1
|
Zhang J, Feng Y, Li D, Shi D. Fungal influence on immune cells and inflammatory responses in the tumor microenvironment (Review). Oncol Lett 2025; 29:50. [PMID: 39564373 PMCID: PMC11574707 DOI: 10.3892/ol.2024.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, a growing body of research has highlighted the significant influence of the microbiota on tumor immunity within the tumor microenvironment (TME). While much attention has been given to bacteria, emerging evidence suggests that fungi also play crucial roles in tumor development. The present review aimed to consolidate the latest findings on the mechanisms governing the interactions between fungi and the immune system or TME. By elucidating these intricate mechanisms, novel insights into the modulation of tumor immunity and therapeutic strategies may be uncovered. Ultimately, a deeper understanding of the interplay between fungi and the TME holds promise for the development of innovative management strategies and targeted drugs to enhance tumor therapy efficacy.
Collapse
Affiliation(s)
- Jinke Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Yahui Feng
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| |
Collapse
|
2
|
Dorokhova VS, Komarova BS, Previato JO, Mendonça Previato L, Krylov VB, Nifantiev NE. Synthesis of branched and linear galactooligosaccharides related to glucuronoxylomannogalactan of Cryptococcus neoformans. Front Chem 2024; 12:1501766. [PMID: 39611096 PMCID: PMC11602299 DOI: 10.3389/fchem.2024.1501766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
This study focuses on the synthesis of a series of oligo-α-(1→6)-D-galactopyranosides bearing β-D-galactofuranosyl residues at O-2 and/or O-3, which relate structurally to fragments of glucuronoxylomannogalactan (GXMGal) from the fungal pathogen Cryptococcus neoformans that causes severe diseases in immunocompromised patients. The preparation of target compounds is based on the use of a selectively O-protected N-phenyltrifluoroacetimidoyl galactopyranoside donor with an allyl group at O-2, levulinoyl group (Lev) at O-3, pentafluorobenzoyl (PFB) group at O-4, and fluorenylmethoxycarbonyl (Fmoc) group at O-6. The choice of protecting groups for this donor ensures the stereospecific formation of α-(1→6)-glycosidic bonds due to the stereodirecting effect of acyls at O-3, O-4, and O-6. At the same time, this combination of O-substituents permits the selective recovery of free OH groups at O-2, O-3, and O-6 for chain elongation via the introduction of β-D-galactofuranosyl and α-D-galactopyranosyl residues. The reported compounds are obtained as aminopropyl glycosides, which are transformed into biotinylated conjugates for further use as coating antigens in immunological studies. The obtained oligosaccharides were subjected to detailed 13C NMR analysis to show the spatial similarity of the obtained hexasaccharide with the corresponding fragment in the GXMGal chain, making this compound suitable for further immunological studies of C. neoformans.
Collapse
Affiliation(s)
- Vera S. Dorokhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Bozhena S. Komarova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - José O. Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lúcia Mendonça Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Ma Y, Xue P. Integrative Proteome and Metabolomics Analyses of Cryptococcus neoformans Responses to Melanin Substrates Niger seed and L-DOPA. Curr Microbiol 2024; 81:451. [PMID: 39514090 DOI: 10.1007/s00284-024-03979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Melanin, as a pivotal antioxidant pigment, plays a critical role in the pathogenicity of Cryptococcus neoformans. However, the underlying signaling pathways responsible for melanin biosynthesis in C. neoformans are not yet fully elucidated. In this study, proteome and metabolomics analyses were conducted to investigate the response of C. neoformans to melanin substrate Niger seed or L-DOPA. The proteome analysis identified significant differential expression of proteins in cells treated with Niger seed compared to L-DOPA, with distinct functional enrichment patterns observed. Subcellular localization analysis showed unique protein distribution in cells treated with each substrate. Metabolomics analysis revealed distinct metabolic profiles in response to Niger seed or L-DOPA, with notable differences in metabolite regulation between the two treatments. KEGG classification highlighted specific metabolic pathways affected by each substrate. Overall, this study provides valuable insights into the complex regulatory mechanisms underlying C. neoformans response to melanin substrates.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China.
| | - Peng Xue
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China.
| |
Collapse
|
4
|
Pinchuk A, Geginat G, Rickerts V, Neyazi B, Stein KP, Mawrin C, Sandalcioglu IE, Rashidi A. Late Relapse of Previous Pulmonary Cryptococcosis With Symptoms Resembling Cerebral Infarction: A Case Report. Case Rep Infect Dis 2024; 2024:3905985. [PMID: 39398978 PMCID: PMC11469929 DOI: 10.1155/2024/3905985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Cryptococcosis, an infection caused by Cryptococcus neoformans and Cryptococcus gattii, predominantly targets the central nervous system (CNS) in patients with AIDS but is not limited to this group. The disease can also occur in individuals with various immunosuppressive conditions, frequently involving the brain or lungs. Cryptococcal meningitis (CM) is the most common form of fungal meningoencephalitis, leading to intracerebral infections, cerebral infarction, or hydrocephalus. The clinical presentation of CM is nonspecific, and imaging features can vary significantly. This case report presents a patient with cerebral infarction, who was HIV-negative but had been on long-term cortisone therapy. Notably, the patient had a history of pulmonary cryptococcosis 15 years prior to cerebral involvement. When initially at our clinic, histology and culture results from brain biopsies were negative and the earlier pulmonary cryptococcosis history was unknown. Subsequently, cryptococcal antigen was detected in both serum and cerebrospinal fluid (CSF), and C. neoformans was cultivated from CSF. This case highlights the critical importance of maintaining a high index of suspicion for CM, particularly in patients with a history of previous cryptococcal infections, and it also demonstrates the possibility of false-negative brain biopsy results due to secondary vascular events associated with CM.
