1
|
Zeng T, Lei GL, Yu ML, Zhang TY, Wang ZB, Wang SZ. The role and mechanism of various trace elements in atherosclerosis. Int Immunopharmacol 2024; 142:113188. [PMID: 39326296 DOI: 10.1016/j.intimp.2024.113188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a slow and complex disease that involves various factors, including lipid metabolism disorders, oxygen-free radical production, inflammatory cell infiltration, platelet adhesion and aggregation, and local thrombosis. Trace elements play a crucial role in human health. Many trace elements, especially metallic ones, not only maintain the normal functions of organs but also participate in basic metabolic processes. The latest studies have revealed a close correlation between trace elements and the occurrence and progression of atherosclerosis. The imbalance of these trace elements can induce atherosclerosis or accelerate its progression through various mechanisms, which poses a significant threat to human health. Therefore, exploring the specific mechanism of trace elements on atherosclerosis is highly significant. In this review, we summarized the roles and mechanisms of iron, copper, zinc, magnesium, and selenium homeostasis and imbalance in atherosclerosis development, in order to identify novel targets and therapeutic strategies for treating atherosclerosis.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Guan-Lan Lei
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Mei-Ling Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Ting-Yu Zhang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Ocampo D, Damon LJ, Sanford L, Holtzen SE, Jones T, Allen MA, Dowell RD, Palmer AE. Cellular zinc status alters chromatin accessibility and binding of p53 to DNA. Life Sci Alliance 2024; 7:e202402638. [PMID: 38969365 PMCID: PMC11231577 DOI: 10.26508/lsa.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Zn2+ is an essential metal required by approximately 850 human transcription factors. How these proteins acquire their essential Zn2+ cofactor and whether they are sensitive to changes in the labile Zn2+ pool in cells remain open questions. Using ATAC-seq to profile regions of accessible chromatin coupled with transcription factor enrichment analysis, we examined how increases and decreases in the labile zinc pool affect chromatin accessibility and transcription factor enrichment. We found 685 transcription factor motifs were differentially enriched, corresponding to 507 unique transcription factors. The pattern of perturbation and the types of transcription factors were notably different at promoters versus intergenic regions, with zinc-finger transcription factors strongly enriched in intergenic regions in elevated Zn2+ To test whether ATAC-seq and transcription factor enrichment analysis predictions correlate with changes in transcription factor binding, we used ChIP-qPCR to profile six p53 binding sites. We found that for five of the six targets, p53 binding correlates with the local accessibility determined by ATAC-seq. These results demonstrate that changes in labile zinc alter chromatin accessibility and transcription factor binding to DNA.
Collapse
Affiliation(s)
- Daniel Ocampo
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Leah J Damon
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Lynn Sanford
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Samuel E Holtzen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Taylor Jones
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Mary A Allen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
3
|
Muhammad A, Hixon JC, Pharmacy Yusuf A, Rivas Zarete JI, Johnson I, Miller J, Adu-Addai B, Yates C, Mahavadi S. Sex-specific epigenetics drive low GPER expression in gastrointestinal smooth muscles in type 2 diabetic mice. Sci Rep 2024; 14:5633. [PMID: 38453938 PMCID: PMC10920797 DOI: 10.1038/s41598-024-54213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Type 2 diabetes mellitus (T2D) causes gastroparesis, delayed intestinal transit, and constipation, for unknown reasons. Complications are predominant in women than men (particularly pregnant and postmenopausal women), suggesting a female hormone-mediated mechanism. Low G-protein coupled estrogen receptor (GPER) expression from epigenetic modifications may explain it. We explored sexually differentiated GPER expression and gastrointestinal symptoms related to GPER alterations in wild-type (WT) and T2D mice (db/db). We also created smooth muscle-specific GPER knockout (GPER KO) mice to phenotypically explore the effect of GPER deficiency on gastrointestinal motility. GPER mRNA and protein expression, DNA methylation and histone modifications were measured from stomach and colon samples of db/db and WT mice. Changes in gut motility were also evaluated as daily fecal pellet production patterns. We found that WT female tissues have the highest GPER mRNA and protein expressions. The expression is lowest in all db/db. GPER downregulation is associated with promoter hypermethylation and reduced enrichment of H3K4me3 and H3K27ac marks around the GPER promoter. We also observed sex-specific disparities in fecal pellet production patterns of the GPER KO mice compared to WT. We thus, conclude that T2D impairs gut GPER expression, and epigenetic sex-specific mechanisms matter in the downregulation.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Juanita C Hixon
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | | | - Jatna I Rivas Zarete
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - India Johnson
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Jamial Miller
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Benjamin Adu-Addai
- Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Clayton Yates
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunila Mahavadi
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA.
