1
|
Gaillard S, Small HJ, Carnegie RB, Harris TM, Tanniou S, Réveillon D, Hess P, Reece KS. Sublethal exposure of eastern oyster Crassostrea virginica to the goniodomin-producing dinoflagellate Alexandrium monilatum: Fate of toxins, histopathology, and gene expression. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:374-394. [PMID: 39739761 PMCID: PMC11685061 DOI: 10.1002/aah.10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 01/02/2025]
Abstract
OBJECTIVE The dinoflagellate Alexandrium monilatum forms blooms during summer in tributaries of the lower Chesapeake Bay. Questions persist about the potential for A. monilatum to negatively affect aquatic organisms. Its main toxin, goniodomin A (GDA), a polyketide macrolide, has been shown to have adverse effects on animals, for example through cytotoxicity and interaction with actin. METHODS Eastern oysters Crassostrea virginica were exposed for 96 h to sublethal concentrations of A. monilatum (615 ± 47 cells/mL [average ± SD]; containing mainly intracellular GDA [215 ± 7.15 pg/cell] and to a lesser extent goniodomin B, goniodomin C, and GDA seco-acid as quantified by liquid chromatography coupled to tandem mass spectrometry) or to nontoxic phytoplankton or were unexposed. They were subsequently depurated for 96 h by exposure to nontoxic phytoplankton. Clearance rates were estimated, and oysters were sampled daily and tissue (gill, digestive gland, and remaining tissues) excised for analyses by histopathology, gene expression quantified by quantitative PCR, and goniodomin quantification. RESULT A positive clearance rate, no mortality, and no tissue pathologies were observed in oysters exposed to A. monilatum. Goniodomin A was detected in gill 6 h after exposure (504 ± 329 μg/kg [average ± SE]) and to a lesser extent in the digestive gland and remaining soft tissues. In the digestive gland, a trend of transformation of GDA to GDA seco-acid was observed. The majority of toxins (≥83%) were depurated after 96 h. Expression of genes involved in oxidative response increased 14-fold after 6 h, and those involved in actin synthesis showed a 27-fold change after 24 h, while expression of apoptosis genes increased 6.9-fold after 96 h compared with the control (eastern oysters exposed to nontoxic phytoplankton). CONCLUSION Exposure experiments (nonsublethal or chronic) should be carried out to better assess the threat of this species and toxins for eastern oysters and other marine organisms.
Collapse
Affiliation(s)
- Sylvain Gaillard
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVirginiaUSA
- Woods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Hamish J. Small
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVirginiaUSA
| | - Ryan B. Carnegie
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVirginiaUSA
| | - Thomas M. Harris
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| | | | | | | | - Kimberly S. Reece
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVirginiaUSA
| |
Collapse
|
2
|
Lai C, Dai X, Tian D, Lv S, Tang J. Chemistry and bioactivity of marine algal toxins and their geographic distribution in China. Fitoterapia 2024; 178:106193. [PMID: 39187028 DOI: 10.1016/j.fitote.2024.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Marine algal toxins are usually produced by some toxic algae during toxic algal blooms which can be accumulated in marine organisms through food chains, leading to contamination of aquatic products. Consumption of the contaminated seafood often results in poisoning in human being. Although algal toxins are harmful for human health, their unique structures and broad spectrum of biological activities have attracted widespread attention of chemists and pharmacologists. Marine algal toxins are not only a reservoir of biological active compound discovery, but also powerful tools for exploring life science. This review first provides a comprehensive overview of the chemistry and biological activities of marine algal toxins, with the aim of providing references for biological active compound discovery. Additionally, typical shellfish poisoning incidents occurred in China in the past 15 years and the geographical distribution of the marine algal toxins in China Sea are discussed, for the purpose of enhancing public awareness of the possible dangers of algal toxins.
