1
|
Hrovat K, Seme K, Ambrožič Avguštin J. Increasing Fluroquinolone Susceptibility and Genetic Diversity of ESBL-Producing E. coli from the Lower Respiratory Tract during the COVID-19 Pandemic. Antibiotics (Basel) 2024; 13:797. [PMID: 39334972 PMCID: PMC11428890 DOI: 10.3390/antibiotics13090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Lower respiratory tract infections (LRTIs) are the fourth leading cause of death worldwide, among which Escherichia coli (E. coli) pneumonia is considered a rare phenomenon. Treatment options for LRTIs have become limited, especially for extended-spectrum β-lactamase-producing E. coli (ESBL-EC), which are usually resistant to other groups of antimicrobials as well. The aim of our study was to compare the phenotypic resistance profiles and genotypes of ESBL-EC isolates associated with LRTIs before (pre-COVID-19) and during (COVID-19) the COVID-19 pandemic. All isolates were screened for antimicrobial resistance genes (ARGs) and virulence-associated genes (VAGs) and assigned to phylogenetic groups, sequence types and clonal groups by PCR. During the pandemic, a significantly lower proportion of ciprofloxacin-, levofloxacin- and trimethoprim-sulfamethoxazole-resistant ESBL-EC isolates was retrieved from lower respiratory tract (LRT) samples. PCR-based genotypization revealed greater clonal diversity and a significantly lower proportion of isolates with blaTEM, aac(6')-Ib-cr and qacEΔ1 genes. In addition, a higher proportion of isolates with the integrase gene int1 and virulence genes sat and tsh was confirmed. The lower prevalence of fluoroquinolone resistance and greater genetic diversity of ESBL-EC isolated during the COVID-19 period may have been due to the introduction of new bacterial strains into the hospital environment, along with changes in clinical establishment guidelines and practices.
Collapse
Affiliation(s)
- Katja Hrovat
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
2
|
Abniki R, Tashakor A, Masoudi M, Pourdad A, Mansury D. Tracking Antibiotic Resistance Trends in Central Iran Amidst the COVID-19 Pandemic From 2021 to 2023: A Comprehensive Epidemiological Study. Adv Biomed Res 2024; 13:39. [PMID: 39224403 PMCID: PMC11368225 DOI: 10.4103/abr.abr_345_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 09/04/2024] Open
Abstract
Background The emergence of coronavirus disease in 2019 (COVID-19) appears to be having an impact on antibiotic resistance patterns. Specific circumstances during the COVID-19 era may have played a role in the spread of antimicrobial resistance (AMR). This study aimed to look at the changes in AMR patterns of Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii at Al-Zahra Hospital. Materials and Methods From March 2021 to January 2023, 3651 clinical samples were collected from patients hospitalized at Isfahan's Al-Zahra Hospital. The Clinical and Laboratory Standards Institute recommended procedures for detecting gram-negative bacteria and assessing antibiotic susceptibility were used. We divided the information into three years. Results Highest resistance rates were seen in A. baumannii to Ciprofloxacin (98.0%) and Ampicillin-Sulbactam (97.0%). For P. aeruginosa the resistance rate for Ceftazidime (36.1), Levofloxacin (37.8), and Meropenem (47.1) dropped seriously in 2022. Conclusion During the second year of the pandemic in central Iran, all three species studied showed rising rates of AMR. This can be attributable to two peaks within Iran on May 6, 2021 and August 27, 2021. The results of this study show that P. aeruginosa, K. pneumoniae, and A. baumannii bacteria in central Iran have a higher level of antibiotic resistance than previously studied strains before the pandemic.
Collapse
Affiliation(s)
- Reza Abniki
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Tashakor
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Melika Masoudi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Pourdad
- Department of Infection Control, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Vittorakis E, Vica ML, Zervaki CO, Vittorakis E, Maraki S, Mavromanolaki VE, Schürger ME, Neculicioiu VS, Papadomanolaki E, Junie LM. A Comparative Analysis of MRSA: Epidemiology and Antibiotic Resistance in Greece and Romania. Int J Mol Sci 2024; 25:7535. [PMID: 39062778 PMCID: PMC11277345 DOI: 10.3390/ijms25147535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
This study provides a comparative analysis of 243 Methicillin-resistant Staphylococcus aureus (MRSA) isolated strains from Greece and Romania, focusing on their epidemiology and antibiotic resistance patterns. Laboratory procedures included phenotypic and automated identification methods, susceptibility testing, DNA isolation, and PCR for detecting antibiotic resistance genes (MecA, SCCmec). Our study results show significant regional differences. In both regions, males have higher MRSA infection rates than females, but the percentages vary. Greece has a higher incidence of MRSA in younger age groups compared to Romania. The majority of MRSA infections occur in inpatient settings in both countries, highlighting the necessity for enhanced infection control measures. Antibiotic resistance profiles reveal higher resistance to several antibiotics in Greece compared to Romania. A molecular analysis shows a widespread distribution of antibiotic resistance genes among MRSA isolates in Greece. These results highlight the necessity for accomplished preventive strategies and optimized treatment protocols.
Collapse
Affiliation(s)
- Eftychios Vittorakis
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (L.M.J.)
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.L.V.)
- Agios Georgios General Hospital of Chania, 73100 Crete, Greece
| | - Mihaela Laura Vica
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.L.V.)
| | | | | | - Sofia Maraki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, 70013 Crete, Greece; (S.M.); (V.E.M.)
| | - Viktoria Eirini Mavromanolaki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, 70013 Crete, Greece; (S.M.); (V.E.M.)
| | - Michael Ewald Schürger
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.L.V.)
| | - Vlad Sever Neculicioiu
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (L.M.J.)
| | | | - Lia Monica Junie
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (L.M.J.)
| |
Collapse
|
4
|
Lucas DR, Damica FZ, Toledo EB, Cogo AJD, Okorokova-Façanha AL, Gomes VM, de Oliveira Carvalho A. Bioinspired peptides induce different cell death mechanisms against opportunistic yeasts. Probiotics Antimicrob Proteins 2024; 16:649-672. [PMID: 37076595 PMCID: PMC10115610 DOI: 10.1007/s12602-023-10064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/21/2023]
Abstract
The management of fungal diseases imposes an urgent need for the development of effective antifungal drugs. Among new drug candidates are the antimicrobial peptides, and especially their derivatives. Here, we investigated the molecular mechanism of action of three bioinspired peptides against the opportunistic yeasts Candida tropicalis and Candida albicans. We assessed morphological changes, mitochondrial functionality, chromatin condensation, ROS production, activation of metacaspases, and the occurrence of cell death. Our results indicated that the peptides induced sharply contrasting death kinetics, of 6 h for RR and 3 h for D-RR to C. tropicalis and 1 h for WR to C. albicans. Both peptide-treated yeasts exhibited increased ROS levels, mitochondrial hyperpolarization, cell size reduction, and chromatin condensation. RR and WR induced necrosis in C. tropicalis and C. albicans, but not D-RR in C. tropicalis. The antioxidant ascorbic acid reverted the toxic effect of RR and D-RR, but not WR, suggesting that instead of ROS there is a second signal triggered that leads to yeast death. Our data suggest that RR induced a regulated accidental cell death in C. tropicalis, D-RR induced a programmed cell death metacaspase-independent in C. tropicalis, while WR induced an accidental cell death in C. albicans. Our results were obtained with the LD100 and within the time that the peptides induce the yeast death. Within this temporal frame, our results allow us to gain clarity on the events triggered by the peptide-cell interaction and their temporal order, providing a better understanding of the death process induced by them.
