1
|
Yew PYM, Chee PL, Lin Q, Owh C, Li J, Dou QQ, Loh XJ, Kai D, Zhang Y. Hydrogel for light delivery in biomedical applications. Bioact Mater 2024; 37:407-423. [PMID: 38689660 PMCID: PMC11059474 DOI: 10.1016/j.bioactmat.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Traditional optical waveguides or mediums are often silica-based materials, but their applications in biomedicine and healthcare are limited due to the poor biocompatibility and unsuitable mechanical properties. In term of the applications in human body, a biocompatible hydrogel system with excellent optical transparency and mechanical flexibility could be beneficial. In this review, we explore the different designs of hydrogel-based optical waveguides derived from natural and synthetic sources. We highlighted key developments such as light emitting contact lenses, implantable optical fibres, biosensing systems, luminating and fluorescent materials. Finally, we expand further on the challenges and perspectives for hydrogel waveguides to achieve clinical applications.
Collapse
Affiliation(s)
- Pek Yin Michelle Yew
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Pei Lin Chee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Jiayi Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Qing Qing Dou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, 627833, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Chimene D, Queener KMK, Ko BS, McShane M, Daniele M. Insertable Biosensors: Combining Implanted Sensing Materials with Wearable Monitors. Annu Rev Biomed Eng 2024; 26:197-221. [PMID: 38346276 DOI: 10.1146/annurev-bioeng-110222-101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Insertable biosensor systems are medical diagnostic devices with two primary components: an implantable biosensor within the body and a wearable monitor that can remotely interrogate the biosensor from outside the body. Because the biosensor does not require a physical connection to the electronic monitor, insertable biosensor systems promise improved patient comfort, reduced inflammation and infection risk, and extended operational lifetimes relative to established percutaneous biosensor systems. However, the lack of physical connection also presents technical challenges that have necessitated new innovations in developing sensing chemistries, transduction methods, and communication modalities. In this review, we discuss the key developments that have made insertables a promising option for longitudinal biometric monitoring and highlight the essential needs and existing development challenges to realizing the next generation of insertables for extended-use diagnostic and prognostic devices.
Collapse
Affiliation(s)
- David Chimene
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA;
| | - Kirstie M K Queener
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Brian S Ko
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA;
| | - Mike McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA;
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA;
| |
Collapse
|
3
|
Doguet P, Garnier J, Nieuwenhuys A, Godfraind C, Botquin Y, Lemaire A, Justice J, Nonclercq A, El Tahry R, Corbett B, Delbeke J. An optoelectronic implantable neurostimulation platform allowing full MRI safety and optical sensing and communication. Sci Rep 2024; 14:11110. [PMID: 38750033 PMCID: PMC11096369 DOI: 10.1038/s41598-024-61330-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
A novel programmable implantable neurostimulation platform based on photonic power transfer has been developed for various clinical applications with the main focus of being safe to use with MRI scanners. The wires usually conveying electrical current from the neurostimulator to the electrodes are replaced by optical fibers. Photovoltaic cells at the tip of the fibers convert laser light to biphasic electrical impulses together with feedback signals with 54% efficiency. Furthermore, a biocompatible, implantable and ultra-flexible optical lead was developed including custom optical fibers. The neurostimulator platform incorporates advanced signal processing and optical physiological sensing capabilities thanks to a hermetically sealed transparent nonmetallic casing. Skin transparency also allowed the development of a high-speed optical transcutaneous communication channel. This implantable neurostimulation platform was first adapted to a vagus nerve stimulator for the treatment of epilepsy. This neurostimulator has been designed to fulfill the requirements of a class III long-term implantable medical device. It has been proven compliant with standard ISO/TS10974 for 1.5 T and 3 T MRI scanners. The device poses no related threat and patients can safely undergo MRI without specific or additional precautions. Especially, the RF induced heating near the implant remains below 2 °C whatever the MRI settings used. The main features of this unique advanced neurostimulator and its architecture are presented. Its functional performance is evaluated, and results are described with a focus on optoelectronics aspects and MRI safety.
Collapse
Affiliation(s)
- Pascal Doguet
- Irisia SRL, Court-Saint-Etienne, Belgium.
- Synergia Medical, Mont-Saint-Guibert, Belgium.
| | - Jérôme Garnier
- Synergia Medical, Mont-Saint-Guibert, Belgium
- Tyndall National Institute, University College, Cork, Ireland
| | | | | | | | - Antoine Lemaire
- UPVD (PROMES-CNRS), Perpignan, France.
- Tyndall National Institute, University College, Cork, Ireland.
| | - John Justice
- Tyndall National Institute, University College, Cork, Ireland
| | - Antoine Nonclercq
- Bio-, Electro- and Mechanical Systems (BEAMS), Universite Libre de Bruxelles, Bruxelles, Belgium.
| | - Riëm El Tahry
- Department of Neurology, Institute of Neurosciences (IONS), Universite Catholique de Louvain, Cliniques Universitaires Saint Luc, Bruxelles, Belgium.
| | - Brian Corbett
- Tyndall National Institute, University College, Cork, Ireland.
| | | |
Collapse
|
4
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
5
|
Li J, Warren-Smith SC, McLaughlin RA, Ebendorff-Heidepriem H. Single-fiber probes for combined sensing and imaging in biological tissue: recent developments and prospects. BIOMEDICAL OPTICS EXPRESS 2024; 15:2392-2405. [PMID: 38633092 PMCID: PMC11019705 DOI: 10.1364/boe.517920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
Single-fiber-based sensing and imaging probes enable the co-located and simultaneous observation and measurement (i.e., 'sense' and 'see') of intricate biological processes within deep anatomical structures. This innovation opens new opportunities for investigating complex physiological phenomena and potentially allows more accurate diagnosis and monitoring of disease. This prospective review starts with presenting recent studies of single-fiber-based probes for concurrent and co-located fluorescence-based sensing and imaging. Notwithstanding the successful initial demonstration of integrated sensing and imaging within single-fiber-based miniaturized devices, the realization of these devices with enhanced sensing sensitivity and imaging resolution poses notable challenges. These challenges, in turn, present opportunities for future research, including the design and fabrication of complex lens systems and fiber architectures, the integration of novel materials and other sensing and imaging techniques.
Collapse
Affiliation(s)
- Jiawen Li
- School of Electrical and Mechanical Engineering, The University of Adelaide, South Australia, 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia, 5005, Australia
| | - Stephen C. Warren-Smith
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia, 5005, Australia
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Robert A. McLaughlin
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia, 5005, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia, 5005, Australia
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, South Australia, 5005, Australia
| |
Collapse
|
6
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Yang X, Xu L, Xiong S, Rao H, Tan F, Yan J, Bao Y, Albanese A, Camposeo A, Pisignano D, Li B. Light-Emitting Microfibers from Lotus Root for Eco-Friendly Optical Waveguides and Biosensing. NANO LETTERS 2024; 24:566-575. [PMID: 37962055 DOI: 10.1021/acs.nanolett.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.
Collapse
Affiliation(s)
- Xianguang Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Liping Xu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Shijie Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Hao Rao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Fangchang Tan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jiahao Yan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yanjun Bao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Annachiara Albanese
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Dario Pisignano
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
8
|
Galindo JM, Tardío C, Saikia B, Van Cleuvenbergen S, Torres-Moya I. Recent Insights about the Role of Gels in Organic Photonics and Electronics. Gels 2023; 9:875. [PMID: 37998965 PMCID: PMC10670943 DOI: 10.3390/gels9110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
This review article provides an in-depth exploration of the role of gels in the fields of organic electronics and photonics, focusing on their unique properties and applications. Despite their remarkable potential, gel-based innovations remain relatively uncharted in these domains. This brief review aims to bridge the knowledge gap by shedding light on the diverse roles that gels can fulfil in the enhancement of organic electronic and photonic devices. From flexible electronics to light-emitting materials, we delve into specific examples of gel applications, highlighting their versatility and promising outcomes. This work serves as an indispensable resource for researchers interested in harnessing the transformative power of gels within these cutting-edge fields. The objective of this review is to raise awareness about the overlooked research potential of gels in optoelectronic materials, which have somewhat diminished in recent years.