Collapse
Affiliation(s)
- Changrong Lai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Xiaojun Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Songhui Lv
- Research Center of Harmful Algae and Marine Biology, College of Life Science and Technology, Jinan University, Guangzhou 510362, China.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Guinle C, Núñez-Vázquez EJ, Fernández-Herrera LJ, Corona-Rojas DA, Tovar-Ramírez D. Toxicogenomic Effects of Dissolved Saxitoxin on the Early Life Stages of the Longfin Yellowtail ( Seriola rivoliana). Mar Drugs 2023; 21:597. [PMID: 37999421 PMCID: PMC10671919 DOI: 10.3390/md21110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Harmful algal blooms (HABs) can produce a variety of noxious effects and, in some cases, the massive mortality of wild and farmed marine organisms. Some HAB species produce toxins that are released into seawater or transferred via food webs (particulate toxin fraction). The objective of the present study was to identify the toxicological effects of subacute exposure to saxitoxin (STX) during embryonic and early larval stages in Seriola rivoliana. Eggs were exposed to dissolved 19 STX (100 μg L-1). The toxic effects of STX were evaluated via the hatching percentage, the activity of three enzymes (protein and alkaline phosphatases and peroxidase), and the expression of four genes (HSF2, Nav1.4b, PPRC1, and DUSP8). A low hatching percentage (less than 5%) was observed in 44 hpf (hours post fertilization) embryos exposed to STX compared to 71% in the unexposed control. At this STX concentration, no oxidative stress in the embryos was evident. However, STX induced the expression of the NaV1.4 channel α-subunit (NaV1.4b), which is the primary target of this toxin. Our results revealed the overexpression of all four candidate genes in STX-intoxicated lecithotrophic larvae, reflecting the activation of diverse cellular processes involved in stress responses (HSF2), lipid metabolism (PPRC1), and MAP kinase signaling pathways associated with cell proliferation and differentiation (DUSP8). The effects of STX were more pronounced in young larvae than in embryos, indicating a stage-specific sensitivity to the toxin.
Collapse
Affiliation(s)
- Colleen Guinle
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Fisiología Comparada y Genómica Funcional, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico; (C.G.); (D.A.C.-R.)
| | - Erick Julián Núñez-Vázquez
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Toxinas Marinas y Aminoácidos, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico;
| | - Leyberth José Fernández-Herrera
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Toxinas Marinas y Aminoácidos, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico;
| | - Daniela Alejandra Corona-Rojas
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Fisiología Comparada y Genómica Funcional, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico; (C.G.); (D.A.C.-R.)
| | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Fisiología Comparada y Genómica Funcional, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico; (C.G.); (D.A.C.-R.)
| |
Collapse
|
4
|
Zhang H, Li P, Wu B, Hou J, Ren J, Zhu Y, Xu J, Si F, Sun Z, Liu X. Transcriptomic analysis reveals the genes involved in tetrodotoxin (TTX) accumulation, translocation, and detoxification in the pufferfish Takifugu rubripes. CHEMOSPHERE 2022; 303:134962. [PMID: 35580645 DOI: 10.1016/j.chemosphere.2022.134962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin that exists in a variety of aquatic and terrestrial organisms. Pufferfish in different habitats show great variation in their TTX contents. Exploring the genes involved in TTX metabolism could contribute to our understanding of the molecular mechanisms underlying TTX accumulation, translocation, and detoxification in pufferfish. In this study, transcriptomic analysis was used to identify the functional genes related to TTX metabolism in the blood, liver, and muscle of the toxic and non-toxic tiger puffer (Takifugu rubripes). A total of 6101 differentially expressed genes (DEGs) were obtained after transcriptomic analysis; of these, 2401 were identified in the blood, 2262 in the liver, and 1438 in the muscle. After enrichment analysis, fourteen genes encoding glutathione S-transferases (GSTs), glutathione peroxidase (GPx), thioredoxins (TXNs), superoxide dismutase (SOD), ATP-binding cassettes (ABCs), apolipoproteins (APOs), inhibitors of apoptosis protein (IAP), and solute carrier (SLC), which are mainly antioxidant enzymes, membrane transporters, or anti-apoptotic factors, were revealed in the blood. Thirty-six genes encoding SLCs, ABCs, long-chain-fatty-acid-CoA ligases (ACSLs), interleukin 6 cytokine family signal transducer (IL6ST), endoplasmic reticulum (ER), and heat shock protein family A (Hsp70) were involved in transmembrane transporter activity and innate immune response. Notably, a large number of slc genes were found to play critical and diverse roles in TTX accumulation and translocation in the liver of T. rubripes. Nine genes from the slc, hsp70, complement C5 (c5), acsl, er, and serpin peptidase inhibitor (serpin) gene families were found to participate in the regulation of protein processing and anti-apoptosis. These results reflect the diverse functions of genes closely related to TTX accumulation, translocation, and detoxification in T. rubripes.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Peizhen Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Biyin Wu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Jiangong Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Youxiu Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Fei Si