Collapse
Affiliation(s)
- Douglas Ribeiro Lucas
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Filipe Zaniratti Damica
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Estefany Braz Toledo
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Antônio Jesus Dorighetto Cogo
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Anna Lvovna Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, nº 2000, Campos dos Goytacazes-RJ, 28013-602, Brazil.
| |
Collapse
|
5
|
Kovacevic A, Smith DRM, Rahbé E, Novelli S, Henriot P, Varon E, Cohen R, Levy C, Temime L, Opatowski L. Exploring factors shaping antibiotic resistance patterns in Streptococcus pneumoniae during the 2020 COVID-19 pandemic. eLife 2024; 13:e85701. [PMID: 38451256 PMCID: PMC10923560 DOI: 10.7554/elife.85701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, most European countries reported an increase in antibiotic resistance among invasive Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies reported stable pneumococcal carriage prevalence over the same period. To disentangle the impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these trends five mechanisms were built into the model and examined: (1) a population-wide reduction of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, (3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving mechanisms individually or in combination, model simulations surprisingly identified only two scenarios that reproduced the reported trends in the general population. They included factors (1), (3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-bacteria interaction mechanisms could have additionally contributed to the observed antibiotic resistance increase. Our work demonstrates the utility of the mathematical modeling approach in unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics.
Collapse
Affiliation(s)
- Aleksandra Kovacevic
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE) unitParisFrance
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
| | - David RM Smith
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE) unitParisFrance
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiersParisFrance
- Health Economics Research Centre, Nuffield Department of Health, University of OxfordOxfordUnited Kingdom
| | - Eve Rahbé
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE) unitParisFrance
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
| | - Sophie Novelli
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
| | - Paul Henriot
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiersParisFrance
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiersParisFrance
| | - Emmanuelle Varon
- Centre National de Référence des Pneumocoques, Centre Hospitalier Intercommunal de CréteilCréteilFrance
| | - Robert Cohen
- Institut Mondor de Recherche Biomédicale-Groupe de Recherche Clinique Groupe d’Etude des Maladies Infectieuses Néonatales et Infantiles (IMRB-GRC GEMINI), Université Paris Est, 94000CréteilFrance
- Groupe de Pathologie Infectieuse Pédiatrique (GPIP), 06200NiceFrance
- Unité Court Séjour, Petits Nourrissons, Service de Néonatologie, Centre Hospitalier, Intercommunal de CréteilCréteilFrance
- Association Clinique et Thérapeutique Infantile du Val-de-Marne (ACTIV), 94000CréteilFrance
- Association Française de Pédiatrie Ambulatoire (AFPA), 45000OrléansFrance
| | - Corinne Levy
- Institut Mondor de Recherche Biomédicale-Groupe de Recherche Clinique Groupe d’Etude des Maladies Infectieuses Néonatales et Infantiles (IMRB-GRC GEMINI), Université Paris Est, 94000CréteilFrance
- Groupe de Pathologie Infectieuse Pédiatrique (GPIP), 06200NiceFrance
- Association Clinique et Thérapeutique Infantile du Val-de-Marne (ACTIV), 94000CréteilFrance
- Association Française de Pédiatrie Ambulatoire (AFPA), 45000OrléansFrance
| | - Laura Temime
- Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS), Conservatoire national des arts et métiersParisFrance
- PACRI unit, Institut Pasteur, Conservatoire national des arts et métiersParisFrance
| | - Lulla Opatowski
- Institut Pasteur, Université Paris Cité, Epidemiology and Modelling of Antibiotic Evasion (EMAE) unitParisFrance
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm U1018, CESP, Anti-infective evasion and pharmacoepidemiology teamMontigny-Le-BretonneuxFrance
| |
Collapse
|
6
|
Thomsen J, Abdulrazzaq NM, Everett DB, Menezes GA, Senok A, Ayoub Moubareck C. Carbapenem resistant Enterobacterales in the United Arab Emirates: a retrospective analysis from 2010 to 2021. Front Public Health 2023; 11:1244482. [PMID: 38145078 PMCID: PMC10745492 DOI: 10.3389/fpubh.2023.1244482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/24/2023] [Indexed: 12/26/2023] Open
Abstract
Background Carbapenem-resistant Enterobacterales (CRE) are spreading in the United Arab Emirates (UAE) where their dissemination is facilitated by international travel, trade, and tourism. The objective of this study is to describe the longitudinal changes of CRE as reported by the national AMR surveillance system of the UAE. Methods In this study, we retrospectively describe CRE isolated from 317 surveillance sites, including 87 hospitals and 230 centers/clinics from 2010 to 2021. The associated clinical, demographic, and microbiological characteristics are presented by relying on the UAE national AMR surveillance program. Data was analyzed using WHONET microbiology laboratory database software (http://www.whonet.org). Results A total of 14,593 carbapenem resistant Enterobacterales were analyzed, of which 48.1% were carbapenem resistant Klebsiella pneumoniae (CRKp), 25.1% carbapenem resistant Escherichia coli (CREc), and 26.8% represented 72 other carbapenem resistant species. Carbapenem resistant strains were mostly associated with adults and isolated from urine samples (36.9% of CRKp and 66.6% of CREc) followed by respiratory samples (26.95% for CRKp) and soft tissue samples (19.5% for CRKp). Over the studied period carbapenem resistance rates remained high, especially in K. pneumoniae, and in 2021 were equivalent to 67.6% for imipenem, 76.2% for meropenem, and 91.6% for ertapenem. Nevertheless, there was a statistically significant decreasing trend for imipenem and meropenem resistance in Klebsiella species (p < 0.01) while the decrease in ertapenem resistance was non-significant. Concerning E. coli, there was a statistically significant decreasing trend for meropenem and imipenem resistance over the 12 years, while ertapenem resistance increased significantly with 83.8% of E. coli exhibiting ertapenem resistance in 2021. Resistance rates to ceftazidime and cefotaxime remained higher than 90% (in 2021) for CRKp and cefotaxime rates increased to 90.5% in 2021 for CREc. Starting 2014, resistance to colistin and tigecycline was observed in carbapenem resistant Enterobacterales. CRE were associated with a higher mortality (RR: 6.3), admission to ICU (RR 3.9), and increased length of stay (LOS; 10 excess inpatient days per CRE case). Conclusion This study supports the need to monitor CRE in the UAE and draws attention to the significant increase of ertapenem resistance in E. coli. Future surveillance analysis should include a genetic description of carbapenem resistance to provide new strategies.
