1
|
Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R. Exploring Sustainable Agriculture with Nitrogen-Fixing Cyanobacteria and Nanotechnology. Molecules 2024; 29:2534. [PMID: 38893411 PMCID: PMC11173783 DOI: 10.3390/molecules29112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Liping Gu
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Shah Fahad
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Shah Saud
- College of Life Science, Linyi University, Linyi 276000, China
| | - Bruce Bleakley
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Ruanbao Zhou
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
2
|
Rana S, Kumar A. Effect of long-term exposure of mixture of ZnO and CuO nanoparticles on Scenedesmus obliquus. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1233-1246. [PMID: 38040998 DOI: 10.1007/s10646-023-02710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 12/03/2023]
Abstract
The present study investigated the possible toxic effect of ZnO and CuO nanoparticles (NPs) on freshwater microalgae, Scenedesmus obliquus at environmentally- relevant nanoparticle concentration (1 mg/L) and high concentration (10 mg/L) in BG-11 medium under white light LED-illumination over 35 days. The effect of time on the stability of media, nanoparticles, and their relation to toxicity to algae was also studied. The transmission electron microscopy indicated structural damage to algae due to the presence of a mixture of nanoparticles (at 10 mg/L). FTIR (Fourier Transform infrared) analysis of a sample containing a mixture of nanoparticles showed an addition of bonds and a difference in the peak location and its intensity values. The inhibition time for biomass was observed between 14 days and 21 days at 10 mg/L NPs. At 1 mg/L, the order of toxicity of NPs to algae was found to be: CuO NPs (highest toxicity) > ZnO NPs>ZnO + CuO NPs (least toxicity). During exposure of algae cells to a mixture of NPs at 10 mg/L NP concentration, a smaller value of metal deposition was observed than that during exposure to individual NPs. Antagonistic toxic effects of two NPs on dry cell weight of algae was observed at both concentration levels. Future work is needed to understand the steps involved in toxicity due to mixture of NPs to algae so that environmental exposures of algae to NPs can be managed and minimized.
Collapse
Affiliation(s)
- Samridhi Rana
- Graduate Student, Department of Civil Engineering, Indian Institute of Technology, New Delhi, India
| | - Arun Kumar
- Professor, Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
3
|
Rana S, Kumar A. Ecotoxicity of a mixture of nanoparticles on algal species Scendesmus obliquus in OECD growth media, wastewater, and pond water. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1257-1271. [PMID: 38062282 DOI: 10.1007/s10646-023-02718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The possible impact of ZnO and CuO nanoparticles (NPs) (individually and in binary mixture) was investigated using the freshwater microalgae, Scenedesmus obliquus. The present study shows the effect of nanoparticles on algae in OECD growth media, wastewater, and pond water during a 96-h toxicity test. At 0.1 mg/L concentration of the mixture of NPs, the reduction in the chlorophyll a content was 13.61 ± 1.34% (OECD media), 28.83 ± 1.85% (wastewater), and 31.81 ± 2.23% (pond water). Values of reduction in biomass were observed to be 42.13 ± 1.38, 39.96 ± 1.03, and 33.10 ± 1.29% for OECD media, wastewater, and pond water, respectively. The highest increase in lipid values was observed in the case of pond water (6.3 ± 1.31%). A significant increase in the value of EPS-generated protein was observed in the wastewater sample. EPS-generated carbohydrate values were increased in OECD media but decreased in the wastewater matrix. The transmission electron microscope images showed structural damage to algae cells due to the exposure to a mixture of nanoparticles at higher concentrations. Fourier transform infrared analysis showed an addition of bonds and differences in the peak and its intensity during exposure to high concentrations of NPs. Overall, this study gives fundamental insights into the interaction and toxicity of a mixture of NPs to algal species in different water matrices.