Collapse
Affiliation(s)
- Josué M. Galindo
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02YN77 Dublin, Ireland;
| | - Carlos Tardío
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Chemical Science and Technologies, University of Castilla-La Mancha-IRICA, 13071 Ciudad Real, Spain;
| | - Basanta Saikia
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (S.V.C.)
| | - Stijn Van Cleuvenbergen
- Department of Chemistry, Molecular Imaging and Photonics, KULAK—KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (B.S.); (S.V.C.)
| | - Iván Torres-Moya
- Department of Organic Chemistry, Faculty of Chemical Sciences, Campus of Espinardo, University of Murcia, 30010 Murcia, Spain
| |
Collapse
|
9
|
Andersen MA, Schouenborg J. Polydimethylsiloxane as a more biocompatible alternative to glass in optogenetics. Sci Rep 2023; 13:16090. [PMID: 37752160 PMCID: PMC10522705 DOI: 10.1038/s41598-023-43297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
Optogenetics is highly useful to stimulate or inhibit defined neuronal populations and is often used together with electrophysiological recordings. Due to poor penetration of light in tissue, there is a need for biocompatible wave guides. Glass wave guides are relatively stiff and known to cause glia reaction that likely influence the activity in the remaining neurons. We developed highly flexible micro wave guides for optogenetics that can be used in combination with long-lasting electrophysiological recordings. We designed and evaluated polydimethylsiloxane (PDMS) mono-fibers, which use the tissue as cladding, with a diameter of 71 ± 10 µm and 126 ± 5 µm. We showed that micro PDMS fibers transmitted 9-33 mW/mm2 light energy enough to activate channelrhodopsin. This was confirmed in acute extracellular recordings in vivo in which optogenetic stimulation through the PDMS fibers generated action potentials in rat hippocampus with a short onset latency. PDMS fibers had significantly less microglia and astrocytic activation in the zone nearest to the implant as compared to glass. There was no obvious difference in number of adjacent neurons between size matched wave guides. Micro PDMS wave guide demonstrates in vivo functionality and improved biocompatibility as compared to glass. This enables the delivery of light with less tissue damage.
Collapse
Affiliation(s)
- Michael Aagaard Andersen
- Neuronano Research Center, Department of Experimental Medicine, Lund University, Lund, Sweden.
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
11
|
Chen S, Jiang S, Qiao D, Wang J, Zhou Q, Wu C, Li X, Neisiany RE, Sun L, Liu Y, You Z, Zhu M, Pan J. Chinese Tofu-Inspired Biomimetic Conductive and Transparent Fibers for Biomedical Applications. SMALL METHODS 2023; 7:e2201604. [PMID: 36843249 DOI: 10.1002/smtd.202201604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Conductive fibers are vital for next-generation wearable and implantable electronics. However, the mismatch of mechanical, electrical, and biological properties between existing conductive fibers and human tissues significantly retards their further development. Here, the concept of neuro-like fibers to meet these aforementioned requirements is proposed. A new wet spinning process is established to continuously produce pure gelatin hydrogel fibers. The key is the controllable and rapid gelation of spinning solutions based on the salting-out effect, which is inspired by the Chinese food tofu. The resultant fibers exhibit neuro-like features of soft-while-strong mechanical properties, high ionic conductivity, and superior biological properties including biodegradability, biocompatibility, and edibility, which are crucial for implanted applications but seldom reported. Furthermore, all-weather suitable neuro-like fibers with excellent anti-freezing and water retention properties are developed by introducing glycerol for wearable applications. The optical fiber, transient electronics, and electronic data glove made of neuro-like fibers profoundly demonstrate their potential in biomedical applications.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai, 201620, P. R. China
| | - Sihan Jiang
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai, 201620, P. R. China
| | - Dan Qiao
- Department of Computer Science, University of California, Santa Barbara, CA, 93106, USA
| | - Jiangyue Wang
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, P. R. China
| | - Qiangqiang Zhou
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, P. R. China
| | - Chunmao Wu
- College of Fashion & Design, Donghua University, Shanghai, 200051, P. R. China
| | - Xuefei Li
- College of Fashion & Design, Donghua University, Shanghai, 200051, P. R. China
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai, 201620, P. R. China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai, 201620, P. R. China
| | - Jie Pan
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, P. R. China
| |
Collapse
|
12
|
Strutynski C, Voivenel R, Evrard M, Désévédavy F, Gadret G, Jules JC, Brachais CH, Smektala F. Co-drawing of technical and high-performance thermoplastics with glasses via the molten core method. Sci Rep 2023; 13:5092. [PMID: 36991075 DOI: 10.1038/s41598-023-32174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Among the different fundamental aspects that govern the design and development of elongated multimaterial structures via the preform-to-fiber technique, material association methodologies hold a crucial role. They greatly impact the number, complexity and possible combinations of functions that can be integrated within single fibers, thus defining their applicability. In this work, a co-drawing strategy to produce monofilament microfibers from unique glass-polymer associations is investigated. In particular, the molten core-method (MCM) is applied to several amorphous and semi-crystalline thermoplastics for their integration within larger glass architectures. General conditions in which the MCM can be employed are established. It is demonstrated that the classical glass transition temperature compatibility requirements for glass-polymer associations can be overcome, and that other glass compositions than chalcogenides can be thermally stretched with thermoplastics, here oxide glasses are considered. Composite fibers with various geometries and compositional profiles are then presented to illustrate the versatility of the proposed methodology. Finally, investigations are focused on fibers produced from the association of poly ether ether ketone (PEEK) with tellurite and phosphate glasses. It is demonstrated that upon appropriate elongation conditions, the crystallization kinetics of PEEK can be controlled during the thermal stretching and crystallinities of the polymer as low as 9 mass. % are reached in the final fiber. It is believed such novel material associations as well as the ability to tailor material properties within fibers could inspire the development of a new class of hybrid elongated objects with unprecedented functionalities.
Collapse
Affiliation(s)
- Clément Strutynski
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France.
| | - Raphaël Voivenel
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Marianne Evrard
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Frédéric Désévédavy
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Gregory Gadret
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Jean-Charles Jules
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Claire-Hélène Brachais
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| | - Frédéric Smektala
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne-Franche-Comté, 9 Avenue Alain Savary, 21078, Dijon, France
| |
Collapse
|
13
|
Kwon O, Moon S, Yun Y, Nam YH, Kim NH, Kim D, Choi W, Park S, Lee J. Highly efficient thin-film 930 nm VCSEL on PDMS for biomedical applications. Sci Rep 2023; 13:571. [PMID: 36631519 PMCID: PMC9834219 DOI: 10.1038/s41598-023-27589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Recently, biocompatible optical sources have been surfacing for new-rising biomedical applications, allowing them to be used for multi-purpose technologies such as biological sensing, optogenetic modulation, and phototherapy. Especially, vertical-cavity surface-emitting laser (VCSEL) is in the spotlight as a prospective candidate for optical sources owing to its low-driving current performance, low-cost, and package easiness in accordance with two-dimensional (2D) arrays structure. In this study, we successfully demonstrated the actualization of biocompatible thin-film 930 nm VCSELs transferred onto a Polydimethylsiloxane (PDMS) carrier. The PDMS feature with biocompatibility as well as biostability makes the thin-film VCSELs well-suited for biomedical applications. In order to integrate the conventional VCSEL onto the PDMS carrier, we utilized a double-transfer technique that transferred the thin-film VCSELs onto foreign substrates twice, enabling it to maintain the p-on-n polarity of the conventional VCSEL. Additionally, we employed a surface modification-assisted bonding (SMB) using an oxygen plasma in conjunction with silane treatment when bonding the PDMS carrier with the substrate-removed conventional VCSELs. The threshold current and maximum output power of the fabricated 930 nm thin-film VCSELs are 1.08 mA and 7.52 mW at an injection current of 13.9 mA, respectively.