Collapse
Affiliation(s)
- Anatoli Pinchuk
- Department of Neurosurgery, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gernot Geginat
- Department of Medical Microbiology and Hospital Hygiene, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Volker Rickerts
- Department of Infectious Diseases, Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Belal Neyazi
- Department of Neurosurgery, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Klaus Peter Stein
- Department of Neurosurgery, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christian Mawrin
- Department of Neuropathology, Otto-Von-Guericke-University, Magdeburg, Germany
| | - I. Erol Sandalcioglu
- Department of Neurosurgery, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ali Rashidi
- Department of Neurosurgery, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Fuchs F, Frickmann H, Hahn A, Balczun C, Hagen RM, Feldt T, Sarfo FS, Di Cristanziano V, Loderstädt U, Ehrhardt S, Schoppen S, Tagbor H, Eberhardt KA. Absence of measurable quantities of Candida auris and Cryptococcus spp. in the gut microbiota of Ghanaian individuals with and without HIV infection as confirmed by applying multiple real-time PCR assays. J Med Microbiol 2024; 73. [PMID: 39392223 DOI: 10.1099/jmm.0.001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Introduction. Fungal infections are relevant health risks for individuals with acquired immunodeficiency in the resource-limited tropics, but available surveillance data are scarce. For Candida auris and Cryptococcus spp., the evolution from environmental reservoirs to human pathogens causing life-threatening diseases is currently discussed as a public health concern in the context of climate change and limited treatment options.Gap statement. Uncovering the gastrointestinal tract as an epidemiological niche of fungi emerging from the environment into individuals for whom fungal infections are not diagnosed.Aim. To contribute to data on the local epidemiology of C. auris and Cryptococcus spp. in Western African Ghana by analysing gastrointestinal samples of Ghanaian individuals.Methodology. Four real-time PCR assays targeting C. auris and five real-time PCR assays targeting Cryptococcus spp. were applied with stool samples of 875 non-age-stratified Ghanaian HIV patients and 30 Ghanaian control individuals without known HIV infection. Also, 664 samples from Ghanaian children under 2 years of age were investigated. The true abundance of the target micro-organism was considered as unlikely in the case of one or fewer positive signals, likely in the case of two to three positive signals and highly likely in the case of four or more positive signals per sample in the real-time PCR assays.Results. The combined application of sensitive, target-specific real-time PCR assays indicates that neither C. auris, Cryptococcus neoformans complex nor Cryptococcus gattii complex were part of the gut microbiota of Ghanaian individuals with or without HIV infection.Conclusion. Despite the significant disease burden from these pathogens in immunosuppressed Ghanaian individuals, detection from gastrointestinal samples was unlikely, which should be taken into account when discussing screening strategies for these fungi of public health concern. In contrast, the detection of these fungi from such samples should not routinely be considered as commensal colonization flora.
Collapse
Affiliation(s)
- Frieder Fuchs
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Hamburg, Germany
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Andreas Hahn
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Carsten Balczun
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Fred Stephen Sarfo
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| | - Ulrike Loderstädt
- Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan Ehrhardt
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
| | - Stefanie Schoppen
- Department of Health and Social Science, Hochschule Fresenius, Hamburg, Germany
| | - Harry Tagbor
- Department of Community Health, School of Medicine, University of Health and Allied Sciences, PMB 31, Ho, Volta Region, Ghana
| | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center, Hamburg, Germany
| |
Collapse
|
6
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Dai FF, Lou JL, Yu YH, Chen M, Lu XX. Clinical features and prognostic factors of cryptococcal infections in HIV-infected patients: a 10-year study from an infectious disease specialist hospital. Front Cell Infect Microbiol 2024; 14:1407807. [PMID: 39206044 PMCID: PMC11349627 DOI: 10.3389/fcimb.2024.1407807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cryptococcosis is an invasive infection that commonly affects immunosuppressed individuals, especially patients with HIV infection. Cryptococcal infection in HIV-infected patients should be considered a major health concern because it is associated with high morbidity and mortality rates. In this study, we aimed to evaluate the clinical characteristics and prognostic factors of cryptococcal infections in human immunodeficiency virus (HIV)-infected patients to facilitate effective clinical management and improve patient outcomes. Methods We reviewed and analyzed the clinical data and relevant laboratory test results of HIV-infected patients with positive cryptococcal cultures and reserved strains between 2013 and 2023 from Beijing Youan Hospital affiliated to Capital Medical University. The clinical characteristics and laboratory test results of the patients were compared, and the correlation between parameters and the prognoses of the patients at different observation timepoints (3, 6, 9, and 12 months) was analyzed. Results A total of 76 patients (70 males and six females; median age, 37 years) were included in this study. The results indicated that the later the initiation of antiretroviral therapy (ART) after the diagnosis of HIV infection (> 6 months), the higher the probability of death. Analysis of the correlation between the time of ART initiation and the timing of treatment for cryptococcal infections showed that the time of ART initiation was strongly related to survival at different timepoints. Initiation of ART time within 0-4 weeks, 4-6 weeks and more than 6weeks of starting treatment for Cryptococcus infection was associated with a lower mortality rate at 12-month, the 3-month, 6- and 9-month follow-up timepoint separately. Conclusions Although cryptococcal infection in HIV-infected patients continues to be a challenging and intricate issue, ART is a key factor that affects its prognosis. The later ART is started, the worse the prognosis of the infection. The time of ART initiation and the timing of treatment for cryptococcal infections should be further refined and balanced based on different clinical courses. Thus, clinicians should pay closer attention to cryptococcal infections in patients with HIV infection and initiate ART based on the patient's clinical condition.
