1
|
Khalifa T, Abdel-Kader NI, Elbagory M, Ahmed ME, Saber EA, Omara AED, Mahdy RM. Investigating the influence of eco-friendly approaches on saline soil traits and growth of common bean plants ( Phaseolus vulgaris L.). PeerJ 2024; 12:e17828. [PMID: 39221268 PMCID: PMC11365486 DOI: 10.7717/peerj.17828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Soil salinization significantly impacts agricultural lands and crop productivity in the study area. Moreover, freshwater scarcity poses a significant obstacle to soil reclamation and agricultural production. Therefore, eco-friendly strategies must be adopted for agro-ecosystem sustainability under these conditions. A study conducted in 2022 and 2023 examined the interaction effects of various soil mulching materials (unmulched, white plastic, rice straw, and sawdust) and chitosan foliar spray application (control, 250 mg L-1 of normal chitosan, 125 mg L-1 of nano chitosan, and 62.5 mg L-1 of nano chitosan) on the biochemical soil characteristics and productivity of common beans in clay-saline soil. Higher organic matter, available nutrient content, and total bacteria count in soils were found under organic mulching treatments (rice straw and sawdust). In contrast, the white plastic mulching treatment resulted in the lowest values of soil electrical conductivity (EC) and the highest soil water content. Conversely, chitosan foliar spray treatments had the least impact on the chemical properties of the soil. Plants sprayed with 62.5 mg L-1 of nano chitosan exhibited higher chlorophyll content, plant height, fresh weight of shoots and roots, seed yield, and nutrient content compared to other chitosan foliar spray applications. All treatments studied led to a significant reduction in fungal communities and Na% in plants. The combined effect of organic mulch materials and foliar spray application of 62.5 mg L-1 nano chitosan appeared to enhance biochemical saline soil properties and common bean productivity.
Collapse
Affiliation(s)
- Tamer Khalifa
- Soil Improvement and Conservation Research Department, Soil, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza, Egypt
| | | | - Mohssen Elbagory
- Department of Biology, Faculty of Science and Arts, King Khalid University, Assir, Mohail, Saudi Arabia
| | | | - Esraa Ahmed Saber
- Soil and Water Department Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Alaa El-Dein Omara
- Soil Microbiology Research Department, Soil, Water, and Environment Research Institute (SWERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Rehab Mohamed Mahdy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Ilyas M, Maqsood MF, Shahbaz M, Zulfiqar U, Ahmad K, Naz N, Ali MF, Ahmad M, Ali Q, Yong JWH, Ali HM. Alleviating salinity stress in canola (Brassica napus L.) through exogenous application of salicylic acid. BMC PLANT BIOLOGY 2024; 24:611. [PMID: 38926637 PMCID: PMC11210054 DOI: 10.1186/s12870-024-05314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.
Collapse
Affiliation(s)
- Maria Ilyas
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Kamran Ahmad
- Department of Botany, College of Life Sciences, Northwest A&F University, Yangling , Shaanxi, 712100, China
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Fraz Ali
- College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Qasim Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Alsudays IM, Alshammary FH, Alabdallah NM, Alatawi A, Alotaibi MM, Alwutayd KM, Alharbi MM, Alghanem SMS, Alzuaibr FM, Gharib HS, Awad-Allah MMA. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC PLANT BIOLOGY 2024; 24:191. [PMID: 38486134 PMCID: PMC10941484 DOI: 10.1186/s12870-024-04863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).
Collapse
Affiliation(s)
| | - Fowzia Hamdan Alshammary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Aishah Alatawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mashael M Alotaibi
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Maha Mohammed Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Suliman M S Alghanem
- Department of Biology, College of Science, Qassim University, Buraidah, Saudi Arabia
| | | | - Hany S Gharib
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafrelsheikh, 33516, Egypt
| | | |
Collapse
|
4
|
Mulet JM, Porcel R, Yenush L. Modulation of potassium transport to increase abiotic stress tolerance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5989-6005. [PMID: 37611215 DOI: 10.1093/jxb/erad333] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Potassium is the major cation responsible for the maintenance of the ionic environment in plant cells. Stable potassium homeostasis is indispensable for virtually all cellular functions, and, concomitantly, viability. Plants must cope with environmental changes such as salt or drought that can alter ionic homeostasis. Potassium fluxes are required to regulate the essential process of transpiration, so a constraint on potassium transport may also affect the plant's response to heat, cold, or oxidative stress. Sequencing data and functional analyses have defined the potassium channels and transporters present in the genomes of different species, so we know most of the proteins directly participating in potassium homeostasis. The still unanswered questions are how these proteins are regulated and the nature of potential cross-talk with other signaling pathways controlling growth, development, and stress responses. As we gain knowledge regarding the molecular mechanisms underlying regulation of potassium homeostasis in plants, we can take advantage of this information to increase the efficiency of potassium transport and generate plants with enhanced tolerance to abiotic stress through genetic engineering or new breeding techniques. Here, we review current knowledge of how modifying genes related to potassium homeostasis in plants affect abiotic stress tolerance at the whole plant level.
Collapse
Affiliation(s)
- Jose M Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
5
|
Benito P, Bellón J, Porcel R, Yenush L, Mulet JM. The Biostimulant, Potassium Humate Ameliorates Abiotic Stress in Arabidopsis thaliana by Increasing Starch Availability. Int J Mol Sci 2023; 24:12140. [PMID: 37569516 PMCID: PMC10418871 DOI: 10.3390/ijms241512140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Potassium humate is a widely used biostimulant known for its ability to enhance growth and improve tolerance to abiotic stress. However, the molecular mechanisms explaining its effects remain poorly understood. In this study, we investigated the mechanism of action of potassium humate using the model plant Arabidopsis thaliana. We demonstrated that a formulation of potassium humate effectively increased the fresh weight accumulation of Arabidopsis plants under normal conditions, salt stress (sodium or lithium chloride), and particularly under osmotic stress (mannitol). Interestingly, plants treated with potassium humate exhibited a reduced antioxidant response and lower proline accumulation, while maintaining photosynthetic activity under stress conditions. The observed sodium and osmotic tolerance induced by humate was not accompanied by increased potassium accumulation. Additionally, metabolomic analysis revealed that potassium humate increased maltose levels under control conditions but decreased levels of fructose. However, under stress, both maltose and glucose levels decreased, suggesting changes in starch utilization and an increase in glycolysis. Starch concentration measurements in leaves showed that plants treated with potassium humate accumulated less starch under control conditions, while under stress, they accumulated starch to levels similar to or higher than control plants. Taken together, our findings suggest that the molecular mechanism underlying the abiotic stress tolerance conferred by potassium humate involves its ability to alter starch content under normal growth conditions and under salt or osmotic stress.
Collapse
Affiliation(s)
- Patricia Benito
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
- Caldic Ibérica, S. L. U. Llobateras 23-25, pol.ind. Santiga, Barberà del Vallés, 08210 Barcelona, Spain;
| | - Javier Bellón
- Caldic Ibérica, S. L. U. Llobateras 23-25, pol.ind. Santiga, Barberà del Vallés, 08210 Barcelona, Spain;
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
| |
Collapse
|