| |
Collapse
|
4
|
Ferenc K, Sokal-Dembowska A, Helma K, Motyka E, Jarmakiewicz-Czaja S, Filip R. Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics. Int J Mol Sci 2024; 25:1228. [PMID: 38279228 PMCID: PMC10816208 DOI: 10.3390/ijms25021228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The intestinal microbiota is a community of microorganisms inhabiting the human intestines, potentially influencing both physiological and pathophysiological processes in the human body. Existing evidence suggests that nutrients can influence the modulation of the gut microbiota. However, there is still limited evidence regarding the effects of vitamin and mineral supplementation on the human gut microbiota through epigenetic modification. It is plausible that maintaining an adequate dietary intake of vitamin D, iron, fibre, zinc and magnesium may have a beneficial effect on alleviating inflammation in the body, reducing oxidative stress, and improving the condition of the intestinal microbiota through various epigenetic mechanisms. Moreover, epigenetics involves alterations in the phenotype of a cell without changing its fundamental DNA sequence. It appears that the modulation of the microbiota by various nutrients may lead to epigenetic regulation. The correlations between microbiota and epigenetics are potentially interdependent. Therefore, the primary objective of this review is to identify the complex relationships between diet, gut microbiota, and epigenetic regulation. These interactions could play a crucial role in systemic health.
Collapse
Affiliation(s)
- Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | | | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
5
|
Damon LJ, Ocampo D, Sanford L, Jones T, Allen MA, Dowell RD, Palmer AE. Cellular zinc status alters chromatin accessibility and binding of transcription factor p53 to genomic sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567954. [PMID: 38045276 PMCID: PMC10690171 DOI: 10.1101/2023.11.20.567954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Zinc (Zn2+) is an essential metal required by approximately 2500 proteins. Nearly half of these proteins act on DNA, including > 850 human transcription factors, polymerases, DNA damage response factors, and proteins involved in chromatin architecture. How these proteins acquire their essential Zn2+ cofactor and whether they are sensitive to changes in the labile Zn2+ pool in cells remain open questions. Here, we examine how changes in the labile Zn2+ pool affect chromatin accessibility and transcription factor binding to DNA. We observed both increases and decreases in accessibility in different chromatin regions via ATAC-seq upon treating MCF10A cells with elevated Zn2+ or the Zn2+-specific chelator tris(2-pyridylmethyl)amine (TPA). Transcription factor enrichment analysis was used to correlate changes in chromatin accessibility with transcription factor motifs, revealing 477 transcription factor motifs that were differentially enriched upon Zn2+ perturbation. 186 of these transcription factor motifs were enriched in Zn2+ and depleted in TPA, and the majority correspond to Zn2+ finger transcription factors. We selected TP53 as a candidate to examine how changes in motif enrichment correlate with changes in transcription factor occupancy by ChIP-qPCR. Using publicly available ChIP-seq and nascent transcription datasets, we narrowed the 50,000+ ATAC-seq peaks to 2164 TP53 targets and subsequently selected 6 high-probability TP53 binding sites for testing. ChIP-qPCR revealed that for 5 of the 6 targets, TP53 binding correlates with the local accessibility determined by ATAC-seq. These results demonstrate that changes in labile zinc directly alter chromatin accessibility and transcription factor binding to DNA.
