1
|
Horvath A, Habisch H, Prietl B, Pfeifer V, Balazs I, Kovacs G, Foris V, John N, Kleinschek D, Feldbacher N, Grønbæk H, Møller HJ, Žukauskaitė K, Madl T, Stadlbauer V. Alteration of the Gut-Lung Axis After Severe COVID-19 Infection and Modulation Through Probiotics: A Randomized, Controlled Pilot Study. Nutrients 2024; 16:3840. [PMID: 39599626 PMCID: PMC11597208 DOI: 10.3390/nu16223840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The gut-lung axis could be a potential therapeutic target for improving post-acute COVID-19 symptoms, and probiotics have been proposed as possible modulators. AIM We conducted a pilot study to understand alterations in the gut-lung axis and to explore the effects of a probiotic in post-acute COVID-19 disease. METHODS We included patients after severe COVID-19 disease (sCOV, n = 21) in a randomized, placebo-controlled trial to test the effect of a probiotic (Pro-Vi 5, Institute Allergosan, Graz, Austria) in a six-month intervention and used patients after mild disease (mCOV, n = 10) as controls, to compare the intestinal microbiome, metabolome, and patient-reported outcomes and biomarkers along the gut-lung axis at baseline and throughout probiotic intervention. RESULTS Compared to mCOV patients, sCOV patients showed lower microbial richness, which was significantly improved by probiotic intervention. A reorganization of Ruminococcaceae and Lachnospiraceae taxa was observed in sCOV patients but remained unaffected by the intervention. Serum metabolome showed a dysregulation of lipoproteins in accordance with higher BMI and comorbidities in sCOV patients. HDL and LDL fractions/components were temporarily decreased in the probiotic group. Stool metabolome was altered at baseline in sCOV patients and an increase in L-DOPA after 3 months and butyrate after 6 months of intervention could be observed. Probiotics partially improved reduced quality of life and modulated altered immune responses in sCOV patients. Increased intestinal permeability at baseline remained unaffected. CONCLUSION The study provides evidence of long-term alterations of the gut-lung axis after severe COVID-19 infection and suggests that probiotics can modulate the biomarkers of the gut-lung axis.
Collapse
Affiliation(s)
- Angela Horvath
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Barbara Prietl
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division of Endocrinology and Diabetes, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Verena Pfeifer
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division of Endocrinology and Diabetes, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Irina Balazs
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (G.K.); (V.F.); (N.J.)
| | - Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (G.K.); (V.F.); (N.J.)
| | - Nikolaus John
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria; (G.K.); (V.F.); (N.J.)
| | - Daniela Kleinschek
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
| | - Nicole Feldbacher
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Henning Grønbæk
- Departments of Hepatology and Gastroenterology, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Holger Jon Møller
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Kristina Žukauskaitė
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
- Institute of Biosciences, Life Sciences Center, Vilnius University, 01513 Vilnius, Lithuania
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vanessa Stadlbauer
- Center for Biomarker Research in Medicine (CBmed), Division of Translational Precision Medicine, Division of Precision Medicine Technologies, 8010 Graz, Austria; (A.H.); (B.P.); (V.P.); (I.B.); (N.F.)
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
2
|
Al-Akayleh F, Agha ASAA, Al-Remawi M, Al-Adham ISI, Daadoue S, Alsisan A, Khattab D, Malath D, Salameh H, Al-Betar M, AlSakka M, Collier PJ. What We Know About the Actual Role of Traditional Probiotics in Health and Disease. Probiotics Antimicrob Proteins 2024; 16:1836-1856. [PMID: 38700762 DOI: 10.1007/s12602-024-10275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 10/02/2024]
Abstract
The complex relationship between probiotics and human health goes beyond their traditional function in gut health, generating considerable interest for their broad potential in disease treatment. This review explores the various functions of probiotics, highlighting their impact on the immune system, their benefits for gut and oral health, their effects on metabolic and neurological disorders, and their emerging potential in cancer therapy. We give significant importance to studying the effects of probiotics on the gut-brain axis, revealing new and non-invasive therapeutic approaches for complex neurological disorders. In addition, we expand the discussion to encompass the impact of probiotics on the gut-liver and gut-lung axes, recognizing their systemic effects and potential in treating respiratory and hepatic conditions. The use of probiotic "cocktails" to improve cancer immunotherapy outcomes indicates a revolutionary approach to oncological treatments. The review explores the specific benefits associated with various strains and the genetic mechanisms that underlie them. This study sets the stage for precision medicine, where probiotic treatments can be tailored to meet the unique needs of each patient. Recent developments in delivery technologies, including microencapsulation and nanotechnology, hold great potential for enhancing the effectiveness and accuracy of probiotic applications in therapeutic settings. This study provides a strong basis for future scientific research and clinical use, promoting the incorporation of probiotics into treatment plans for a wide range of diseases. This expands our understanding of the potential benefits of probiotics in modern medicine.