Collapse
Affiliation(s)
- Jens Thomsen
- Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | | | - Dean B. Everett
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Research Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Godfred Antony Menezes
- Department of Medical Microbiology and Immunology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
7
|
Jiang X, Borkum T, Shprits S, Boen J, Arshavsky-Graham S, Rofman B, Strauss M, Colodner R, Sulam J, Halachmi S, Leonard H, Segal E. Accurate Prediction of Antimicrobial Susceptibility for Point-of-Care Testing of Urine in Less than 90 Minutes via iPRISM Cassettes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303285. [PMID: 37587020 PMCID: PMC10625094 DOI: 10.1002/advs.202303285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/04/2023] [Indexed: 08/18/2023]
Abstract
The extensive and improper use of antibiotics has led to a dramatic increase in the frequency of antibiotic resistance among human pathogens, complicating infectious disease treatments. In this work, a method for rapid antimicrobial susceptibility testing (AST) is presented using microstructured silicon diffraction gratings integrated into prototype devices, which enhance bacteria-surface interactions and promote bacterial colonization. The silicon microstructures act also as optical sensors for monitoring bacterial growth upon exposure to antibiotics in a real-time and label-free manner via intensity-based phase-shift reflectometric interference spectroscopic measurements (iPRISM). Rapid AST using clinical isolates of Escherichia coli (E. coli) from urine is established and the assay is applied directly on unprocessed urine samples from urinary tract infection patients. When coupled with a machine learning algorithm trained on clinical samples, the iPRISM AST is able to predict the resistance or susceptibility of a new clinical sample with an Area Under the Receiver Operating Characteristic curve (AUC) of ∼ 0.85 in 1 h, and AUC > 0.9 in 90 min, when compared to state-of-the-art automated AST methods used in the clinic while being an order of magnitude faster.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Talya Borkum
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sagi Shprits
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Joseph Boen
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Baruch Rofman
- Department of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Merav Strauss
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, 1834111, Israel
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Clark 320B, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
8
|
Serretiello E, Manente R, Dell’Annunziata F, Folliero V, Iervolino D, Casolaro V, Perrella A, Santoro E, Galdiero M, Capunzo M, Franci G, Boccia G. Antimicrobial Resistance in Pseudomonas aeruginosa before and during the COVID-19 Pandemic. Microorganisms 2023; 11:1918. [PMID: 37630478 PMCID: PMC10458743 DOI: 10.3390/microorganisms11081918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a major Gram-negative opportunistic pathogen causing several serious acute and chronic infections in the nosocomial and community settings. PA eradication has become increasingly difficult due to its remarkable ability to evade antibiotics. Therefore, epidemiological studies are needed to limit the infection and aim for the correct treatment. The present retrospective study focused on PA presence among samples collected at the San Giovanni di Dio and Ruggi D'Aragona University Hospital in Salerno, Italy; its resistance profile and relative variations over the eight years were analyzed. Bacterial identification and antibiotic susceptibility tests were performed by VITEK® 2. In the 2015-2019 and 2020-2022 timeframes, respectively, 1739 and 1307 isolates of PA were obtained from respiratory samples, wound swabs, urine cultures, cultural swabs, blood, liquor, catheter cultures, vaginal swabs, and others. During 2015-2019, PA strains exhibited low resistance against amikacin (17.2%), gentamicin (25.2%), and cefepime (28.3%); moderate resistance against ceftazidime (34.4%), imipenem (34.6%), and piperacillin/tazobactam (37.7%); and high resistance against ciprofloxacin (42.4%) and levofloxacin (50.6%). Conversely, during the 2020-2022 era, PA showed 11.7, 21.1, 26.9, 32.6, 33.1, 38.7, and 39.8% resistance to amikacin, tobramycin, cefepime, imipenem, ceftazidime, ciprofloxacin, and piperacillin/tazobactam, respectively. An overall resistance-decreasing trend was observed for imipenem and gentamicin during 2015-2019. Instead, a significant increase in resistance was recorded for cefepime, ceftazidime, and imipenem in the second set of years investigated. Monitoring sentinel germs represents a key factor in optimizing empirical therapy to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Enrica Serretiello
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
| | - Roberta Manente
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.M.); (F.D.); (M.G.)
| | - Federica Dell’Annunziata
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.M.); (F.D.); (M.G.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Domenico Iervolino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Alessandro Perrella
- Division Emerging Infectious Disease and High Contagiousness, Hospital D Cotugno, 80131 Naples, Italy;
| | - Emanuela Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.M.); (F.D.); (M.G.)
| | - Mario Capunzo
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Gianluigi Franci
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Giovanni Boccia
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
- UOC Hospital and Epidemiological Hygiene, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy
| |
Collapse
|
9
|
Zyoud SH. The state of current research on COVID-19 and antibiotic use: global implications for antimicrobial resistance. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:42. [PMID: 37173756 PMCID: PMC10180617 DOI: 10.1186/s41043-023-00386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND During the initial stages of the coronavirus disease 2019 (COVID-19) pandemic, the administration of antibiotics to patients was prevalent in numerous countries. Despite this, the rising threat of antimicrobial resistance (AMR) presents a significant public health concern. The escalation of AMR has been exacerbated by the ongoing COVID-19 pandemic. Against this backdrop, the primary aim of this study was to conduct a bibliometric and visual analysis of research pertaining to the use of antibiotics in COVID-19. METHODS This study examined documents indexed in Scopus between 2020 and 2022. To visualize the trends and hotspots of research related to antibiotics and COVID-19, as well as collaborative networks, the researcher utilized version 1.6.18 of the VOSviewer software. Scopus data were analysed to extract information on the types of publications, annual research output, countries, institutions, funding agencies, journals, citations, and highly cited references. Microsoft Excel 2019 was used to process and organize the extracted data. RESULTS This study analysed 1137 documents related to COVID-19 and antibiotics and found that the number of publications increased from 130 in 2020 to 527 in 2022. These publications included 777 (68.34%) articles and 205 (18.03%) reviews. The top five countries in terms of scientific production were the United States (n = 231; 20.32%), the United Kingdom (n = 156; 13.72%), China (n = 101; 8.88%), India (n = 100; 8.8%), and Italy (n = 63; 5.54%), and the leading institutions were Imperial College London (n = 21; 1.85%), University of Oxford (n = 20; 1.76%), and University College London (n = 15; 1.32%). The National Natural Science Foundation of China provided funding for the highest number of articles (n = 48; 4.22%), followed by the National Institutes of Health (n = 32; 2.81%). The most productive journals were Antibiotics (n = 90; 7.92%), Journal of Antimicrobial Chemotherapy (n = 30; 2.64%), and Infection Control and Hospital Epidemiology (n = 26; 2.29%). Finally, the research hotspots identified in this study were 'antimicrobial stewardship during the COVID-19 outbreak' and 'implications of the COVID-19 pandemic on the emergence of antimicrobial resistance.' CONCLUSIONS This is the first bibliometric analysis of COVID-19-related research on antibiotics. Research was carried out in response to global requests to increase the fight against AMR and awareness of the issue. More restrictions on the use of antibiotics are urgently needed from policy makers and authorities, more so than in the current situation.
Collapse
Affiliation(s)
- Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
- Clinical Research Centre, An-Najah National University Hospital, Nablus, 44839, Palestine.
| |
Collapse
|
10
|
Yashwant CP, Rajendran V, Krishnamoorthy S, Nagarathinam B, Rawson A, Anandharaj A, Sivanandham V. Antibiotic resistance profiling and valorization of food waste streams to starter culture biomass and exopolysaccharides through fed-batch fermentations. Food Sci Biotechnol 2023; 32:863-874. [PMID: 37041804 PMCID: PMC10082887 DOI: 10.1007/s10068-022-01222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The present study evaluated antibiotic resistance (ABR) in bacteria isolated from different food wastes viz., meat slaughterhouses, dairy and restaurants. About 120 strains isolated from the food waste were subjected to ABR screening. More than 50% of all the strains were resistant to Vancomycin, Neomycin and Methicilin, which belong to third-generation antibiotics. Two lactic acid bacteria (LAB) free of ABR were chosen to be used as starter cultures in media formulated from food waste. Food waste combination (FWC-4) was found to be on par with the nutrient broth in biomass production. The non-ABR LAB strains showed excellent probiotic properties, and in the fed-batch fermentation process, adding a nitrogen source (soya protein) enhanced the microbial biomass (3.7 g/l). Additionally, exopolysaccharide production was found to be 2.3 g/l. This study highlights the ABR incidence in food waste medium and its economic advantage for starter culture biomass production. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01222-9.
