1
|
Faulkner M, Andrews F, Scrutton N. Improving productivity of citramalate from CO 2 by Synechocystis sp. PCC 6803 through design of experiment. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:143. [PMID: 39639409 PMCID: PMC11622482 DOI: 10.1186/s13068-024-02589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cyanobacteria have long been suggested as an industrial chassis for the conversion of carbon dioxide to products as part of a circular bioeconomy. The slow growth, carbon fixation rates, and limits of carbon partitioning between biomass and product in cyanobacteria must be overcome to fully realise this industrial potential. Typically, flux towards heterologous pathways is limited by the availability of core metabolites. Citramalate is produced in a single enzymatic step through the condensation of the central metabolites pyruvate and acetyl-CoA; improvements in citramalate productivity can, therefore, be used as a measure of overcoming this limitation. Furthermore, citramalate is a useful biomaterial precursor and provides a route to renewable methyl methacrylate and poly(methyl methacrylate), which is often traded as Perspex or Plexiglas. RESULTS Here, we describe a phenomenon where the concerted optimisation of process parameters significantly increased citramalate production in Synechocystis sp. PCC 6803. Design of experiment principles were used to determine the optima for each parameter and the interplay between multiple parameters. This approach facilitated a ~ 23-fold increase in citramalate titre from initial unoptimised experiments. The process of scale-up from batch cultures to 0.5, 2, and 5 L photobioreactors is described. At the 2-L scale, citramalate titres from carbon dioxide reached 6.35 g/L with space-time yields of 1.59 g/L/day whilst 5-L PBRs yielded 3.96 ± 0.23 g/L with a productivity of 0.99 ± 0.06 g/L/day. We believe the decrease in productivity from 2-L to 5-L scale was likely due to the increased pathlength and shading for light delivery reducing incident light per cell. However, changes in productivity and growth characteristics are not uncommon when scaling up biotechnology processes and have numerous potential causes. CONCLUSIONS This work demonstrates that the use of a process parameter control regime can ameliorate precursor limitation and enhance citramalate production. Since pyruvate and/or acetyl-CoA give rise to numerous products of biotechnological interest, the workflow presented here could be employed to optimise flux towards other heterologous pathways. Understanding the factors controlling and thus increasing carbon partitioning to product will help progress cyanobacteria as part of a carbon-neutral circular bioeconomy. This is the first study using design of experiment to optimise overall carbon fixation rate and carbon partitioning to product, with the goal of improving the performance of a cyanobacterium as a host for biological carbon capture.
Collapse
Affiliation(s)
- Matthew Faulkner
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Fraser Andrews
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nigel Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
2
|
Zhao W, Zhu J, Yang S, Liu J, Sun Z, Sun H. Microalgal metabolic engineering facilitates precision nutrition and dietary regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175460. [PMID: 39137841 DOI: 10.1016/j.scitotenv.2024.175460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Microalgae have gained considerable attention as promising candidates for precision nutrition and dietary regulation due to their versatile metabolic capabilities. This review innovatively applies system metabolic engineering to utilize microalgae for precision nutrition and sustainable diets, encompassing the construction of microalgal cell factories, cell cultivation and practical application of microalgae. Manipulating the metabolic pathways and key metabolites of microalgae through multi-omics analysis and employing advanced metabolic engineering strategies, including ZFNs, TALENs, and the CRISPR/Cas system, enhances the production of valuable bioactive compounds, such as omega-3 fatty acids, antioxidants, and essential amino acids. This work begins by providing an overview of the metabolic diversity of microalgae and their ability to thrive in diverse environmental conditions. It then delves into the principles and strategies of metabolic engineering, emphasizing the genetic modifications employed to optimize microalgal strains for enhanced nutritional content. Enhancing PSY, BKT, and CHYB benefits carotenoid synthesis, whereas boosting ACCase, fatty acid desaturases, and elongases promotes polyunsaturated fatty acid production. Here, advancements in synthetic biology, evolutionary biology and machine learning are discussed, offering insights into the precision and efficiency of metabolic pathway manipulation. Also, this review highlights the potential impact of microalgal precision nutrition on human health and aquaculture. The optimized microalgal strains could serve as sustainable and cost-effective sources of nutrition for both human consumption and aquaculture feed, addressing the growing demand for functional foods and environmentally friendly feed alternatives. The tailored microalgal strains are anticipated to play a crucial role in meeting the nutritional needs of diverse populations and contributing to sustainable food production systems.
Collapse
Affiliation(s)
- Weiyang Zhao
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jiale Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Liu X, Tang K, Hu J. Application of Cyanobacteria as Chassis Cells in Synthetic Biology. Microorganisms 2024; 12:1375. [PMID: 39065143 PMCID: PMC11278661 DOI: 10.3390/microorganisms12071375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Synthetic biology is an exciting new area of research that combines science and engineering to design and build new biological functions and systems. Predictably, with the development of synthetic biology, more efficient and economical photosynthetic microalgae chassis will be successfully constructed, making it possible to break through laboratory research into large-scale industrial applications. The synthesis of a range of biochemicals has been demonstrated in cyanobacteria; however, low product titers are the biggest barrier to the commercialization of cyanobacterial biotechnology. This review summarizes the applied improvement strategies from the perspectives of cyanobacteria chassis cells and synthetic biology. The harvest advantages of cyanobacterial products and the latest progress in improving production strategies are discussed according to the product status. As cyanobacteria synthetic biology is still in its infancy, apart from the achievements made, the difficulties and challenges in the application and development of cyanobacteria genetic tool kits in biochemical synthesis, environmental monitoring, and remediation were assessed.
Collapse
Affiliation(s)
| | | | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.L.); (K.T.)
| |
Collapse
|
4
|
Rocha MF, Vieira Magalhães-Ghiotto GA, Bergamasco R, Gomes RG. Cyanobacteria and cyanotoxins in the environment and water intakes: Reports, diversity of congeners, detection by mass spectrometry and their impact on health. Toxicon 2024; 238:107589. [PMID: 38160739 DOI: 10.1016/j.toxicon.2023.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Cyanobacteria are aquatic microorganisms of high interest for research due to the production of secondary metabolites, among which the most popular are cyanotoxins, responsible for causing severe poisoning in humans and animals through ingestion or contact with contaminated water bodies. Monitoring the number of cyanobacteria in water and concentrations of secreted cyanotoxins with the aid of sensitive and reliable methods is considered the primary action for evaluating potentially toxic blooms. There is a great diversity of methods to detect and identify these types of micro contaminants in water, differing by the degree of sophistication and information provided. Mass Spectrometry stands out for its accuracy and sensitivity in identifying toxins, making it possible to identify and characterize toxins produced by individual species of cyanobacteria, in low quantities. In this review, we seek to update some information about cyanobacterial peptides, their effects on biological systems, and the importance of the main Mass Spectrometry methods used for detection, extraction, identification and monitoring of cyanotoxins.
