasiliensis. IMA Fungus 2020; 11:11. [PMID: 32742914 PMCID: PMC7359926 DOI: 10.1186/s43008-020-00035-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential nutrient for all organisms. For pathogenic fungi, iron is essential for the success of infection. Thus, these organisms have developed high affinity iron uptake mechanisms to deal with metal deprivation imposed by the host. Siderophore production is one of the mechanisms that fungal pathogens employ for iron acquisition. Paracoccidioides spp. present orthologous genes encoding the enzymes necessary for the biosynthesis of hydroxamates, and plasma membrane proteins related to the transport of these molecules. All these genes are induced in iron deprivation. In addition, it has been observed that Paracoccidioides spp. are able to use siderophores to scavenge iron. Here we observed that addition of the xenosiderophore ferrioxamine B FOB) to P. brasiliensis culture medium results in repression (at RNA and protein levels) of the SidA, the first enzyme of the siderophore biosynthesis pathway. Furthermore, SidA activity was reduced in the presence of FOB, suggesting that P. brasiliensis blocks siderophores biosynthesis and can explore siderophores in the environment to scavenge iron. In order to support the importance of siderophores on Paracoccidioides sp. life and infection cycle, silenced mutants for the sidA gene were obtained by antisense RNA technology. The obtained AsSidA strains displayed decreased siderophore biosynthesis in iron deprivation conditions and reduced virulence to an invertebrate model.
Collapse
Affiliation(s)
- Marielle Garcia Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, GO Brazil
- Programa de Pós-graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF 70910-900 Brazil
| | - Juliana Santana de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, GO Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, GO Brazil
| | - Raisa Melo Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, GO Brazil
| | - Mariana Vieira Tomazett
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, GO Brazil
| | - Aparecido Ferreira de Souza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, GO Brazil
| | | | - Nicolau Sbaraini
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, GO Brazil
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, GO Brazil
| | - Relber Aguiar Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, Goiânia, GO Brazil
| |
Collapse
|
21
|
Kaur M, Chadha P, Kaur S, Kaur A, Kaur R. Schizophyllum commune induced oxidative stress and immunosuppressive activity in Spodoptera litura. BMC Microbiol 2020; 20:139. [PMID: 32471364 PMCID: PMC7260734 DOI: 10.1186/s12866-020-01831-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/25/2020] [Indexed: 01/24/2023] Open
Abstract
Background In the last few decades, considerable attention has been paid to fungal endophytes as biocontrol agents, however little is known about their mode of action. This study aimed to investigate the toxic effects of an endophytic fungus Schizophyllum commune by analyzing activities of antioxidant and detoxifying enzymes as well as morphology of haemocytes using Spodoptera litura as a model. Results Ethyl acetate extract of S. commune was fed to the larvae of S. litura using the artificial diet having 276.54 μg/ml (LC50 of fungus) concentration for different time durations. Exposed groups revealed significant (p ≤ 0.05) increase in the activities of various enzymes viz. Catalase, Ascorbate peroxidase, Superoxide dismutase, Glutathione-S-Transferase. Furthermore, haemocytes showed various deformities like breakage in the cell membrane, cytoplasmic leakage and appearance of strumae in the treated larvae. A drastic reduction in the percentage of normal haemocytes was recorded in the treated groups with respect to control. Conclusion The study provides important information regarding the oxidative stress causing and immunosuppressant potential of S. commune against S. litura and its considerable potential for incorporation in pest management programs.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajvir Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
22
|
TmPGRP-SA regulates Antimicrobial Response to Bacteria and Fungi in the Fat Body and Gut of Tenebrio molitor. Int J Mol Sci 2020; 21:ijms21062113. [PMID: 32204438 PMCID: PMC7139795 DOI: 10.3390/ijms21062113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial immune response is mediated by a signal-transducing sensor, peptidoglycan recognition protein-SA (PGRP-SA), that can recognize non-self molecules. Although several studies have focused on the involvement of Drosophila PGRP-SA in antimicrobial peptide (AMP) expression in response to infections, studies on its role in Tenebrio molitor are lacking. Here, we present a functional analysis of T. molitor PGRP-SA (TmPGRP-SA). In the absence of microbes, TmPGRP-SA was highly expressed in the late-larval fat body, followed by hemocytes, and gut. Interestingly, following Escherichia coli, Staphylococcus aureus, and Candida albicans infections, the mRNA level of TmPGRP-SA was significantly upregulated in both the fat body and gut. TmPGRP-SA silencing had a significant effect on the mortality rates for all the microbes tested. Moreover, TmPGRP-SA is required for regulating the expression of eight AMP genes namely TmTenecin-1, -2, and -4; TmDefensin-1 and -2; TmColeoptericin-1; and TmAttacin-1b and -2 in the fat body in response to E. coli and S. aureus infections. TmPGRP-SA is essential for the transcription of TmTenecin-2, -4; TmDefensin-2; TmColeoptericin-1, -2; and TmAttacin-1a, -1b, and -2 in the gut upon E. coli and C. albicans infections. However, TmPGRP-SA does not regulate AMP expression in the hemocytes. Additionally, TmDorsal isoform X2, a downstream Toll transcription factor, was downregulated in TmPGRP-SA-silenced larval fat body following E. coli and S. aureus challenges, and in the gut following E. coli and C. albicans challenges.