Collapse
Affiliation(s)
- Ohdo Kwon
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Sunghyun Moon
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Yeojun Yun
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Yong-Hyun Nam
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Nam-Heon Kim
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Donghwan Kim
- RayIR Corporation, LTD, 156 Gwanggyo-ro, Yeongtong-gu, Suwon, 16506, South Korea
| | - Wonjin Choi
- RayIR Corporation, LTD, 156 Gwanggyo-ro, Yeongtong-gu, Suwon, 16506, South Korea
| | - Sungjun Park
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Jaejin Lee
- Department of Electrical and Computer Engineering, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
14
|
Xia J, Luo J, Chang B, Sun C, Li K, Zhang Q, Li Y, Wang H, Hou C. High-Performance Zwitterionic Organohydrogel Fiber in Bioelectronics for Monitoring Bioinformation. BIOSENSORS 2023; 13:115. [PMID: 36671950 PMCID: PMC9855821 DOI: 10.3390/bios13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Bioinformation plays an imperative role in day-to-day life. Wearable bioelectronics are important for sensing bioinformation in real-time and conductive hydrogel fibers are a key component in next generation wearable bioelectronics. However, current conductive hydrogel fibers have remarkable disadvantages such as insufficient conductivity, stability, and bioinformation sensing ability. Here, we report the synthesis of a zwitterionic organohydrogel (ZOH) fiber by the combination of the mold method and solvent replacement strategy. The ZOH fiber shows transparency (92.1%), stretchability (905.8%), long-term stability, anti-freezing ability (-35-60 °C), and low light transmission loss (0.17 dB/cm). Then, we integrate the ZOH fiber into fabric for use as a bioinformation sensor, the results prove its capability as a bioinformation monitor, monitoring information such as motion and bioelectric signals. In addition, the potential of the ZOH fiber in optogenetic applications is also confirmed.
Collapse
Affiliation(s)
- Jun Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiabei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Boya Chang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chuanyue Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
15
|
Helke C, Reinhardt M, Arnold M, Schwenzer F, Haase M, Wachs M, Goßler C, Götz J, Keppeler D, Wolf B, Schaeper J, Salditt T, Moser T, Schwarz UT, Reuter D. On the Fabrication and Characterization of Polymer-Based Waveguide Probes for Use in Future Optical Cochlear Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:106. [PMID: 36614443 PMCID: PMC9821155 DOI: 10.3390/ma16010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Improved hearing restoration by cochlear implants (CI) is expected by optical cochlear implants (oCI) exciting optogenetically modified spiral ganglion neurons (SGNs) via an optical pulse generated outside the cochlea. The pulse is guided to the SGNs inside the cochlea via flexible polymer-based waveguide probes. The fabrication of these waveguide probes is realized by using 6" wafer-level micromachining processes, including lithography processes such as spin-coating cladding layers and a waveguide layer in between and etch processes for structuring the waveguide layer. Further adhesion layers and metal layers for laser diode (LD) bonding and light-outcoupling structures are also integrated in this waveguide process flow. Optical microscope and SEM images revealed that the majority of the waveguides are sufficiently smooth to guide light with low intensity loss. By coupling light into the waveguides and detecting the outcoupled light from the waveguide, we distinguished intensity losses caused by bending the waveguide and outcoupling. The probes were used in first modules called single-beam guides (SBGs) based on a waveguide probe, a ball lens and an LD. Finally, these SBGs were tested in animal models for proof-of-concept implantation experiments.
Collapse
Affiliation(s)
- Christian Helke
- Fraunhofer Institute for Electronic Nanosystems ENAS, 09126 Chemnitz, Germany
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Markus Reinhardt
- Fraunhofer Institute for Electronic Nanosystems ENAS, 09126 Chemnitz, Germany
- Experimental Sensor Science, Technical University of Chemnitz, 09126 Chemnitz, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Markus Arnold
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Falk Schwenzer
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Micha Haase
- Fraunhofer Institute for Electronic Nanosystems ENAS, 09126 Chemnitz, Germany
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Matthias Wachs
- Experimental Sensor Science, Technical University of Chemnitz, 09126 Chemnitz, Germany
| | - Christian Goßler
- Experimental Sensor Science, Technical University of Chemnitz, 09126 Chemnitz, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Jonathan Götz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Daniel Keppeler
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Bettina Wolf
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Jannis Schaeper
- Institute for X-ray Physics, University of Goettingen, 37075 Goettingen, Germany
- Multiscale Bioimaging Cluster of Excellence, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Goettingen, 37075 Goettingen, Germany
- Multiscale Bioimaging Cluster of Excellence, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany
- Multiscale Bioimaging Cluster of Excellence, University Medical Center Goettingen, 37075 Goettingen, Germany
| | | | - Danny Reuter
- Fraunhofer Institute for Electronic Nanosystems ENAS, 09126 Chemnitz, Germany
- Center for Microtechnologies (ZfM), Technical University of Chemnitz, 09126 Chemnitz, Germany
| |
Collapse
|
16
|
Sharfstein ST. Bio-hybrid electronic and photonic devices. Exp Biol Med (Maywood) 2022; 247:2128-2141. [PMID: 36533579 PMCID: PMC9837307 DOI: 10.1177/15353702221144087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bio-hybrid devices, combining electronic and photonic components with cells, tissues, and organs, hold potential for advancing our understanding of biology, physiology, and pathologies and for treating a wide range of conditions and diseases. In this review, I describe the devices, materials, and technologies that enable bio-hybrid devices and provide examples of their utilization at multiple biological scales ranging from the subcellular to whole organs. Finally, I describe the outcomes of a National Science Foundation (NSF)-funded workshop envisioning potential applications of these technologies to improve health outcomes and quality of life.
Collapse
|
17
|
Liu T, Ding H, Huang J, Zhan C, Wang S. Liquid-Core Hydrogel Optical Fiber Fluorescence Probes. ACS Sens 2022; 7:3298-3307. [PMID: 36283762 DOI: 10.1021/acssensors.2c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This paper first reports a liquid-core hydrogel optical fiber fluorescence probe. It is composed of a liquid core, a high-refractive-index hydrogel fiber core, and a low-refractive-index hydrogel fiber cladding, which is completely different from many existing optical fiber fluorescence probes. The sensing solution with sensitive materials is sealed as a liquid core, and it can sufficiently react with small-molecule targets penetrating through the hydrogel fiber cladding and core, thus inducing variations in the fluorescence signals. These fluorescence signals can be localized and transmitted within the probe and finally collected and quantified for target detection. This proposed probe can be simply and rapidly fabricated and reused, and it was proven to have high sensitivity, accuracy, and selectivity in practical applications. Therefore, this liquid-core hydrogel optical fiber fluorescence probe will enable a novel sensing platform for small-molecule analyte detection that faces on-site detection challenges.
Collapse
Affiliation(s)
- Ting Liu
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - He Ding
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jianwei Huang
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Chengsen Zhan
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Shouyu Wang
- OptiX+ Laboratory, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
Owh C, Ow V, Lin Q, Wong JHM, Ho D, Loh XJ, Xue K. Bottom-up design of hydrogels for programmable drug release. BIOMATERIALS ADVANCES 2022; 141:213100. [PMID: 36096077 DOI: 10.1016/j.bioadv.2022.213100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Hydrogels are a promising drug delivery system for biomedical applications due to their biocompatibility and similarity to native tissue. Programming the release rate from hydrogels is critical to ensure release of desired dosage over specified durations, particularly with the advent of more complicated medical regimens such as combinatorial drug therapy. While it is known how hydrogel structure affects release, the parameters that can be explicitly controlled to modulate release ab initio could be useful for hydrogel design. In this review, we first survey common physical models of hydrogel release. We then extensively go through the various input parameters that we can exercise direct control over, at the levels of synthesis, formulation, fabrication and environment. We also illustrate some examples where hydrogels can be programmed with the input parameters for temporally and spatially defined release. Finally, we discuss the exciting potential and challenges for programming release, and potential implications with the advent of machine learning.
Collapse
Affiliation(s)
- Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, Singapore 117583, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, #01-30 General Office, Block N4.1, Singapore 639798, Singapore.
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| |
Collapse
|
19
|
Zhuo X, Zhou L, Bian Y, Shen H. Efficient taper optical hydrogel fiber coupler drawn from suspended photocuring 3D printing. OPTICS LETTERS 2022; 47:4853-4856. [PMID: 36181134 DOI: 10.1364/ol.470543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Integrating bio-friendly optical hydrogel fibers (HFs) with solid-state fibers (SFs) could expand the horizons of fiber-optic technology for bio-photonics. However, methods for coupling HF and SF-based systems are inefficient due to the mode field mismatch. Here, a hydrogel fiber coupler with a taper core-cladding structure is demonstrated for efficiently coupling HF to SF and fabricated through suspended photocuring 3D printing. Coupling efficiencies of 8.3 and 9.4 dB are obtained at 632 and 473 nm, respectively, which are 22% better than those of conventional couplers. The working bandwidth covers visible wavelengths, satisfying bioengineering requirements. This research removes obstacles to optical fiber applications in bioscience.