Collapse
Affiliation(s)
- Fang-Fang Dai
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Clinical Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jin-Li Lou
- Department of Clinical Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yan-Hua Yu
- Department of Clinical Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ming Chen
- Department of Clinical Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin-Xin Lu
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Sathiyamoorthy J, Rathore SS, Mohan S, Uma Maheshwari C, Ramakrishnan J. Elucidation of furanone as ergosterol pathway inhibitor in Cryptococcus neoformans. J Biomol Struct Dyn 2024; 42:6013-6026. [PMID: 37403490 DOI: 10.1080/07391102.2023.2230301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
In the era of antiretroviral therapy, the prevalence of Cryptococcal infection among HIV patients in developed countries has decreased considerably. However, C. neoformans ranks top among the critical priority pathogen that affects a wide range of immunocompromised individuals. The threat of C. neoformans is because of its incredibly multifaceted intracellular survival capabilities. Cell membrane sterols especially ergosterol and enzymes of its biosynthetic pathway are considered fascinating drug targets because of their structural stability. In this study, the ergosterol biosynthetic enzymes were modeled and docked with furanone derivatives. Among the tested ligands Compound 6 has shown a potential interaction with Lanosterol 14 α-demethylase. This best-docked protein-ligand complex was taken further to molecular dynamics simulation. In addition, Compound 6 was synthesized and an in vitro study was conducted to quantify the ergosterol in Compound 6 treated cells. Altogether the computational and in vitro study demonstrates that Compound 6 has anticryptococcal activity by targeting the biosynthetic pathway of ergosterol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jananishree Sathiyamoorthy
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Suma Mohan
- Computational Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - C Uma Maheshwari
- Organic Synthesis Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Jayapradha Ramakrishnan
- Actinomycetes Bioprospecting Lab, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
9
|
Zhou Y, Huang X, Liu Y, Zhou Y, Zhou X, Liu Q. Destructive Cryptococcal Osteomyelitis Mimicking Tuberculous Spondylitis. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e944291. [PMID: 39003517 PMCID: PMC11315610 DOI: 10.12659/ajcr.944291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 05/23/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Cryptococcosis is an opportunistic fungal infection that typically occurs in patients with compromised immune systems, primarily affecting the respiratory and central nervous systems. However, cryptococcal osteomyelitis is a rare manifestation of cryptococcal infection, characterized by nonspecific clinical features. Here, we present a case of vertebral cryptococcal osteomyelitis in a middle-aged woman and discuss diagnostic approaches. CASE REPORT A 56-year-old woman presented with lower back pain and limited mobility, without fever, and with a history of pulmonary tuberculosis. Physical examination revealed enlarged lymph nodes and tenderness in the thoracic vertebrae. A computed tomography-guided biopsy confirmed granulomatous inflammation caused by Cryptococcus, with abundant 10 μm spherical microbial spores. After 4 weeks of treatment with amphotericin B and fluconazole, symptoms and lesions improved. Upon discharge, the patient was prescribed oral fluconazole. Follow-up examinations showed a stable condition and a negative serum cryptococcal capsular polysaccharide antigen test. CONCLUSIONS Given the rarity and lack of specificity of clinical features of cryptococcal spondylitis, clinicians encountering similar presentations should consider tuberculous spondylitis and spinal tumors as differential diagnoses. Additionally, tissue biopsy of the affected vertebral bodies should be performed early to establish the type of vertebral infection, aiding in diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiang Liu
- Corresponding Author: Qiang Liu, e-mail:
| |
Collapse
|
10
|
Kwon S, Choi Y, Kim ES, Lee KT, Bahn YS, Jung KW. Pleiotropic roles of LAMMER kinase, Lkh1 in stress responses and virulence of Cryptococcus neoformans. Front Cell Infect Microbiol 2024; 14:1369301. [PMID: 38774630 PMCID: PMC11106425 DOI: 10.3389/fcimb.2024.1369301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/27/2024] [Indexed: 05/24/2024] Open
Abstract
Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.
Collapse
Affiliation(s)
- Sunhak Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeseul Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Eui-Seong Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
| |
Collapse
|
11
|
Tang S, Hao R, Liu X, He H, Tian Y, Jing T, Liu Z, Xu Y, Li X. Global trends in Cryptococcus and its interactions with the host immune system: a bibliometric analysis. Front Immunol 2024; 15:1397338. [PMID: 38774865 PMCID: PMC11106374 DOI: 10.3389/fimmu.2024.1397338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Objectives This manuscript undertakes a systematic examination of the research landscape concerning global Cryptococcus species and their dynamism with the host immune system spanning the past decade. It furnishes a detailed survey of leading knowledge institutions and critical focal points in this area, utilizing bibliometric analysis. Methods VOSviewer and CiteSpace software platforms were employed to systematically analyze and graphically depict the relevant literature indexed in the WoSCC database over the preceding ten years. Results In the interval between October 1, 2013, and October 1, 2023, a corpus of 795 publications was amassed. The primary research institutions involved in this study include Duke University, the University of Minnesota, and the University of Sydney. The leading trio of nations, in terms of publication volume, comprises the United States, China, and Brazil. Among the most prolific authors are Casadevall, Arturo; Wormley, Floyd L., Jr.; and Olszewski, Michal A., with the most highly cited author being Perfect, Jr. The most esteemed journal is Mbio, while Infection and Immunity commands the highest citation frequency, and the Journal of Clinical Microbiology boasts the most significant impact factor. Present research foci encompass the intricate interactions between Cryptococcus pathogenesis and host immunity, alongside immune mechanisms, complications, and immunotherapies. Conclusion This represents the first exhaustive scholarly review and bibliometric scrutiny of the evolving landscapes in Cryptococcus research and its interactions with the host immune system. The analyses delineated herein provide insights into prevailing research foci and trajectories, thus furnishing critical directions for subsequent inquiries in this domain.