Collapse
|
23
|
Products Derived from Buchenavia tetraphylla Leaves Have In Vitro Antioxidant Activity and Protect Tenebrio molitor Larvae against Escherichia coli-Induced Injury. Pharmaceuticals (Basel) 2020; 13:ph13030046. [PMID: 32188166 PMCID: PMC7151707 DOI: 10.3390/ph13030046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
The relevance of oxidative stress in the pathogenesis of several diseases (including inflammatory disorders) has traditionally led to the search for new sources of antioxidant compounds. In this work, we report the selection of fractions with high antioxidant action from B. tetraphylla (BT) leaf extracts. In vitro methods (DPPH and ABTS assays; determination of phenolic and flavonoid contents) were used to select products derived from B. tetraphylla with high antioxidant action. Then, the samples with the highest potentials were evaluated in a model of injury based on the inoculation of a lethal dose of heat-inactivated Escherichia coli in Tenebrio molitor larvae. Due to its higher antioxidant properties, the methanolic extract (BTME) was chosen to be fractionated using Sephadex LH-20 column-based chromatography. Two fractions from BTME (BTFC and BTFD) were the most active fractions. Pre-treatment with these fractions protected larvae of T. molitor from the stress induced by inoculation of heat-inactivated E. coli. Similarly, BTFC and BTFD increased the lifespan of larvae infected with a lethal dose of enteroaggregative E. coli 042. NMR data indicated the presence of aliphatic compounds (terpenes, fatty acids, carbohydrates) and aromatic compounds (phenolic compounds). These findings suggested that products derived from B. tetraphylla leaves are promising candidates for the development of antioxidant and anti-infective agents able to treat oxidative-related dysfunctions.
Collapse
|
24
|
Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020. [DOI: 10.3390/microorganisms8030390
expr 890942362 + 917555800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
|
25
|
Jemel S, Guillot J, Kallel K, Botterel F, Dannaoui E. Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms 2020; 8:microorganisms8030390. [PMID: 32168839 PMCID: PMC7142887 DOI: 10.3390/microorganisms8030390] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022] Open
Abstract
The treatment of invasive fungal infections remains challenging and the emergence of new fungal pathogens as well as the development of resistance to the main antifungal drugs highlight the need for novel therapeutic strategies. Although in vitro antifungal susceptibility testing has come of age, the proper evaluation of therapeutic efficacy of current or new antifungals is dependent on the use of animal models. Mammalian models, particularly using rodents, are the cornerstone for evaluation of antifungal efficacy, but are limited by increased costs and ethical considerations. To circumvent these limitations, alternative invertebrate models, such as Galleria mellonella, have been developed. Larvae of G. mellonella have been widely used for testing virulence of fungi and more recently have proven useful for evaluation of antifungal efficacy. This model is suitable for infection by different fungal pathogens including yeasts (Candida, Cryptococcus, Trichosporon) and filamentous fungi (Aspergillus, Mucorales). Antifungal efficacy may be easily estimated by fungal burden or mortality rate in infected and treated larvae. The aim of the present review is to summarize the actual data about the use of G. mellonella for testing the in vivo efficacy of licensed antifungal drugs, new drugs, and combination therapies.