Collapse
Affiliation(s)
- Samridhi Rana
- Graduate Student, Indian Institute of Technology, New Delhi, India
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
4
|
Das S, Giri S, Jose SA, Pulimi M, Anand S, Chandrasekaran N, Rai PK, Mukherjee A. Comparative toxicity assessment of individual, binary and ternary mixtures of SiO 2, Fe 3O 4, and ZnO nanoparticles in freshwater microalgae, Scenedesmus obliquus: Exploring the role of dissolved ions. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109718. [PMID: 37591457 DOI: 10.1016/j.cbpc.2023.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Metal oxide nanoparticles (NPs) are considered among the most prevalent engineered nanomaterials. To have a deeper understanding of the mode of action of multiple metal oxide nanoparticles in mixtures, we have used a unicellular freshwater microalga Scenedesmus obliquus as a model organism. The toxicity of silicon dioxide (SiO2), iron oxide (Fe3O4), and zinc oxide (ZnO) NPs was studied individually as well as in their binary (SiO2 + Fe3O4, Fe3O4 + ZnO, and ZnO + SiO2) and ternary (SiO2 + Fe3O4 + ZnO) combinations. The effects of metal ions from ZnO and Fe3O4 were investigated as well. The results observed from the study, showed that a significant amount of toxicity was contributed by the dissolved ions in the mixtures of the nanoparticles. Decreases in the cell viability, ROS generation, lipid peroxidation, antioxidant enzyme activity, and photosynthetic efficiency were analyzed. Among all the individual particles, ZnO NPs showed the maximum effects and increased the toxicities of the binary mixtures. The binary and ternary mixtures of the NPs clearly showed increased toxic effects in comparison with the individual entities. However, the ternary combination had lesser toxic effects than the binary combination of Fe3O4 + ZnO. The decline in cell viability and photosynthetic efficiency were strongly correlated with various oxidative stress biomarkers emphasizing the crucial role of reactive oxygen species in inducing the toxic effects. The findings from this study highlight the importance of evaluating the combinatorial effects of various metal oxide NPs as part of a comprehensive ecotoxicity assessment in freshwater microalgae.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shinta Ann Jose
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shalini Anand
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi 110054, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Pramod Kumar Rai
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi 110054, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Al Rashaideh T, Metwali N, Perry SS, Adamcakova-Dodd A, Thorne PS. Cerium Oxide Enhances the Toxicity of Zinc Oxide Nanoparticles in Human Lung Epithelial Cell Cultures. TOXICS 2022; 10:522. [PMID: 36136487 PMCID: PMC9502999 DOI: 10.3390/toxics10090522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Recently, many approaches have been developed to improve the performance of nanomaterials. Combining more than one nanomaterial is one such approach that achieves superior results. However, during the fabrication of nanomaterials or formulation of end products, materials can be released into the ambient air and be inhaled by workers. The adverse health outcomes of inhaling such compounds are unknown. In this study, we examined such effects in combining two of the most utilized nanomaterials in several industrial sectors: zinc oxide (ZnO) and cerium oxide (CeO2). These materials can be found together in sunscreens, polyvinyl alcohol (PVA) films, and construction products. The aim of this study was to assess the adverse biological outcomes of CeO2-ZnO nano-mixtures in human lung epithelial cells. A549 human lung epithelial cells were treated with increasing concentrations of ZnO or CeO2 NPs alone, or as a mixture of both, under submerged conditions for 24 h. After treatment, cell viability, reactive oxygen species (ROS) formation, cell membrane integrity, and cytokine production were examined. ZnO NPs showed a dose-dependent trend for all endpoints. CeO2 NPs did not exhibit any toxic effect in any individual concentrations. When higher doses of ZnO were combined with increasing doses of CeO2, loss of cell viability and an elevation in cell membrane leakage were observed. Interleukin 8 (IL-8) and ROS generation were higher when ZnO NPs were combined with CeO2 NPs, compared to cells that were treated with ZnO alone. The release of monocyte chemoattractant protein-1 (MCP-1) was reduced in the cells that were treated with higher doses of ZnO and CeO2. Thus, the presence of CeO2 enhanced the toxicity of ZnO in A549 cells at non-toxic levels of CeO2. This suggests an additive toxicity of these two nanomaterials.