Collapse
|
20
|
Lv H, Chu L, Wang S, Sun S, Sun X, Jia Y, Chen F. Layer-dependent nonlinear optical properties of two-dimensional InSe and its applications in waveguide lasers. OPTICS EXPRESS 2022; 30:23986-23999. [PMID: 36225069 DOI: 10.1364/oe.462811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 06/16/2023]
Abstract
The thickness-dependent third-order nonlinear optical properties of two-dimensional β-InSe and its potential applications as a saturable absorber in pulsed laser generation are investigated. InSe sheets with different layers are prepared by the chemical vapor deposition. Using open-aperture femtosecond Z-scan technique at 1030 nm, the modulation depth and nonlinear absorption coefficient are obtained to be 36% and -1.6 × 104 cm·GW-1, respectively. The intrinsic mechanism of the layer-dependent energy band structure evolution is analyzed based on density functional theory, and the theoretical analysis is consistent with the experimental results. Based on a waveguide cavity, a Q-switched mode-locked laser at 1 µm with a repetition frequency of 8.51 GHz and a pulse duration of 28 ps is achieved by utilizing the layered InSe as a saturable absorber. This work provides an in-depth understanding of layer-dependent properties of InSe and extends its applications in laser technology for compact light devices.
Collapse
|
21
|
Cutolo A, Carotenuto AR, Cutolo MA, Cutolo A, Giaquinto M, Palumbo S, Cusano A, Fraldi M. Ultrasound waves in tumors via needle irradiation for precise medicine. Sci Rep 2022; 12:6513. [PMID: 35444170 PMCID: PMC9021295 DOI: 10.1038/s41598-022-10407-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/23/2022] [Indexed: 12/18/2022] Open
Abstract
Grounded in the interdisciplinary crosstalk among physics and biological sciences, precision medicine-based diagnosis and treatment strategies have recently gained great attention for the actual applicability of new engineered approaches in many medical fields, particularly in oncology. Within this framework, the use of ultrasounds employed to attack cancer cells in tumors to induce possible mechanical damage at different scales has received growing attention from scholars and scientists worldwide. With these considerations in mind, on the basis of ad hoc elastodynamic solutions and numerical simulations, we propose a pilot study for in silico modeling of the propagation of ultrasound waves inside tissues, with the aim of selecting proper frequencies and powers to be irradiated locally through a new teragnostic platform based on Lab-on-Fiber technology, baptized as a hospital in the needle and already the object of a patent. It is felt that the outcomes and the related biophysical insights gained from the analyses could pave the way for envisaging new integrated diagnostic and therapeutic approaches that might play a central role in future applications of precise medicine, starting from the growing synergy among physics, engineering and biology.
Collapse
Affiliation(s)
- Antonello Cutolo
- Department of Electrical Engineering and Information Technology, University of Napoli ″Federico II″, Napoli, Italy
| | - Angelo Rosario Carotenuto
- Department of Structures for Engineering and Architecture, University of Napoli ″Federico II″, Napoli, Italy
| | - Maria Alessandra Cutolo
- Department of Electrical Engineering and Information Technology, University of Napoli ″Federico II″, Napoli, Italy
| | - Arsenio Cutolo
- Department of Structures for Engineering and Architecture, University of Napoli ″Federico II″, Napoli, Italy
| | - Martino Giaquinto
- Optoelectronics Group, Department of Engineering, University of Sannio, Benevento, Italy
| | - Stefania Palumbo
- Department of Structures for Engineering and Architecture, University of Napoli ″Federico II″, Napoli, Italy
| | - Andrea Cusano
- Optoelectronics Group, Department of Engineering, University of Sannio, Benevento, Italy
| | - Massimiliano Fraldi
- Department of Structures for Engineering and Architecture, University of Napoli ″Federico II″, Napoli, Italy.
| |
Collapse
|
22
|
Liu L, Korposh S, Gomez D, Correia R, Hayes-Gill BR, Morgan SP. Localised plasmonic hybridisation mode optical fibre sensing of relative humidity. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 353:131157. [PMID: 35177879 PMCID: PMC8784827 DOI: 10.1016/j.snb.2021.131157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
This work reports an optical fibre probe functionalised with 'cotton-shaped' gold-silica nanostructures for relative humidity (RH) monitoring. The sensor response utilises the localised surface plasmon resonance (LSPR) of self-assembled nanostructures: gold nanospheres (40 nm) surrounded by one layer of poly (allylamine hydrochloride) and hydrophilic silica nanoparticles (10-20 nm) on the end-facet of an optical fibre via a wavelength shift of the reflected light. Sensor optimisation is investigated by varying the density of gold nanoparticles on the end-facet of an optical fibre. It is demonstrated that the plasmonic hybridisation mode appearing when the average gold interparticle distance is small (Median: 7.5 nm) is more sensitive to RH after functionalisation than the singular plasmonic mode. The plasmonic hybridisation mode sensor demonstrates a high linear regression to RH with a sensitivity of 0.63 nm/%RH and excellent reversibility. The response time (T10-90%) and recovery time (T90-10%) are calculated as 1.2 ± 0.4 s and 0.95 ± 0.18 s. The sensor shows no measurable cross-talk to temperature in the tested range between 25 °C to 40 °C and the 95% limit of agreement is 3.1%RH when compared to a commercial reference sensor. Simulation with finite element analysis reveals a polarisation-dependent plasmonic hybridisation with a redshift of plasmonic wavelength as a decrease of the interparticle distance and a higher refractive index sensitivity, which results in a high sensitivity to RH as observed in the experiment.
Collapse
|
23
|
Sui K, Meneghetti M, Kaur J, Sørensen JF, Berg RW, Markos C. Adaptive polymer fiber neural device for drug delivery and enlarged illumination angle for neuromodulation. J Neural Eng 2022; 19. [PMID: 35130533 DOI: 10.1088/1741-2552/ac5267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Optical fiber devices constitute significant tools for the modulation and interrogation of neuronal circuitry in the mid and deep brain regions. The illuminated brain area during neuromodulation has a direct impact on the spatio-temporal properties of the brain activity and depends solely on the material and geometrical characteristics of the optical fibers. In the present work, we developed two different flexible polymer optical fibers (POFs) with integrated microfluidic channels (MFCs) and an ultra-high numerical aperture (UHNA) for enlarging the illumination angle to achieve efficient neuromodulation. APPROACH Three distinct thermoplastic polymers: polysulfone (PSU), polycarbonate (PC), and fluorinated ethylene propylene (FEP) were used to fabricate two step-index UHNA POF neural devices using a scalable thermal drawing process. The POFs were characterized in terms of their illumination map as well as their fluid delivery capability in phantom and adult rat brain slices. MAIN RESULTS A 100-fold reduced bending stiffness of the proposed fiber devices compared to their commercially available counterparts has been found. The integrated MFCs can controllably deliver dye (trypan blue) on-demand over a wide range of injection rates spanning from 10 nL/min to 1000 nL/min. Compared with commercial silica fibers, the proposed UHNA POFs exhibited an increased illumination area by 17% and 21% under 470 and 650 nm wavelength, respectively. In addition, a fluorescent light recording experiment has been conducted to demonstrate the ability of our UHNA POFs to be used as optical waveguides in fiber photometry. SIGNIFICANCE Our results overcome the current technological limitations of fiber implants that have limited illumination area and we suggest that soft neural fiber devices can be developed using different custom designs for illumination, collection, and photometry applications. We anticipate our work to pave the way towards the development of next-generation functional optical fibers for neuroscience.