Collapse
Affiliation(s)
- Mariana Fernandes Rocha
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil.
| | - Grace Anne Vieira Magalhães-Ghiotto
- Department of Biotechnology, Genetics and Cell Biology, Biological Sciences Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosângela Bergamasco
- Department of Chemical Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Raquel Guttierres Gomes
- Department of Food Engineering, Technology Center, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
5
|
Krings S, Chen Y, Keddie JL, Hingley-Wilson S. Oxygen evolution from extremophilic cyanobacteria confined in hard biocoatings. Microbiol Spectr 2023; 11:e0187023. [PMID: 37747195 PMCID: PMC10580922 DOI: 10.1128/spectrum.01870-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
Biocoatings, in which viable bacteria are immobilized within a waterborne polymer coating for a wide range of potential applications, have garnered greater interest in recent years. In bioreactors, biocoatings can be ready-to-use alternatives for carbon capture or biofuel production that could be reused multiple times. Here, we have immobilized cyanobacteria in mechanically hard biocoatings, which were deposited from polymer colloids in water (i.e., latex). The biocoatings are formed upon heating to 37°C and fully dried before rehydrating. The viability and oxygen evolution of three cyanobacterial species within the biocoatings were compared. Synechococcus sp. PCC 7002 was non-viable inside the biocoatings immediately after drying, whereas Synechocystis sp. PCC 6803 survived the coating formation, as shown by an adenosine triphosphate (ATP) assay. Synechocystis sp. PCC 6803 consumed oxygen (by cell respiration) for up to 5 days, but was unable to perform photosynthesis, as indicated by a lack of oxygen evolution. However, Chroococcidiopsis cubana PCC 7433, a strain of desiccation-resistant extremophilic cyanobacteria, survived and performed photosynthesis and carbon capture within the biocoating, with specific rates of oxygen evolution up to 0.4 g of oxygen/g of biomass per day. Continuous measurements of dissolved oxygen were carried out over a month and showed no sign of decreasing activity. Extremophilic cyanobacteria are viable in a variety of environments, making them ideal candidates for use in biocoatings and other biotechnology. IMPORTANCE As water has become a precious resource, there is a growing need for less water-intensive use of microorganisms, while avoiding desiccation stress. Mechanically robust, ready-to-use biocoatings or "living paints" (a type of artificial biofilm consisting of a synthetic matrix containing functional bacteria) represent a novel way to address these issues. Here, we describe the revolutionary, first-ever use of an extremophilic cyanobacterium (Chroococcidiopsis cubana PCC 7433) in biocoatings, which were able to produce high levels of oxygen and carbon capture for at least 1 month despite complete desiccation and subsequent rehydration. Beyond culturing viable bacteria with reduced water resources, this pioneering use of extremophiles in biocoatings could be further developed for a variety of applications, including carbon capture, wastewater treatment and biofuel production.
Collapse
Affiliation(s)
- Simone Krings
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Yuxiu Chen
- School of Mathematics and Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - Joseph L. Keddie
- School of Mathematics and Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - Suzanne Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
6
|
Fathy WA, Techen N, Elsayed KNM, Essawy EA, Tawfik E, Alwutayd KM, Abdelhameed MS, Hammouda O, Ross SA. Applying an internal transcribed spacer as a single molecular marker to differentiate between Tetraselmis and Chlorella species. Front Microbiol 2023; 14:1228869. [PMID: 37680531 PMCID: PMC10482269 DOI: 10.3389/fmicb.2023.1228869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
In the realm of applied phycology, algal physiology, and biochemistry publications, the absence of proper identification and documentation of microalgae is a common concern. This poses a significant challenge for non-specialists who struggle to identify numerous eukaryotic microalgae. However, a promising solution lies in employing an appropriate DNA barcoding technique and establishing comprehensive databases of reference sequences. To address this issue, we conducted a study focusing on the molecular characterization and strain identification of Tetraselmis and Chlorella species, utilizing the internal transcribed spacer (ITS) barcode approach. By analyzing the full nuclear ITS region through the Sanger sequencing approach, we obtained ITS barcodes that were subsequently compared with other ITS sequences of various Tetraselmis and Chlorella species. To ensure the reliability of our identification procedure, we conducted a meticulous comparison of the DNA alignment, constructed a phylogenetic tree, and determined the percentage of identical nucleotides. The findings of our study reveal the significant value of the ITS genomic region as a tool for distinguishing and identifying morphologically similar chlorophyta. Moreover, our results demonstrate that both the ITS1 and ITS2 regions are capable of effectively discriminating isolates from one another; however, ITS2 is preferred due to its greater intraspecific variation. These results underscore the indispensability of employing ITS barcoding in microalgae identification, highlighting the limitations of relying solely on morphological characterization.
Collapse
Affiliation(s)
- Wael A. Fathy
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Natascha Techen
- National Centre for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| | - Khaled N. M. Elsayed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ehab A. Essawy
- Biochemistry Division, Department of Chemistry, Faculty of Science, Helwan University, Helwan, Egypt
| | - Eman Tawfik
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Helwan, Egypt
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed S. Abdelhameed
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ola Hammouda
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samir A. Ross
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
7
|
Goodchild-Michelman IM, Church GM, Schubert MG, Tang TC. Light and carbon: Synthetic biology toward new cyanobacteria-based living biomaterials. Mater Today Bio 2023; 19:100583. [PMID: 36846306 PMCID: PMC9945787 DOI: 10.1016/j.mtbio.2023.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Cyanobacteria are ideal candidates to use in developing carbon neutral and carbon negative technologies; they are efficient photosynthesizers and amenable to genetic manipulation. Over the past two decades, researchers have demonstrated that cyanobacteria can make sustainable, useful biomaterials, many of which are engineered living materials. However, we are only beginning to see such technologies applied at an industrial scale. In this review, we explore the ways in which synthetic biology tools enable the development of cyanobacteria-based biomaterials. First we give an overview of the ecological and biogeochemical importance of cyanobacteria and the work that has been done using cyanobacteria to create biomaterials so far. This is followed by a discussion of commonly used cyanobacteria strains and synthetic biology tools that exist to engineer cyanobacteria. Then, three case studies-bioconcrete, biocomposites, and biophotovoltaics-are explored as potential applications of synthetic biology in cyanobacteria-based materials. Finally, challenges and future directions of cyanobacterial biomaterials are discussed.
Collapse
Affiliation(s)
- Isabella M. Goodchild-Michelman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
8
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Cobos M, Condori RC, Grandez MA, Estela SL, Del Aguila MT, Castro CG, Rodríguez HN, Vargas JA, Tresierra AB, Barriga LA, Marapara JL, Adrianzén PM, Ruiz R, Castro JC. Genomic analysis and biochemical profiling of an unaxenic strain of Synechococcus sp. isolated from the Peruvian Amazon Basin region. Front Genet 2022; 13:973324. [DOI: 10.3389/fgene.2022.973324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Cyanobacteria are diverse photosynthetic microorganisms able to produce a myriad of bioactive chemicals. To make possible the rational exploitation of these microorganisms, it is fundamental to know their metabolic capabilities and to have genomic resources. In this context, the main objective of this research was to determine the genome features and the biochemical profile of Synechococcus sp. UCP002. The cyanobacterium was isolated from the Peruvian Amazon Basin region and cultured in BG-11 medium. Growth parameters, genome features, and the biochemical profile of the cyanobacterium were determined using standardized methods. Synechococcus sp. UCP002 had a specific growth rate of 0.086 ± 0.008 μ and a doubling time of 8.08 ± 0.78 h. The complete genome of Synechococcus sp. UCP002 had a size of ∼3.53 Mb with a high coverage (∼200x), and its quality parameters were acceptable (completeness = 99.29%, complete and single-copy genes = 97.5%, and contamination = 0.35%). Additionally, the cyanobacterium had six plasmids ranging from 24 to 200 kbp. The annotated genome revealed ∼3,422 genes, ∼ 3,374 protein-coding genes (with ∼41.31% hypothetical protein-coding genes), two CRISPR Cas systems, and 61 non-coding RNAs. Both the genome and plasmids had the genes for prokaryotic defense systems. Additionally, the genome had genes coding the transcription factors of the metalloregulator ArsR/SmtB family, involved in sensing heavy metal pollution. The biochemical profile showed primary nutrients, essential amino acids, some essential fatty acids, pigments (e.g., all-trans-β-carotene, chlorophyll a, and phycocyanin), and phenolic compounds. In conclusion, Synechococcus sp. UCP002 shows biotechnological potential to produce human and animal nutrients and raw materials for biofuels and could be a new source of genes for synthetic biological applications.