Collapse
Affiliation(s)
- Tasnim Al Rashaideh
- Human Toxicology Program, Graduate College, University of Iowa, Iowa City, IA 52242, USA
| | - Nervana Metwali
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah S. Perry
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Peter S. Thorne
- Human Toxicology Program, Graduate College, University of Iowa, Iowa City, IA 52242, USA
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Toxicology, Nanotoxicology and Occupational Diseases Related to Chemical Exposure. Int J Mol Sci 2022; 23:ijms23169201. [PMID: 36012476 PMCID: PMC9409422 DOI: 10.3390/ijms23169201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
|
7
|
Liang Y, Simaiti A, Xu M, Lv S, Jiang H, He X, Fan Y, Zhu S, Du B, Yang W, Li X, Yu P. Antagonistic Skin Toxicity of Co-Exposure to Physical Sunscreen Ingredients Zinc Oxide and Titanium Dioxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2769. [PMID: 36014634 PMCID: PMC9414962 DOI: 10.3390/nano12162769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Being the main components of physical sunscreens, zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are often used together in different brands of sunscreen products with different proportions. With the broad use of cosmetics containing these nanoparticles (NPs), concerns regarding their joint skin toxicity are becoming more and more prominent. In this study, the co-exposure of these two NPs in human-derived keratinocytes (HaCaT) and the in vitro reconstructed human epidermis (RHE) model EpiSkin was performed to verify their joint skin effect. The results showed that ZnO NPs significantly inhibited cell proliferation and caused deoxyribonucleic acid (DNA) damage in a dose-dependent manner to HaCaT cells, which could be rescued with co-exposure to TiO2 NPs. Further mechanism studies revealed that TiO2 NPs restricted the cellular uptake of both aggregated ZnO NPs and non-aggregated ZnO NPs and meanwhile decreased the dissociation of Zn2+ from ZnO NPs. The reduced intracellular Zn2+ ultimately made TiO2 NPs perform an antagonistic effect on the cytotoxicity caused by ZnO NPs. Furthermore, these joint skin effects induced by NP mixtures were validated on the epidermal model EpiSkin. Taken together, the results of the current research contribute new insights for understanding the dermal toxicity produced by co-exposure of different NPs and provide a valuable reference for the development of formulas for the secure application of ZnO NPs and TiO2 NPs in sunscreen products.
Collapse
Affiliation(s)
- Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aili Simaiti
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingxuan Xu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shenchong Lv
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Jiang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoxiang He
- Lishui International Travel Health-Care Center, Lishui 323000, China
| | - Yang Fan
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shaoxiong Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Yang
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaolin Li
- Technical Center of Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200135, China
| | - Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
8
|
Mushtaq S, Abbas MA, Nasir H, Mahmood A, Iqbal M, Janjua HA, Malik Q, Ahmad NM. Amphiphilic copolymers of dimethyl aminoethyl methacrylate and methyl methacrylate with controlled hydrophilicity for antialgal activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.51578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shehla Mushtaq
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Muhammad Asad Abbas
- Polymer Research Lab, School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Habib Nasir
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Azhar Mahmood
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Mudassir Iqbal
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Hussnain A. Janjua
- Department of Industrial Biotechnology, Atta‐Ur‐Rahman School of Applied Biosciences (ASAB) National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Qamar Malik
- ABBOT Energy and Environment Inc., Alastair Ross Technology Center Calgary Alberta Canada
| | - Nasir M. Ahmad
- Polymer Research Lab, School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) Islamabad Pakistan
| |
Collapse
|
9
|
Individual and Binary Mixture Toxicity of Five Nanoparticles in Marine Microalga Heterosigma akashiwo. Int J Mol Sci 2022; 23:ijms23020990. [PMID: 35055175 PMCID: PMC8780840 DOI: 10.3390/ijms23020990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The investigation of the combined toxic action of different types of nanoparticles (NPs) and their interaction between each other and with aquatic organisms is an important problem of modern ecotoxicology. In this study, we assessed the individual and mixture toxicities of cadmium and zinc sulfides (CdS and ZnS), titanium dioxide (TiO2), and two types of mesoporous silicon dioxide (with no inclusions (SMB3) and with metal inclusions (SMB24)) by a microalga growth inhibition bioassay. The counting and size measurement of microalga cells and NPs were performed by flow cytometry. The biochemical endpoints were measured by a UV-VIS microplate spectrophotometer. The highest toxicity was observed for SMB24 (EC50, 3.6 mg/L) and CdS (EC50, 21.3 mg/L). A combined toxicity bioassay demonstrated that TiO2 and the SMB3 NPs had a synergistic toxic effect in combinations with all the tested samples except SMB24, probably caused by a “Trojan horse effect”. Sample SMB24 had antagonistic toxic action with CdS and ZnS, which was probably caused by metal ion scavenging.