Collapse
Affiliation(s)
- Shiqin Tang
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Ruiying Hao
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Xin Liu
- Handan Stomatological Hospital, Endodontics, Handan, Hebei, China
| | - Huina He
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Yanan Tian
- School of Clinical Medicine, The Hebei University of Engineering, Handan, Hebei, China
| | - Tingting Jing
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Zhao Liu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Yanyan Xu
- Department of Dermatology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Xiaojing Li
- School of Clinical Medicine, The Hebei University of Engineering, Hebei Key Laboratory of Immunological Dermatology, Handan, Hebei, China
| |
Collapse
|
12
|
Jafarlou M. Unveiling the menace: a thorough review of potential pandemic fungal disease. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1338726. [PMID: 38711422 PMCID: PMC11071163 DOI: 10.3389/ffunb.2024.1338726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Fungal diseases have emerged as a significant global health threat, with the potential to cause widespread outbreaks and significant morbidity and mortality. Anticipating future pandemic fungal diseases is essential for effective preparedness and response strategies. This comprehensive literature review aims to provide a comprehensive analysis of the existing research on this topic. Through an extensive examination of scholarly articles, this review identifies potential fungal pathogens that have the potential to become pandemics in the future. It explores the factors contributing to the emergence and spread of these fungal diseases, including climate change, globalization, and antimicrobial resistance. The review also discusses the challenges in diagnosing and treating these diseases, including limited access to diagnostic tools and antifungal therapies. Furthermore, it examines the strategies and interventions that can be employed to mitigate the impact of future pandemic fungal diseases, such as improved surveillance systems, public health education, and research advancements. The findings of this literature review contribute to our understanding of the potential risks posed by fungal diseases and provide valuable insights for public health professionals and policymakers in effectively preparing for and responding to future pandemic outbreaks. Overall, this review emphasizes the importance of proactive measures and collaborative efforts to anticipate and mitigate the impact of future pandemic fungal diseases.
Collapse
|
13
|
Silva VKA, Min S, Yoo K, Fries BC. Host-Pathogen Interactions and Correlated Factors That Are Affected in Replicative-Aged Cryptococcus neoformans. J Fungi (Basel) 2024; 10:279. [PMID: 38667950 PMCID: PMC11050866 DOI: 10.3390/jof10040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cryptococcus neoformans is a facultative intracellular fungal pathogen. Ten-generation-old (10GEN) C. neoformans cells are more resistant to phagocytosis and killing by macrophages than younger daughter cells. However, mechanisms that mediate this resistance and intracellular parasitism are poorly understood. Here, we identified important factors for the intracellular survival of 10GEN C. neoformans, such as urease activity, capsule synthesis, and DNA content using flow cytometry and fluorescent microscopy techniques. The real-time visualization of time-lapse imaging was applied to determine the phagosomal acidity, membrane permeability, and vomocytosis (non-lytic exocytosis) rate in J774 macrophages that phagocytosed C. neoformans of different generational ages. Our results showed that old C. neoformans exhibited higher urease activity and enhanced Golgi activity. In addition, old C. neoformans were more likely to be arrested in the G2 phase, resulting in the occasional formation of aberrant trimera-like cells. To finish, the advanced generational age of the yeast cells slightly reduced vomocytosis events within host cells, which might be associated with increased phagolysosome pH and membrane permeability. Altogether, our results suggest that old C. neoformans prevail within acidic phagolysosomes and can manipulate the phagosome pH. These strategies may be used by old C. neoformans to resist phagosomal killing and drive cryptococcosis pathogenesis. The comprehension of these essential host-pathogen interactions could further shed light on mechanisms that bring new insights for novel antifungal therapeutic design.
Collapse
Affiliation(s)
- Vanessa K. A. Silva
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (V.K.A.S.); (S.M.)
| | - Sungyun Min
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (V.K.A.S.); (S.M.)
| | - Kyungyoon Yoo
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Bettina C. Fries
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (V.K.A.S.); (S.M.)
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
14
|
Roosen L, Maes D, Musetta L, Himmelreich U. Preclinical Models for Cryptococcosis of the CNS and Their Characterization Using In Vivo Imaging Techniques. J Fungi (Basel) 2024; 10:146. [PMID: 38392818 PMCID: PMC10890286 DOI: 10.3390/jof10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by Cryptococcus neoformans and Cryptococcus gattii remain a challenge to our healthcare systems as they are still difficult to treat. In order to improve treatment success, in particular for infections that have disseminated to the central nervous system, a better understanding of the disease is needed, addressing questions like how it evolves from a pulmonary to a brain disease and how novel treatment approaches can be developed and validated. This requires not only clinical research and research on the microorganisms in a laboratory environment but also preclinical models in order to study cryptococci in the host. We provide an overview of available preclinical models, with particular emphasis on models of cryptococcosis in rodents. In order to further improve the characterization of rodent models, in particular the dynamic aspects of disease manifestation, development, and ultimate treatment, preclinical in vivo imaging methods are increasingly used, mainly in research for oncological, neurological, and cardiac diseases. In vivo imaging applications for fungal infections are rather sparse. A second aspect of this review is how research on models of cryptococcosis can benefit from in vivo imaging methods that not only provide information on morphology and tissue structure but also on function, metabolism, and cellular properties in a non-invasive way.
Collapse
Affiliation(s)
- Lara Roosen
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dries Maes
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Luigi Musetta
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Ulloque-Badaracco JR, Copaja-Corzo C, Hernandez-Bustamante EA, Cabrera-Guzmán JC, Huayta-Cortez MA, Carballo-Tello XL, Seminario-Amez RA, Hueda-Zavaleta M, Benites-Zapata VA. Fungal infections in patients after recovering from COVID-19: a systematic review. Ther Adv Infect Dis 2024; 11:20499361241242963. [PMID: 38706456 PMCID: PMC11070125 DOI: 10.1177/20499361241242963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 05/07/2024] Open
Abstract
Background and aims The presence of fungal infections has been described in patients after recovering from COVID-19. This study aims to conduct a systematic review of studies that reported fungal infections (Mucor spp., Pneumocystis jirovecii, or Aspergillus spp.) in adults after recovering from COVID-19. Methods We performed a systematic review through PubMed, Web of Science, OVID-Medline, Embase, and Scopus. The study selection process was performed independently and by at least two authors. We performed a risk of bias assessment using the Newcastle-Ottawa Scale for cohort and case-control studies, and the Joanna Briggs Institute's Checklists for Case Series and Case Reports. Results The systematic search found 33 studies meeting all inclusion criteria. There was a total population of 774 participants, ranging from 21 to 87 years. From them, 746 developed a fungal infection. In 19 studies, Mucor spp. was reported as the main mycosis. In 10 studies, P. jirovecii was reported as the main mycosis. In seven studies, Aspergillus spp. was reported as the main mycosis. Regarding the quality assessment, 12 studies were classified as low risk of bias and the remaining studies as high risk of bias. Conclusion Patients' clinical presentation and prognosis after recovering from COVID-19 with fungal infection differ from those reported patients with acute COVID-19 infection and those without COVID-19 infection.