Collapse
Affiliation(s)
- Sana Jemel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Jacques Guillot
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Kalthoum Kallel
- Université Tunis EL Manar, Faculté de médecine de Tunis, Tunis 1007, Tunisie;
- UR17SP03, centre hospitalo-universitaire La Rabta, Jabbari, Tunis 1007, Tunisie
| | - Françoise Botterel
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
| | - Eric Dannaoui
- EA Dynamyc UPEC, EnvA, USC Anses, Faculté de Médecine de Créteil, 94000 Créteil, France; (S.J.); (J.G.); (F.B.)
- Hôpital Européen Georges Pompidou, APHP, Unité de Parasitologie-Mycologie, Service de Microbiologie, 75015 Paris, France
- Université René Descartes, Faculté de médecine, 75006 Paris, France
- Correspondence: ; Tel.: +33-1-56-09-39-48; Fax: +33-1-56-09-24-46
| |
Collapse
|
26
|
de Jong AW, Hagen F. Attack, Defend and Persist: How the Fungal Pathogen Candida auris was Able to Emerge Globally in Healthcare Environments. Mycopathologia 2019; 184:353-365. [PMID: 31209693 DOI: 10.1007/s11046-019-00351-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/25/2022]
Abstract
Within a decade after its first description, the multidrug-resistant yeast Candida auris has emerged globally as a nosocomial pathogen causing difficult to control outbreaks. This, together with the alarmingly high mortality rate of up to 66% associated with C. auris candidemia, calls for a better understanding of its virulence traits and routes of transmission. Unlike other clinically relevant Candida species, C. auris seems to have the unique ability to be easily transmitted between patients. Although initially thought to express fewer virulence traits than Candida albicans, recent genomic insights suggest C. auris to possess these traits to a much more similar extent. This review highlights the virulence traits C. auris expresses to attack the host, defend itself against antimicrobial agents and to persist within the healthcare environment.
Collapse
Affiliation(s)
- Auke W de Jong
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, People's Republic of China.
| |
Collapse
|
27
|
Liu C, Wang C, Yao H. Comprehensive Resource Utilization of Waste Using the Black Soldier Fly ( Hermetia illucens (L.)) (Diptera: Stratiomyidae). Animals (Basel) 2019; 9:E349. [PMID: 31200503 PMCID: PMC6616655 DOI: 10.3390/ani9060349] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022] Open
Abstract
The black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), is a saprophytic insect that can digest organic wastes, such as animal manure, plant residues, and food and agricultural wastes. In the degradation process, organic wastes are converted into protein, grease, and polypeptides, which can be applied in medicine, the refining of chemicals, and the manufacturing of feedstuffs. After their conversion by the H. illucens, organic wastes not only become useful but also environmentally friendly. To date, the H. illucens has been widely used to treat food waste and to render manure harmless. The protein and grease obtained via this insect have been successfully used to produce livestock feed and biodiesel. In this article, the biological characteristics, resource utilization of protein and grease, and environmental functions of the H. illucens are summarized. This article provides a theoretical basis for investigating potential applications of the H. illucens.
Collapse
Affiliation(s)
- Cuncheng Liu
- Ecology and Biological Engineering, School of Environmental Wuhan Institute of Technology, Wuhan 430073, China.
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, China.
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430073, China.
| | - Huaiying Yao
- Ecology and Biological Engineering, School of Environmental Wuhan Institute of Technology, Wuhan 430073, China.
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
28
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
29
|
Junqueira JC, Mylonakis E. Current Status and Trends in Alternative Models to Study Fungal Pathogens. J Fungi (Basel) 2019; 5:jof5010012. [PMID: 30691083 PMCID: PMC6463159 DOI: 10.3390/jof5010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Fungal infections affect over a billion people, with mortality rates estimated at 1⁻2 million per year [...].
Collapse
Affiliation(s)
- Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, SP 12245-000, Brazil.
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|