Collapse
|
10
|
Koyande AK, Chew KW, Manickam S, Chang JS, Show PL. Emerging algal nanotechnology for high-value compounds: A direction to future food production. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Parsai T, Kumar A. Setting guidelines for co-occurring nanoparticles in water medium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145175. [PMID: 33647666 DOI: 10.1016/j.scitotenv.2021.145175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
This study developed a framework termed as "mixNanohealthrisk" hereafter, for the first time as per literature review, to provide exposure limit or reference dose for co-occurring nanoparticles (NPs) in water for different regions of the world. The effect of interaction of NPs on (i) NP occurrence in environment and (ii) toxic effects were incorporated for estimating NP exposure dose and associated risks (in terms of risk quotient (RQ) and hazard index (HI). Reference dose (RfD) values for SiO2, CeO2, TiO2, Al2O3, Fe2O3, CNT, C60, ZnO and CuO NPs were calculated for the first time in this study based on toxicity studies. RfD values for top three risk-posing nanoparticles when co-occurring together were found to be 0.1 mg/kg/d (CuO), 0.12 mg/kg/d (ZnO) and 0.19 mg/kg/d (TiO2). Calculated maximum allowable concentration values for these nanoparticles were found to be 70.8, 84.4 and 136 mg/L for CuO, ZnO and TiO2 NPs. Exposures to nanoparticles aggregate (ZnO NP + CuO NP) in mixture suspension was found to have allowable ZnO and CuO concentration values of 24.7 mg/L and 175.2 mg/L respectively when present as aggregate. Top three regions identified with highest risk quotient were found to be USA followed by Switzerland and whole of Europe. During use of NP-interaction data for estimating risks, Ag, TiO2 and CuO NPs were found to have lowest maximum allowable concentration values. The identified top three risk-posing NPs can be used for conducting toxicity studies for mixture of NPs and long-term monitoring so that it can be used for setting up guideline concentration values for NPs in mixture for water environment.
Collapse
Affiliation(s)
- Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
12
|
Kong IC, Ko KS, Koh DC. Comparisons of the Effect of Different Metal Oxide Nanoparticles on the Root and Shoot Growth under Shaking and Non-Shaking Incubation, Different Plants, and Binary Mixture Conditions. NANOMATERIALS 2021; 11:nano11071653. [PMID: 34201728 PMCID: PMC8305468 DOI: 10.3390/nano11071653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 11/24/2022]
Abstract
We evaluated the toxicity of five metal oxide nanoparticles (NPs) in single or binary mixtures based on root and shoot growth of two plant species under non-shaking and shaking conditions. The effects of NPs on root and shoot growth differed depending on the NP type, incubation condition, and plant type. The half maximal effective concentration (EC50) of NPs based on root growth were significantly lower, by 2.6–9.8 times, under shaking than non-shaking conditions (p = 0.0138). The magnitude of the effects of NPs followed the order CuO > ZnO > NiO >> Al2O3, TiO2. In addition, Lactuca sativa L. was more sensitive to the tested NPs than Raphanus sativus L., with an EC50 0.2–0.7 times lower (p = 0.0267). The observed effects of 12 combinations of binary NP mixtures were slightly, albeit non-significantly, lower than expected, indicative of an additive effect of the individual NPs in the mixtures. The results emphasize the importance of careful plant model selection, appropriate application of incubation conditions, and consideration of chemical mixtures rather than single compounds when evaluating the effects of metal oxide NPs.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea;
| | - Kyung-Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
- Correspondence: ; Tel.: +82-42-868-3162; Fax: +82-42-868-3414
| | - Dong-Chan Koh
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| |
Collapse
|
13
|
Xin X, Huang G, Zhang B. Review of aquatic toxicity of pharmaceuticals and personal care products to algae. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124619. [PMID: 33248823 DOI: 10.1016/j.jhazmat.2020.124619] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) have been frequently detected in the environment around the world. Algae play a significant role in aquatic ecosystem, thus the influence on algae may affect the life of higher trophic organisms. This review provides a state-of-the-art overview of current research on the toxicity of PPCPs to algae. Nanoparticles, contained in personal care products, also have been considered as the ingredients of PPCPs. PPCPs could cause unexpected effects on algae and their communities. Chlorophyta and diatoms are more accessible and sensitive to PPCPs. Multiple algal endpoints should be considered to provide a complete evaluation on PPCPs toxicity. The toxicity of organic ingredients in PPCPs could be predicted through quantitative structure-activity relationship model, whereas the toxicity of nanoparticles could be predicted with limitations. Light irradiation can change the toxicity through affecting algae and PPCPs. pH and natural organic matter can affect the toxicity through changing the existence of PPCPs. For joint and tertiary toxicity, experiments could be conducted to reveal the toxic mechanism. For multiple compound mixture toxicity, concentration addition and independent addition models are preferred. However, there has no empirical models to study nanoparticle-contained mixture toxicity. Algae-based remediation is an emerging technology to prevent the release of PPCPs from water treatment plants. Although many individual algal species are identified for removing a few compounds from PPCPs, algal-bacterial photobioreactor is a preferable alternative, with higher chances for industrial applications.