Collapse
Affiliation(s)
- Faisal Al-Akayleh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
- Faculty of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Ibrahim S I Al-Adham
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Saifeddin Daadoue
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Anagheem Alsisan
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Dana Khattab
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Doha Malath
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Haneen Salameh
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Maya Al-Betar
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Motaz AlSakka
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy & Medical Sciences, University of Petra, Amman, 11196, Jordan.
| |
Collapse
|
3
|
Milani GP, Alberti I, Abodi M, Lakoumentas J, Konstantinou GN, Papadopoulos NG, Pop RM, Bocsan IC, Cassimos D, Kull I, Bettocchi S, Corsello A, Cugliari M, Ciliberti L, Spolidoro GCI, Agostoni C, Vlieg Boerstra B, Venter C, O'Mahony L, Vassilopoulou E. A systematic review and meta-analysis on nutritional and dietary interventions for the treatment of acute respiratory infection in pediatric patients: An EAACI taskforce. Allergy 2024; 79:1687-1707. [PMID: 38174413 DOI: 10.1111/all.15997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
Acute respiratory infections are a major cause of morbidity and mortality in children worldwide. Dietary and nutritional interventions, including minerals and vitamin supplementation, have been explored as potential treatments for these infections. However, the evidence on their efficacy is limited and inconclusive. This systematic review and meta-analysis aim to provide a comprehensive summary of the available evidence on the effectiveness of dietary and nutritional interventions for treating acute respiratory tract infections in children. A systematic review was conducted according to the PRISMA 2020 guidelines in April 2022 and updated in April 2023. Clinical trials focusing on dietary or nutritional interventions, including supplementations, in children with acute respiratory tract infections were included. The selection of interventions and outcomes was based on biological plausibility. Data were extracted using a standardized form, and the risk of bias was assessed using the Cochrane Risk of Bias Tool. Meta-analysis was performed using random-effect models. A total of 50 studies were included in the review. Four trials were conducted in low, 32 in lower-middle, 12 in upper-middle, and only two in high-income countries. The studies evaluated various dietary interventions, including zinc, vitamin A, vitamin E, vitamin D, and probiotics. The results of individual studies on the efficacy of these interventions were mixed, with some showing positive effects on clinical outcomes such as duration of symptoms, while others showed no significant impact. Meta-analysis was conducted for zinc supplementation in children with pneumonia, and the pooled results suggested a potential limited benefit in terms of reduced hospital length of stay but not time to recovery. Meta-analyses on vitamin D did not show any effect in children with pneumonia. This systematic review fills a critical gap in the literature by synthesizing the available evidence on the efficacy and safety of nutritional or dietary interventions for acute respiratory tract infections in children. The findings indicate no dietary or nutritional intervention can currently be recommended for the routine treatment of respiratory tract infections in children based on single supplement studies. The metanalysis suggests that zinc supplementation might have a beneficial effect on length of hospitalization in children with pneumonia. New studies are needed to establish more conclusive evidence for pediatric acute respiratory diseases especially for children living in a context of high-income countries.
Collapse
Affiliation(s)
- Gregorio P Milani
- Pediatric Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Ilaria Alberti
- Pediatric Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Abodi
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - John Lakoumentas
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | | | - Raluca M Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ioana C Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Dimitrios Cassimos
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Inger Kull
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Silvia Bettocchi
- Pediatric Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Corsello
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Marco Cugliari
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Letizia Ciliberti
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Giulia C I Spolidoro
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Carlo Agostoni
- Pediatric Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Berber Vlieg Boerstra
- Department of Pediatrics, OLVG Hospital, Amsterdam, The Netherlands
- Rijnstate Allergy Centre, Rijnstate Hospital, Arnhem, The Netherlands
| | - Carina Venter