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Zhaohui Sun
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Xia Liu
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| |
Collapse
|
5
|
Chen L, Yu F, Shi H, Wang Q, Xue Y, Xue C, Wang Y, Li Z. Effect of salinity stress on respiratory metabolism, glycolysis, lipolysis, and apoptosis in Pacific oyster (Crassostrea gigas) during depuration stage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2003-2011. [PMID: 34537961 DOI: 10.1002/jsfa.11539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Depuration is an important process performed to ensure the safety of oyster consumption, and the effect of salinity stress on physiological and ecological characteristics of oyster remains unknow. In this study, the simulated depuration of Crassostrea gigas was performed with the salinities varying from ±10% to ±20% away from that of production area (26, 28, 32, 35, and 38 g L-1 ), as well as respiratory metabolism, glycolysis, lipolysis, and apoptosis were analyzed. RESULTS (i) The oxygen consumption rate, ammonia discharge rate and enzyme activities related to respiratory metabolism were decreased significantly at salinities of 38 g L-1 , indicating that salinity stress triggered the abnormal respiratory metabolism of C. gigas, further, glycolysis was enhanced. (ii) Glycogen decomposition, lactic acid increase, and fatty acid composition modifications were caused by adenosine monophosphate (AMP)-activated protein kinase (AMPK) -mediated during salinity stress. (iii) There was a clear decrease of the condition index and meat yield of C. gigas after 72 h of depuration, especially in salinity 38 g L-1 . (iv) Salinity stress would lead to the increase of cytochrome c levels, then cause apoptosis of C. gigas, while heat shock protein 70 (HSP70) would interfere with this process. CONCLUSION Salinity stress had a significant effect on the physiological and ecological response of C. gigas during the depuration process, including respiratory metabolism, glycolysis, lipolysis, and apoptosis. In general, the low depuration salinity fluctuation (±10%) is helpful to maintain quality of C. gigas, as well as the optimal depuration time was 48 h. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lipin Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Fanqianhui Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Haohao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Qi Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
- Qingdao National Laboratory for Marine Science and Technology, Laboratory of Marine Drugs and Biological Products, Qingdao, P.R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P.R. China
| |
Collapse
|
6
|
Wei Z, Ding W, Li M, Shi J, Wang H, Wang Y, Li Y, Xu Y, Hu J, Bao Z, Hu X. The Caspase Homologues in Scallop Chlamys farreri and Their Expression Responses to Toxic Dinoflagellates Exposure. Toxins (Basel) 2022; 14:toxins14020108. [PMID: 35202135 PMCID: PMC8878197 DOI: 10.3390/toxins14020108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The cysteine aspartic acid-specific protease (caspase) family is distributed across vertebrates and invertebrates, and its members are involved in apoptosis and response to cellular stress. The Zhikong scallop (Chlamys farreri) is a bivalve mollusc that is well adapted to complex marine environments, yet the diversity of caspase homologues and their expression patterns in the Zhikong scallop remain largely unknown. Here, we identified 30 caspase homologues in the genome of the Zhikong scallop and analysed their expression dynamics during all developmental stages and following exposure to paralytic shellfish toxins (PSTs). The 30 caspase homologues were classified as initiators (caspases-2/9 and caspases-8/10) or executioners (caspases-3/6/7 and caspases-3/6/7-like) and displayed increased copy numbers compared to those in vertebrates. Almost all of the caspase-2/9 genes were highly expressed throughout all developmental stages from zygote to juvenile, and their expression in the digestive gland and kidney was slightly influenced by PSTs. The caspase-8/10 genes were highly expressed in the digestive gland and kidney, while PSTs inhibited their expression in these two organs. After exposure to different Alexandrium PST-producing algae (AM-1 and ACDH), the number of significantly up-regulated caspase homologues in the digestive gland increased with the toxicity level of PST derivatives, which might be due to the higher toxicity of GTXs produced by AM-1 compared to the N-sulphocarbamoyl analogues produced by ACDH. However, the effect of these two PST-producing algae strains on caspase expression in the kidney seemed to be stronger, possibly because the PST derivatives were transformed into highly toxic compounds in scallop kidney, and suggested an organ-dependent response to PSTs. These results indicate the dedicated control of caspase gene expression and highlight their contribution to PSTs in C. farreri. This work provides a further understanding of the role of caspase homologues in the Zhikong scallop and can guide future studies focussing on the role of caspases and their interactions with PSTs.
Collapse
Affiliation(s)
- Zhongcheng Wei
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Wei Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Huizhen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (H.W.); (X.H.); Tel.: +86-0532-8203-1970 (X.H.)
| | - Yangrui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Yubo Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Yiqiang Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.W.); (W.D.); (M.L.); (J.S.); (Y.W.); (Y.L.); (Y.X.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (H.W.); (X.H.); Tel.: +86-0532-8203-1970 (X.H.)