Collapse
Affiliation(s)
- Xiaying Xin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, NL A1B 3X5, St. John's Canada; Institute for Energy, Environment and Sustainable Communities, University of Regina, SK S4S 0A2 Regina, Canada
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, SK S4S 0A2 Regina, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Civil Engineering, Memorial University, NL A1B 3X5, St. John's Canada.
| |
Collapse
|
14
|
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. NANOMATERIALS 2021; 11:nano11010124. [PMID: 33430414 PMCID: PMC7826902 DOI: 10.3390/nano11010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure–activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Collapse
Affiliation(s)
- Tung X. Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Correspondence: ; Tel.: +82-(0)42-860-7482
| |
Collapse
|
15
|
Zhao X, Zhang W, He Y, Wang L, Li W, Yang L, Xing G. Phytotoxicity of Y 2O 3 nanoparticles and Y 3+ ions on rice seedlings under hydroponic culture. CHEMOSPHERE 2021; 263:127943. [PMID: 32822939 DOI: 10.1016/j.chemosphere.2020.127943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 05/09/2023]
Abstract
Due to the characteristics of both rare earth elements (REEs) and nanoparticles (NPs), Y2O3 NPs have been widely used in the fields of medicine, military industry, and agriculture, especially in the areas of electricity, light, magnetism, and catalysis. Given this widespread use, it is inevitable that Y2O3 NPs and soluble Y3+ will enter bodies of water through the processes involved in their preparation, application, and disposal. We sought to investigate the toxicities of Y2O3 NPs and Y3+ ions on rice seedlings (Oryza sativa L.), as well as the uptake and distribution of Y2O3 NPs under hydroponic conditions. Our results indicated that Y2O3 NPs and released Y3+ had no significant effect on the germination rate of rice. However, high concentrations of Y2O3 NPs (50 and 100 mg/L) delayed seed germination. As for rice root elongation, low concentrations (1, 5, and 10 mg/L) of Y2O3 NPs had a positive effect. Notably, when Y2O3 NPs concentration reached 20 mg/L and higher, root elongation was significantly inhibited. According to the physiological and biochemical characteristics of rice seedlings under Y stress, Y2O3 NPs ranging from 20 to 100 mg/L significantly reduced chlorophyll contents and root activity. Using ICP-MS and TEM analyses, Y2O3 NPs and Y3+ were shown to be mainly absorbed and accumulated in the roots. With Y2O3 NPs exposure, the Y transport coefficient from the roots to the shoots of rice was 1.94-7.55%. Comparatively, Y3+ ions had an insignificant effect on plant growth, with the phytotoxicity of Y being mainly produced by Y2O3 NPs.