Collapse
Affiliation(s)
- Chavan Priyanka Yashwant
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Vijay Rajendran
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Srinivasan Krishnamoorthy
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Baskaran Nagarathinam
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Ashish Rawson
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Arunkumar Anandharaj
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| | - Vignesh Sivanandham
- National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T), Thanjavur, 613005 Tamil Nadu India
| |
Collapse
|
11
|
Nandi A, Pecetta S, Bloom DE. Global antibiotic use during the COVID-19 pandemic: analysis of pharmaceutical sales data from 71 countries, 2020-2022. EClinicalMedicine 2023; 57:101848. [PMID: 36776504 PMCID: PMC9900305 DOI: 10.1016/j.eclinm.2023.101848] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Despite bacterial coinfection rates of less than 10%, antibiotics are prescribed to an estimated 75% of patients with COVID-19, potentially exacerbating antimicrobial resistance. We estimated the associations of COVID-19 cases and vaccinations with global antibiotic sales during the first two years of the COVID-19 pandemic. METHODS We obtained monthly data on broad-spectrum antibiotic sales volumes (cephalosporins, penicillins, macrolides, and tetracyclines) in 71 countries during March 2020-May 2022 from the IQVIA MIDAS® database. These data were combined with country-month-level COVID-19 case and vaccination data from Our World in Data. We used least squares (pooled) and fixed-effects panel data regression models, accounting for country characteristics, to estimate the associations between antibiotic sales volumes and COVID-19 cases and vaccinations per 1000 people. FINDINGS Sales of all four antibiotics fell sharply during April and May 2020, followed by a gradual rise to near pre-pandemic levels through May 2022. In fixed-effects regression models, a 10% increase in monthly COVID-19 cases was associated with 0.2%-0.3% higher sales of cephalosporins, 0.2%-0.3% higher sales of penicillins, 0.4%-0.6% higher sales of macrolides, and 0.3% higher sales of all four antibiotics combined per 1000 people. Across continents, a 10% increase in monthly COVID-19 cases was associated with 0.8%, 1.3%, and 1.5% higher macrolides sales in Europe, North America, and Africa respectively. Sales of other antibiotics across continent were also positively associated with COVID-19 cases, although the estimated associations were smaller in magnitude. No consistent associations were observed between antibiotic sales and COVID-19 vaccinations. Results from pooled regression analysis were similar to those from the fixed-effects models. INTERPRETATION Antibiotic sales were positively associated with COVID-19 cases globally during 2020-2022. Our findings underline that antibiotic stewardship in the context of COVID-19 remains essential. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Arindam Nandi
- The Population Council, New York, USA
- One Health Trust, Washington DC, USA
- Corresponding author. Dag Hammarskjold Plaza, New York, NY, 10017, USA.
| | - Simone Pecetta
- Research and Development Center, GlaxoSmithKline, Siena, Italy
| | - David E. Bloom
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
Che Yusof R, Norhayati MN, Mohd Azman Y. Bacterial coinfection and antibiotic resistance in hospitalized COVID-19 patients: a systematic review and meta-analysis. PeerJ 2023; 11:e15265. [PMID: 37128208 PMCID: PMC10148641 DOI: 10.7717/peerj.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023] Open
Abstract
Background There were a few studies on bacterial coinfection in hospitalized COVID-19 patients worldwide. This systematic review aimed to provide the pooled prevalence of bacterial coinfection from published studies from 2020 to 2022. Methods Three databases were used to search the studies, and 49 studies from 2,451 identified studies involving 212,605 COVID-19 patients were included in this review. Results The random-effects inverse-variance model determined that the pooled prevalence of bacterial coinfection in hospitalized COVID-19 patients was 26.84% (95% CI [23.85-29.83]). The pooled prevalence of isolated bacteria for Acinetobacter baumannii was 23.25% (95% CI [19.27-27.24]), Escherichia coli was 10.51% (95% CI [8.90-12.12]), Klebsiella pneumoniae was 15.24% (95% CI [7.84-22.64]), Pseudomonas aeruginosa was 11.09% (95% CI [8.92-13.27]) and Staphylococcus aureus (11.59% (95% CI [9.71-13.46])). Meanwhile, the pooled prevalence of antibiotic-resistant bacteria for extended-spectrum beta-lactamases producing Enterobacteriaceae was 15.24% (95% CI [7.84-22.64]) followed by carbapenem-resistant Acinetobacter baumannii (14.55% (95% CI [9.59-19.52%])), carbapenem-resistant Pseudomonas aeruginosa (6.95% (95% CI [2.61-11.29])), methicillin-resistant Staphylococcus aureus (5.05% (95% CI [3.49-6.60])), carbapenem-resistant Enterobacteriaceae (4.95% (95% CI [3.10-6.79])), and vancomycin-resistant Enterococcus (1.26% (95% CI [0.46-2.05])). Conclusion All the prevalences were considered as low. However, effective management and prevention of the infection should be considered since these coinfections have a bad impact on the morbidity and mortality of patients.
Collapse
Affiliation(s)
- Ruhana Che Yusof
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohd Noor Norhayati
- Department of Family Medicine, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Yacob Mohd Azman
- Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| |
Collapse
|
13
|
Bartoszewicz M, Czaban SL, Bartoszewicz K, Kuźmiuk D, Ładny JR. Bacterial bloodstream infection in critically ill patients with COVID-19: a retrospective cohort study. Ther Adv Infect Dis 2023; 10:20499361231207178. [PMID: 37869469 PMCID: PMC10590042 DOI: 10.1177/20499361231207178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Background Intensive care unit (ICU) patients with coronavirus disease 2019 (COVID-19), have a high risk of developing bloodstream infections (BSIs). However, the characteristics of and risk factors for BSIs in these patients remain unclear. Objective We aimed to identify prevalent causative pathogens of BSI and related factors in critically ill patients with COVID-19. Design This was a single-center, retrospective cohort study. Methods We analyzed the clinical characteristics and outcomes of 201 ICU patients with COVID-19. Logistic regression analysis was conducted to identify factors associated with BSI occurrence. Furthermore, we identified the primary causative pathogens of BSIs. The study outcomes were death or ICU discharge. Results Among the 201 included patients, 43 (21.4%) patients developed BSI. The mortality rate was non-significantly higher in the BSI group than in the BSI group (65.1% versus 58.9%, p = 0.487). There were significant between-group differences in the obesity prevalence and sex distribution, but not corticosteroid usage. BSI occurrence was significantly associated with duration of mechanical ventilation (MV), presence of ventilator-associated pneumonia, use of neuromuscular blocking agents, length of stay in ICU (ICU LOS), high body mass index (BMI), and male sex. The main causative pathogens were Klebsiella pneumoniae, Acinetobacter baumannii, and Enterococcus faecalis. Multi-drug-resistant pathogens were found in 87% of cases. Regardless of the origin, the common risk factors for BSI were ICU LOS and MV duration. All BSIs were acquired within the hospital setting, with ≈60% of the cases being primary BSIs. A small proportion of the BSI cases were catheter-related (four cases, 6.2%). Ventilator-associated pneumonia and urinary tract infections were present in 25% and 9.4% of the BSI cases, respectively. On average, the first positive blood culture appeared ≈11.4 (±9.7) days after ICU admission. Conclusion Elucidating the risk factors for and common pathogens of BSI can inform prompt management and prevention of BSIs.