| |
Collapse
|
7
|
Neves RAF, Nascimento SM, Santos LN. Harmful algal blooms and shellfish in the marine environment: an overview of the main molluscan responses, toxin dynamics, and risks for human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55846-55868. [PMID: 34480308 DOI: 10.1007/s11356-021-16256-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Besides human health risks, phycotoxins may cause physiological injuries on molluscan shellfish and, consequently, damages to marine ecosystems and global fisheries production. In this way, this review aimed to present an overview of HABs impacts on marine shellfish by evaluating the effects of cultivated molluscs exposure to microalgae and cyanobacteria that form blooms and/or synthesize toxins. More specifically, it was assessed the main molluscan shellfish responses to harmful algae, trophic transfer and dynamics of phycotoxins, and the risks for human health. Of the 2420 results obtained from literature search, 150 scientific publications were selected after thorough inspections for subject adherence. In total, 70 molluscan species and 37 taxa of harmful algae were assessed from retrieved scientific publications. A significant positive correlation was found between the marine production of molluscs and the number of available studies by molluscan category. Molluscan responses to HABs and phycotoxins were categorized and discussed in three sub-sections: effects on grazing and behavior, metabolic and physiological reactions, and fitness consequences. The main histopathological injuries and toxin concentrations in molluscan tissues were also compiled and discussed. Bivalves often accumulate more toxins than gastropods and cephalopods, occasionally exceeding recommended levels for safe consumption, representing a risk for human health. Harmful algae impact on molluscan shellfish are complex to trace and predict; however, considering the perspective of increase in the occurrence and intensity of HABs, the intensification of efforts to expand the knowledge about HABs impacts on marine molluscs is crucial to mitigate the damages on economy and human health.
Collapse
Affiliation(s)
- Raquel A F Neves
- Graduate Program in Neotropical Biodiversity, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil.
- Research Group of Experimental and Applied Aquatic Ecology, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458 - 307, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil.
| | - Silvia M Nascimento
- Graduate Program in Neotropical Biodiversity, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil
- Laboratory of Marine Microalgae, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458 - 314A, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil
| | - Luciano N Santos
- Graduate Program in Neotropical Biodiversity, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil
- Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458 - 314A, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil
| |
Collapse
|
8
|
Gu J, Yan M, Leung PTY, Tian L, Lam VTT, Cheng SH, Lam PKS. Toxicity effects of hydrophilic algal lysates from Coolia tropicalis on marine medaka larvae (Oryzias melastigma). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105787. [PMID: 33677168 DOI: 10.1016/j.aquatox.2021.105787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Coolia tropicalis is a species of benthic and epiphytic toxic algae, which can produce phycotoxins that intoxicate marine fauna. In this study, the potential toxic effects of C. tropicalis on fish were investigated using larval marine medaka (Oryzias melastigma) as a model to evaluate fish behavior, physiological performance, and stress-induced molecular responses to exposure to two sublethal concentrations (LC10 and LC20) of hydrophilic algal lysates. Exposure to C. tropicalis lysates inhibited swimming activity, activated spontaneous undirected locomotion, altered nerve length ration, and induced early development abnormalities, such as shorter eye diameter, body as well as axon length. Consistent with these abnormalities, changes in the expression of genes associated with apoptosis (CASPASE-3 and BCL-2), the inflammatory response (IL-1β and COX-2), oxidative stress (SOD), and energy metabolism (ACHE and VHA), were also observed. This study advances our understanding of the mechanisms of C. tropicalis toxicity in marine fish in the early life stages and contributes to future ecological risk assessments of toxic benthic dinoflagellates.
Collapse
Affiliation(s)
- Jiarui Gu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Priscilla T Y Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Li Tian
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Veronica T T Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Shuk Han Cheng
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
9
|
Estrada N, Núñez-Vázquez EJ, Palacios A, Ascencio F, Guzmán-Villanueva L, Contreras RG. In vitro Evaluation of Programmed Cell Death in the Immune System of Pacific Oyster Crassostrea gigas by the Effect of Marine Toxins. Front Immunol 2021; 12:634497. [PMID: 33868255 PMCID: PMC8047078 DOI: 10.3389/fimmu.2021.634497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/24/2021] [Indexed: 01/09/2023] Open
Abstract
Programmed cell death (PCD) is an essential process for the immune system's development and homeostasis, enabling the remotion of infected or unnecessary cells. There are several PCD's types, depending on the molecular mechanisms, such as non-inflammatory or pro-inflammatory. Hemocytes are the main component of cellular immunity in bivalve mollusks. Numerous infectious microorganisms produce toxins that impair hemocytes functions, but there is little knowledge on the role of PCD in these cells. This study aims to evaluate in vitro whether marine toxins induce a particular type of PCD in hemocytes of the bivalve mollusk Crassostrea gigas during 4 h at 25°C. Hemocytes were incubated with two types of marine toxins: non-proteinaceous toxins from microalgae (saxitoxin, STX; gonyautoxins 2 and 3, GTX2/3; okadaic acid/dynophysistoxin-1, OA/DTX-1; brevetoxins 2 and 3, PbTx-2,-3; brevetoxin 2, PbTx-2), and proteinaceous extracts from bacteria (Vibrio parahaemolyticus, Vp; V. campbellii, Vc). Also, we used the apoptosis inducers, staurosporine (STP), and camptothecin (CPT). STP, CPT, STX, and GTX 2/3, provoked high hemocyte mortality characterized by apoptosis hallmarks such as phosphatidylserine translocation into the outer leaflet of the cell membrane, exacerbated chromatin condensation, DNA oligonucleosomal fragments, and variation in gene expression levels of apoptotic caspases 2, 3, 7, and 8. The mixture of PbTx-2,-3 also showed many apoptosis features; however, they did not show apoptotic DNA oligonucleosomal fragments. Likewise, PbTx-2, OA/DTX-1, and proteinaceous extracts from bacteria Vp, and Vc, induced a minor degree of cell death with high gene expression of the pro-inflammatory initiator caspase-1, which could indicate a process of pyroptosis-like PCD. Hemocytes could carry out both PCD types simultaneously. Therefore, marine toxins trigger PCD's signaling pathways in C. gigas hemocytes, depending on the toxin's nature, which appears to be highly conserved both structurally and functionally.