Collapse
|
11
|
Malihan‐Yap L, Grimm HC, Kourist R. Recent Advances in Cyanobacterial Biotransformations. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lenny Malihan‐Yap
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Hanna C. Grimm
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
| | - Robert Kourist
- Graz University of Technology Institute of Molecular Biotechnology NAWI Graz 8010 Graz Austria
- ACIB GmbH 8010 Graz Austria
| |
Collapse
|
12
|
Saeed MU, Hussain N, Shahbaz A, Hameed T, Iqbal HMN, Bilal M. Bioprospecting microalgae and cyanobacteria for biopharmaceutical applications. J Basic Microbiol 2022; 62:1110-1124. [PMID: 34914840 DOI: 10.1002/jobm.202100445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 02/05/2023]
Abstract
Microalgae and cyanobacteria have sparked a lot of interest due to their potential in various industries like biorefineries, biopharmaceuticals, food supplements, nutraceuticals, and other high-value products. Polysaccharides, vitamins, proteins, enzymes, and steroids are valuable products isolated from microalgae and cyanobacteria and potentially used in health and biomedical applications. Bioactive compounds derived from microalgae and cyanobacteria exhibit various pharmaceutical properties like antibacterial, anticancer, antiviral, antialgal, and antioxidant. From the properties listed above, the research for novel antibiotics has become particularly appropriate. In addition, the possible emergence of resistance against pathogens, as well as the potential decline in antibiotic efficacy, has prompted researchers to look for a new source of antibiotics. Microalgae and cyanobacteria have indicated a great and unexplored potential among these sources. For this reason, microalgae and cyanobacteria have been highlighted for their efficiency in different industrial sectors, as well as for their potential uses in the betterment of human and environmental health. This review gives an overview of bioactive compounds and metabolites with several biological properties isolated from microalgae and cyanobacteria for treating different animal and human diseases.
Collapse
Affiliation(s)
- Muhammad U Saeed
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Tooba Hameed
- School of Biochemistry & Biotechnology, University of the Punjab Lahore, Lahore, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
13
|
Simple transformation of the filamentous thermophilic cyanobacterium Leptolyngbya sp. KC45. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Malečková E. Rubisco responds to sucrose give and take in cyanobacteria. PLANT PHYSIOLOGY 2022; 189:444-446. [PMID: 35285507 PMCID: PMC9157106 DOI: 10.1093/plphys/kiac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Eva Malečková
- Singleron Biotechnologies GmbH, 51105 Cologne, Germany
| |
Collapse
|
15
|
Opel F, Siebert NA, Klatt S, Tüllinghoff A, Hantke JG, Toepel J, Bühler B, Nürnberg DJ, Klähn S. Generation of Synthetic Shuttle Vectors Enabling Modular Genetic Engineering of Cyanobacteria. ACS Synth Biol 2022; 11:1758-1771. [PMID: 35405070 DOI: 10.1021/acssynbio.1c00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyanobacteria have raised great interest in biotechnology due to their potential for a sustainable, photosynthesis-driven production of fuels and value-added chemicals. This has led to a concomitant development of molecular tools to engineer the metabolism of those organisms. In this regard, however, even cyanobacterial model strains lag behind compared to their heterotrophic counterparts. For instance, replicative shuttle vectors that allow gene transfer independent of recombination into host DNA are still scarce. Here, we introduce the pSOMA shuttle vector series comprising 10 synthetic plasmids for comprehensive genetic engineering of Synechocystis sp. PCC 6803. The series is based on the small endogenous plasmids pCA2.4 and pCB2.4, each combined with a replicon from Escherichia coli, different selection markers as well as features facilitating molecular cloning and the insulated introduction of gene expression cassettes. We made use of genes encoding green fluorescent protein (GFP) and a Baeyer-Villiger monooxygenase (BVMO) to demonstrate functional gene expression from the pSOMA plasmids in vivo. Moreover, we demonstrate the expression of distinct heterologous genes from individual plasmids maintained in the same strain and thereby confirmed compatibility between the two pSOMA subseries as well as with derivatives of the broad-host-range plasmid RSF1010. We also show that gene transfer into the filamentous model strain Anabaena sp. PCC 7120 is generally possible, which is encouraging to further explore the range of cyanobacterial host species that could be engineered via pSOMA plasmids. Altogether, the pSOMA shuttle vector series displays an attractive alternative to existing plasmid series and thus meets the current demand for the introduction of complex genetic setups and to perform extensive metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Franz Opel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Nina A. Siebert
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabine Klatt
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Adrian Tüllinghoff
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Janis G. Hantke
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jörg Toepel
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Stephan Klähn
- Department of Solar Materials (SOMA), Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
16
|
Sheldon RA, Brady D. Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. CHEMSUSCHEM 2022; 15:e202102628. [PMID: 35026060 DOI: 10.1002/cssc.202102628] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels. Biotechnology is well suited to a future chemical industry that must adapt to widely distributed and diverse biological chemical feedstocks. Our increasing mastery of biotechnology is allowing us to develop enzymes and organisms that can synthesize a widening selection of desirable bulk chemicals, including plastics, at commercially viable productivities. Integration of bioreactors with electrochemical systems will permit new production opportunities with enhanced productivities and the advantage of using a low-carbon electricity from renewable and sustainable sources.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
17
|
Bernhards CB, Liem AT, Berk KL, Roth PA, Gibbons HS, Lux MW. Putative Phenotypically Neutral Genomic Insertion Points in Prokaryotes. ACS Synth Biol 2022; 11:1681-1685. [PMID: 35271248 PMCID: PMC9016761 DOI: 10.1021/acssynbio.1c00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The barriers to effective
genome editing in diverse prokaryotic
organisms have been falling at an accelerated rate. As editing becomes
easier in more organisms, quickly identifying genomic locations to
insert new genetic functions without disrupting organism fitness becomes
increasingly useful. When the insertion is noncoding DNA for applications
such as information storage or barcoding, a neutral insertion point
can be especially important. Here we describe an approach to identify
putatively neutral insertion sites in prokaryotes. An algorithm (targetFinder)
finds convergently transcribed genes with gap sizes within a specified
range, and looks for annotations within the gaps. We report putative
editing targets for 10 common synthetic biology chassis organisms,
including coverage of available RNA-seq data, and provide software
to apply to others. We further experimentally evaluate the neutrality
of six identified targets in Escherichia coli through
insertion of a DNA barcode. We anticipate this information and the
accompanying tool will prove useful for synthetic biologists seeking
neutral insertion points for genome editing.