- Section of Allergy and Immunology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Emilia Vassilopoulou
- Pediatric Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| |
Collapse
|
4
|
Ahmad MF, A. Alsayegh A, Ahmad FA, Akhtar MS, Alavudeen SS, Bantun F, Wahab S, Ahmed A, Ali M, Elbendary EY, Raposo A, Kambal N, H. Abdelrahman M. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024; 10:e25607. [PMID: 38356540 PMCID: PMC10865332 DOI: 10.1016/j.heliyon.2024.e25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gru Gram, 122103, Haryana, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Sirajudeen S. Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Awais Ahmed
- Department of Management, Shri JJT University, Rajasthan, Post code; 333010, India
| | - M. Ali
- Department of Pharmacognosy, CBS College of Pharmacy & Technology (Pt. B. D. Sharma University of Health Sciences), Chandpur, Faridabad, Haryana, 121101, India
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
5
|
Batoni G, Kaya E, Catelli E, Quinti S, Botti M, De Carli A, Bianchi M, Maisetta G, Esin S. Lactobacillus Probiotic Strains Differ in Their Ability to Adhere to Human Lung Epithelial Cells and to Prevent Adhesion of Clinical Isolates of Pseudomonas aeruginosa from Cystic Fibrosis Lung. Microorganisms 2023; 11:1707. [PMID: 37512880 PMCID: PMC10385620 DOI: 10.3390/microorganisms11071707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The field of probiotic applications is rapidly expanding, including their use for the control of respiratory tract infections. Nevertheless, probiotics ability to colonize the lung environment and to compete with pulmonary pathogens is still a poorly investigated research area. In this study, we aimed to evaluate the adhesion ability of a number of commercial probiotic strains to the human lung epithelial cell line A549. Furthermore, we assessed probiotic ability to prevent host cell adhesion of one of the major lung pathogens in cystic fibrosis, Pseudomonas aeruginosa, and to reduce the pathogen-induced inflammatory response of human peripheral blood mononuclear cells (PBMCs) in terms of cytokine release. Lactobacillus acidophilus displayed the highest adhesion ability to A549 cells evaluated as percent of adhered bacteria compared to the inoculum. In agreement with such an observation, L. acidophilus was the most efficient in preventing adhesion to A549 cells of a P. aeruginosa isolate from CF sputum. Three-color fluorescence labeling of A549 cells, P. aeruginosa, and L. acidophilus, and confocal microcopy image analyses revealed a likely exclusion effect played by both live and UV-killed L. acidophilus towards P. aeruginosa. Such results were confirmed by CFU count. When co-cultured with PBMCs, both live and UV-killed L. acidophilus reduced the amount of IL-1β and IL-6 in culture supernatants in a statistically significant manner. Overall, the results obtained point to L. acidophilus as an interesting candidate for further studies for a potential aerogenous administration to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy
| | - Esingül Kaya
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy
| | - Elisa Catelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy
| | - Sabrina Quinti
- Cystic Fibrosis Supporting Service, Azienda USL Toscana Nord-Ovest, 57128 Livorno, Italy
| | - Matteo Botti
- Cystic Fibrosis Supporting Service, Azienda USL Toscana Nord-Ovest, 57128 Livorno, Italy
| | - Alessandro De Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Marta Bianchi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
6
|
Wu JY, Huang PY, Liu TH, Kuo CY, Tsai YW, Tang HJ, Lai CC. Clinical efficacy of probiotics in the treatment of patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. Expert Rev Anti Infect Ther 2023; 21:667-674. [PMID: 36881729 DOI: 10.1080/14787210.2023.2189100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES This study was conducted to assess the clinical efficacy of probiotics in the treatment of patients with COVID19. METHODS PubMed, Embase, Cochrane Library, and ClinicalTrials.gov were searched for studies from their inception to 8 February 2022. Randomized controlled trials (RCTs) that compared the clinical efficacy of probiotics with usual care or standard care for patients with COVID19 were included. The primary outcome was all-cause mortality. Random-effects model using MantelHaenszel and inverse variance methods were performed to analyze the data. RESULTS Eight RCTs with 900 patients were included. The study group receiving probiotics had a non-significantly lower rate of mortality than the control group had, but this difference was not significant (risk ratio [RR], 0.51; 95% CI, 0.22 to 1.16). However, the study group had significantly lower rates of dyspnea (RR, 0.11; 95% CI, 0.02 to 0.60), fever (RR, 0.37; 95% CI, 0.16 to 0.85) and headache (RR, 0.19; 95% CI, 0.05 to 0.65). Higher complete remission of COVID-19-associated symptoms was observed in the study group than the control group (RR, 1.89; 95% CI, 1.40-2.55). CONCLUSIONS Although probiotics use did not improve clinical outcomes or reduce inflammatory markers, it may relieve COVID-19-associated symptoms.