Collapse
Affiliation(s)
- Norma Estrada
- Programa Cátedras CONACyT (Consejo Nacional de Ciencia y Tecnología), Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Erick J. Núñez-Vázquez
- Laboratorio de Toxinas Marinas y Aminoácidos, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Alejandra Palacios
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Felipe Ascencio
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Laura Guzmán-Villanueva
- Programa Cátedras CONACyT (Consejo Nacional de Ciencia y Tecnología), Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Mexico
| | - Rubén G. Contreras
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
10
|
Zhu X, Zhang F, Lian S, Wang Y, Hu N, Chen X, Dai X, Hu X, Wang S, Bao Z. IAPs Gene Expansion in the Scallop Patinopecten yessoensis and Their Expression Profiles After Exposure to the Toxic Dinoflagellate. Front Physiol 2021; 12:633301. [PMID: 33613325 PMCID: PMC7893105 DOI: 10.3389/fphys.2021.633301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) are conserved regulators involved in cell cycle, cell migration, cell death, immunity and inflammation, should be due to the fact that they can assist with the ability to cope with different kinds of extrinsic or intrinsic stresses. Bivalve molluscs are well adapted to highly complex marine environments. As free-living filter feeders that may take toxic dinoflagellates as food, bivalves can accumulate and put up with significant levels of paralytic shellfish toxins (PSTs). PSTs absorption and accumulation could have a deleterious effect on bivalves, causing negative impact on their feeding and digestion capabilities. In the present study, we analyzed IAP genes (PyIAPs) in Yesso scallop (Patinopecten yessoensis), a major fishery and aquaculture species in China. Forty-seven PyIAPs from five sub-families were identified, and almost half of the PyIAP genes were localized in clusters on two chromosomes. Several sites under positive selection was revealed in the significantly expanded sub-families BIRC4 and BIRC5. After exposure to PST-producing dinoflagellates, Alexandrium catenella, fourteen PyIAPs showed significant responses in hepatopancreas and kidney, and more than eighty-five percent of them were from the expanded sub-families BIRC4 and BIRC5. The regulation pattern of PyIAPs was similar between the two tissues, with more than half exhibited expression suppression within three days after exposure. In contrast to hepatopancreas, more acute changes of PyIAPs expression could be detected in kidney, suggesting the possible involvement of these PyIAPs in tissue-specific PST tolerance. These findings also imply the adaptive expansion of bivalve IAP genes in response to algae derived biotoxins.