Collapse
Affiliation(s)
- Casey B. Bernhards
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
- Excet, Inc., Springfield, Virginia 22150, United States
| | - Alvin T. Liem
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Kimberly L. Berk
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Pierce A. Roth
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Henry S. Gibbons
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Matthew W. Lux
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
18
|
Singh Y, Singh G, Singh D, Khattar J. A checklist of blue-green algae (Cyanobacteria) from Punjab, India. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.6754.14.3.20758-20772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A checklist of Cyanobacteria (Blue-green algae) has been made by reviewing available literature in order to contribute to the knowledge of biodiversity of algae in the Punjab state of India. The list records 317 taxa of the phylum Cyanobacteria distributed among 74 genera, 32 families, and six orders. The order Oscillatoriales has 115 taxa, followed by Nostocales (84), Synechococcales (60), Chroococcales (49), Spirulinales (8), and Pleurocapsales (1). The family Nostocaceae has the maximum number of genera followed by Microcoleaceae, Chroococcaceae, Oscillatoriaceae and other reported families. The genera with the highest number of species were Phormidium (39 species), Lyngbya (15 species), Oscillatoria (14 species), and Leptolyngbya & Scytonema (13 species each). The checklist revealed a high degree of species richness within phylum Cyanobacteria found in Punjab. This checklist can provide a baseline for future floristic studies with taxonomically updated/accepted name of genera/species of cyanobacteria.
Collapse
|
19
|
The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [DOI: 10.1007/10_2022_210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Carrieri D, Jurista T, Yazvenko N, Schafer Medina A, Strickland D, Roberts JM. Overexpression of NblA decreases phycobilisome content and enhances photosynthetic growth of the cyanobacterium Synechococcus elongatus PCC 7942. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Fan J, Zhang Y, Wu P, Zhang X, Bai Y. Enhancing cofactor regeneration of cyanobacteria for the light-powered synthesis of chiral alcohols. Bioorg Chem 2021; 118:105477. [PMID: 34814084 DOI: 10.1016/j.bioorg.2021.105477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Cyanobacteria Synechocystis sp. PCC 6803 was exploited as green cell factory for light-powered asymmetric synthesis of aromatic chiral alcohols. The effect of temperature, light, substrate and cell concentration on substrate conversions were investigated. Under the optimal condition, a series of chiral alcohols were synthesized with conversions up to 95% and enantiomer excess (ee) > 99%. We found that the addition of Na2S2O3 and Angeli's Salt increased the NADPH content by 20% and 25%, respectively. As a result, the time to reach 95% substrate conversion was shortened by 12 h, which demonstrated that the NADPH regeneration and hence the reaction rates can be regulated in cyanobacteria. This blue-green algae based biocatalysis showed its potential for chiral compounds production in future.
Collapse
Affiliation(s)
- Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yinghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
22
|
Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. Proc Natl Acad Sci U S A 2021; 118:2021523118. [PMID: 33836593 PMCID: PMC7980454 DOI: 10.1073/pnas.2021523118] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria have been increasingly explored as a biotechnological platform, although their economic feasibility relies in part on the capacity to maximize their photosynthetic, solar-to-biomass energy conversion efficiency. Here we show that cyanobacterial photosynthetic capacity can be increased by diverting cellular resources toward heterologous, energy-storing metabolic pathways and by reducing electron flow to photoprotective, but energy-dissipating, oxygen reduction reactions. We further show that these heterologous sinks can partially contribute to photosystem I (PSI) oxidation, suggesting an engineering strategy to improve both energy storage capacity and robustness by selective diversion of excess photosynthetic capacity to productive processes. Cyanobacteria must prevent imbalances between absorbed light energy (source) and the metabolic capacity (sink) to utilize it to protect their photosynthetic apparatus against damage. A number of photoprotective mechanisms assist in dissipating excess absorbed energy, including respiratory terminal oxidases and flavodiiron proteins, but inherently reduce photosynthetic efficiency. Recently, it has been hypothesized that some engineered metabolic pathways may improve photosynthetic performance by correcting source/sink imbalances. In the context of this subject, we explored the interconnectivity between endogenous electron valves, and the activation of one or more heterologous metabolic sinks. We coexpressed two heterologous metabolic pathways that have been previously shown to positively impact photosynthetic activity in cyanobacteria, a sucrose production pathway (consuming ATP and reductant) and a reductant-only consuming cytochrome P450. Sucrose export was associated with improved quantum yield of phtotosystem II (PSII) and enhanced electron transport chain flux, especially at lower illumination levels, while cytochrome P450 activity led to photosynthetic enhancements primarily observed under high light. Moreover, coexpression of these two heterologous sinks showed additive impacts on photosynthesis, indicating that neither sink alone was capable of utilizing the full “overcapacity” of the electron transport chain. We find that heterologous sinks may partially compensate for the loss of photosystem I (PSI) oxidizing mechanisms even under rapid illumination changes, although this compensation is incomplete. Our results provide support for the theory that heterologous metabolism can act as a photosynthetic sink and exhibit some overlapping functionality with photoprotective mechanisms, while potentially conserving energy within useful metabolic products that might otherwise be “lost.”
Collapse
|
23
|
Sakkos JK, Hernandez-Ortiz S, Osteryoung KW, Ducat DC. Orthogonal Degron System for Controlled Protein Degradation in Cyanobacteria. ACS Synth Biol 2021; 10:1667-1681. [PMID: 34232633 DOI: 10.1021/acssynbio.1c00035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Synechococcus elongatus PCC 7942 is a model cyanobacterium for study of the circadian clock, photosynthesis, and bioproduction of chemicals, yet nearly 40% of its gene identities and functions remain unknown, in part due to limitations of the existing genetic toolkit. While classical techniques for the study of genes (e.g., deletion or mutagenesis) can yield valuable information about the absence of a gene and its associated protein, there are limits to these approaches, particularly in the study of essential genes. Herein, we developed a tool for inducible degradation of target proteins in S. elongatus by adapting a method using degron tags from the Mesoplasma florum transfer-mRNA (tmRNA) system. We observed that M. florum lon protease can rapidly degrade exogenous and native proteins tagged with the cognate sequence within hours of induction. We used this system to inducibly degrade the essential cell division factor, FtsZ, as well as shell protein components of the carboxysome. Our results have implications for carboxysome biogenesis and the rate of carboxysome turnover during cell growth. Lon protease control of proteins offers an alternative approach for the study of essential proteins and protein dynamics in cyanobacteria.