Collapse
Affiliation(s)
- Leah J. Damon
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | - Daniel Ocampo
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
| | - Lynn Sanford
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
| | - Taylor Jones
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
| | - Mary A. Allen
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| | - Robin D. Dowell
- Department of Molecular, Cellular, Developmental Biology, University of Colorado, Boulder, 80309
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| | - Amy E. Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO 80303
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303
| |
Collapse
|
6
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
7
|
Lupi L, Bordin A, Sales G, Colaianni D, Vitiello A, Biscontin A, Reale A, Garzino-Demo A, Antonini A, Ottaviano G, Mucignat C, Parolin C, Calistri A, De Pittà C. Persistent and transient olfactory deficits in COVID-19 are associated to inflammation and zinc homeostasis. Front Immunol 2023; 14:1148595. [PMID: 37520523 PMCID: PMC10380959 DOI: 10.3389/fimmu.2023.1148595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The Coronavirus Disease 2019 (COVID-19) is mainly a respiratory syndrome that can affect multiple organ systems, causing a variety of symptoms. Among the most common and characteristic symptoms are deficits in smell and taste perception, which may last for weeks/months after COVID-19 diagnosis owing to mechanisms that are not fully elucidated. Methods In order to identify the determinants of olfactory symptom persistence, we obtained olfactory mucosa (OM) from 21 subjects, grouped according to clinical criteria: i) with persistent olfactory symptoms; ii) with transient olfactory symptoms; iii) without olfactory symptoms; and iv) non-COVID-19 controls. Cells from the olfactory mucosa were harvested for transcriptome analyses. Results and discussion RNA-Seq assays showed that gene expression levels are altered for a long time after infection. The expression profile of micro RNAs appeared significantly altered after infection, but no relationship with olfactory symptoms was found. On the other hand, patients with persistent olfactory deficits displayed increased levels of expression of genes involved in the inflammatory response and zinc homeostasis, suggesting an association with persistent or transient olfactory deficits in individuals who experienced SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lorenzo Lupi
- Department of Biology, University of Padova, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Anna Bordin
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | | | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alfredo Garzino-Demo
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, United States
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neurosciences, University of Padova, Padova, Italy
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Giancarlo Ottaviano
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Carla Mucignat
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
8
|
Katsayal BS, Forcados GE, Yusuf AP, Lawal YA, Jibril SA, Nuraddeen H, Ibrahim MM, Sadiq IZ, Abubakar MB, Malami I, Abubakar IB, Muhammad A. An insight into the mechanisms of action of selected bioactive compounds against epigenetic targets of prostate cancer: implications on histones modifications. In Silico Pharmacol 2023; 11:10. [PMID: 37073308 PMCID: PMC10105819 DOI: 10.1007/s40203-023-00148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023] Open
Abstract
Prostate cancer is a leading cause of morbidity and mortality among men globally. In this study, we employed an in silico approach to predict the possible mechanisms of action of selected novel compounds reported against prostate cancer epigenetic targets and their derivatives, exhausting through ADMET profiling, drug-likeness, and molecular docking analyses. The selected compounds: sulforaphane, silibinin, 3, 3'-diindolylmethane (DIM), and genistein largely conformed to ADMET and drug-likeness rules including Lipinski's. Docking studies revealed strong binding energy of sulforaphane with HDAC6 (- 4.2 kcal/ mol), DIM versus HDAC2 (- 5.2 kcal/mol), genistein versus HDAC6 (- 4.1 kcal/mol), and silibinin against HDAC1 (- 7.0 kcal/mol) coupled with improved binding affinities and biochemical stabilities after derivatization. Findings from this study may provide insight into the potential epigenetic reprogramming mechanisms of these compounds against prostate cancer and could pave the way toward more success in prostate cancer phytotherapy.