Collapse
Affiliation(s)
- Xiaohong Zhao
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Wenshan Zhang
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuejun He
- North China Institute of Aerospace Engineering, Langfang, 065000, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei Li
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Liwei Yang
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Guohua Xing
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| |
Collapse
|
16
|
Aquatic Toxicity of Photocatalyst Nanoparticles to Green Microalgae Chlorella vulgaris. WATER 2020. [DOI: 10.3390/w13010077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last years, nanoparticles such as TiO2, ZnO, NiO, CuO and Fe2O3 were mainly used in wastewater applications. In addition to the positive aspects concerning using nanoparticles in the advanced oxidation process of wastewater containing pollutants, the impact of these nanoparticles on the environment must also be investigated. The toxicity of nanoparticles is generally investigated by the nanomaterials’ effect on green algae, especially on Chlorella vulgaris. In this review, several aspects are reviewed: the Chlorella vulgaris culture monitoring and growth parameters, the effect of different nanoparticles on Chlorella vulgaris, the toxicity of photocatalyst nanoparticles, and the mechanism of photocatalyst during oxidative stress on the photosynthetic mechanism of Chlorella vulgaris. The Bold basal medium (BBM) is generally recognized as an excellent standard cultivation medium for Chlorella vulgaris in the known environmental conditions such as temperature in the range 20–30 °C and light intensity of around 150 μE·m2·s−1 under a 16/8 h light/dark cycle. The nanoparticles synthesis methods influence the particle size, morphology, density, surface area to generate growth inhibition and further algal deaths at the nanoparticle-dependent concentration. Moreover, the results revealed that nanoparticles caused a more potent inhibitory effect on microalgal growth and severely disrupted algal cells’ membranes.
Collapse
|
17
|
Vilas-Boas V, Vinken M. Hepatotoxicity induced by nanomaterials: mechanisms and in vitro models. Arch Toxicol 2020; 95:27-52. [PMID: 33155068 DOI: 10.1007/s00204-020-02940-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The unique physicochemical properties of materials at nanoscale have opened a plethora of opportunities for applications in the pharmaceutical and medical field, but also in consumer products from food and cosmetics industries. As a consequence, daily human exposure to nanomaterials through distinct routes is considerable and, therefore, may raise health concerns. Many nanomaterials have been described to accumulate and induce adversity in the liver. Among these, silica and some types of metallic nanoparticles are the most broadly used in consumer products and, therefore, the most studied and reported. The reviewed literature was collected from PubMed.gov during the month of March 2020 using the search words "nanomaterials induced hepatotoxicity", which yielded 181 papers. This present paper reviews the hepatotoxic effects of nanomaterials described in in vitro and in vivo studies, with emphasis on the underlying mechanisms. The induction of oxidative stress and inflammation are the manifestations of toxicity most frequently reported following exposure of cells or animal models to different nanomaterials. Furthermore, the available in vitro models for the evaluation of the hepatotoxic effects of nanomaterials are discussed, highlighting the continuous interest in the development of more advanced and reliable in vitro models for nanotoxicology.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
18
|
Nguyen MK, Moon JY, Lee YC. Microalgal ecotoxicity of nanoparticles: An updated review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110781. [PMID: 32497816 DOI: 10.1016/j.ecoenv.2020.110781] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, nanotechnology and its related industries are becoming a rapidly explosive industry that offers many benefits to human life. However, along with the increased production and use of nanoparticles (NPs), their presence in the environment creates a high risk of increasing toxic effects on aquatic organisms. Therefore, a large number of studies focusing on the toxicity of these NPs to the aquatic organisms are carried out which used algal species as a common biological model. In this review, the influences of the physio-chemical properties of NPs and the response mechanisms of the algae on the toxicity of the NPs were discussed focusing on the "assay" studies. Besides, the specific algal toxicities of each type of NPs along with the NP-induced changes in algal cells of these NPs are also assessed. Almost all commonly-used NPs exhibit algal toxicity. Although the algae have similarities in the symptoms under NP exposure, the sensitivity and variability of each algae species to the inherent properties of each NPs are quite different. They depend strongly on the concentration, size, characteristics of NPs, and biochemical nature of algae. Through the assessment, the review identifies several gaps that need to be further studied to make an explicit understanding. The findings in the majority of studies are mostly in laboratory conditions and there are still uncertainties and contradictory/inconsistent results about the behavioral effects of NPs under field conditions. Besides, there remains unsureness about NP-uptake pathways of microalgae. Finally, the toxicity mechanisms of NPs need to be thoughtfully understood which is essential in risk assessment.