Collapse
Affiliation(s)
| | | | - Enrique A. Hernandez-Bustamante
- Grupo Peruano de Investigación Epidemiológica, Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
- Sociedad Científica de Estudiantes de Medicina de la Universidad Nacional de Trujillo, Trujillo, Peru
| | | | | | | | | | | | - Vicente A. Benites-Zapata
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
16
|
Lanser DM, Bennett AB, Vu K, Gelli A. Macropinocytosis as a potential mechanism driving neurotropism of Cryptococcus neoformans. Front Cell Infect Microbiol 2023; 13:1331429. [PMID: 38149006 PMCID: PMC10750359 DOI: 10.3389/fcimb.2023.1331429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Cryptococcus neoformans can invade the central nervous system by crossing the blood-brain barrier via a transcellular mechanism that relies on multiple host factors. In this narrative, we review the evidence that a direct interplay between C. neoformans and brain endothelial cells forms the basis for invasion and transmigration across the brain endothelium. Adherence and internalization of C. neoformans is dependent on transmembrane proteins, including a hyaluronic acid receptor and an ephrin receptor tyrosine kinase. We consider the role of EphA2 in facilitating the invasion of the central nervous system by C. neoformans and highlight experimental evidence supporting macropinocytosis as a potential mechanism of internalization and transcytosis. How macropinocytosis might be conclusively demonstrated in the context of C. neoformans is also discussed.
Collapse
Affiliation(s)
| | | | | | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Julian JULIAN, Robiatul ADAWIYAH, Sri WAHDINI. BIOMOLECULAR ACTIVITY OF CRYPTOCOCCUS DURING CRYPTOCOCCOSIS: A REVIEW OF MOLECULAR INTERACTIONS OF CRYPTOCOCCUS WITH HUMAN IMMUNE SYSTEM AND BLOOD-BRAIN-BARRIER. Afr J Infect Dis 2023; 18:11-22. [PMID: 38058414 PMCID: PMC10696652 DOI: 10.21010/ajidv18i1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 12/08/2023] Open
Abstract
Global mycosis is still a problem. One of these is the cryptococcal disease. A systemic mycosis brought on by Cryptococcus is called cryptococcosis. Host immunological conditions influence infection with Cryptococcosis. When environmental spores are inhaled by the host, the spores get to the lungs, an infection is created. Alveolar macrophages and other immune cells recognize Cryptococcus in the lung. The initial line of defense against pathogens in the phagolysosome is provided by alveolar macrophages found in the lungs. When the immune system is weak, Cryptococcus uses the evasion system as a molecular interaction with the immune system and persists in the lungs without causing any symptoms such as Factor Transcription, Cell masking, N-glycan structure, Extracellular molecule, and Antioxidant system. The evasion mechanism protects and makes Cryptococcus disseminate throughout the other organs, especially CNS. If Cryptococcus escapes against the host immune system, it will disseminate to other organs, especially Cerebrospinal System by Three mechanisms. There are Trojan Horse, Paracellular, and Transcellular interactions with Blood-Brain Barrier. Disease severity is determined by the Interaction between the host's immune system and the fungus.
Collapse
Affiliation(s)
- JULIAN Julian
- Master’s Programme in biomedical science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - ADAWIYAH Robiatul
- Master’s Programme in biomedical science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - WAHDINI Sri
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
18
|
Mathurin M, Devatine S, Kopp-Derouet A, Guillonnet A, Alanio A, Lourenco N, Manda V, Delcey V, Molina JM, Sellier P. Cryptococcal meningitis and cerebral vasculitis in a patient with primary intestinal lymphangiectasia: a case report. Eur J Clin Microbiol Infect Dis 2023; 42:1263-1267. [PMID: 37668805 DOI: 10.1007/s10096-023-04657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Primary intestinal lymphangiectasia (Waldmann's disease) is a rare exudative enteropathy without precisely assessed infectious risk. We report the case of a 49-year-old male patient with meningitis and cerebral vasculitis due to Cryptococcus neoformans complicating Waldmann's disease diagnosed 12 years ago. The treatment combined liposomal amphotericin B, 3 mg/kg daily plus flucytosine 25 mg/kg/6 h, both intravenously during 15 days, then fluconazole 800 mg daily during 8 weeks, and finally 200 mg daily indefinitely. Dexamethasone 0.4 mg/kg daily during the first week was gradually decreased over 2 months. The outcome was good, and the patient is still followed 3 years later without any recurrence.
Collapse
Affiliation(s)
- Martin Mathurin
- Department of Infectious Diseases, Hôpital Lariboisière, Saint-Louis-Lariboisière-Fernand Widal Hospitals, AP-HP, 2 Rue Ambroise Paré, 75010, Paris, France.
| | - Sandra Devatine
- Department of Infectious Diseases, Hôpital Lariboisière, Saint-Louis-Lariboisière-Fernand Widal Hospitals, AP-HP, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Aude Kopp-Derouet
- Department of Infectious Diseases, Hôpital Lariboisière, Saint-Louis-Lariboisière-Fernand Widal Hospitals, AP-HP, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Antoine Guillonnet
- Department of Neuroradiology, Lariboisière-Fernand Widal Hospitals, AP-HP, Paris, France
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
- Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives Et Antifongiques, CNRS UMR2000, Institut Pasteur, Paris, France
| | - Nelson Lourenco
- Department of Gastroenterology, Assistance Publique-Hôpitaux de Paris, Saint-Louis- Lariboisière-Fernand Widal Hospitals, Paris, France
| | - Victoria Manda
- Department of Infectious Diseases, Hôpital Lariboisière, Saint-Louis-Lariboisière-Fernand Widal Hospitals, AP-HP, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Véronique Delcey
- Department of Infectious Diseases, Hôpital Lariboisière, Saint-Louis-Lariboisière-Fernand Widal Hospitals, AP-HP, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Jean-Michel Molina
- Department of Infectious Diseases, Hôpital Lariboisière, Saint-Louis-Lariboisière-Fernand Widal Hospitals, AP-HP, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Pierre Sellier
- Department of Infectious Diseases, Hôpital Lariboisière, Saint-Louis-Lariboisière-Fernand Widal Hospitals, AP-HP, 2 Rue Ambroise Paré, 75010, Paris, France.