Collapse
Affiliation(s)
- Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna, Niger State Nigeria
| | - Yunus Aisha Lawal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Shehu Aisha Jibril
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Hussaini Nuraddeen
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Musa Mubarak Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Malami
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto, Nigeria
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ibrahim Babangida Abubakar
- Deparment of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology Aliero, Aliero, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State Nigeria
- Department of Biochemistry, Kebbi State University of Science and Technology Aliero, Aliero, Nigeria
| |
Collapse
|
9
|
Shahzad A, Rink L, Wessels I. Regulation of matrix metalloproteinase-9 during monopoiesis and zinc deficiency by chromatin remodeling. J Trace Elem Med Biol 2023; 78:127162. [PMID: 37027894 DOI: 10.1016/j.jtemb.2023.127162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Matrix metalloproteinase-9 (MMP-9) cleaves various extracellular matrix proteins, hence significantly contributes to numerous physiological but also pathological processes. Monocytic differentiation is associated with increased MMP-9 gene expression. Interestingly, MMP-9 upregulation during monocytic differentiation is paralleled by a decline in intracellular zinc levels. Hence, an influence of zinc on the regulation of MMP-9 expression may exist. Although, previous studies suggest a vital role of zinc regarding MMP-9 activity, the possible relevance of zinc homeostasis during transcriptional regulation of MMP-9 for example via epigenetic mechanisms is rather unclear. AIM This study aims to find a correlation between zinc deficiency and MMP-9 transcriptional regulation, focusing on epigenetics as the possible mechanism behind zinc deficiency-induced changes. METHODS The effect of differentiation and zinc deficiency on MMP-9 expression and MMP9 promoter accessibility was investigated using the acute promyelocytic cell line NB4. Intracellular free zinc levels were detected by flow cytometry. MMP-9 gene expression was measured by real-time PCR and ELISA. Analysis of chromatin structures was done using chromatin accessibility by real-time PCR (CHART) assay. RESULTS During monocytic differentiation of NB4 cells, the decrease in intracellular zinc levels was paralleled by an increased production of MMP-9. Assessment of chromatin structure revealed increased accessibility of certain regions within the MMP-9 promoter in differentiated cells. Interestingly, upregulated activation-induced MMP-9 gene expression as well as a more accessible MMP-9 promoter were in zinc-deficient NB4 cells whereas zinc resupplementation reversed the effects. CONCLUSION These data demonstrate an important role of epigenetic mechanisms in regulating MMP-9 expression under zinc deficiency. This could provide an encouraging step to expand the research on using zinc for the treatment of various pathological conditions such as inflammatory, vascular and autoimmune diseases resulting from MMP-9 deregulation.
Collapse
Affiliation(s)
- Asad Shahzad
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
10
|
Chemek M, Kadi A, Merenkova S, Potoroko I, Messaoudi I. Improving Dietary Zinc Bioavailability Using New Food Fortification Approaches: A Promising Tool to Boost Immunity in the Light of COVID-19. BIOLOGY 2023; 12:biology12040514. [PMID: 37106716 PMCID: PMC10136047 DOI: 10.3390/biology12040514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Zinc is a powerful immunomodulatory trace element, and its deficiency in the body is closely associated with changes in immune functions and viral infections, including SARS-CoV-2, the virus responsible for COVID-19. The creation of new forms of zinc delivery to target cells can make it possible to obtain smart chains of food ingredients. Recent evidence supports the idea that the optimal intake of zinc or bioactive compounds in appropriate supplements should be considered as part of a strategy to generate an immune response in the human body. Therefore, controlling the amount of this element in the diet is especially important for populations at risk of zinc deficiency, who are more susceptible to the severe progression of viral infection and disease, such as COVID-19. Convergent approaches such as micro- and nano-encapsulation develop new ways to treat zinc deficiency and make zinc more bioavailable.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Svetlana Merenkova