Collapse
Affiliation(s)
- Minh Kim Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16 gil, Seoul, 02876, Republic of Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
19
|
Hazeem LJ, Yesilay G, Bououdina M, Perna S, Cetin D, Suludere Z, Barras A, Boukherroub R. Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes. MARINE POLLUTION BULLETIN 2020; 156:111278. [PMID: 32510417 DOI: 10.1016/j.marpolbul.2020.111278] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Plastics of different sizes (micro- and nano-sized) are often identified in aquatic environments. Nevertheless, their influence on marine organisms has not been widely investigated. In this study, the responses of the microalga Chlorella vulgaris to micro- and nanoplastics exposure were examined using long term toxicity test. The plastics tested were carboxyl-functionalized and non-functionalized polystyrene of 20, 50 and 500 nm in diameter. A reduction in algal cell viability and chlorophyll a concentration has been observed after exposure to the small sizes (20 and 50 nm) of plastics. Lactate dehydrogenase activity and reactive oxygen species concentration/production were significantly higher after exposure to the 20 nm nanoplastics than that of control confirming the stress condition. Fourier transform infrared (FTIR) spectroscopy analysis proved the attachment of nanoplastics to microalgae and rearrangement of extracellular polymeric substances. The cellular stress appeared as increased cell size, deformed cell wall and increased volume of starch grains.
Collapse
Affiliation(s)
- Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain, 3203, Bahrain.
| | - Gamze Yesilay
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey
| | - Mohamed Bououdina
- Department of Physics, College of Science, University of Bahrain, 3203, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, 3203, Bahrain.
| | - Demet Cetin
- Department of Mathematics and Science Education, Gazi Faculty of Education, Gazi University, 06500 Ankara, Turkey.
| | - Zekiye Suludere
- Department of Biology, Faculty of Science, Gazi University, 06500 Ankara, Turkey.
| | - Alexandre Barras
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France.
| |
Collapse
|
20
|
Fathabad SG, Tabatabai B, Walker D, Chen H, Lu J, Aslan K, Uddin J, Ghann W, Sitther V. Impact of Zero-Valent Iron Nanoparticles on Fremyella diplosiphon Transesterified Lipids and Fatty Acid Methyl Esters. ACS OMEGA 2020; 5:12166-12173. [PMID: 32548398 PMCID: PMC7271364 DOI: 10.1021/acsomega.0c00566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/06/2020] [Indexed: 05/10/2023]
Abstract
Efforts to enhance the transformative potential of biofuels is an important step to achieving an environment-friendly and sustainable energy source. Fremyella diplosiphon is an ideal third-generation biofuel agent due to its ability to produce lipids and desirable essential fatty acids. In this study, the impact of Nanofer 25s nanoscale zero-valent iron nanoparticles (nZVIs) on total lipid content and fatty acid composition of F. diplosiphon strains SF33 and B481 was investigated. We observed significant increases (P < 0.05) in the growth of F. diplosiphon treated with 0.2-1.6 mg L-1 Nanofer 25s, indicating that trace concentrations of nZVIs were not toxic to the organism. Chlorophyll a, carotenoids, and phycobiliprotein levels were not altered in F. diplosiphon treated with nZVIs ranging from 0.4 to 1.6 mg L-1, confirming that these concentrations did not negatively impact photosynthetic efficacy. In addition, Nanofer 25s ranging from 0.2 to 1.6 mg L-1 had an optimal impact on SF33 and B481 total lipid content. We identified significant increases in unsaturated fatty acid methyl esters (FAMEs) from F. diplosiphon Nanofer 25s-treated transesterified lipids. Theoretical chemical and physical biofuel properties revealed a product with elevated cetane number and oxidative stability for both strains. Scanning electron microscopy and energy-dispersive X-ray spectroscopy validated the localization of nZVIs. Our findings indicate that Nanofer 25s nZVIs significantly enhance F. diplosiphon total lipid content and essential FAMEs, thus offering a promising approach to augment the potential of the cyanobacterium as a large-scale biofuel agent.