Collapse
Affiliation(s)
- Mateusz Bartoszewicz
- Department of Anaesthesiology and Intensive Care, Medical University of Bialystok, Malmeda, Bialystok, Podlaskie, 15-089, Poland
| | - Sławomir Lech Czaban
- Department of Anaesthesiology and Intensive Care, Medical University of Bialystok, Bialystok, Poland
| | - Klaudia Bartoszewicz
- Department of Clinical Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Damian Kuźmiuk
- Department of Anaesthesiology and Intensive Care, Medical University of Bialystok, Bialystok, Poland
| | - Jerzy Robert Ładny
- Department of Emergency Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Point Prevalence Survey of Antimicrobial Use during the COVID-19 Pandemic among Different Hospitals in Pakistan: Findings and Implications. Antibiotics (Basel) 2022; 12:antibiotics12010070. [PMID: 36671271 PMCID: PMC9854885 DOI: 10.3390/antibiotics12010070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The COVID-19 pandemic has significantly influenced antimicrobial use in hospitals, raising concerns regarding increased antimicrobial resistance (AMR) through their overuse. The objective of this study was to assess patterns of antimicrobial prescribing during the current COVID-19 pandemic among hospitals in Pakistan, including the prevalence of COVID-19. A point prevalence survey (PPS) was performed among 11 different hospitals from November 2020 to January 2021. The study included all hospitalized patients receiving an antibiotic on the day of the PPS. The Global-PPS web-based application was used for data entry and analysis. Out of 1024 hospitalized patients, 662 (64.64%) received antimicrobials. The top three most common indications for antimicrobial use were pneumonia (13.3%), central nervous system infections (10.4%) and gastrointestinal indications (10.4%). Ceftriaxone (26.6%), metronidazole (9.7%) and vancomycin (7.9%) were the top three most commonly prescribed antimicrobials among surveyed patients, with the majority of antibiotics administered empirically (97.9%). Most antimicrobials for surgical prophylaxis were given for more than one day, which is a concern. Overall, a high percentage of antimicrobial use, including broad-spectrums, was seen among the different hospitals in Pakistan during the current COVID-19 pandemic. Multifaceted interventions are needed to enhance rational antimicrobial prescribing including limiting their prescribing post-operatively for surgical prophylaxis.
Collapse
|
15
|
Association between Brain Injury Markers and Testosterone in Critically-Ill COVID-19 Male Patients. Microorganisms 2022; 10:microorganisms10112095. [PMID: 36363686 PMCID: PMC9697553 DOI: 10.3390/microorganisms10112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Accumulating data suggest that various neurologic manifestations are reported in critically-ill COVID-19 patients. Although low testosterone levels were associated with poor outcomes, the relationship between testosterone levels and indices of brain injury are still poorly understood. Therefore, we aimed to explore whether testosterone levels are associated with glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), biomarkers of brain injury, in patients with a severe form of COVID-19. The present study was conducted on 65 male patients aged 18−65 with severe COVID-19. Blood samples were collected at three time points: upon admission to ICU, 7 days after, and 14 days after. In patients with neurological sequels (n = 20), UCH-L1 serum concentrations at admission were markedly higher than in patients without them (240.0 (155.4−366.4) vs. 146.4 (92.5−243.9) pg/mL, p = 0.022). GFAP concentrations on admission did not differ between the groups (32.2 (24.2−40.1) vs. 29.8 (21.8−39.4) pg/mL, p = 0.372). Unlike GFAP, UCH-L1 serum concentrations exhibited a negative correlation with serum testosterone in all three time points (r = −0.452, p < 0.001; r = −0.430, p < 0.001 and r = −0.476, p = 0.001, respectively). The present study suggests that the traumatic brain injury biomarker UCH-L1 may be associated with neurological impairments seen in severe COVID-19. Moreover, a negative correlation between UCH-L1 and serum testosterone concentrations implies that testosterone may have a role in the development of neurological sequels in critically-ill COVID-19 patients.
Collapse
|
16
|
Prevalence and Antimicrobial Resistance of Bloodstream Infections Caused by ESKAPEEc Pathogens: A Five-year Analysis. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Antimicrobial resistance in ESKAPEEc (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species, and Escherichia coli) pathogens causing bloodstream infections (BSIs) is a growing threat to clinicians and public health. Objectives: Our purpose was to determine the prevalence and susceptibility of ESKAPEEcs causing BSI over five years (2016 to 2020) at a large tertiary hospital in Istanbul, Turkey. Methods: Of 2591 unique isolates obtained from blood culture specimens, 1.281 (49.4%) were positive for ESKAPEEc pathogens. The ESKAPEEc rates increased from 2016 to 2019 and decreased during the COVID-19 pandemic. Results: The most common pathogen was K. pneumoniae (34.3%). Carbapenem resistant (CR) K. pneumoniae was 61.8% and A. baumannii was 90.4%. The percentages of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecium (VRE) were 38.6% and 29.4%, respectively. Conclusions: Our findings showed a high incidence of ESKAPEEc and AMR in BSIs. Antibiotic policies and restrictions in health care settings and the community will play an essential role in the solution in the future.
Collapse
|
17
|
Prognostic Value of Catestatin in Severe COVID-19: An ICU-Based Study. J Clin Med 2022; 11:jcm11154496. [PMID: 35956112 PMCID: PMC9369405 DOI: 10.3390/jcm11154496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Catestatin is a pleiotropic peptide with a wide range of immunomodulatory effects. Considering that patients with a severe COVID-19 infection have a major immunological dysregulation, the aim of this study was to evaluate catestatin levels in patients with COVID-19 treated in the intensive care unit (ICU) and to compare them between the fatal and non-fatal outcomes. The study included 152 patients with severe COVID-19, out of which 105 had a non-fatal outcome and 47 had a fatal outcome. Serum catestatin levels were estimated by an enzyme-linked immunosorbent assay in a commercially available diagnostic kit. The results show that catestatin levels were significantly lower in the fatal group compared to the non-fatal group (16.6 ± 7.8 vs. 23.2 ± 9.2 ng/mL; p < 0.001). Furthermore, there was a significant positive correlation between serum catestatin levels and vitamin D levels (r = 0.338; p < 0.001) while there was also a significant positive correlation between serum catestatin levels and growth differentiation factor-15 (GDF-15) levels (r = −0.345; p < 0.001). Furthermore, multivariate logistic regression showed that catestatin, GDF-15 and leukocyte count were significant predictors for COVID-19 survival. These findings imply that catestatin could be playing a major immunomodulatory role in the complex pathophysiology of the COVID-19 infection and that serum catestatin could also be a predictor of a poor COVID-19 outcome.
Collapse
|
18
|
Kanj SS, Ramirez P, Rodrigues C. Beyond the Pandemic: The Value of Antimicrobial Stewardship. Front Public Health 2022; 10:902835. [PMID: 35832270 PMCID: PMC9271661 DOI: 10.3389/fpubh.2022.902835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Souha S. Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Paula Ramirez
- Critical Care Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Camilla Rodrigues
- Department of Microbiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, India
| |
Collapse
|
19
|
Mikacic M, Kumric M, Baricevic M, Tokic D, Stojanovic Stipic S, Cvitkovic I, Supe Domic D, Ticinovic Kurir T, Bozic J. Dynamic of Serum TWEAK Levels in Critically Ill COVID-19 Male Patients. J Clin Med 2022; 11:jcm11133699. [PMID: 35806986 PMCID: PMC9267298 DOI: 10.3390/jcm11133699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Although the number of cases and mortality of COVID-19 are seemingly declining, clinicians endeavor to establish indicators and predictors of such responses in order to optimize treatment regimens for future outbreaks of SARS-CoV-2 or similar viruses. Considering the importance of aberrant immune response in severe COVID-19, in the present study, we aimed to explore the dynamic of serum TNF-like weak inducer of apoptosis (TWEAK) levels in critically-ill COVID-19 patients and establish whether these levels may predict in-hospital mortality and if TWEAK is associated with impairment of testosterone levels observed in this population. The present single-center cohort study involved 66 men between the ages of 18 and 65 who were suffering from a severe type of COVID-19. Serum TWEAK was rising during the first week after admission to intensive care unit (ICU), whereas decline to baseline values was observed in the second week post-ICU admission (p = 0.032) but not in patients who died in hospital. Receiver-operator characteristics analysis demonstrated that serum TWEAK at admission to ICU is a significant predictor of in-hospital mortality (AUC = 0.689, p = 0.019). Finally, a negative correlation was found between serum TWEAK at admission and testosterone levels (r = −0.310, p = 0.036). In summary, serum TWEAK predicts in-hospital mortality in severe COVID-19. In addition, inflammatory pathways including TWEAK seem to be implicated in pathophysiology of reproductive hormone axis disturbance in severe form of COVID-19.