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Universitéde Monastir, Monastir 5000, Tunisia
| |
Collapse
|
11
|
Jimenez-Rondan FR, Ruggiero CH, McKinley KL, Koh J, Roberts JF, Triplett EW, Cousins RJ. Enterocyte-specific deletion of metal transporter Zip14 (Slc39a14) alters intestinal homeostasis through epigenetic mechanisms. Am J Physiol Gastrointest Liver Physiol 2023; 324:G159-G176. [PMID: 36537699 PMCID: PMC9925170 DOI: 10.1152/ajpgi.00244.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 01/31/2023]
Abstract
Zinc has anti-inflammatory properties using mechanisms that are unclear. Zip14 (Slc39a14) is a zinc transporter induced by proinflammatory stimuli and is highly expressed at the basolateral membrane of intestinal epithelial cells (IECs). Enterocyte-specific Zip14 ablation (Zip14ΔIEC) in mice was developed to study the functions of this transporter in enterocytes. This gene deletion led to increased intestinal permeability, increased IL-6 and IFNγ expression, mild endotoxemia, and intestinal dysbiosis. RNA sequencing was used for transcriptome profiling. These analyses revealed differential expression of specific intestinal proinflammatory and tight junction (TJ) genes. Binding of transcription factors, including NF-κβ, STAT3, and CDX2, to appropriate promoter sites of these genes supports the differential expression shown with chromatin immunoprecipitation assays. Total histone deacetylase (HDAC), and specifically HDAC3, activities were markedly reduced with Zip14 ablation. Intestinal organoids derived from ΔIEC mice display TJ and cytokine gene dysregulation compared with control mice. Differential expression of specific genes was reversed with zinc supplementation of the organoids. We conclude that zinc-dependent HDAC enzymes acquire zinc ions via Zip14-mediated transport and that intestinal integrity is controlled in part through epigenetic modifications.NEW & NOTEWORTHY We show that enterocyte-specific ablation of zinc transporter Zip14 (Slc39a14) results in selective dysbiosis and differential expression of tight junction proteins, claudin 1 and 2, and specific cytokines associated with intestinal inflammation. HDAC activity and zinc uptake are reduced with Zip14 ablation. Using intestinal organoids, the expression defects of claudin 1 and 2 are resolved through zinc supplementation. These novel results suggest that zinc, an essential micronutrient, influences gene expression through epigenetic mechanisms.
Collapse
Affiliation(s)
- Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Courtney H Ruggiero
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| | - Kelley Lobean McKinley
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - John F Roberts
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Robert J Cousins
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida
| |
Collapse
|
12
|
Jimenez-Rondan FR, Ruggiero CH, Cousins RJ. Long Noncoding RNA, MicroRNA, Zn Transporter Zip14 (Slc39a14) and Inflammation in Mice. Nutrients 2022; 14:nu14235114. [PMID: 36501144 PMCID: PMC9740689 DOI: 10.3390/nu14235114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Integration of non-coding RNAs and miRNAs with physiological processes in animals, including nutrient metabolism, is an important new focus. Twenty-three transporter proteins control cellular zinc homeostasis. The transporter Zip14 (Slc39a14) responds to proinflammatory stimuli. Using enterocyte-specific Zip14 knockout mice and RNA-sequencing and quantitative polymerase chain reaction (qPCR), we conducted transcriptome profiling of proximal small intestine, where Zip14 is highly expressed, using RNA from whole intestine tissue, isolated intestinal epithelial cells (IECs) and intestinal organoids. H19, U90926, Meg3, Bvht, Pvt1, Neat1 and miR-7027 were among the most highly expressed genes. Enterocyte-specific deletion of Zip14 demonstrated tissue specific expression, as such these changes were not observed with skeletal muscle. Chromatin immunoprecipitation (ChIP) assays of chromatin from isolated intestinal epithelial cells showed that enterocyte-specific Zip14 deletion enhanced binding of proinflammatory transcription factors (TFs) signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa beta (NF-ĸβ) to promoters of H19, Meg3 and U90926. We conclude enterocyte-specific ablation of Zip14 restricts changes in those RNAs to the intestine. Binding of proinflammatory TFs, NF-ĸβ and STAT3 to the H19, Meg3 and U90926 promoters is consistent with a model where Zip14 ablation, leads to increased TF occupancy, allowing epigenetic regulation of specific lncRNA genes.