| |
Collapse
|
19
|
Piecuch A, Targońska S, Rewak-Sorczyńska J, Ogórek R, Wiglusz RJ. New silicate-substituted hydroxyapatite materials doped with silver ions as potential antifungal agents. BMC Microbiol 2023; 23:193. [PMID: 37464289 PMCID: PMC10353133 DOI: 10.1186/s12866-023-02930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Hydroxyapatites (HAp) are widely used as medical preparations for e.g., bone replacement or teeth implants. Incorporation of various substrates into HAp structures could enhance its biological properties, like biocompatibility or antimicrobial effects. Silver ions possess high antibacterial and antifungal activity and its application as HAp dopant might increase its clinical value. RESULTS New silicate-substituted hydroxyapatites (HAp) doped with silver ions were synthesized via hydrothermal methods. The crystal structure of HAp was investigated by using the X-ray powder diffraction. Antifungal activity of silver ion-doped HAp (with 0.7 mol%, 1 mol% and 2 mol% of dopants) was tested against the yeast-like reference and clinical strains of Candida albicans, C. glabrata, C. tropicalis, Rhodotorula rubra, R. mucilaginosa, Cryptococcus neoformans and C. gattii. Spectrophotometric method was used to evaluate antifungal effect of HAp in SD medium. It was shown that already the lowest dopant (0.7 mol% of Ag+ ions) significantly reduced fungal growth at the concentration of 100 µg/mL. Increase in the dopant content and the concentration of HAp did not cause further growth inhibition. Moreover, there were some differences at the tolerance level to Ag+ ion-doped HAp among tested strains, suggesting strain-specific activity. CONCLUSIONS Preformed studies confirm antimicrobial potential of hydroxyapatite doped with silver. New Ag+ ion-HAp material could be, after further studies, considered as medical agent with antifungal properties which lower the risk of a surgical-related infections.
Collapse
Affiliation(s)
- Agata Piecuch
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego 63/77, Wroclaw, 51-148, Poland.
| | - Sara Targońska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, Wroclaw, 50-422, Poland
| | - Justyna Rewak-Sorczyńska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, Wroclaw, 50-422, Poland
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wrocław, Przybyszewskiego 63/77, Wroclaw, 51-148, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, Wroclaw, 50-422, Poland.
| |
Collapse
|
20
|
Conn BN, Wozniak KL. Innate Pulmonary Phagocytes and Their Interactions with Pathogenic Cryptococcus Species. J Fungi (Basel) 2023; 9:617. [PMID: 37367553 PMCID: PMC10299524 DOI: 10.3390/jof9060617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes over 180,000 annual deaths in HIV/AIDS patients. Innate phagocytes in the lungs, such as dendritic cells (DCs) and macrophages, are the first cells to interact with the pathogen. Neutrophils, another innate phagocyte, are recruited to the lungs during cryptococcal infection. These innate cells are involved in early detection of C. neoformans, as well as the removal and clearance of cryptococcal infections. However, C. neoformans has developed ways to interfere with these processes, allowing for the evasion of the host's innate immune system. Additionally, the innate immune cells have the ability to aid in cryptococcal pathogenesis. This review discusses recent literature on the interactions of innate pulmonary phagocytes with C. neoformans.
Collapse
Affiliation(s)
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK 74078, USA;
| |
Collapse
|
21
|
Oliveira EP, de Sousa BR, de Freitas JF, Neves RP, Jucá MB, de Araújo PSR, da Costa Lima JL, Maciel MAV, de Lima-Neto RG. Clinical and Epidemiological Characteristics of Neurocryptococcosis Associated with HIV in Northeastern Brazil. Viruses 2023; 15:v15051206. [PMID: 37243290 DOI: 10.3390/v15051206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cryptococcal meningitis is a serious infection of the central nervous system that is predominant in developing countries, caused by fungi of the genus Cryptococcus, and which affects immunosuppressed patients, especially those with HIV. Here, we aim to diagnose and characterize the clinical-epidemiological profile of cryptococcosis in patients admitted to two tertiary public hospitals in northeastern Brazil. The study is divided into three moments: (1) the isolation of fungus and diagnosis from biological samples collected between 2017 and 2019, (2) a description of the clinical and epidemiological characteristics of the patients, and (3) the experimental tests related to an in vitro susceptibility antifungal profile. The species were identified by MALDI-TOF/MS. Among the 100 patients evaluated, 24 (24.5%) were diagnosed with cryptococcosis based on positive culture. Clinical-epidemiological analysis showed a slightly higher prevalence in men between 30 and 39 years. When comparing the date of HIV diagnosis and the development of cryptococcosis, it was observed that 50% received the diagnosis of infection by cryptococcosis after or equal to a period of 12 months from being diagnosed with HIV; the other 50% received it within the first 30 days of the HIV diagnosis. Neurocryptococcosis was the most prevalent clinical form, and, at the time of hospital admission, the most common clinical signs were high fever (75%), intense headache (62.50%), and neck stiffness (33.33%). The cerebrospinal fluid showed 100% sensitivity and positivity for direct examination by India ink, and fungal culture. The mortality rate in this study was 46% (11/24), a lower rate than in the other literature. An antifungigram showed that 20 (83.33%) isolates were susceptible to amphotericin B and 15 (62.5%) to fluconazole. Mass spectrometry identified 100% of the isolates as Cryptococcus neoformans. In Brazil, this infection is not mandatory notifiable. Therefore, although there is little information on the subject, it is obsolete and does not express the reality of the facts, mainly in the northeast region, where this information is insufficient. The data obtained in this research contribute to the epidemiological knowledge of this mycosis in Brazil and will serve as a basis for future globally comparative epidemiological studies.