Collapse
Affiliation(s)
- Kunyang Sui
- DTU Fotonik, DTU - Lyngby Campus, Ørsteds Plads, 343, Lyngby, 2800, DENMARK
| | - Marcello Meneghetti
- DTU Fotonik, DTU - Lyngby Campus, Ørsteds Plads, 343,, Lyngby, 2800, DENMARK
| | - Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Building: 62, Copenhagen, 2200, DENMARK
| | - Jakob Fleng Sørensen
- Department of Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Building: 62, Copenhagen, 2200, DENMARK
| | - Rune W Berg
- Department of Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Building: 62, Copenhagen, 2200, DENMARK
| | - Christos Markos
- DTU Fotonik, Technical University of Denmark, DTU Fotonik, Ørsteds Plads Building 343, room 022, Kgs.Lyngby, Lyngby, 2800, DENMARK
| |
Collapse
|
24
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
25
|
Venkateswaran R, Reddy JW, Chamanzar M. A Semi-Automated System for Wafer-Scale Optical Waveguide Characterization. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7502-7505. [PMID: 34892828 DOI: 10.1109/embc46164.2021.9630691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Integrated photonic waveguide systems are used in biomedical sensing and require robust, high-throughput methods of characterization. Here, we demonstrate a semi-automated robotic system to characterize waveguides at the wafer-scale with minimal human intervention based on imaging the outscattered light to measure the propagation loss. We demonstrate automated input coupling efficiency optimization using closed-loop control of the input fiber position. The automated characterization system collects and combines multiple images of the waveguide to measure the propagation loss. This system allows high-throughput characterization of integrated photonic waveguides and lays the foundation for a fully automated and high throughput system to characterize photonic waveguides at the wafer scale.Clinical Relevance- This method enables high precision, high throughput characterization of optoelectrical neural probes to maximize the yield of surgical implantation and electrophysiology recording.
Collapse
|
26
|
Optical Fibre-Enabled Photoswitching for Localised Activation of an Anti-Cancer Therapeutic Drug. Int J Mol Sci 2021; 22:ijms221910844. [PMID: 34639185 PMCID: PMC8509559 DOI: 10.3390/ijms221910844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/17/2022] Open
Abstract
Local activation of an anti-cancer drug when and where needed can improve selectivity and reduce undesirable side effects. Photoswitchable drugs can be selectively switched between active and inactive states by illumination with light; however, the clinical development of these drugs has been restricted by the difficulty in delivering light deep into tissue where needed. Optical fibres have great potential for light delivery in vivo, but their use in facilitating photoswitching in anti-cancer compounds has not yet been explored. In this paper, a photoswitchable chemotherapeutic is switched using an optical fibre, and the cytotoxicity of each state is measured against HCT-116 colorectal cancer cells. The performance of optical-fibre-enabled photoswitching is characterised through its dose response. The UV–Vis spectra confirm light delivered by an optical fibre effectively enables photoswitching. The activated drug is shown to be twice as effective as the inactive drug in causing cancer cell death, characterised using an MTT assay and fluorescent microscopy. This is the first study in which a photoswitchable anti-cancer compound is switched using an optical fibre and demonstrates the feasibility of using optical fibres to activate photoswitchable drugs for potential future clinical applications.
Collapse
|
27
|
Hynninen V, Patrakka J, Nonappa. Methylcellulose-Cellulose Nanocrystal Composites for Optomechanically Tunable Hydrogels and Fibers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5137. [PMID: 34576360 PMCID: PMC8465715 DOI: 10.3390/ma14185137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Chemical modification of cellulose offers routes for structurally and functionally diverse biopolymer derivatives for numerous industrial applications. Among cellulose derivatives, cellulose ethers have found extensive use, such as emulsifiers, in food industries and biotechnology. Methylcellulose, one of the simplest cellulose derivatives, has been utilized for biomedical, construction materials and cell culture applications. Its improved water solubility, thermoresponsive gelation, and the ability to act as a matrix for various dopants also offer routes for cellulose-based functional materials. There has been a renewed interest in understanding the structural, mechanical, and optical properties of methylcellulose and its composites. This review focuses on the recent development in optically and mechanically tunable hydrogels derived from methylcellulose and methylcellulose-cellulose nanocrystal composites. We further discuss the application of the gels for preparing highly ductile and strong fibers. Finally, the emerging application of methylcellulose-based fibers as optical fibers and their application potentials are discussed.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Espoo, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33720 Tampere, Finland;
| |
Collapse
|
28
|
Emerging Applications of Optical Fiber-Based Devices for Brain Research. ADVANCED FIBER MATERIALS 2021. [DOI: 10.1007/s42765-021-00092-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Abstract
Bio-photonic devices that utilize the interaction between light and biological substances have been emerging as an important tool for clinical diagnosis and/or therapy. At the same time, implanted biodegradable photonic devices can be disintegrated and resorbed after a predefined operational period, thus avoiding the risk and cost associated with the secondary surgical extraction. In this paper, the recent progress on biodegradable photonics is reviewed, with a focus on material strategies, device architectures and their biomedical applications. We begin with a brief introduction of biodegradable photonics, followed by the material strategies for constructing biodegradable photonic devices. Then, various types of biodegradable photonic devices with different functionalities are described. After that, several demonstration examples for applications in intracranial pressure monitoring, biochemical sensing and drug delivery are presented, revealing the great potential of biodegradable photonics in the monitoring of human health status and the treatment of human diseases. We then conclude with the summary of this field, as well as current challenges and possible future directions.
Collapse
|
30
|
Zhang W, Liu P, Yang G, Lei H. Single Polylactic Acid Nanowire for Highly Sensitive and Multifunctional Optical Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27983-27990. [PMID: 34110765 DOI: 10.1021/acsami.1c08074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanowire-based optical biosensors with high sensitivity are highly desired for the detection of biological microenvironments and analysis of cellular processes. However, the current nanowire biosensors are mostly fabricated with metal and semiconductor materials, which are not suitable for long-term use in biological environments due to their incompatible and nondegradable properties. Biosensors based on biofriendly materials (e.g., spider silk) often do not have high enough sensitivity due to high losses or micron sizes. Here, polylactic acid (PLA), a polymer with high optical transparency, good biocompatibility, biodegradability, and flexibility, is used to fabricate nanowires using a directly drawing method for the first time. Because of the strong evanescent wave and abundant carboxyl groups on the surface of nanowires, an ultralow concentration sensing of cytochrome c is achieved with a limit of detection of 1.38 × 10-17 M, which is much lower than other detection results using semiconductor/metal-based nanosensors (10-6 to 10-12 M). On this basis, a label-free and real-time monitoring of cell apoptosis is realized. In addition, by doping quantum dots, the functionalized PLA nanowires can also sense a change in pH. These results are suggestive of the potential for PLA nanowires applied in multifunctional biosensing and biodetection, pushing forward the photomedicine field.
Collapse
Affiliation(s)
- Weina Zhang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Pu Liu
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Yang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongxiang Lei
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
31
|
Pan T, Lu D, Xin H, Li B. Biophotonic probes for bio-detection and imaging. LIGHT, SCIENCE & APPLICATIONS 2021; 10:124. [PMID: 34108445 PMCID: PMC8190087 DOI: 10.1038/s41377-021-00561-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
The rapid development of biophotonics and biomedical sciences makes a high demand on photonic structures to be interfaced with biological systems that are capable of manipulating light at small scales for sensitive detection of biological signals and precise imaging of cellular structures. However, conventional photonic structures based on artificial materials (either inorganic or toxic organic) inevitably show incompatibility and invasiveness when interfacing with biological systems. The design of biophotonic probes from the abundant natural materials, particularly biological entities such as virus, cells and tissues, with the capability of multifunctional light manipulation at target sites greatly increases the biocompatibility and minimizes the invasiveness to biological microenvironment. In this review, advances in biophotonic probes for bio-detection and imaging are reviewed. We emphatically and systematically describe biological entities-based photonic probes that offer appropriate optical properties, biocompatibility, and biodegradability with different optical functions from light generation, to light transportation and light modulation. Three representative biophotonic probes, i.e., biological lasers, cell-based biophotonic waveguides and bio-microlenses, are reviewed with applications for bio-detection and imaging. Finally, perspectives on future opportunities and potential improvements of biophotonic probes are also provided.