Collapse
Affiliation(s)
- Jheng-Yan Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Ting-Hui Liu
- Department of General Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Yin Kuo
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
| | - Ya-Wen Tsai
- Center for Integrative Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan.,School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Rasai D, Hosseinian SA, Asasi K, Shekarforosh SS, Tafti K. The beneficial effects of spraying of probiotic Bacillus and Lactobacillus bacteria on broiler chickens experimentally infected with avian influenza virus H9N2. Poult Sci 2023; 102:102669. [PMID: 37146538 DOI: 10.1016/j.psj.2023.102669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
This study investigated the clinical, antiviral, and immunological effects of spraying Bacillus spp. and Lactobacillus spp. as a single or mixture probiotic compound on experimentally infected broiler chickens with AIV H9N2. Two hundred and forty 1-day-old broilers were randomly assigned to 6 groups as follows: Ctrl- (no challenge AIV; no spray probiotic), Ctrl+ (AIV challenged; no spray probiotic), AI+B (AIV challenged; daily spraying of probiotic Bacillus spp.), AI+L group (AIV challenged; daily spraying of probiotic Lactobacillus spp.), AIV+BL (AIV challenged; daily spraying of probiotic Bacillus spp. and Lactobacillus spp.), and G-DW (daily spraying of normal saline; no AIV challenged). The birds were reared for 35 d. On the 22nd day of age, broiler chickens were challenged by AIV H9N2. The probiotics were sprayed at 9×109 CFU/m2 daily for 35 d. Growth performance, clinical signs, virus shedding, macroscopic and microscopic lesions were evaluated at various days in all groups. Spraying with probiotics improved the body weight gain and food conversion ratio in the AI+B, AI+L, and AI+BL groups compared to the Ctrl+. The severity of clinical signs, gross lesions, pathological lesions and viral shedding in the probiotic treatment groups was lower than in the Ctrl+ group. The findings of this study suggest the daily spraying of Lactobacillus and Bacillus probiotics alone or in combination during the rearing period reduce clinical and nonclinical aspects of H9N2 virus infection; so, it can be effective as a preventive protocol for controlling the severity of AIV H9N2 infection in broilers.
Collapse
|
8
|
In Vitro Screening of Antiviral Activity of Lactic Acid Bacteria Isolated from Traditional Fermented Foods. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Studies of newly isolated strains of lactic acid bacteria (LAB) are a good basis for expanding the potential for their applications in functional foods, probiotic food supplements, and other probiotic products. They exhibit various functional properties, including such with antiviral activity. Probiotic strains can manifest their antiviral effects by various mechanisms, including direct interaction with viruses, production of antiviral compounds, or immune system modulation. Ten newly isolated LAB strains from traditional fermented food products have been tested for the determination of their antiviral activity. This study was performed to evaluate the effect of cell-free supernatants (CFSs) from the studied strains for the effect on viral replication of Human alphaherpesvirus—HHV-1 and HHV-2 as well as for direct virucidal activity. The CFSs of the LAB strains were used in non-toxic concentrations of 25%, 6.25%, and 1.6%. No direct virucidal activity was observed in tested CFSs, but five of the strains observed a well-defined effect of viral replication inhibition with the selective index (SI) from 4.40 to >54. For two of these five strains, Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 and Lactiplantibacillus plantarum KC 5-12 strong activity against HHV-2 with a selective index (SI) over 45 was detected, which is a good basis for further research.
Collapse
|
9
|
Steyer A, Mičetić-Turk D, Fijan S. The Efficacy of Probiotics as Antiviral Agents for the Treatment of Rotavirus Gastrointestinal Infections in Children: An Updated Overview of Literature. Microorganisms 2022; 10:microorganisms10122392. [PMID: 36557645 PMCID: PMC9781831 DOI: 10.3390/microorganisms10122392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Enteric viruses, including the rotavirus, norovirus, and adenoviruses, are the most common cause of acute gastroenteritis. The rotavirus disease is especially prevalent among children, and studies over the past decade have revealed complex interactions between rotaviruses and the gut microbiota. One way to treat and prevent dysbiosis is the use of probiotics as an antiviral agent. This review focuses on the latest scientific evidence on the antiviral properties of probiotics against rotavirus gastroenteric infections in children. A total of 19 studies exhibited a statistically significant antiviral effect of probiotics. The main probiotics that were effective were Saccharomyces cerevisiae var. boulardii, Lacticaseibacillus rhamnosus GG, and various multi-strain probiotics. The underlying mechanism of the probiotics against rotavirus gastroenteric infections in children included immune enhancement and modulation of intestinal microbiota leading to shortening of diarrhoea. However, several clinical studies also found no significant difference in the probiotic group compared to the placebo group even though well-known strains were used, thus showing the importance of correct dosage, duration of treatment, quality of probiotics and the possible influence of other factors, such as the production process of probiotics and the influence of immunisation on the effect of probiotics. Therefore, more robust, well-designed clinical studies addressing all factors are warranted.
Collapse
Affiliation(s)
- Andrej Steyer
- National Laboratory of Health, Environment and Food, Division of Public Health Microbiology, Grablovičeva 44, 1000 Ljubljana, Slovenia
| | - Dušanka Mičetić-Turk
- Department of Paediatrics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
| | - Sabina Fijan
- Institute for Health and Nutrition, Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|