Collapse
Affiliation(s)
- Jonathan K. Sakkos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sergio Hernandez-Ortiz
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Katherine W. Osteryoung
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
24
|
Ballesteros I, Terán P, Guamán-Burneo C, González N, Cruz A, Castillejo P. DNA barcoding approach to characterize microalgae isolated from freshwater systems in Ecuador. NEOTROPICAL BIODIVERSITY 2021. [DOI: 10.1080/23766808.2021.1920296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Isabel Ballesteros
- AgroScience & Food Research Group, Universidad de las Américas, Quito, Ecuador
| | - Paulina Terán
- AgroScience & Food Research Group, Universidad de las Américas, Quito, Ecuador
| | | | - Nory González
- AgroScience & Food Research Group, Universidad de las Américas, Quito, Ecuador
| | - Alejandra Cruz
- Ingeniería en Biotecnología. Facultad de Ingenierías y Ciencias Aplicadas, Universidad de las Américas, Quito, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| |
Collapse
|
25
|
Madsen MA, Hamilton G, Herzyk P, Amtmann A. Environmental Regulation of PndbA600, an Auto-Inducible Promoter for Two-Stage Industrial Biotechnology in Cyanobacteria. Front Bioeng Biotechnol 2021; 8:619055. [PMID: 33542914 PMCID: PMC7853294 DOI: 10.3389/fbioe.2020.619055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes being developed as sustainable platforms that use renewable resources (light, water, and air) for diverse applications in energy, food, environment, and medicine. Despite the attractive promise that cyanobacteria offer to industrial biotechnology, slow growth rates pose a major challenge in processes which typically require large amounts of biomass and are often toxic to the cells. Two-stage cultivation strategies are an attractive solution to prevent any undesired growth inhibition by de-coupling biomass accumulation (stage I) and the industrial process (stage II). In cyanobacteria, two-stage strategies involve costly transfer methods between stages I and II, and little work has been focussed on using the distinct growth and stationary phases of batch cultures to autoregulate stage transition. In the present study, we identified and characterised a growth phase-specific promoter, which can serve as an auto-inducible switch to regulate two-stage bioprocesses in cyanobacteria. First, growth phase-specific genes were identified from a new RNAseq dataset comparing two growth phases and six nutrient conditions in Synechocystis sp. PCC 6803, including two new transcriptomes for low Mg and low K. A type II NADH dehydrogenase (ndbA) showed robust induction when the cultures transitioned from exponential to stationary phase growth. Behaviour of a 600-bp promoter sequence (PndbA600) was then characterised in detail following the expression of PndbA600:GFP in Synechococcus sp. PCC 7002. Culture density and growth media analyses showed that PndbA600 activation was not dependent on increases in culture density per se but on N availability and on another activating factor present in the spent media of stationary phase cultures (Factor X). PndbA600 deactivation was dependent on the changes in culture density and in either N availability or Factor X. Electron transport inhibition studies revealed a photosynthesis-specific enhancement of active PndbA600 levels. Our findings are summarised in a model describing the environmental regulation of PndbA600, which can now inform the rational design of two-stage industrial processes in cyanobacteria.
Collapse
Affiliation(s)
- Mary Ann Madsen
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Graham Hamilton
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Pawel Herzyk
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom.,Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Amtmann
- College of Medical, Veterinary and Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
26
|
Jodlbauer J, Rohr T, Spadiut O, Mihovilovic MD, Rudroff F. Biocatalysis in Green and Blue: Cyanobacteria. Trends Biotechnol 2021; 39:875-889. [PMID: 33468423 DOI: 10.1016/j.tibtech.2020.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
Recently, several studies have proven the potential of cyanobacteria as whole-cell biocatalysts for biotransformation. Compared to heterotrophic hosts, cyanobacteria show unique advantages thanks to their photoautotrophic metabolism. Their ability to use light as energy and CO2 as carbon source promises a truly sustainable production platform. Their photoautotrophic metabolism offers an encouraging source of reducing power, which makes them attractive for redox-based biotechnological purposes. To exploit the full potential of these whole-cell biocatalysts, cyanobacterial cells must be considered in their entirety. With this emphasis, this review summarizes the latest developments in cyanobacteria research with a strong focus on the benefits associated with their unique metabolism. Remaining bottlenecks and recent strategies to overcome them are evaluated for their potential in future applications.
Collapse
Affiliation(s)
- Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Thomas Rohr
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Oliver Spadiut
- Institute of Chemical Engineering, research area Biochemical Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, 1060 Vienna, Austria.
| |
Collapse
|
27
|
Shaw C, Brooke C, Hawley E, Connolly MP, Garcia JA, Harmon-Smith M, Shapiro N, Barton M, Tringe SG, Glavina del Rio T, Culley DE, Castenholz R, Hess M. Phototrophic Co-cultures From Extreme Environments: Community Structure and Potential Value for Fundamental and Applied Research. Front Microbiol 2020; 11:572131. [PMID: 33240229 PMCID: PMC7677454 DOI: 10.3389/fmicb.2020.572131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are found in most illuminated environments and are key players in global carbon and nitrogen cycling. Although significant efforts have been made to advance our understanding of this important phylum, still little is known about how members of the cyanobacteria affect and respond to changes in complex biological systems. This lack of knowledge is in part due to our dependence on pure cultures when determining the metabolism and function of a microorganism. We took advantage of the Culture Collection of Microorganisms from Extreme Environments (CCMEE), a collection of more than 1,000 publicly available photosynthetic co-cultures maintained at the Pacific Northwest National Laboratory, and assessed via 16S rRNA amplicon sequencing if samples readily available from public culture collection could be used in the future to generate new insights into the role of microbial communities in global and local carbon and nitrogen cycling. Results from this work support the existing notion that culture depositories in general hold the potential to advance fundamental and applied research. Although it remains to be seen if co-cultures can be used at large scale to infer roles of individual organisms, samples that are publicly available from existing co-cultures depositories, such as the CCMEE, might be an economical starting point for such studies. Access to archived biological samples, without the need for costly field work, might in some circumstances be one of the few remaining ways to advance the field and to generate new insights into the biology of ecosystems that are not easily accessible. The current COVID-19 pandemic, which makes sampling expeditions almost impossible without putting the health of the participating scientists on the line, is a very timely example.
Collapse
Affiliation(s)
- Claire Shaw
- Systems Microbiology and Natural Products Laboratory, University of California, Davis, Davis, CA, United States
| | - Charles Brooke
- Systems Microbiology and Natural Products Laboratory, University of California, Davis, Davis, CA, United States
| | | | - Morgan P. Connolly
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Javier A. Garcia
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | | | - Nicole Shapiro
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Michael Barton
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Susannah G. Tringe
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | | | | | | | - Matthias Hess
- Systems Microbiology and Natural Products Laboratory, University of California, Davis, Davis, CA, United States
| |
Collapse
|
28
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
29
|
All4894 encoding a novel fasciclin (FAS-1 domain) protein of Anabaena sp. PCC7120 revealed the presence of a thermostable β-glucosidase. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Nies F, Mielke M, Pochert J, Lamparter T. Natural transformation of the filamentous cyanobacterium Phormidium lacuna. PLoS One 2020; 15:e0234440. [PMID: 32530971 PMCID: PMC7292380 DOI: 10.1371/journal.pone.0234440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Research for biotechnological applications of cyanobacteria focuses on synthetic pathways and bioreactor design, while little effort is devoted to introduce new, promising organisms in the field. Applications are most often based on recombinant work, and the establishment of transformation can be a risky, time-consuming procedure. In this work we demonstrate the natural transformation of the filamentous cyanobacterium Phormidium lacuna and insertion of a selection marker into the genome by homologous recombination. This is the first example for natural transformation filamentous non-heterocystous cyanobacterium. We found that Phormidium lacuna is polyploid, each cell has about 20-90 chromosomes. Transformed filaments were resistant against up to 14 mg/ml of kanamycin. Formerly, natural transformation in cyanobacteria has been considered a rare and exclusive feature of a few unicellular species. Our finding suggests that natural competence is more distributed among cyanobacteria than previously thought. This is supported by bioinformatic analyses which show that all protein factors for natural transformation are present in the majority of the analyzed cyanobacteria.