Collapse
Affiliation(s)
- Ting Pan
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Dengyun Lu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
32
|
Burgos-Morales O, Gueye M, Lacombe L, Nowak C, Schmachtenberg R, Hörner M, Jerez-Longres C, Mohsenin H, Wagner H, Weber W. Synthetic biology as driver for the biologization of materials sciences. Mater Today Bio 2021; 11:100115. [PMID: 34195591 PMCID: PMC8237365 DOI: 10.1016/j.mtbio.2021.100115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
Collapse
Affiliation(s)
- O. Burgos-Morales
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Gueye
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - L. Lacombe
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
| | - C. Nowak
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - R. Schmachtenberg
- École Supérieure de Biotechnologie de Strasbourg - ESBS, University of Strasbourg, Illkirch, 67412, France
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - M. Hörner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - C. Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| | - H. Mohsenin
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
| | - H.J. Wagner
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Department of Biosystems Science and Engineering - D-BSSE, ETH Zurich, Basel, 4058, Switzerland
| | - W. Weber
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, 79104, Germany
- Spemann Graduate School of Biology and Medicine - SGBM, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
33
|
Gierej A, Geernaert T, Van Vlierberghe S, Dubruel P, Thienpont H, Berghmans F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. MATERIALS 2021; 14:ma14081972. [PMID: 33920842 PMCID: PMC8071099 DOI: 10.3390/ma14081972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The limited penetration depth of visible light in biological tissues has encouraged researchers to develop novel implantable light-guiding devices. Optical fibers and waveguides that are made from biocompatible and biodegradable materials offer a straightforward but effective approach to overcome this issue. In the last decade, various optically transparent biomaterials, as well as different fabrication techniques, have been investigated for this purpose, and in view of obtaining fully fledged optical fibers. This article reviews the state-of-the-art in the development of biocompatible and biodegradable optical fibers. Whilst several reviews that focus on the chemical properties of the biomaterials from which these optical waveguides can be made have been published, a systematic review about the actual optical fibers made from these materials and the different fabrication processes is not available yet. This prompted us to investigate the essential properties of these biomaterials, in view of fabricating optical fibers, and in particular to look into the issues related to fabrication techniques, and also to discuss the challenges in the use and operation of these optical fibers. We close our review with a summary and an outline of the applications that may benefit from these novel optical waveguides.
Collapse
Affiliation(s)
- Agnieszka Gierej
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Correspondence:
| | - Thomas Geernaert
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Sandra Van Vlierberghe
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium;
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| | - Francis Berghmans
- Brussels Photonics (B-PHOT), Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, B-1050 Brussels, Belgium; (T.G.); (S.V.V.); (H.T.); (F.B.)
| |
Collapse
|
34
|
Lian J, He B, Wang W, Guo Y, Xu Y, Wei X, Yang Z. Biocompatible diameter-oscillating fiber with microlens endface. OPTICS EXPRESS 2021; 29:12024-12032. [PMID: 33984971 DOI: 10.1364/oe.421996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Optical fibers have been widely applied to life science, such as laser delivering, fluorescence collection, biosensing, bioimaging, etc. To resolve the challenges of advanced multiphoton biophotonic applications utilizing ultrashort laser pulses, here we report a flexible diameter-oscillating fiber (DOF) with microlens endface fabricated by using Polydimethylsiloxane (PDMS) elastomers. The diameter of the DOF is designed to longitudinally vary for providing accurate dispersion management, which is important for near-infrared multiphoton biophotonics that usually involves ultrashort laser pulses. The variation range and period of the DOF's diameter can be flexibly adjusted by controlling the parameters during the fabrication, such that dispersion curves with different oscillation landscapes can be obtained. The dispersion oscillating around the zero-dispersion baseline gives rise to a minimized net dispersion as the ultrashort laser pulse passes through the DOF - reducing the temporal broadening effect and resulting in transform-limited pulsewidth. In addition, the endface of the DOF is fabricated with a microlens, which is especially useful for laser scanning/focusing and fluorescence excitation. It is anticipated that this new biocompatible DOF is of great interest for biophotonic applications, particularly multiphoton microscopy deep inside biological tissues.
Collapse
|
35
|
Ramezani Z, Seo KJ, Fang H. Hybrid Electrical and Optical Neural Interfaces. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:044002. [PMID: 34177136 PMCID: PMC8232899 DOI: 10.1088/1361-6439/abeb30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural interfaces bridge the nervous system and the outside world by recording and stimulating neurons. Combining electrical and optical modalities in a single, hybrid neural interface system could lead to complementary and powerful new ways to explore the brain. It has gained robust and exciting momentum recently in neuroscience and neural engineering research. Here, we review developments in the past several years aiming to achieve such hybrid electrical and optical microsystem platforms. Specifically, we cover three major categories of technological advances: transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids integrating electrodes and microscale light-emitting diodes. We discuss examples of these probes tailored to combine electrophysiological recording with optical imaging or optical neural stimulation of the brain and possible directions of future innovation.
Collapse
Affiliation(s)
| | | | - Hui Fang
- Department of Electrical and Computer Engineering
- Department of Mechanical and Industrial Engineering
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Rezapour Sarabi M, Jiang N, Ozturk E, Yetisen AK, Tasoglu S. Biomedical optical fibers. LAB ON A CHIP 2021; 21:627-640. [PMID: 33449066 DOI: 10.1039/d0lc01155j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optical fibers with the ability to propagate and transfer data via optical signals have been used for decades in medicine. Biomaterials featuring the properties of softness, biocompatibility, and biodegradability enable the introduction of optical fibers' uses in biomedical engineering applications such as medical implants and health monitoring systems. Here, we review the emerging medical and health-field applications of optical fibers, illustrating the new wave for the fabrication of implantable devices, wearable sensors, and photodetection and therapy setups. A glimpse of fabrication methods is also provided, with the introduction of 3D printing as an emerging fabrication technology. The use of artificial intelligence for solving issues such as data analysis and outcome prediction is also discussed, paving the way for the new optical treatments for human health.
Collapse
Affiliation(s)
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ece Ozturk
- Koç University School of Medicine, Koç University, Sariyer, Istanbul, 34450 Turkey and Koç University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul, 34450 Turkey
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul, 34450 Turkey. and Koç University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul, 34450 Turkey and Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul, 34450 Turkey and Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul, 34684 Turkey
| |
Collapse
|
37
|
Purcell EK, Becker MF, Guo Y, Hara SA, Ludwig KA, McKinney CJ, Monroe EM, Rechenberg R, Rusinek CA, Saxena A, Siegenthaler JR, Sortwell CE, Thompson CH, Trevathan JK, Witt S, Li W. Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities. MICROMACHINES 2021; 12:128. [PMID: 33530395 PMCID: PMC7911340 DOI: 10.3390/mi12020128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team's progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors.
Collapse
Affiliation(s)
- Erin K. Purcell
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Michael F. Becker
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Yue Guo
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
| | - Seth A. Hara
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Collin J. McKinney
- Department of Chemistry, Electronics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Elizabeth M. Monroe
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Robert Rechenberg
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Cory A. Rusinek
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA; (E.M.M.); (C.A.R.)
| | - Akash Saxena
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James R. Siegenthaler
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Caryl E. Sortwell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Cort H. Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.A.L.); (J.K.T.)
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Suzanne Witt
- Fraunhofer USA Center Midwest, East Lansing, MI 48824, USA; (M.F.B.); (R.R.); (J.R.S.); (S.W.)
| | - Wen Li
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA; (Y.G.); (A.S.); (W.L.)
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
Yu J, Ling W, Li Y, Ma N, Wu Z, Liang R, Pan H, Liu W, Fu B, Wang K, Li C, Wang H, Peng H, Ning B, Yang J, Huang X. A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005925. [PMID: 33372299 DOI: 10.1002/smll.202005925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Optical fibers made of polymeric materials possess high flexibility that can potentially integrate with flexible electronic devices to realize complex functions in biology and neurology. Here, a multichannel flexible device based on four individually addressable optical fibers transfer-printed with flexible electronic components and controlled by a wireless circuit is developed. The resulting device offers excellent mechanics that is compatible with soft and curvilinear tissues, and excellent diversity through switching different light sources. The combined configuration of optical fibers and flexible electronics allows optical stimulation in selective wavelengths guided by the optical fibers, while conducting distributed, high-throughput biopotential sensing using the flexible microelectrode arrays. The device has been demonstrated in vivo with rats through optical stimulation and simultaneously monitoring of spontaneous/evoked spike signals and local field potentials using 32 microelectrodes in four brain regions. Biocompatibility of the device has been characterized by behavior and immunohistochemistry studies, demonstrating potential applications of the device in long-term animal studies. The techniques to integrate flexible electronics with optical fibers may inspire the development of more flexible optoelectronic devices for sophisticated applications in biomedicine and biology.