Collapse
Affiliation(s)
- Marijana Mikacic
- Intensive Care Unit of the Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia; (M.M.); (M.B.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (I.C.); (T.T.K.)
| | - Martina Baricevic
- Intensive Care Unit of the Department of Internal Medicine, University Hospital of Split, 21000 Split, Croatia; (M.M.); (M.B.)
| | - Daria Tokic
- Department of Anesthesiology and Intensive Care, University Hospital of Split, 21000 Split, Croatia; (D.T.); (S.S.S.)
| | - Sanda Stojanovic Stipic
- Department of Anesthesiology and Intensive Care, University Hospital of Split, 21000 Split, Croatia; (D.T.); (S.S.S.)
| | - Ivan Cvitkovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (I.C.); (T.T.K.)
| | - Daniela Supe Domic
- Department of Health Studies, University of Split, 21000 Split, Croatia;
- Department of Medical Laboratory Diagnostics, University Hospital of Split, 21000 Split, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (I.C.); (T.T.K.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.); (I.C.); (T.T.K.)
- Correspondence:
| |
Collapse
|
20
|
Pérez de la Lastra JM, Anand U, González-Acosta S, López MR, Dey A, Bontempi E, Morales delaNuez A. Antimicrobial Resistance in the COVID-19 Landscape: Is There an Opportunity for Anti-Infective Antibodies and Antimicrobial Peptides? Front Immunol 2022; 13:921483. [PMID: 35720330 PMCID: PMC9205220 DOI: 10.3389/fimmu.2022.921483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Although COVID-19 has captured most of the public health attention, antimicrobial resistance (AMR) has not disappeared. To prevent the escape of resistant microorganisms in animals or environmental reservoirs a "one health approach" is desirable. In this context of COVID-19, AMR has probably been affected by the inappropriate or over-use of antibiotics. The increased use of antimicrobials and biocides for disinfection may have enhanced the prevalence of AMR. Antibiotics have been used empirically in patients with COVID-19 to avoid or prevent bacterial coinfection or superinfections. On the other hand, the measures to prevent the transmission of COVID-19 could have reduced the risk of the emergence of multidrug-resistant microorganisms. Since we do not currently have a sterilizing vaccine against SARS-CoV-2, the virus may still multiply in the organism and new mutations may occur. As a consequence, there is a risk of the appearance of new variants. Nature-derived anti-infective agents, such as antibodies and antimicrobial peptides (AMPs), are very promising in the fight against infectious diseases, because they are less likely to develop resistance, even though further investigation is still required.
Collapse
Affiliation(s)
- José M. Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Sergio González-Acosta
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| | - Manuel R. López
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Elza Bontempi
- National Interuniversity Consortium of Materials Science and Technology (INSTM) and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - Antonio Morales delaNuez
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), San Cristóbal de la Laguna, Spain
| |
Collapse
|
21
|
Zulkipli M, Mahbub N, Fatima A, Wan-Lin SL, Khoo TJ, Mahboob T, Rajagopal M, Samudi C, Kathirvalu G, Abdullah NH, Pinho AR, Oliveira SMR, Pereira MDL, Rahmatullah M, Hasan A, Paul AK, Butler MS, Nawaz M, Wilairatana P, Nissapatorn V, Wiart C. Isolation and Characterization of Werneria Chromene and Dihydroxyacidissimol from Burkillanthus malaccensis (Ridl.) Swingle. PLANTS (BASEL, SWITZERLAND) 2022; 11:1388. [PMID: 35684161 PMCID: PMC9182682 DOI: 10.3390/plants11111388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The secondary metabolites of endemic plants from the Rutaceae family, such as Burkillanthusmalaccensis (Ridl.) Swingle from the rainforest of Malaysia, has not been studied. Burkillanthusmalaccensis (Ridl.) Swingle may produce antibacterial and antibiotic-potentiating secondary metabolites. Hexane, chloroform, and methanol extracts of leaves, bark, wood, pericarps, and endocarps were tested against bacteria by broth microdilution assay and their antibiotic-potentiating activities. Chromatographic separations of hexane extracts of seeds were conducted to investigate effective phytochemicals and their antibacterial activities. Molecular docking studies of werneria chromene and dihydroxyacidissiminol against SARS-CoV-2 virus infection were conducted using AutoDock Vina. The methanol extract of bark inhibited the growth of Staphylococcusaureus, Escherichiacoli, and Pseudomonasaeruginosa with the minimum inhibitory concentration of 250, 500, and 250 µg/mL, respectively. The chloroform extract of endocarps potentiated the activity of imipenem against imipenem-resistant Acinetobacterbaumannii. The hexane extract of seeds increased the sensitivity of P. aeruginosa against ciprofloxacin and levofloxacin. The hexane extract of seeds and chloroform extract of endocarps were chromatographed, yielding werneria chromene and dihydroxyacidissiminol. Werneria chromene was bacteriostatic for P.aeruginosa and P.putida, with MIC/MBC values of 1000 > 1000 µg/mL. Dihydroxyacidissiminol showed the predicted binding energies of −8.1, −7.6, −7.0, and −7.5 kcal/mol with cathepsin L, nsp13 helicase, SARS-CoV-2 main protease, and SARS-CoV-2 spike protein receptor-binding domain S-RBD. Burkillanthusmalaccensis (Ridl.) Swingle can be a potential source of natural products with antibiotic-potentiating activity and that are anti-SARS-CoV-2.
Collapse
Affiliation(s)
- Masyitah Zulkipli
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia; (M.Z.); (N.M.); (S.L.W.-L.); (T.-J.K.)
| | - Nuzum Mahbub
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia; (M.Z.); (N.M.); (S.L.W.-L.); (T.-J.K.)
| | - Ayesha Fatima
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34093, Turkey;
| | - Stefanie Lim Wan-Lin
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia; (M.Z.); (N.M.); (S.L.W.-L.); (T.-J.K.)
| | - Teng-Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih 43500, Malaysia; (M.Z.); (N.M.); (S.L.W.-L.); (T.-J.K.)
| | - Tooba Mahboob
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.M.); (C.S.); (G.K.)
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Chandramathi Samudi
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.M.); (C.S.); (G.K.)
| | - Gheetanjali Kathirvalu
- Department of Medical Microbiology, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.M.); (C.S.); (G.K.)
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Malaysia;
| | - Ana Rita Pinho
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.P.); (M.d.L.P.)
- Neuroscience and Signaling Laboratory, Institute of Biomedicine-IBIMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sonia M. R. Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW 2305, Australia
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (A.R.P.); (M.d.L.P.)