Collapse
|
13
|
Islas-Trejo E, Tlahuextl M, Lechuga-Islas VD, Falcón-León M, Tlahuext H, Tapia-Benavides AR. Selective Synthesis and Structural Study of Amino Amide Trichlorozincates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Azimi Z, Isa MR, Khan J, Wang SM, Ismail Z. Association of zinc level with DNA methylation and its consequences: A systematic review. Heliyon 2022; 8:e10815. [PMID: 36203899 PMCID: PMC9530842 DOI: 10.1016/j.heliyon.2022.e10815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Objectives Method Results Conclusion
Collapse
Affiliation(s)
- Ziauddin Azimi
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Department of Biochemistry, Faculty of Pharmacy, Kabul University, Jamal Mina, Kabul, Afghanistan
| | - Mohamad Rodi Isa
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
| | - Jesmine Khan
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
| | - Seok Mui Wang
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- Non-Destructive Biomedical and Pharmaceutical Research Center, Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA, Puncak Alam Campus, Selangor, Malaysia
| | - Zaliha Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh Selangor Malaysia
- Corresponding author.
| |
Collapse
|
15
|
Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Gudkov A, Buzdin A, Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022; 10:biomedicines10051072. [PMID: 35625809 PMCID: PMC9139143 DOI: 10.3390/biomedicines10051072] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, manganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation defense, transcriptional regulation and the immune response. The misregulation of expression or mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion carriers have been detected, suggesting that particular mechanisms influenced by both ions might be required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials. We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement current therapeutic strategies.
Collapse
Affiliation(s)
- Julian Markovich Rozenberg
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Correspondence:
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| | - Elena Koroleva
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Kristina Kremenchutckaya
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Alexander Gudkov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
- OmicsWay Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Oncobox Ltd., 121205 Moscow, Russia
| | - Nicolas Borisov
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| |
Collapse
|
16
|
Muhammad A, Forcados GE, Katsayal BS, Bako RS, Aminu S, Sadiq IZ, Abubakar MB, Yusuf AP, Malami I, Faruk M, Ibrahim S, Pase PA, Ahmed S, Abubakar IB, Abubakar M, Yates C. Potential epigenetic modifications implicated in triple- to quadruple-negative breast cancer transition: a review. Epigenomics 2022; 14:711-726. [PMID: 35473304 DOI: 10.2217/epi-2022-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Current research on triple-negative breast cancer (TNBC) has resulted in delineation into the quadruple-negative breast cancer (QNBC) subgroup. Epigenetic modifications such as DNA methylation, histone posttranslational modifications and associated changes in chromatin architecture have been implicated in breast cancer pathogenesis. Herein, the authors highlight genes with observed epigenetic modifications that are associated with more aggressive TNBC/QNBC pathogenesis and possible interventions. Advanced literature searches were done on PubMed/MEDLINE, Scopus and Google Scholar. The results suggest that nine epigenetically altered genes/differentially expressed proteins in addition to the downregulated androgen receptor are associated with TNBC aggressiveness and could be implicated in the TNBC to QNBC transition. Thus, restoring the normal expression of these genes via epigenetic reprogramming could be therapeutically beneficial to TNBC and QNBC patients.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria.,Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | | | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Rabiatu Suleiman Bako
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | | | - Ibrahim Malami
- Department of Pharmacognosy & Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Nigeria.,Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, P.M.B 2254, Sokoto, Sokoto State, Nigeria
| | - Mohammed Faruk
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Peter Abur Pase
- Department of Surgery, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Saad Ahmed
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Ibrahim Babangida Abubakar