Collapse
Affiliation(s)
- Jingxian Yu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ya Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ning Ma
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Rong Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Huizhuo Pan
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wentao Liu
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Bo Fu
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Kun Wang
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Chenxi Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hanjie Wang
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hui Peng
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Jiajia Yang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Asia-Pacific Road, Zhejiang, Jiaxing, 314006, China
| |
Collapse
|
39
|
Abstract
More than four decades have passed since the first example of a light-activated (caged) compound was described. In the intervening years, a large number of light-responsive derivatives have been reported, several of which have found utility under a variety of in vitro conditions using cells and tissues. Light-triggered bioactivity furnishes spatial and temporal control, and offers the possibility of precision dosing and orthogonal communication with different biomolecules. These inherent attributes of light have been advocated as advantageous for the delivery and/or activation of drugs at diseased sites for a variety of indications. However, the tissue penetrance of light is profoundly wavelength-dependent. Only recently have phototherapeutics that are photoresponsive in the optical window of tissue (600-900 nm) been described. This Review highlights these recent discoveries, along with their limitations and clinical opportunities. In addition, we describe preliminary in vivo studies of prospective phototherapeutics, with an emphasis on the path that remains to be navigated in order to translate light-activated drugs into clinically useful therapeutics. Finally, the unique attributes of phototherapeutics is highlighted by discussing several potential disease applications.
Collapse
|
40
|
Johannsmeier S, Wenzel J, Torres-Mapa ML, Junge S, Sasse P, Stockhausen JD, Ripken T, Heinemann D, Heisterkamp A. Light-cell interactions in depth-resolved optogenetics. BIOMEDICAL OPTICS EXPRESS 2020; 11:6536-6550. [PMID: 33282507 PMCID: PMC7687973 DOI: 10.1364/boe.404388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Light as a tool in medical therapy and biological research has been studied extensively and its application is subject to continuous improvement. However, safe and efficient application of light-based methods in photomedicine or optogenetics requires knowledge about the optical properties of the target tissue as well as the response characteristics of the stimulated cells. Here, we used tissue phantoms and a heart-like light-sensitive cell line to investigate optogenetic stimulation through tissue layers. The input power necessary for successful stimulation could be described as a function of phantom thickness. A model of light transmission through the tissue phantoms gives insights into the expected stimulation efficiency. Cell-type specific effects are identified that result in deviations of the stimulation threshold from the modelled predictions. This study provides insights into the complex interplay between light, tissue and cells during deep-tissue optogenetics. It can serve as an orientation for safe implementation of light-based methods in vivo.
Collapse
Affiliation(s)
- Sonja Johannsmeier
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Johannes Wenzel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Maria L. Torres-Mapa
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Sebastian Junge
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | - Joshua D. Stockhausen
- Institute of Physiology I, Medical Faculty, University of Bonn, Nussallee 11, 53115 Bonn, Germany
| | - Tammo Ripken
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Dag Heinemann
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Department of Phytophotonics, Institute of Horticultural Production Systems and Hannover Centre for Optical Technologies (HOT), Gottfried Wilhelm Leibniz University Hannover, 30419 Hannover, Germany
| | - Alexander Heisterkamp
- Industrial and Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institute of Quantum Optics, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| |
Collapse
|
41
|
Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. SENSORS 2020; 20:s20143981. [PMID: 32709072 PMCID: PMC7411870 DOI: 10.3390/s20143981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Optical waveguides and integrated optical devices are promising solutions for many applications, such as medical diagnosis, health monitoring and light therapies. Despite the many existing reviews focusing on the materials that these devices are made from, a systematic review that relates these devices to the various materials, fabrication processes, sensing methods and medical applications is still seldom seen. This work is intended to link these multidisciplinary fields, and to provide a comprehensive review of the recent advances of these devices. Firstly, the optical and mechanical properties of optical waveguides based on glass, polymers and heterogeneous materials and fabricated via various processes are thoroughly discussed, together with their applications for medical purposes. Then, the fabrication processes and medical implementations of integrated passive and active optical devices with sensing modules are introduced, which can be used in many medical fields such as drug delivery and cardiovascular healthcare. Thirdly, wearable optical sensing devices based on light sensing methods such as colorimetry, fluorescence and luminescence are discussed. Additionally, the wearable optical devices for light therapies are introduced. The review concludes with a comprehensive summary of these optical devices, in terms of their forms, materials, light sources and applications.
Collapse
|
42
|
Fujiwara E, Cabral TD, Sato M, Oku H, Cordeiro CMB. Agarose-based structured optical fibre. Sci Rep 2020; 10:7035. [PMID: 32341497 PMCID: PMC7184597 DOI: 10.1038/s41598-020-64103-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 01/04/2023] Open
Abstract
Biocompatible and resorbable optical fibres emerge as promising technologies for in vivo applications like imaging, light delivery for phototherapy and optogenetics, and localised drug-delivery, as well as for biochemical sensing, wherein the probe can be implanted and then completely absorbed by the organism. Biodegradable waveguides based on glasses, hydrogels, and silk have been reported, but most of these devices rely on complex fabrication procedures. In this sense, this paper proposes a novel structured optical fibre made of agarose, a transparent, edible material used in culture media and tissue engineering. The fibre is obtained by pouring food-grade agar into a mould with stacked rods, forming a solid core surrounded by air holes in which the refractive index and fibre geometry can be tailored by choosing the agarose solution composition and mould design, respectively. Besides exhibiting practical transmittance at 633 nm in relation to other hydrogel waveguides, the fibre is also validated for chemical sensing either by detecting volume changes due to agar swelling/dehydration or modulating the transmitted light by inserting fluids into the air holes. Therefore, the proposed agarose-based structured optical fibre is an easy-to-fabricate, versatile technology with possible applications for medical imaging and in vivo biochemical sensing.
Collapse
Affiliation(s)
- Eric Fujiwara
- Laboratory of Photonic Materials and Devices, School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil.
| | - Thiago D Cabral
- Laboratory of Photonic Materials and Devices, School of Mechanical Engineering, University of Campinas, Campinas, 13083-860, Brazil.,"Gleb Wataghin" Institute of Physics, University of Campinas, Campinas, 13083-859, Brazil
| | - Miko Sato
- Graduate School of Science and Technology, Gunma University, Kiryu, 376-8515, Japan
| | - Hiromasa Oku
- Graduate School of Science and Technology, Gunma University, Kiryu, 376-8515, Japan
| | - Cristiano M B Cordeiro
- "Gleb Wataghin" Institute of Physics, University of Campinas, Campinas, 13083-859, Brazil
| |
Collapse
|
43
|
Ma Q, Song Y, Sun W, Cao J, Yuan H, Wang X, Sun Y, Shum HC. Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid-Liquid Phase Separation toward Advanced Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903359. [PMID: 32274317 PMCID: PMC7141073 DOI: 10.1002/advs.201903359] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Indexed: 05/24/2023]
Abstract
Living cells have evolved over billions of years to develop structural and functional complexity with numerous intracellular compartments that are formed due to liquid-liquid phase separation (LLPS). Discovery of the amazing and vital roles of cells in life has sparked tremendous efforts to investigate and replicate the intracellular LLPS. Among them, all-aqueous emulsions are a minimalistic liquid model that recapitulates the structural and functional features of membraneless organelles and protocells. Here, an emerging all-aqueous microfluidic technology derived from micrometer-scaled manipulation of LLPS is presented; the technology enables the state-of-art design of advanced biomaterials with exquisite structural proficiency and diversified biological functions. Moreover, a variety of emerging biomedical applications, including encapsulation and delivery of bioactive gradients, fabrication of artificial membraneless organelles, as well as printing and assembly of predesigned cell patterns and living tissues, are inspired by their cellular counterparts. Finally, the challenges and perspectives for further advancing the cell-inspired all-aqueous microfluidics toward a more powerful and versatile platform are discussed, particularly regarding new opportunities in multidisciplinary fundamental research and biomedical applications.