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (A.H.)
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Mark S. Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Muhammad Nawaz
- Department of Nano-Medicine, Institute for Research and Medical Consultations (IRM), Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
22
|
Fontana C, Favaro M, Minelli S, Bossa MC, Altieri A, Celeste M, Pennacchiotti C, Sarmati L, Andreoni M, Cucchi C, Magrini A. Antimicrobial resistance in the times of COVID-19 in a roman teaching hospital. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2058620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Carla Fontana
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Laboratory of Microbiology, University Hospital “Tor Vergata”, Rome, Italy
| | - Marco Favaro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Silvia Minelli
- Laboratory of Microbiology, University Hospital “Tor Vergata”, Rome, Italy
| | | | - Anna Altieri
- Laboratory of Microbiology, University Hospital “Tor Vergata”, Rome, Italy
| | | | | | - Loredana Sarmati
- Department of System Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Infectious Diseases Clinic, University Hospital “Tor Vergata”, Rome, Italy
| | - Massimo Andreoni
- Department of System Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Infectious Diseases Clinic, University Hospital “Tor Vergata”, Rome, Italy
| | - Carmela Cucchi
- Health Department, University Hospital “Tor Vergata”, Rome, Italy
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
23
|
Ayoub Moubareck C, Hammoudi Halat D. The Collateral Effects of COVID-19 Pandemic on the Status of Carbapenemase-Producing Pathogens. Front Cell Infect Microbiol 2022; 12:823626. [PMID: 35372126 PMCID: PMC8968076 DOI: 10.3389/fcimb.2022.823626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/27/2022] [Indexed: 12/28/2022] Open
Abstract
The serious challenge of antimicrobial resistance continues to threaten public health and lingers in the era of the coronavirus disease 2019 (COVID-19), declared pandemic by the World Health Organization. While the pandemic has triggered the importance of infection control practices and preventive measures such as physical distancing, hand hygiene, travel reduction and quarantine, the ongoing alarm of antimicrobial resistance seems to accompany the pandemic too. Antimicrobial resistance has been fostered during COVID-19, possibly due to high rate of empirical antibiotic utilization in COVID-19 patients, increased use of biocides, and the disruption of proper healthcare for other conditions. Specifically, carbapenemase-producing Gram-negative bacteria have shown to cause secondary bacterial infections in patients hospitalized for COVID-19. Clinical and microbiological evidence of such infections is accumulating in different parts of the world. With the resilient nature of carbapenemases, their association with mortality, and the limited treatment options available, concerns regarding this group of antibiotic-hydrolyzing enzymes during the pandemic are expected to upsurge. While the additional burden carbapenemases exert on healthcare is worrisome, it remains hidden or abandoned among the various health consequences of the pandemic. The purpose of this minireview is to shed a light on carbapenemase-associated infections during such unprecedented time of COVID-19. A focused insight shall be made into carbapenemases, their implications for COVID-19 patients, and the features and consequences of co-infection, with a review of available evidence from pertinent literature. The importance of increased surveillance for carbapenemase-producers and optimizing their management in relation to the pandemic, shall be addressed as well.
Collapse
Affiliation(s)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa, Lebanon
| |
Collapse
|
24
|
Főldes A, Székely E, Voidăzan ST, Dobreanu M. Comparison of Six Phenotypic Assays with Reference Methods for Assessing Colistin Resistance in Clinical Isolates of Carbapenemase-Producing Enterobacterales: Challenges and Opportunities. Antibiotics (Basel) 2022; 11:antibiotics11030377. [PMID: 35326840 PMCID: PMC8944616 DOI: 10.3390/antibiotics11030377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The global escalation of severe infections due to carbapenemase-producing Enterobacterales (CPE) isolates has prompted increased usage of parenteral colistin. Considering the reported difficulties in assessing their susceptibility to colistin, the purpose of the study was to perform a comparative evaluation of six phenotypic assays—the colistin broth disc elution (CBDE), Vitek 2 Compact (bioMérieux SA, Marcy l’Etoile, France), the Micronaut MIC-Strip Colistin (Merlin Diagnostika GMBH, Bornheim-Hensel, Germany), the gradient diffusion strip Etest (bioMérieux SA, Marcy l’Etoile, France), ChromID Colistin R Agar (COLR) (bioMérieux SA, Marcy l’Etoile, France), and the Rapid Polymyxin NP Test (ELITechGroup, Signes, France)—versus the reference method of broth microdilution (BMD). All false resistance results were further assessed using population analysis profiling (PAP). Ninety-two nonrepetitive clinical CPE strains collected from two hospitals were evaluated. The BMD confirmed 36 (39.13%) isolates susceptible to colistin. According to the BMD, the Micronaut MIC-Strip Colistin, the CBDE, and the COLR medium exhibited category agreement (CA) of 100%. In comparison with the BMD, the highest very major discrepancy (VMD) was noted for Etest (n = 15), and the only false resistance results were recorded for the Rapid Polymyxin NP Test (n = 3). Only the PAP method and the Rapid Polymyxin NP Test were able to detect heteroresistant isolates (n = 2). Thus, there is an urgent need to further optimize the diagnosis strategies for colistin resistance.
Collapse
Affiliation(s)
- Annamária Főldes
- Department of Microbiology, Laboratory of Medical Analysis, “Dr. Constantin Opriş” County Emergency Hospital, 430031 Baia Mare, Romania
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
- Correspondence:
| | - Edit Székely
- Department of Microbiology, Central Clinical Laboratory, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Microbiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Septimiu Toader Voidăzan
- Department of Epidemiology, “George Emil Palade’’ University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Minodora Dobreanu
- Department of Clinical Biochemistry, Central Clinical Laboratory, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Laboratory Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
25
|
Lenart-Boroń AM, Boroń PM, Prajsnar JA, Guzik MW, Żelazny MS, Pufelska MD, Chmiel MJ. COVID-19 lockdown shows how much natural mountain regions are affected by heavy tourism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151355. [PMID: 34740648 PMCID: PMC9755070 DOI: 10.1016/j.scitotenv.2021.151355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 05/02/2023]
Abstract
Mountain areas in Poland are among the most frequented tourist destinations and such intensive tourism negatively affects the natural environment. The COVID-19 pandemic and the resulting lockdown restricted travel for a few months in 2020, providing a unique opportunity to observe the studied mountain environment without the impact of typical tourist traffic. This study is based on the determination of antibiotic content, hydrochemical parameters, enumeration of culturable bacterial water quality indicators, antimicrobial susceptibility tests together with extended spectrum beta-lactamase (ESBL) gene detection in waterborne E. coli and NGS-based bacterial community composition at six sites along the Białka river valley (one of the most popular touristic regions in Poland) in three periods: in summer and winter tourist seasons and during the COVID-19 lockdown. The results of individual measurements showed decreased numbers of bacterial indicators of water contamination (e.g. numbers of E. coli dropped from 99 × 104 CFU/100 ml to 12 CFU/100 ml at the most contaminated site) and the share of antimicrobial resistant E. coli (total resistance dropped from 21% in summer to 9% during lockdown, share of multidrug resistant strains from 100 to 44%, and ESBL from 20% in summer to none during lockdown). Antibiotic concentrations were the highest during lockdown. The use of multivariate analysis (principal component analysis - PCA and heatmaps) revealed a clear pattern of tourism-related anthropogenic pressure on the water environment and positive impact of COVID-19 lockdown on water quality. PCA distinguished three major factors determining water quality: F1 shows strong effect of anthropogenic pressure; F2 describes the lockdown-related quality restoration processes; F3 is semi-natural and describes the differences between the most pristine and most anthropogenically-impacted waters.