Collapse
Affiliation(s)
- Xiaomei Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Fengmei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yinghui Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaomei Chen
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Lassudrie M, Hégaret H, Wikfors GH, da Silva PM. Effects of marine harmful algal blooms on bivalve cellular immunity and infectious diseases: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103660. [PMID: 32145294 DOI: 10.1016/j.dci.2020.103660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Bivalves were long thought to be "symptomless carriers" of marine microalgal toxins to human seafood consumers. In the past three decades, science has come to recognize that harmful algae and their toxins can be harmful to grazers, including bivalves. Indeed, studies have shown conclusively that some microalgal toxins function as active grazing deterrents. When responding to marine Harmful Algal Bloom (HAB) events, bivalves can reject toxic cells to minimize toxin and bioactive extracellular compound (BEC) exposure, or ingest and digest cells, incorporating nutritional components and toxins. Several studies have reported modulation of bivalve hemocyte variables in response to HAB exposure. Hemocytes are specialized cells involved in many functions in bivalves, particularly in immunological defense mechanisms. Hemocytes protect tissues by engulfing or encapsulating living pathogens and repair tissue damage caused by injury, poisoning, and infections through inflammatory processes. The effects of HAB exposure observed on bivalve cellular immune variables have raised the question of possible effects on susceptibility to infectious disease. As science has described a previously unrecognized diversity in microalgal bioactive substances, and also found a growing list of infectious diseases in bivalves, episodic reports of interactions between harmful algae and disease in bivalves have been published. Only recently, studies directed to understand the physiological and metabolic bases of these interactions have been undertaken. This review compiles evidence from studies of harmful algal effects upon bivalve shellfish that establishes a framework for recent efforts to understand how harmful algae can alter infectious disease, and particularly the fundamental role of cellular immunity, in modulating these interactions. Experimental studies reviewed here indicate that HABs can modulate bivalve-pathogen interactions in various ways, either by increasing bivalve susceptibility to disease or conversely by lessening infection proliferation or transmission. Alteration of immune defense and global physiological distress caused by HAB exposure have been the most frequent reasons identified for these effects on disease. Only few studies, however, have addressed these effects so far and a general pattern cannot be established. Other mechanisms are likely involved but are under-studied thus far and will need more attention in the future. In particular, the inhibition of bivalve filtration by HABs and direct interaction between HABs and infectious agents in the seawater likely interfere with pathogen transmission. The study of these interactions in the field and at the population level also are needed to establish the ecological and economical significance of the effects of HABs upon bivalve diseases. A more thorough understanding of these interactions will assist in development of more effective management of bivalve shellfisheries and aquaculture in oceans subjected to increasing HAB and disease pressures.
Collapse
Affiliation(s)
| | - Hélène Hégaret
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Gary H Wikfors
- NOAA Fisheries Service, Northeast Fisheries Science Center, Milford, CT, 0640, USA
| | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| |
Collapse
|
12
|
Chen G, Jia Z, Wang L, Hu T. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). ENVIRONMENTAL RESEARCH 2020; 185:109432. [PMID: 32247151 DOI: 10.1016/j.envres.2020.109432] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
As a type of cyanobacterial toxins, saxitoxin (STX) is receiving great interest due to its increasing presence in waterbodies. However, the underlying mechanism of STX-induced adverse effect is poorly understood. Here, we examined the developmental toxicity and molecular mechanism induced by STX using zebrafish embryos as an animal model. The embryonic toxicity induced by STX was demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, abnormalities in embryo morphology as well as defects in angiogenesis and common cardinal vein remodeling. STX induced embryonic DNA damage and cell apoptosis, which would be alleviated by antioxidant N-acetyl-L-cysteine. Additionally, STX significantly increased reactive oxygen species level, catalase activity and malondialdehyde content and decreased the activity of superoxide dismutase and glutathione content. STX also promoted the expression of vascular development-related genes DLL4 and VEGFC, and inhibited VEGFA expression. Furthermore, STX altered the transcriptional regulation of apoptosis-related genes (BAX, BCL-2, P53 and CASPASE 3). Taken together, STX induced adverse effect on development of zebrafish embryos, which might be associated with oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zimu Jia
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
13
|
Fernández Robledo JA, Yadavalli R, Allam B, Pales Espinosa E, Gerdol M, Greco S, Stevick RJ, Gómez-Chiarri M, Zhang Y, Heil CA, Tracy AN, Bishop-Bailey D, Metzger MJ. From the raw bar to the bench: Bivalves as models for human health. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:260-282. [PMID: 30503358 PMCID: PMC6511260 DOI: 10.1016/j.dci.2018.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/24/2018] [Indexed: 05/05/2023]
Abstract
Bivalves, from raw oysters to steamed clams, are popular choices among seafood lovers and once limited to the coastal areas. The rapid growth of the aquaculture industry and improvement in the preservation and transport of seafood have enabled them to be readily available anywhere in the world. Over the years, oysters, mussels, scallops, and clams have been the focus of research for improving the production, managing resources, and investigating basic biological and ecological questions. During this decade, an impressive amount of information using high-throughput genomic, transcriptomic and proteomic technologies has been produced in various classes of the Mollusca group, and it is anticipated that basic and applied research will significantly benefit from this resource. One aspect that is also taking momentum is the use of bivalves as a model system for human health. In this review, we highlight some of the aspects of the biology of bivalves that have direct implications in human health including the shell formation, stem cells and cell differentiation, the ability to fight opportunistic and specific pathogens in the absence of adaptive immunity, as source of alternative drugs, mucosal immunity and, microbiome turnover, toxicology, and cancer research. There is still a long way to go; however, the next time you order a dozen oysters at your favorite raw bar, think about a tasty model organism that will not only please your palate but also help unlock multiple aspects of molluscan biology and improve human health.