Collapse
Affiliation(s)
- Ertênia Paiva Oliveira
- Postgraduate Program in Fungal Biology, Federal University Federal of Pernambuco (UFPE), Recife 50740-570, Pernambuco, Brazil
| | - Bruna Rodrigues de Sousa
- Postgraduate Program in Fungal Biology, Federal University Federal of Pernambuco (UFPE), Recife 50740-570, Pernambuco, Brazil
| | - Jucieli Firmino de Freitas
- Postgraduate Program in Fungal Biology, Federal University Federal of Pernambuco (UFPE), Recife 50740-570, Pernambuco, Brazil
| | - Rejane Pereira Neves
- Postgraduate Program in Fungal Biology, Federal University Federal of Pernambuco (UFPE), Recife 50740-570, Pernambuco, Brazil
| | - Moacir Batista Jucá
- Hospital Correia Picanço, Department of Health from the State of Pernambuco, Recife 52060-060, Pernambuco, Brazil
| | - Paulo Sérgio Ramos de Araújo
- Hospital das Clínicas, UFPE, Recife 50670-901, Pernambuco, Brazil
- Department of Tropical Medicine, Center for Medical Sciences, UFPE, Recife 50670-901, Pernambuco, Brazil
| | - Jailton Lobo da Costa Lima
- Department of Tropical Medicine, Center for Medical Sciences, UFPE, Recife 50670-901, Pernambuco, Brazil
| | - Maria Amélia Vieira Maciel
- Department of Tropical Medicine, Center for Medical Sciences, UFPE, Recife 50670-901, Pernambuco, Brazil
| | - Reginaldo Gonçalves de Lima-Neto
- Postgraduate Program in Fungal Biology, Federal University Federal of Pernambuco (UFPE), Recife 50740-570, Pernambuco, Brazil
- Hospital das Clínicas, UFPE, Recife 50670-901, Pernambuco, Brazil
- Department of Tropical Medicine, Center for Medical Sciences, UFPE, Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
22
|
Strickland AB, Chen Y, Sun D, Shi M. Alternatively activated lung alveolar and interstitial macrophages promote fungal growth. iScience 2023; 26:106717. [PMID: 37216116 PMCID: PMC10193231 DOI: 10.1016/j.isci.2023.106717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
How lung macrophages, especially interstitial macrophages (IMs), respond to invading pathogens remains elusive. Here, we show that mice exhibited a rapid and substantial expansion of macrophages, especially CX3CR1+ IMs, in the lung following infection with Cryptococcus neoformans, a pathogenic fungus leading to high mortality among patients with HIV/AIDS. The IM expansion correlated with enhanced CSF1 and IL-4 production and was affected by the deficiency of CCR2 or Nr4a1. Both alveolar macrophages (AMs) and IMs were observed to harbor C. neoformans and became alternatively activated following infection, with IMs being more polarized. The absence of AMs by genetically disrupting CSF2 signaling reduced fungal loads in the lung and prolonged the survival of infected mice. Likewise, infected mice depleted of IMs by the CSF1 receptor inhibitor PLX5622 displayed significantly lower pulmonary fungal burdens. Thus, C. neoformans infection induces alternative activation of both AMs and IMs, which facilitates fungal growth in the lung.
Collapse
Affiliation(s)
- Ashley B. Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Yanli Chen
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
23
|
Reddy L, Thompson GR, Koff A, Cohen SH. Entrapment Syndrome in a Kidney Transplant Recipient with Cryptococcal Meningitis. Pathogens 2023; 12:pathogens12050711. [PMID: 37242381 DOI: 10.3390/pathogens12050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Cryptococcus neoformans primarily affects immunocompromised individuals and the central nervous system (CNS) is the most common site of dissemination. Entrapped temporal horn syndrome (ETH) remains a rare CNS manifestation and has not previously been described in solid organ transplant recipients. Here, we present a case of ETH in a 55-year-old woman with history of renal transplant and prior treated Cryptococcal meningitis.