Collapse
Affiliation(s)
- Somayeh Gharaie Fathabad
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Behnam Tabatabai
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Dy'mon Walker
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Huan Chen
- National High Magnetic Field Laboratory and Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Jie Lu
- National High Magnetic Field Laboratory and Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory and Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Kadir Aslan
- Department of Chemical Engineering, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 West North Avenue, Baltimore, Maryland 21216, United States
| | - William Ghann
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University, 2500 West North Avenue, Baltimore, Maryland 21216, United States
| | - Viji Sitther
- Department of Biology, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| |
Collapse
|
21
|
Interaction of titanium dioxide and zinc oxide nanoparticles induced cytogenotoxicity in Allium cepa. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00308-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Czarny K, Szczukocki D, Krawczyk B, Skrzypek S, Zieliński M, Gadzała-Kopciuch R. Toxic effects of single animal hormones and their mixtures on the growth of Chlorella vulgaris and Scenedesmus armatus. CHEMOSPHERE 2019; 224:93-102. [PMID: 30818199 DOI: 10.1016/j.chemosphere.2019.02.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
In their environments, aquatic organisms are simultaneously exposed to mixtures of several endocrine disrupting compounds, including hormones. However, most of the toxicity studies so far focused on effects of single contaminants. The available information on the potential toxicity of combined hormones on microalgae is extremely limited. For these reasons the aim of this study was to evaluate the individual and mixture effect of estrone (E1), ß-estradiol (E2), estriol (E3), 17-α-ethinylestradiol (EE2), progesterone (PRO), 5-pregnen-3β-ol-20-one (PRE), levonorgestrel (LG) and testosterone (TST) on Chlorella vulgaris and Scenedesmus armatus. Green algae cells were exposed to different concentrations (0.1-100 mg L-1) of hormones for 14 days. Biomass in the form of dry weight and chlorophyll a was examined. The decreasing order of toxicity (based on EC50, 14d) to Chlorella vulgaris and Scenedesmus armatus was: EE2>PRO > E2>PRE > TST > E3>LG > E1 and EE2>PRO > TST > E2>PRE > LG > E1>E3, respectively. Chlorella vulgaris was more sensitive to the effects of hormones than Scenedesmus armatus. Although mixed hormones were more toxic to green algae than single hormones, in the ecosystem mixtures can pose higher ecological risk than single pollutants. Therefore, data on the toxicology of both single and mixed hormones is very valuable for assessment of the possibility of adverse ecological effects caused by these pollutants. Furthermore, these results suggest that environmental exposure to hormone mixtures may cause toxicity levels different to the sum of those of the single hormones and provides a basic understanding of their toxic effect on algae.
Collapse
Affiliation(s)
- Karolina Czarny
- Laboratory of Environmental Threat, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12 Street, 91-403, Lodz, Poland.
| | - Dominik Szczukocki
- Laboratory of Environmental Threat, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12 Street, 91-403, Lodz, Poland
| | - Barbara Krawczyk
- Laboratory of Environmental Threat, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12 Street, 91-403, Lodz, Poland
| | - Sławomira Skrzypek
- Laboratory of Environmental Threat, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12 Street, 91-403, Lodz, Poland
| | - Marek Zieliński
- Laboratory of Environmental Threat, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12 Street, 91-403, Lodz, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina7 Street, 87-100, Torun, Poland
| |
Collapse
|
23
|
Iswarya V, Palanivel A, Chandrasekaran N, Mukherjee A. Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11998-12013. [PMID: 30827021 DOI: 10.1007/s11356-019-04652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
In the current study, the effect of different types of titanium dioxide (TiO2) nanoparticles (NPs) (rutile, anatase, and mixture) was analyzed on Ceriodaphnia dubia in the presence of algae under distinct irradiation conditions such as visible and UV-A. The toxicity experiments were performed in sterile freshwater to mimic the chemical composition of the freshwater system. In addition, the oxidative stress biomarkers such as MDA, catalase, and GSH were analyzed to elucidate the stress induced by the NPs on daphnids. Individually, both rutile and anatase NPs induced similar mortality under both visible and UV-A irradiations at all the test concentrations except 600 and 1200 μM where rutile induced higher mortality under UV-A. Upon visible irradiation, the binary mixture exhibited a synergistic effect at their lower concentration and an additive effect at higher concentrations. In contrast, UV-A irradiation demonstrated the additive effect of mixture except for 1200 μM which elucidated antagonistic effect. Mathematical model confirmed the effects of the binary mixture. The surface interaction between the individual NPs in the form of aggregation played a pivotal role in the induction of specific effects exhibited by the binary mixture. Oxidative stress biomarkers were highly increased upon NPs exposure especially under visible irradiation. These observations elucidated that the irradiation and crystallinity effect of TiO2 NPs were noted only on certain biomarkers and not on the mortality.
Collapse
Affiliation(s)
- Velu Iswarya
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Abirami Palanivel
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|