Collapse
Affiliation(s)
- Fabian Nies
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marion Mielke
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Janko Pochert
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
31
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
32
|
Conde-Pueyo N, Vidiella B, Sardanyés J, Berdugo M, Maestre FT, de Lorenzo V, Solé R. Synthetic Biology for Terraformation Lessons from Mars, Earth, and the Microbiome. Life (Basel) 2020; 10:E14. [PMID: 32050455 PMCID: PMC7175242 DOI: 10.3390/life10020014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
What is the potential for synthetic biology as a way of engineering, on a large scale, complex ecosystems? Can it be used to change endangered ecological communities and rescue them to prevent their collapse? What are the best strategies for such ecological engineering paths to succeed? Is it possible to create stable, diverse synthetic ecosystems capable of persisting in closed environments? Can synthetic communities be created to thrive on planets different from ours? These and other questions pervade major future developments within synthetic biology. The goal of engineering ecosystems is plagued with all kinds of technological, scientific and ethic problems. In this paper, we consider the requirements for terraformation, i.e., for changing a given environment to make it hospitable to some given class of life forms. Although the standard use of this term involved strategies for planetary terraformation, it has been recently suggested that this approach could be applied to a very different context: ecological communities within our own planet. As discussed here, this includes multiple scales, from the gut microbiome to the entire biosphere.
Collapse
Affiliation(s)
- Nuria Conde-Pueyo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica, Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain;
- Barcelona Graduate School of Mathematics (BGSMath), Campus UAB Edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Miguel Berdugo
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Fernando T. Maestre
- Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio “Ramon Margalef”, Universidad de Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Victor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Plaça de la Mercè, 10, 08002 Barcelona, Spain; (B.V.); (M.B.)
- Institut de Biologia Evolutiva, UPF-CSIC, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
33
|
Mondal S, Kumar V, Singh SP. Phylogenetic distribution and structural analyses of cyanobacterial glutaredoxins (Grxs). Comput Biol Chem 2019; 84:107141. [PMID: 31839562 DOI: 10.1016/j.compbiolchem.2019.107141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022]
Abstract
Glutaredoxins (Grxs), the oxidoreductase proteins, are involved in several cellular processes, including maintenance of cellular redox potential and iron-sulfur homeostasis. The analysis of 503 amino acid sequences from 167 cyanobacterial species led to the identification of four classes of cyanobacterial Grxs, i.e., class I, II, V, and VI Grxs. Class III and IV Grxs were absent in cyanobacteria. Class I and II Grxs are single module oxidoreductase while class V and VI Grxs are multimodular proteins having additional modules at their C-terminal and N-terminal end, respectively. Furthermore, class VI Grxs were exclusively present in marine cyanobacteria. We also report the identification of class VI Grxs with two novel active site motif compositions. Detailed phylogenetic analysis of all four classes of Grxs revealed the presence of several subgroups within each class of Grx having variable dithiol and/or monothiol catalytic active site motif and putative glutathione binding sites. However, class II Grxs possess CGFS-type highly conserved monothiol catalytic active site motif. Sequence analysis confirmed the highly diverse nature of Grx proteins in terms of their amino acid composition; though, sequence diversity does not affect the overall 3D structure of cyanobacterial Grxs. The active site residues and putative GSH binding residues are uncharged amino acids which are present on the surface of the protein. Additionally, the presence of hydrophilic residues at the surface of Grxs confirms their solubility. Protein-ligand interaction analysis identified novel glutathione binding sites on Grxs. Regulation of Grxs encoding genes expression by light quality and quantity as well as salinity suggests their role in determining the fitness of organisms under abiotic factors.
Collapse
Affiliation(s)
- Soumila Mondal
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Vinod Kumar
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shailendra P Singh
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
34
|
Accumulation of cyanobacterial oxadiazine nocuolin A is enhanced by temperature shift during cultivation and is promoted by bacterial co-habitants in the culture. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Kirtania P, Hódi B, Mallick I, Vass IZ, Fehér T, Vass I, Kós PB. A single plasmid based CRISPR interference in Synechocystis 6803 - A proof of concept. PLoS One 2019; 14:e0225375. [PMID: 31770415 PMCID: PMC6879144 DOI: 10.1371/journal.pone.0225375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/02/2019] [Indexed: 11/20/2022] Open
Abstract
We developed a simple method to apply CRISPR interference by modifying an existing plasmid pCRISPathBrick containing the native S. pyogenes CRISPR assembly for Synechocystis PCC6803 and named it pCRPB1010. The technique presented here using deadCas9 is easier to implement for gene silencing in Synechocystis PCC6803 than other existing techniques as it circumvents the genome integration and segregation steps thereby significantly shortens the construction of the mutant strains. We executed CRISPR interference against well characterized photosynthetic genes to get a clear phenotype to validate the potential of pCRPB1010 and presented the work as a “proof of concept”. Targeting the non-template strand of psbO gene resulted in decreased amount of PsbO and 50% decrease in oxygen evolution rate. Targeting the template strand of psbA2 and psbA3 genes encoding the D1 subunit of photosystem II (PSII) using a single spacer against the common sequence span of the two genes, resulted in full inhibition of both genes, complete abolition of D1 protein synthesis, complete loss of oxygen evolution as well as photoautotrophic growth arrest. This is the first report of a single plasmid based, completely lesion free and episomal expression and execution of CRISPR interference in Synechocystis PCC6803.
Collapse
Affiliation(s)
- Prithwiraj Kirtania
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Barbara Hódi
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ivy Mallick
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Zoltan Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Fehér
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Peter B Kós
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
36
|
Evaluation of New Genetic Toolkits and Their Role for Ethanol Production in Cyanobacteria. ENERGIES 2019. [DOI: 10.3390/en12183515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the public awareness for climate change has risen, increasing scientific effort has been made to find and develop alternative resources and production processes to reduce the dependency on petrol-based fuels and chemicals of our society. Among others, the biotechnological fuel production, as for example fermenting sugar-rich crops to ethanol, is one of the main strategies. For this purpose, various classical production systems like Escherichia coli or Saccharomyces cerevisiae are used and have been optimized via genetic modifications. Despite the progress made, this strategy competes for nutritional resources and agricultural land. To overcome this problem, various attempts were made for direct photosynthetic driven ethanol synthesis with different microalgal species including cyanobacteria. However, compared to existing platforms, the development of cyanobacteria as photoautotrophic cell factories has just started, and accordingly, the ethanol yield of established production systems is still unreached. This is mainly attributed to low ethanol tolerance levels of cyanobacteria and there is still potential for optimizing the cyanobacteria towards alternative gene expression systems. Meanwhile, several improvements were made by establishing new toolboxes for synthetic biology offering new possibilities for advanced genetic modifications of cyanobacteria. Here, current achievements and innovations of those new molecular tools are discussed.
Collapse
|
37
|
Far-Red Light Acclimation for Improved Mass Cultivation of Cyanobacteria. Metabolites 2019; 9:metabo9080170. [PMID: 31430925 PMCID: PMC6724174 DOI: 10.3390/metabo9080170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 01/31/2023] Open
Abstract
Improving mass cultivation of cyanobacteria is a goal for industrial biotechnology. In this study, the mass cultivation of the thermophilic cyanobacterium Chlorogloeopsis fritschii was assessed for biomass production under light-emitting diode white light (LEDWL), far-red light (FRL), and combined white light and far-red light (WLFRL) adaptation. The induction of chl f was confirmed at 24 h after the transfer of culture from LEDWL to FRL. Using combined light (WLFRL), chl f, a, and d, maintained the same level of concentration in comparison to FRL conditions. However, phycocyanin and xanthophylls (echinone, caloxanthin, myxoxanthin, nostoxanthin) concentration increased 2.7–4.7 times compared to LEDWL conditions. The productivity of culture was double under WLFRL compared with LEDWL conditions. No significant changes in lipid, protein, and carbohydrate concentrations were found in the two different light conditions. The results are important for informing on optimum biomass cultivation of this species for biomass production and bioactive product development.