Collapse
Affiliation(s)
- Qingming Ma
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Yang Song
- Wallace H Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory School of MedicineAtlantaGA30332USA
| | - Wentao Sun
- Center for Basic Medical ResearchTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China
| | - Jie Cao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Hao Yuan
- Institute of Applied MechanicsNational Taiwan UniversityTaipei10617Taiwan
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong UniversityJinan250061China
| | - Yong Sun
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Ho Cheung Shum
- Department of Mechanical EngineeringUniversity of Hong KongPokfulam RoadHong Kong
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI)Shenzhen518000China
| |
Collapse
|
44
|
Waveguiding and focusing in a bio-medium with an optofluidic cell chain. Acta Biomater 2020; 103:165-171. [PMID: 31812842 DOI: 10.1016/j.actbio.2019.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
Long-distance waveguiding and submicron focusing of light in a bio-medium are crucial for biomedical sensing and imaging. Disordered bio-mediums usually exhibit high scattering and absorption, which limits effective waveguiding and focusing. Here, we demonstrate an optofluidic cell chain, assembled via an optical trapping force from an optical fiber probe, to achieve long-distance waveguiding and submicron light focusing in a disordered bio-medium. By applying a trapping light at 980 nm to generate an optical force, stable binding of E. faecalis cells was achieved in a fluid to assemble cell chains of different lengths. The length could reach up to 360 µm and the incident light (at 675, 532 and 473 nm) could be focused into a beam with a waist radius of 400 nm. As a potential practical application, backscattered signals from human red blood cells were detected using the cell chains, which is expected to benefit biomedical sensing and single cell analysis. STATEMENT OF SIGNIFICANCE: With the assistance of optofluidic techniques, we assembled an E. faecalis cell chain with a length up to 360 µm to achieve long-distance waveguiding and submicron focusing at a propagation loss of 0.03 dB/µm in the bio-medium. Visible lights were launched into the cell chain and the incident lights can converge into a beam with a waist radius of 400 nm. The cell chain was further used to detect the backscattering signals from human red blood cells (RBCs), and the results indicate that the cell chain can be applied as a fully biocompatible extension of the probe for the real-time detection of RBCs in healthy and pathological states.
Collapse
|
45
|
Song J, Chen S, Sun L, Guo Y, Zhang L, Wang S, Xuan H, Guan Q, You Z. Mechanically and Electronically Robust Transparent Organohydrogel Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906994. [PMID: 31957099 DOI: 10.1002/adma.201906994] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/30/2019] [Indexed: 05/18/2023]
Abstract
Stretchable conductive fibers are key elements for next-generation flexible electronics. Most existing conductive fibers are electron-based, opaque, relatively rigid, and show a significant increase in resistance during stretching. Accordingly, soft, stretchable, and transparent ion-conductive hydrogel fibers have attracted significant attention. However, hydrogel fibers are difficult to manufacture and easy to dry and freeze, which significantly hinders their wide range of applications. Herein, organohydrogel fibers are designed to address these challenges. First, a newly designed hybrid crosslinking strategy continuously wet-spins hydrogel fibers, which are transformed into organohydrogel fibers by simple solvent replacement. The organohydrogel fibers show excellent antifreezing (< -80 °C) capability, stability (>5 months), transparency, and stretchability. The predominantly covalently crosslinked network ensures the fibers have a high dynamic mechanical stability with negligible hysteresis and creep, from which previous conductive fibers usually suffer. Accordingly, strain sensors made from the organohydrogel fibers accurately capture high-frequency (4 Hz) and high-speed (24 cm s-1 ) motion and exhibit little drift for 1000 stretch-release cycles, and are powerful for detecting rapid cyclic motions such as engine valves and are difficult to reach by previously reported conductive fibers. The organohydrogel fibers also demonstrate potential as wearable anisotropic sensors, data gloves, soft electrodes, and optical fibers.
Collapse
Affiliation(s)
- Jianchun Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yifan Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Luzhi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shuliang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Huixia Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
46
|
Herbert R, Jeong JW, Yeo WH. Soft Material-Enabled Electronics for Medicine, Healthcare, and Human-Machine Interfaces. MATERIALS 2020; 13:ma13030517. [PMID: 31978977 PMCID: PMC7040651 DOI: 10.3390/ma13030517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022]
Abstract
Soft material-enabled electronics offer distinct advantages over conventional rigid and bulky devices for numerous wearable and implantable applications. Soft materials allow for seamless integration with skin and tissues due to the enhanced mechanical flexibility and stretchability. Wearable devices with multiple sensors offer continuous, real-time monitoring of biosignals and movements, which can be applied for rehabilitation and diagnostics, among other applications. Soft implantable electronics offer similar functionalities, but with improved compatibility with human tissues. Biodegradable soft implantable electronics are also being developed for transient monitoring, such as in the weeks following surgeries. New composite materials, integration strategies, and fabrication techniques are being developed to further advance soft electronics. This paper reviews recent progresses in these areas towards the development of soft material-enabled electronics for medicine, healthcare, and human-machine interfaces.
Collapse
Affiliation(s)
- Robert Herbert
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: ; Tel.: +1-404-385-5710
| |
Collapse
|
47
|
Abstract
Monkeys are a premier model organism for neuroscience research. Activity in the central nervous systems of monkeys can be recorded and manipulated while they perform complex perceptual, motor, or cognitive tasks. Conventional techniques for manipulating neural activity in monkeys are too coarse to address many of the outstanding questions in primate neuroscience, but optogenetics holds the promise to overcome this hurdle. In this article, we review the progress that has been made in primate optogenetics over the past 5 years. We emphasize the use of gene regulatory sequences in viral vectors to target specific neuronal types, and we present data on vectors that we engineered to target parvalbumin-expressing neurons. We conclude with a discussion of the utility of optogenetics for treating sensorimotor hearing loss and Parkinson's disease, areas of translational neuroscience in which monkeys provide unique leverage for basic science and medicine.
Collapse
|
48
|
Guo J, Yang C, Dai Q, Kong L. Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3771. [PMID: 31480393 PMCID: PMC6749420 DOI: 10.3390/s19173771] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022]
Abstract
The past decades have witnessed the rapid development in soft, stretchable, and biocompatible devices for applications in biomedical monitoring, personal healthcare, and human-machine interfaces. In particular, the design of soft devices in optics has attracted tremendous interests attributed to their distinct advantages such as inherent electrical safety, high stability in long-term operation, potential to be miniaturized, and free of electromagnetic interferences. As the alternatives to conventional rigid optical waveguides, considerable efforts have been made to develop light-guiding devices by using various transparent and elastic polymers, which offer desired physiomechanical properties and enable wearable/implantable applications in optical sensing, diagnostics, and therapy. Here, we review recent progress in soft and stretchable optical waveguides and sensors, including advanced structural design, fabrication strategies, and functionalities. Furthermore, the potential applications of those optical devices for various wearable and biomedical applications are discussed. It is expected that the newly emerged soft and stretchable optical technologies will provide a safe and reliable alternative to next-generation, smart wearables and healthcare devices.
Collapse
Affiliation(s)
- Jingjing Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| | - Changxi Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Optogenetics in Brain Research: From a Strategy to Investigate Physiological Function to a Therapeutic Tool. PHOTONICS 2019. [DOI: 10.3390/photonics6030092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dissecting the functional roles of neuronal circuits and their interaction is a crucial step in basic neuroscience and in all the biomedical field. Optogenetics is well-suited to this purpose since it allows us to study the functionality of neuronal networks on multiple scales in living organisms. This tool was recently used in a plethora of studies to investigate physiological neuronal circuit function in addition to dysfunctional or pathological conditions. Moreover, optogenetics is emerging as a crucial technique to develop new rehabilitative and therapeutic strategies for many neurodegenerative diseases in pre-clinical models. In this review, we discuss recent applications of optogenetics, starting from fundamental research to pre-clinical applications. Firstly, we described the fundamental components of optogenetics, from light-activated proteins to light delivery systems. Secondly, we showed its applications to study neuronal circuits in physiological or pathological conditions at the cortical and subcortical level, in vivo. Furthermore, the interesting findings achieved using optogenetics as a therapeutic and rehabilitative tool highlighted the potential of this technique for understanding and treating neurological diseases in pre-clinical models. Finally, we showed encouraging results recently obtained by applying optogenetics in human neuronal cells in-vitro.
Collapse
|
50
|
Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2019; 39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate the market currently, to newly emerging wearable and implantable devices that can provide continuous monitoring. Soft and flexible materials are playing a key role in propelling these trends towards real-time and remote health monitoring. Affinity biosensors have the capability to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic diseases by the detection of biomarkers using affinity interactions. This review tracks the evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable devices enabled by soft and flexible materials. Initially, we highlight conventional affinity sensors exploiting membrane and paper materials which have been so successfully applied in point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-based devices. We then turn our attention to the multifarious polymer designs that provide both the base materials for sensor designs, such as PDMS, and more advanced functionalised materials that are capable of both recognition and transduction, such as conducting and molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible material-based affinity sensors, classified as flexible and skin-mountable, textile materials-based and contact lens-based affinity sensors. In the final sections, we explore the possibilities for implantable/injectable soft and flexible material-based affinity sensors, including hydrogels, microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust that this review will help pull together the many technological streams that are contributing to the field.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|