- Deparment of Biochemistry, Kebbi State University of Science & Technology, PMB 1144, Aliero, Kebbi State, Nigeria
| | - Murtala Abubakar
- Department of Pathology, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Clayton Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
17
|
Dreab A, Bayse CA. Molecular Dynamics Simulations of Reduced and Oxidized TFIIIA Zinc Fingers Free and Interacting with 5S RNA. J Chem Inf Model 2022; 62:903-913. [PMID: 35143196 DOI: 10.1021/acs.jcim.1c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interactions of zinc finger (ZF) proteins with nucleic acids and proteins play an important role in DNA transcription and repair, biochemical recognition, and protein regulation. The release of Zn2+ through oxidation of cysteine thiolates is associated with disruption of gene expression and DNA repair, preventing tumor growth. Multi-microsecond molecular dynamics (MD) simulations were carried out to examine the effect of Cys oxidation on the ZF456 fragment of transcription factor III A (TFIIIA) and its complex with 5S RNA. In the absence of 5S RNA, the reduced ZF456 peptide undergoes conformational changes in the secondary structure due to the reorientation of the intact ZF domains. Upon oxidation, the individual ZF domains unfold to various degrees, yielding a globular ZF456 peptide with ZF4 and ZF6, responsible for base-specific hydrogen bonds with 5S RNA, losing their ββα-folds. ZF5, on the other hand, participates in nonspecific interactions through its α-helix that conditionally unravels early in the simulation. In the presence of RNA, oxidation of the ZF456 peptide disrupts the key hydrogen bonding interactions between ZF5/ZF6 and 5S RNA. However, interactions with ZF4 are dependent on the protonation state of His119.
Collapse
Affiliation(s)
- Ana Dreab
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
18
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
19
|
Muhammad A, Forcados GE, Sani H, Ndidi US, Adamu A, Katsayal BS, Sadiq IZ, Abubakar YS, Sulaiman I, Abubakar IB, Yusuf AP, Malami I, Ibrahim S, Abubakar MB. Epigenetic modifications associated with genes implicated in cytokine storm: The potential biotherapeutic effects of vitamins and minerals in COVID‐19. J Food Biochem 2022; 46:e14079. [DOI: 10.1111/jfbc.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/25/2021] [Accepted: 12/31/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | | | - Hadiza Sani
- Department of Medicine Kaduna State University Kaduna Nigeria
| | - Uche Samuel Ndidi
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | - Auwal Adamu
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | | | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | | | - Ibrahim Sulaiman
- Department of Human Physiology Federal University Dutse Dutse Nigeria
| | | | | | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences Usmanu Danfodiyo University Sokoto Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences Ahmadu Bello University Zaria Nigeria
| | | |
Collapse
|
20
|
Duzgun Ergun D, Pastaci Ozsobaci N, Yilmaz T, Ozcelik D, Kalkan MT. Zinc affects nuclear factor kappa b and DNA methyltransferase activity in C3H cancer fibroblast cells induced by a 2100 MHz electromagnetic field. Electromagn Biol Med 2022; 41:93-100. [PMID: 34994293 DOI: 10.1080/15368378.2021.2019760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The use of mobile phones is becoming widespread with the development of technology, and as a result, its effects on human health are becoming more and more important every day. Studies have reported that the electromagnetic field (EMF) emitted by mobile phones may have adverse effects on the biological systems. In order to evaluate the effect of zinc (Zn) on C3H cancer fibroblast cells exposed to 2100 MHz EMF, we analyzed cell viability%, nuclear factor kappa b (NF-κB) and DNA methyltransferase (DNMT) activities. Cells were divided to following groups: Control, sham control, 2100 MHz EMF, 50 µM Zn + 2100 MHz EMF, 100 µM Zn + 2100 MHz EMF, and 200 µM Zn + 2100 MHz EMF for 2 h. We measurement cell viability, NF-κB and DNMT activities. There was increased cell viability % in the 2100 MHz EMF group compared to the control group, while the cell viability % was decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to 2100 MHz EMF. NF-κB and DNMT activities were a significant increase in the 2100 MHz EMF group compared to the control group, although were statistically decreased in the 50, 100 and 200 µM Zn + 2100 MHz EMF groups compared to the 2100 MHz EMF group. Our results demonstrate that 2100 MHz EMF exposure in cancer fibroblast cells induce NF-κB and DNMT activities, whereas zinc supplementation reduce NF-κB and DNMT activities-induced 2100 MHz EMF.