Collapse
|
38
|
Garlapati D, Chandrasekaran M, Devanesan A, Mathimani T, Pugazhendhi A. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Appl Microbiol Biotechnol 2019; 103:4709-4721. [PMID: 31030286 DOI: 10.1007/s00253-019-09811-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 01/22/2023]
Abstract
Cyanobacteria are potential organisms, which are used as food, feed and fuel. The unique characters of cyanobacteria include short generation times, their ubiquitous presence and efficient nitrogen fixing potential. Cyanobacteria are unique organisms performing photosynthesis, bioremediation of wastewater, high biomass and biofuel productions etc. They are also used in the treatment of industrial and domestic wastewaters for the utilization or removal of ammonia, phosphates and other heavy metals (Cr, Pb, Co, Cu, Zn). Biomasses of cyanobacteria are used as biofertilizers for the improvement of nutrient or mineral status and water-holding capacity of the soil. The secondary metabolites of cyanobacteria are used in pharmaceuticals, nutraceutical and chemical industries. In the industrial sector, value-added products from cyanobacteria such as pigments, enzymes and exopolysaccharides are being produced in large scales for biomedical and health applications. Age-old applications of cyanobacteria in agroecosystems as biofertilizers (Anabaena sp; Nostoc sp.) and in industrial sectors as food products (Spirulina) have motivated the researchers to come up with much more specific applications of cyanobacteria both in agricultural and in industrial sectors. Therefore, considering the effectiveness and efficiency of cyanobacteria, the present review has enlisted the standout qualities of cyanobacteria and their potential applications in agricultural and industrial sectors for the benefit of human beings and environment.
Collapse
Affiliation(s)
- Deviram Garlapati
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai, Tamil Nadu, 600 100, India
| | - Muthukumar Chandrasekaran
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai, Tamil Nadu, 600 100, India
| | - ArulAnanth Devanesan
- Department of Food Quality and Safety, Gilat Research Center, Agricultural Research Organization, 85280, Negev, MP, Israel
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
39
|
Zavřel T, Faizi M, Loureiro C, Poschmann G, Stühler K, Sinetova M, Zorina A, Steuer R, Červený J. Quantitative insights into the cyanobacterial cell economy. eLife 2019; 8:42508. [PMID: 30714903 PMCID: PMC6391073 DOI: 10.7554/elife.42508] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/01/2019] [Indexed: 01/27/2023] Open
Abstract
Phototrophic microorganisms are promising resources for green biotechnology. Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic growth is still insufficiently understood. We provide a quantitative analysis of light-limited, light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were quantified to monitor proteome allocation as a function of growth rate. Among other physiological acclimations, we identify an upregulation of the translational machinery and downregulation of light harvesting components with increasing light intensity and growth rate. The resulting growth laws are discussed in the context of a coarse-grained model of phototrophic growth and available data obtained by a comprehensive literature search. Our insights into quantitative aspects of cyanobacterial acclimations to different growth rates have implications to understand and optimize photosynthetic productivity.
Collapse
Affiliation(s)
- Tomáš Zavřel
- Laboratory of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| | - Marjan Faizi
- Institut für Biologie, Fachinstitut für Theoretische BiologieHumboldt-Universität zu BerlinBerlinGermany
| | - Cristina Loureiro
- Department of Applied PhysicsPolytechnic University of ValenciaValenciaSpain
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
| | - Maria Sinetova
- Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussian Federation
| | - Anna Zorina
- Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussian Federation
| | - Ralf Steuer
- Institut für Biologie, Fachinstitut für Theoretische BiologieHumboldt-Universität zu BerlinBerlinGermany
| | - Jan Červený
- Laboratory of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| |
Collapse
|
40
|
Deriving Economic Value from Metabolites in Cyanobacteria. GRAND CHALLENGES IN ALGAE BIOTECHNOLOGY 2019. [DOI: 10.1007/978-3-030-25233-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Madsen MA, Semerdzhiev S, Amtmann A, Tonon T. Engineering Mannitol Biosynthesis in Escherichia coli and Synechococcus sp. PCC 7002 Using a Green Algal Fusion Protein. ACS Synth Biol 2018; 7:2833-2840. [PMID: 30408953 DOI: 10.1021/acssynbio.8b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genetic engineering of microbial cell factories is a sustainable alternative to the chemical synthesis of organic compounds. Successful metabolic engineering often depends on manipulating several enzymes, requiring multiple transformation steps and selection markers, as well as protein assembly and efficient substrate channeling. Naturally occurring fusion genes encoding two or more enzymatic functions may offer an opportunity to simplify the engineering process and to generate ready-made protein modules, but their functionality in heterologous systems remains to be tested. Here we show that heterologous expression of a fusion enzyme from the marine alga Micromonas pusilla, comprising a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase, leads to synthesis of mannitol by Escherichia coli and by the cyanobacterium Synechococcus sp. PCC 7002. Neither of the heterologous systems naturally produce this sugar alcohol, which is widely used in food, pharmaceutical, medical, and chemical industries. While the mannitol production rates obtained by single-gene manipulation were lower than those previously achieved after pathway optimization with multiple genes, our findings show that naturally occurring fusion proteins can offer simple building blocks for the assembly and optimization of recombinant metabolic pathways.
Collapse
Affiliation(s)
- Mary Ann Madsen
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stefan Semerdzhiev
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Anna Amtmann
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
42
|
Videau P, Cozy LM. Anabaena
sp. strain PCC 7120: Laboratory Maintenance, Cultivation, and Heterocyst Induction. ACTA ACUST UNITED AC 2018; 52:e71. [DOI: 10.1002/cpmc.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Patrick Videau
- Department of Biology, Southern Oregon University; Ashland Oregon
| | - Loralyn M. Cozy
- Department of Biology, Illinois Wesleyan University; Bloomington Illinois
| |
Collapse
|
43
|
Experimental evolution in photoautotrophic microorganisms as a means of enhancing chloroplast functions. Essays Biochem 2018; 62:77-84. [PMID: 28887328 DOI: 10.1042/ebc20170010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023]
Abstract
The term 'experimental evolution' refers to short-term evolutionary experiments with microorganisms under controlled conditions in which selection is expected to occur. In combination with whole-genome sequencing and genetic engineering, the method has become a powerful tool to study evolutionary mechanisms and engineer new microbial variants. It has been most extensively used in the model species Escherichia coli and Saccharomyces cerevisiae, but more recently photosynthetic microorganisms have been subjected to experimental evolution. In such assays, strains were generated that had become more tolerant to certain abiotic environmental factors or evolved new traits during co-propagation with other organisms. These strains were viable under conditions that were lethal to the non-adapted progenitor and in a few cases, the causative mutations were identified. Because cyanobacteria like Synechocystis or green algae like Chlamydomonas reinhardtii share many features with crop plants - which are not amenable to such experiments - experimental evolution with photosynthetic microorganisms has the potential to identify novel targets for improving the capacity of plants to acclimate to environmental change. Here, I provide a survey of the experiments performed so far in cyanobacteria and green algae, focusing on Synechocystis and C. reinhardtii, and discuss the promise and the challenges of such approaches.