Collapse
Affiliation(s)
- Laya Reddy
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA 95616, USA
| | - Alan Koff
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Stuart H Cohen
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
24
|
Huamani-Córdova JM, Hueda-Zavaleta M, Vargas-Bellina V, Simbron-Ribbeck L, Chong-Chinchay KDR, Gómez de la Torre JC, Benítes-Zapata VA. Cerebral Cryptococcosis Associated with CD4+ T-lymphocytopenia in Non-HIV Patients after SARS-CoV-2 Infection: Case Series in a Specialized Institute in Lima, Peru. Trop Med Infect Dis 2023; 8:tropicalmed8030182. [PMID: 36977183 PMCID: PMC10056744 DOI: 10.3390/tropicalmed8030182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Cases of cryptococcosis have been reported in patients with COVID-19. The majority are in patients with severe symptoms or who received immunosuppressants. However, there is still no clear association between COVID-19 and cryptococcosis. We report eight cases of cerebral cryptococcosis associated with CD4+ T lymphocytopenia in non-HIV patients after SARS-CoV-2 infection. The median age was 57 years and 5/8 were male. In addition, 2/8 of patients had diabetes, and 8/8 had a history of mild COVID-19, with a median of 75 days before diagnosis of cerebral cryptococcosis. All patients denied having received prior immunosuppressive therapy. The most frequent symptoms were confusion (8/8), headache (7/8), vomiting (6/8), and nausea (6/8) All patients were diagnosed by isolating Cryptococcus in cerebrospinal fluid. The median CD4+ and CD8+ T lymphocytes were 247 and 173.5, respectively. Other causes of immunosuppression, such as HIV or HTLV infection, were excluded in all patients. Finally, three patients died, and one presented long-term visual and auditory sequelae. The CD4+/CD8+ T lymphocyte count normalized during follow-up in those patients who survived. We hypothesize that CD4+ T lymphocytopenia in the patients in this case series could increase the risk of cryptococcosis after SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Miguel Hueda-Zavaleta
- Facultad de Ciencias de la Salud, Universidad Privada de Tacna, Tacna 23003, Peru;
- Hospital III Daniel Alcides Carrión—Essalud, Tacna 23000, Peru
| | | | | | | | | | - Vicente A. Benítes-Zapata
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima 15024, Peru
- Correspondence:
| |
Collapse
|
25
|
Corrêa-Moreira D, Castro R, da Costa GL, Lima-Neto RG, Oliveira MME. Cerebrospinal fluid: a target of some fungi and an overview. Mem Inst Oswaldo Cruz 2023; 118:e220251. [PMID: 36946852 PMCID: PMC10027065 DOI: 10.1590/0074-02760220251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Meningitis is a potentially life-threatening infection characterised by the inflammation of the leptomeningeal membranes. The estimated annual prevalence of 8.7 million cases globally and the disease is caused by many different viral, bacterial, and fungal pathogens. Although several genera of fungi are capable of causing infections in the central nervous system (CNS), the most significant number of registered cases have, as causal agents, yeasts of the genus Cryptococcus. The relevance of cryptococcal meningitis has changed in the last decades, mainly due to the increase in the number of people living with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and medications that impair the immune responses. In this context, coronavirus disease 19 (COVID-19) has also emerged as a risk factor for invasive fungal infections (IFI), including fungal meningitis (FM), due to severe COVID-19 disease is associated with increased pro-inflammatory cytokines, interleukin (IL)-1, IL-6, and tumour necrosis factor-alpha, reduced CD4-interferon-gamma expression, CD4 and CD8 T cells. The gold standard technique for fungal identification is isolating fungi in the culture of the biological material, including cerebrospinal fluid (CSF). However, this methodology has as its main disadvantage the slow or null growth of some fungal species in culture, which makes it difficult to finalise the diagnosis. In conclusions, this article, in the first place, point that it is necessary to accurately identify the etiological agent in order to assist in the choice of the therapeutic regimen for the patients, including the implementation of actions that promote the reduction of the incidence, lethality, and fungal morbidity, which includes what is healthy in the CNS.
Collapse
Affiliation(s)
- Danielly Corrêa-Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| | - Rodolfo Castro
- Fundação Oswaldo Cruz-Fiocruz, Escola Nacional de Saúde Pública, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Saúde Coletiva, Rio de Janeiro, RJ, Brasil
| | - Gisela Lara da Costa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| | | | - Manoel Marques Evangelista Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
26
|
Cryptococcal Immune Reconstitution Inflammatory Syndrome: From Clinical Studies to Animal Experiments. Microorganisms 2022; 10:microorganisms10122419. [PMID: 36557672 PMCID: PMC9780901 DOI: 10.3390/microorganisms10122419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cryptococcus neoformans is an encapsulated pathogenic fungus that initially infects the lung but can migrate to the central nervous system (CNS), resulting in meningoencephalitis. The organism causes the CNS infection primarily in immunocompromised individuals including HIV/AIDS patients, but also, rarely, in immunocompetent individuals. In HIV/AIDS patients, limited inflammation in the CNS, due to impaired cellular immunity, cannot efficiently clear a C. neoformans infection. Antiretroviral therapy (ART) can rapidly restore cellular immunity in HIV/AIDS patients. Paradoxically, ART induces an exaggerated inflammatory response, termed immune reconstitution inflammatory syndrome (IRIS), in some HIV/AIDS patients co-infected with C. neoformans. A similar excessive inflammation, referred to as post-infectious inflammatory response syndrome (PIIRS), is also frequently seen in previously healthy individuals suffering from cryptococcal meningoencephalitis. Cryptococcal IRIS and PIIRS are life-threatening complications that kill up to one-third of affected people. In this review, we summarize the inflammatory responses in the CNS during HIV-associated cryptococcal meningoencephalitis. We overview the current understanding of cryptococcal IRIS developed in HIV/AIDS patients and cryptococcal PIIRS occurring in HIV-uninfected individuals. We also describe currently available animal models that closely mimic aspects of cryptococcal IRIS observed in HIV/AIDS patients.
Collapse
|
27
|
Ruma YN, Keniya MV, Monk BC. Exploring Cryptococcus neoformans CYP51 and Its Cognate Reductase as a Drug Target. J Fungi (Basel) 2022; 8:jof8121256. [PMID: 36547589 PMCID: PMC9785471 DOI: 10.3390/jof8121256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptococcus remains a leading cause of invasive fungal infections in immunocompromised people. Resistance to azole drugs has imposed a further challenge to the effective treatment of such infections. In this study, the functional expression of full-length hexahistidine-tagged Cryptococcus neoformans CYP51 (CnCYP51-6×His), with or without its cognate hexahistidine-tagged NADPH-cytochrome P450 reductase (CnCPR-6×His), in a Saccharomyces cerevisiae host system has been used to characterise these enzymes. The heterologous expression of CnCYP51-6×His complemented deletion of the host CYP51 and conferred increased susceptibility to both short-tailed and long-tailed azole drugs. In addition, co-expression of CnCPR-6×His decreased susceptibility 2- to 4-fold for short-tailed but not long-tailed azoles. Type 2 binding of azoles to CnCYP51-6×His and assay of NADPH cytochrome P450 reductase activity confirmed that the heterologously expressed CnCYP51 and CnCPR are functional. The constructs have potential as screening tools and use in structure-directed antifungal discovery.
Collapse
Affiliation(s)
- Yasmeen N. Ruma
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Mikhail V. Keniya
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Brian C. Monk
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| |
Collapse
|