Collapse
Affiliation(s)
| | | | - Bassem Allam
- Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY, 11794, USA
| | | | - Marco Gerdol
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Samuele Greco
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Rebecca J Stevick
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, 02882, USA
| | - Marta Gómez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, Kingston, RI, 02881, USA
| | - Ying Zhang
- University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI, 02881, USA
| | - Cynthia A Heil
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Adrienne N Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA; Colby College, Waterville, 4,000 Mayflower Hill Dr, ME, 04901, USA
| | | | | |
Collapse
|
14
|
Wang L, Song X, Song L. The oyster immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:99-118. [PMID: 28587860 DOI: 10.1016/j.dci.2017.05.025] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/21/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Oysters, the common name for a number of different bivalve molluscs, are the worldwide aquaculture species and also play vital roles in the function of ecosystem. As invertebrate, oysters have evolved an integrated, highly complex innate immune system to recognize and eliminate various invaders via an array of orchestrated immune reactions, such as immune recognition, signal transduction, synthesis of antimicrobial peptides, as well as encapsulation and phagocytosis of the circulating haemocytes. The hematopoietic tissue, hematopoiesis, and the circulating haemocytes have been preliminary characterized, and the detailed annotation of the Pacific oyster Crassostrea gigas genome has revealed massive expansion and functional divergence of innate immune genes in this animal. Moreover, immune priming and maternal immune transfer are reported in oysters, suggesting the adaptability of invertebrate immunity. Apoptosis and autophagy are proved to be important immune mechanisms in oysters. This review will summarize the research progresses of immune system and the immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, neuropeptides, GABAergic and nitric oxidase system, which possibly make oysters ideal model for studying the origin and evolution of immune system and the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
- Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, DalianOcean University, Dalian 116023, China.
| |
Collapse
|
15
|
Abi-Khalil C, Finkelstein DS, Conejero G, Du Bois J, Destoumieux-Garzon D, Rolland JL. The paralytic shellfish toxin, saxitoxin, enters the cytoplasm and induces apoptosis of oyster immune cells through a caspase-dependent pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:133-141. [PMID: 28711010 DOI: 10.1016/j.aquatox.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Exposure of the toxin-producing dinoflagellate Alexandrium catenella (A. catenella) was previously demonstrated to cause apoptosis of hemocytes in the oyster species Crassostrea gigas. In this work, a coumarin-labeled saxitoxin appeared to spread throughout the cytoplasm of the hemocytes. PSTs, including saxitoxin, were also shown to be directly responsible for inducing apoptosis in hemocytes, a process dependent on caspase activation and independent of reactive oxygen species (ROS) production. A series of in vitro labelling and microscopy experiments revealed that STX and analogs there of induced nuclear condensation, phosphatidylserine exposure, membrane permeability, and DNA fragmentation of hemocytes. Unlike in vertebrates, gonyautoxin-5 (GTX5), which is present in high concentrations in A. catenella, was found to be more toxic than saxitoxin (STX) to oyster immune cells. Altogether, results show that PSTs produced by toxic dinoflagellates enter the cytoplasm and induce apoptosis of oyster immune cells through a caspase-dependent pathway. Because of the central role of hemocytes in mollusc immune defense, PST-induced death of hemocytes could negatively affect resistance of bivalve molluscs to microbial infection.
Collapse
Affiliation(s)
- Celina Abi-Khalil
- IFREMER, CNRS, Université de Montpellier, Université de Perpignan Via Domitia, IHPE, UMR 5244, F-34095 Montpellier, France.
| | - Darren S Finkelstein
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA.
| | - Genevieve Conejero
- Plant Cell Imaging Platform PHIV, UMR B&PMP (INRA, CNRS, UM, SupAgro), Montpellier, France.
| | - Justin Du Bois
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA 94305-5080, USA.
| | - Delphine Destoumieux-Garzon
- IFREMER, CNRS, Université de Montpellier, Université de Perpignan Via Domitia, IHPE, UMR 5244, F-34095 Montpellier, France.
| | - Jean Luc Rolland
- IFREMER, CNRS, Université de Montpellier, Université de Perpignan Via Domitia, IHPE, UMR 5244, F-34095 Montpellier, France.