Collapse
|
44
|
Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:171-213. [PMID: 30091096 DOI: 10.1007/978-981-13-0854-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
With the demand for renewable energy growing, hydrogen (H2) is becoming an attractive energy carrier. Developing H2 production technologies with near-net zero carbon emissions is a major challenge for the "H2 economy." Certain cyanobacteria inherently possess enzymes, nitrogenases, and bidirectional hydrogenases that are capable of H2 evolution using sunlight, making them ideal cell factories for photocatalytic conversion of water to H2. With the advances in synthetic biology, cyanobacteria are currently being developed as a "plug and play" chassis to produce H2. This chapter describes the metabolic pathways involved and the theoretical limits to cyanobacterial H2 production and summarizes the metabolic engineering technologies pursued.
Collapse
|
45
|
Loeschcke A, Dienst D, Wewer V, Hage-Hülsmann J, Dietsch M, Kranz-Finger S, Hüren V, Metzger S, Urlacher VB, Gigolashvili T, Kopriva S, Axmann IM, Drepper T, Jaeger KE. The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS One 2017; 12:e0189816. [PMID: 29281679 PMCID: PMC5744966 DOI: 10.1371/journal.pone.0189816] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022] Open
Abstract
Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of cyclic triterpenes, which inherently includes the two-step catalytic formation of the universal linear precursor 2,3-oxidosqualene, is still a major challenge. We thus explored the suitability of the metabolically versatile photosynthetic α-proteobacterium Rhodobacter capsulatus SB1003 and cyanobacterium Synechocystis sp. PCC 6803 as alternative hosts for biosynthesis of cyclic plant triterpenes. Therefore, 2,3-oxidosqualene production was implemented and subsequently combined with different cyclization reactions catalyzed by the representative oxidosqualene cyclases CAS1 (cycloartenol synthase), LUP1 (lupeol synthase), THAS1 (thalianol synthase) and MRN1 (marneral synthase) derived from model plant Arabidopsis thaliana. While successful accumulation of 2,3-oxidosqualene could be detected by LC-MS analysis in both hosts, cyclase expression resulted in differential production profiles. CAS1 catalyzed conversion to only cycloartenol, but expression of LUP1 yielded lupeol and a triterpenoid matching an oxidation product of lupeol, in both hosts. In contrast, THAS1 expression did not lead to cyclic product formation in either host, whereas MRN1-dependent production of marnerol and hydroxymarnerol was observed in Synechocystis but not in R. capsulatus. Our findings thus indicate that 2,3-oxidosqualene cyclization in heterologous phototrophic bacteria is basically feasible but efficient conversion depends on both the respective cyclase enzyme and individual host properties. Therefore, photosynthetic α-proteo- and cyanobacteria are promising alternative candidates for providing new bacterial access to the broad class of triterpenes for biotechnological applications.
Collapse
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Dennis Dienst
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vera Wewer
- Cluster of Excellence on Plant Sciences (CEPLAS)
- MS Platform, Department of Biology, University of Cologne, Cologne, Germany
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Maximilian Dietsch
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Kranz-Finger
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Biochemistry II, Department of Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vanessa Hüren
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sabine Metzger
- Cluster of Excellence on Plant Sciences (CEPLAS)
- MS Platform, Department of Biology, University of Cologne, Cologne, Germany
| | - Vlada B. Urlacher
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Biochemistry II, Department of Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tamara Gigolashvili
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Botanical Institute, University of Cologne, Cologne, Germany
| | - Stanislav Kopriva
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Botanical Institute, University of Cologne, Cologne, Germany
| | - Ilka M. Axmann
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail: (IMA); (TD)
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
- * E-mail: (IMA); (TD)
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
46
|
Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity. Appl Microbiol Biotechnol 2017; 101:4837-4851. [PMID: 28528426 PMCID: PMC5486811 DOI: 10.1007/s00253-017-8310-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/03/2023]
Abstract
The incentive for developing microbial cell factories for production of fuels and chemicals comes from the ability of microbes to deliver these valuable compounds at a reduced cost and with a smaller environmental impact compared to the analogous chemical synthesis. Another crucial advantage of microbes is their great biological diversity, which offers a much larger "catalog" of molecules than the one obtainable by chemical synthesis. Adaptation to different environments is one of the important drives behind microbial diversity. We argue that the Red Sea, which is a rather unique marine niche, represents a remarkable source of biodiversity that can be geared towards economical and sustainable bioproduction processes in the local area and can be competitive in the international bio-based economy. Recent bioprospecting studies, conducted by the King Abdullah University of Science and Technology, have established important leads on the Red Sea biological potential, with newly isolated strains of Bacilli and Cyanobacteria. We argue that these two groups of local organisms are currently most promising in terms of developing cell factories, due to their ability to operate in saline conditions, thus reducing the cost of desalination and sterilization. The ability of Cyanobacteria to perform photosynthesis can be fully exploited in this particular environment with one of the highest levels of irradiation on the planet. We highlight the importance of new experimental and in silico methodologies needed to overcome the hurdles of developing efficient cell factories from the Red Sea isolates.
Collapse
|
47
|
Kopka J, Schmidt S, Dethloff F, Pade N, Berendt S, Schottkowski M, Martin N, Dühring U, Kuchmina E, Enke H, Kramer D, Wilde A, Hagemann M, Friedrich A. Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:56. [PMID: 28286551 PMCID: PMC5340023 DOI: 10.1186/s13068-017-0741-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/23/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms, which are engineered to synthesize valuable products directly from CO2 and sunlight. As cyanobacteria can be cultivated in large scale on non-arable land, these phototrophic bacteria have become attractive organisms for production of biofuels. Synechococcus sp. PCC 7002, one of the cyanobacterial model organisms, provides many attractive properties for biofuel production such as tolerance of seawater and high light intensities. RESULTS Here, we performed a systems analysis of an engineered ethanol-producing strain of the cyanobacterium Synechococcus sp. PCC 7002, which was grown in artificial seawater medium over 30 days applying a 12:12 h day-night cycle. Biosynthesis of ethanol resulted in a final accumulation of 0.25% (v/v) ethanol, including ethanol lost due to evaporation. The cultivation experiment revealed three production phases. The highest production rate was observed in the initial phase when cells were actively growing. In phase II growth of the producer strain stopped, but ethanol production rate was still high. Phase III was characterized by a decrease of both ethanol production and optical density of the culture. Metabolomics revealed that the carbon drain due to ethanol diffusion from the cell resulted in the expected reduction of pyruvate-based intermediates. Carbon-saving strategies successfully compensated the decrease of central intermediates of carbon metabolism during the first phase of fermentation. However, during long-term ethanol production the producer strain showed clear indications of intracellular carbon limitation. Despite the decreased levels of glycolytic and tricarboxylic acid cycle intermediates, soluble sugars and even glycogen accumulated in the producer strain. The changes in carbon assimilation patterns are partly supported by proteome analysis, which detected decreased levels of many enzymes and also revealed the stress phenotype of ethanol-producing cells. Strategies towards improved ethanol production are discussed. CONCLUSIONS Systems analysis of ethanol production in Synechococcus sp. PCC 7002 revealed initial compensation followed by increasing metabolic limitation due to excessive carbon drain from primary metabolism.
Collapse
Affiliation(s)
- Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stefanie Schmidt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Frederik Dethloff
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Max-Planck-Institute of Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany
| | - Nadin Pade
- Institute of Biological Sciences, Plant Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Susanne Berendt
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | | | - Nico Martin
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Ulf Dühring
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Ekaterina Kuchmina
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Heike Enke
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
- Cyano Biotech GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Dan Kramer
- Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany
- Cyano Biotech GmbH, Magnusstraße 11, 12489 Berlin, Germany
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Martin Hagemann
- Institute of Biological Sciences, Plant Physiology, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | | |
Collapse
|