Collapse
Affiliation(s)
- D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - T Yilmaz
- Department of Electronics and Communication Engineering, Istanbul Technical University, Istanbul, Turkey
| | - D Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - M T Kalkan
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
21
|
Villa C, Yoon JH. Multi-Omics for the Understanding of Brain Diseases. Life (Basel) 2021; 11:life11111202. [PMID: 34833078 PMCID: PMC8618909 DOI: 10.3390/life11111202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Brain diseases, including both neurodegenerative diseases and mental disorders, represent the third largest healthcare problem in developed countries, after cardiovascular disorders and cancer [...].
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: (C.V.); (J.H.Y.)
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Korea
- Correspondence: (C.V.); (J.H.Y.)
| |
Collapse
|
22
|
Coni P, Pichiri G, Lachowicz JI, Ravarino A, Ledda F, Fanni D, Gerosa C, Piras M, Coghe F, Gibo Y, Cau F, Castagnola M, Van Eyken P, Saba L, Piludu M, Faa G. Zinc as a Drug for Wilson's Disease, Non-Alcoholic Liver Disease and COVID-19-Related Liver Injury. Molecules 2021; 26:6614. [PMID: 34771023 PMCID: PMC8587580 DOI: 10.3390/molecules26216614] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Zinc is the second most abundant trace element in the human body, and it plays a fundamental role in human physiology, being an integral component of hundreds of enzymes and transcription factors. The discovery that zinc atoms may compete with copper for their absorption in the gastrointestinal tract let to introduce zinc in the therapy of Wilson's disease, a congenital disorder of copper metabolism characterized by a systemic copper storage. Nowadays, zinc salts are considered one of the best therapeutic approach in patients affected by Wilson's disease. On the basis of the similarities, at histological level, between Wilson's disease and non-alcoholic liver disease, zinc has been successfully introduced in the therapy of non-alcoholic liver disease, with positive effects both on insulin resistance and oxidative stress. Recently, zinc deficiency has been indicated as a possible factor responsible for the susceptibility of elderly patients to undergo infection by SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic. Here, we present the data correlating zinc deficiency with the insurgence and progression of Covid-19 with low zinc levels associated with severe disease states. Finally, the relevance of zinc supplementation in aged people at risk for SARS-CoV-2 is underlined, with the aim that the zinc-based drug, classically used in the treatment of copper overload, might be recorded as one of the tools reducing the mortality of COVID-19, particularly in elderly people.
Collapse
Affiliation(s)
- Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Giuseppina Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Alberto Ravarino
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Francesca Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Daniela Fanni
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Clara Gerosa
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Ferdinando Coghe
- Dipartimento Servizi di Diagnosi e Cura, Azienda Ospedaliero-Universitaria di Cagliari (A.O.U.), University of Cagliari, 09024 Cagliari, Italy;
| | - Yukio Gibo
- Hepatology Clinic, 1-34-20 Muraimachiminami, Matsumoto, Nagano 399-0036, Japan;
| | - Flaviana Cau
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
| | - Massimo Castagnola
- Laboratorio di Proteomica e Metabonomica-Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00013 Rome, Italy;
| | - Peter Van Eyken
- Department of Pathology, Genk Regional Ziekenhuis, 3600 Genk, Belgium;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari—Polo di Monserrato s.s. 554, 09045 Monserrato, Italy;
| | - Marco Piludu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (P.C.); (A.R.); (F.L.); (D.F.); (C.G.); (M.P.); (F.C.); (G.F.)
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|