Collapse
Affiliation(s)
- Anna M Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland.
| | - Piotr M Boroń
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Kraków, 29 Listopada Ave. 46, 31-425 Kraków, Poland
| | - Justyna A Prajsnar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Maciej W Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek Str. 8, 30-239, Kraków, Poland
| | - Mirosław S Żelazny
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Marta D Pufelska
- Department of Hydrology, Institute of Geography and Spatial Management, Jagiellonian University in Kraków, Gronostajowa Str. 7, 30-387, Kraków, Poland
| | - Maria J Chmiel
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| |
Collapse
|
26
|
Gutema G, Homa G. Cropping Up Crisis at the Nexus Between COVID-19 and Antimicrobial Resistance (AMR) in Africa: A Scoping Review and Synthesis of Early Evidence. Cureus 2022; 14:e21035. [PMID: 35155003 PMCID: PMC8820498 DOI: 10.7759/cureus.21035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we aim to synthesize some evidence on the impacts that coronavirus disease 2019 (COVID-19) is having on the epidemiology of antimicrobial resistance (AMR) in Africa since it was declared a global pandemic by the WHO in March 2020. A scoping review was undertaken by collecting and curating relevant resources from peer-reviewed articles and also from the gray literature. Mixed approaches of extracting data (qualitative and quantitative) were employed in synthesizing evidence, as suggested by the Health Evidence Network. A model constructed based on the synthesis of early evidence available on the effects of factors linked to COVID-19 in impacting the evolution of AMR in Africa predicted that, in cumulative terms, those factors favoring the evolution of AMR outpace those disfavoring it by no less than three folds. COVID-19 is likely fueling the evolution of AMR almost unhindered in Africa. Due to the recognition of this crisis, concerted efforts for resource mobilization and global cooperation are needed to tackle it.
Collapse
|
27
|
Antimicrobial Resistance Following Prolonged Use of Hand Hygiene Products: A Systematic Review. PHARMACY 2022; 10:pharmacy10010009. [PMID: 35076608 PMCID: PMC8788461 DOI: 10.3390/pharmacy10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
Background: This systematic review aimed to establish whether antimicrobial resistance (AMR) occurs following prolonged use of antimicrobial hand hygiene (HH) products, and, if so, in what magnitude. Methods: Key bibliographic databases were searched to locate items on HH use and AMR development from database inception to December 2020. Records were screened and full texts of all potentially eligible articles were retrieved and checked for inclusion. The following data from the included studies were abstracted: type of HH product used, including the name of antimicrobial agent, study setting, country, study year, duration of use and development of AMR including the organisms involved. Quality assessment was done using the Newcastle-Ottawa Scale (NOS). Results: Of 339 full-text articles assessed for eligibility, only four heterogeneous United States (US) studies conducted in the period between 1986 and 2015 were found eligible, and included. One hospital-based study showed evidence of AMR following long term use of HH products, two studies conducted in household settings showed no evidence of AMR, and another experimental study showed partial evidence of AMR. The overall certainty of the evidence was moderate. Conclusion: Prolonged use of HH products may cause AMR in health care settings, but perhaps not in other settings.
Collapse
|
28
|
Karoli NA, Rebrov A. Some issues of safety of antimicrobial therapy in COVID-19 patients. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.226-235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Currently, there is a lack of evidence for empiric use of antimicrobial agents in most patients with COVID-19 in outpatient and hospital settings as the overall proportion of secondary bacterial infections in COVID-19 is quite low. This literature review summarizes data on changes in antimicrobial resistance over the course of COVID-19 pandemic, especially in nosocomial ESKAPE pathogens. The other significant consequences of excessive and unnecessary administration of antibiotics to COVID-19 patients including risk of Clostridioides difficile infection and adverse effects of antimicrobial agents are also discussed.
Collapse
Affiliation(s)
- Nina A. Karoli
- Saratov State Medical University named after V.I. Razumovsky (Saratov, Russia)
| | - A.P. Rebrov
- Saratov State Medical University named after V.I. Razumovsky (Saratov, Russia)
| |
Collapse
|
29
|
Saha M, Sarkar A. Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. J Xenobiot 2021; 11:197-214. [PMID: 34940513 PMCID: PMC8708150 DOI: 10.3390/jox11040013] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
With the advancements of science, antibiotics have emerged as an amazing gift to the human and animal healthcare sectors for the treatment of bacterial infections and other diseases. However, the evolution of new bacterial strains, along with excessive use and reckless consumption of antibiotics have led to the unfolding of antibiotic resistances to an excessive level. Multidrug resistance is a potential threat worldwide, and is escalating at an extremely high rate. Information related to drug resistance, and its regulation and control are still very little. To interpret the onset of antibiotic resistances, investigation on molecular analysis of resistance genes, their distribution and mechanisms are urgently required. Fine-tuned research and resistance profile regarding ESKAPE pathogen is also necessary along with other multidrug resistant bacteria. In the present scenario, the interaction of bacterial infections with SARS-CoV-2 is also crucial. Tracking and in-silico analysis of various resistance mechanisms or gene/s are crucial for overcoming the problem, and thus, the maintenance of relevant databases and wise use of antibiotics should be promoted. Creating awareness of this critical situation among individuals at every level is important to strengthen the fight against this fast-growing calamity. The review aimed to provide detailed information on antibiotic resistance, its regulatory molecular mechanisms responsible for the resistance, and other relevant information. In this article, we tried to focus on the correlation between antimicrobial resistance and the COVID-19 pandemic. This study will help in developing new interventions, potential approaches, and strategies to handle the complexity of antibiotic resistance and prevent the incidences of life-threatening infections.
Collapse
Affiliation(s)
- Mousumi Saha
- Department of Microbiology, Ballygunge Science College, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Agniswar Sarkar
- Virus Unit [NICED-ICMR], GB4-1st Floor, ID and BG Hospital, 57, S. C. Banerjee Road, Beliaghata, Kolkata 700010, India;
| |
Collapse
|
30
|
Contamination of Hospital Surfaces with Bacterial Pathogens under the Current COVID-19 Outbreak. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179042. [PMID: 34501634 PMCID: PMC8431522 DOI: 10.3390/ijerph18179042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 pandemic remains a global health issue for several reasons, such as the low vaccination rates and a lack of developed herd immunity to the evolution of SARS-CoV-2, as well as its potential inclination to elude neutralizing antibodies. It should be noted that the severity of the COVID-19 disease is significantly affected by the presence of co-infections. Comorbid conditions are caused not only by pathogenic and opportunistic microorganisms but also by some representatives of the environmental microbiome. The presence of patients with moderate and severe forms of the disease in hospitals indicates the need for epidemiological monitoring of (1) bacterial pathogens circulating in hospitals, especially the ESKAPE group pathogens, and (2) the microbiome of various surfaces in hospitals. In our study, we used combined methods based on PCR and NGS sequencing, which are widely used for epidemiological monitoring. Through this approach, we identified the DNA of pathogenic bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, CoNS, and Achromobacter spp.) on various surfaces. We also estimated the microbiome diversity of surfaces and identified the potential reservoirs of infections using 16S rRNA profiling. Although we did not assess the viability of identified microorganisms, our results indicate the possible risks of insufficient regular disinfection of surfaces, regardless of department, at the Infectious Diseases Hospital. Controlling the transmission of nosocomial diseases is critical to the successful treatment of COVID-19 patients, the rational use of antimicrobial drugs, and timely decontamination measures.
Collapse
|