| |
Collapse
|
16
|
Romero-Geraldo RDJ, García-Lagunas N, Hernández-Saavedra NY. Crassostrea gigas exposure to the dinoflagellate Prorocentrum lima: Histological and gene expression effects on the digestive gland. MARINE ENVIRONMENTAL RESEARCH 2016; 120:93-102. [PMID: 27475522 DOI: 10.1016/j.marenvres.2016.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/09/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Bivalve mollusks bioaccumulate toxins via ingestion of toxic dinoflagellates. In this study, Crassostrea gigas was used to investigate the effects related to Prorocentrum lima exposure. Oysters were fed with three diets Isochrysis galbana (2 × 10(6) cell mL(-1)) control treatment; algal mix of I. galbana (2 × 10(6)) and P. lima (3 × 10(3) cell mL(-1)); and P. lima alone (3 × 10(3) cell mL(-1)). Feeding behavior changes, histopathological alterations, and expression patterns changes of genes involved in cell cycle (p21, cafp55, p53), cytoskeleton (tub, act), and inflammatory process (casp1) were evaluated. Results indicated that the presence of diarrheic shellfish poisoning by P. lima cells decreased the clearance rate (p < 0.05), induced structural loss, significantly decreased tubule area of the digestive gland (p < 0.05), and up-regulated in expression all gene (p < 0.05), suggesting that toxic cells might trigger inflammatory tissue process, disturb cell cycle and cytoskeleton representing a risk to oysters integrity.
Collapse
Affiliation(s)
- Reyna de Jesús Romero-Geraldo
- Instituto Tecnológico de La Paz, Boulevard Forjadores de Baja California Sur No. 4720, Apartado Postal 43-B, La Paz, 23080, Baja California Sur, Mexico.
| | - Norma García-Lagunas
- CIBNOR - Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Avenida Instituto Politécnico Nacional No. 195, Playa Palo de Sta. Rita Sur, Apartado Postal128, La Paz, 23096, Baja California Sur, Mexico.
| | - Norma Yolanda Hernández-Saavedra
- CIBNOR - Molecular Genetics Laboratory, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Avenida Instituto Politécnico Nacional No. 195, Playa Palo de Sta. Rita Sur, Apartado Postal128, La Paz, 23096, Baja California Sur, Mexico.
| |
Collapse
|
17
|
Lassudrie M, Soudant P, Nicolas JL, Miner P, Le Grand J, Lambert C, Le Goïc N, Hégaret H, Fabioux C. Exposure to the toxic dinoflagellate Alexandrium catenella modulates juvenile oyster Crassostrea gigas hemocyte variables subjected to different biotic conditions. FISH & SHELLFISH IMMUNOLOGY 2016; 51:104-115. [PMID: 26882980 DOI: 10.1016/j.fsi.2016.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
The Pacific oyster Crassostrea gigas is an important commercial species cultured throughout the world. Oyster production practices often include transfers of animals into new environments that can be stressful, especially at young ages. This study was undertaken to determine if a toxic Alexandrium bloom, occurring repeatedly in French oyster beds, could modulate juvenile oyster cellular immune responses (i.e. hemocyte variables). We simulated planting on commercial beds by conducting a cohabitation exposure of juvenile, "specific pathogen-free" (SPF) oysters (naïve from the environment) with previously field-exposed oysters to induce interactions with new microorganisms. Indeed, toxic Alexandrium spp. exposures have been reported to modulate bivalve interaction with specific pathogens, as well as physiological and immunological variables in bivalves. In summary, SPF oysters were subjected to an artificial bloom of Alexandrium catenella, simultaneously with a cohabitation challenge. Exposure to A. catenella, and thus to the paralytic shellfish toxins (PSTs) and extracellular bioactive compounds produced by this alga, induced higher concentration, size, complexity and reactive oxygen species (ROS) production of circulating hemocytes. Challenge by cohabitation with field-exposed oysters also activated these hemocyte responses, suggesting a defense response to new microorganism exposure. These hemocyte responses to cohabitation challenge, however, were partially inhibited by A. catenella exposure, which enhanced hemocyte mortality, suggesting either detrimental effects of the interaction of both stressors on immune capacity, or the implementation of an alternative immune strategy through apoptosis. Indeed, no infection with specific pathogens (herpesvirus OsHV-1 or Vibrio aesturianus) was detected. Additionally, lower PST accumulation in challenged oysters suggests a physiological impairment through alteration of feeding-related processes. Overall, results of this study show that a short-term exposure to A. catenella combined with an exposure to a modified microbial community inhibited some hemocyte responses, and likely compromised physiological condition of the juvenile oysters.
Collapse
Affiliation(s)
- Malwenn Lassudrie
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Jean-Louis Nicolas
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France.
| | - Philippe Miner
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France.
| | - Jacqueline Le Grand
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France.
| | - Christophe Lambert
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Nelly Le Goïc
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Caroline Fabioux
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER - Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| |
Collapse
|
18
|
Exposure to the Paralytic Shellfish Toxin Producer Alexandrium catenella Increases the Susceptibility of the Oyster Crassostrea gigas to Pathogenic Vibrios. Toxins (Basel) 2016; 8:toxins8010024. [PMID: 26784228 PMCID: PMC4728546 DOI: 10.3390/toxins8010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
Abstract
The multifactorial etiology of massive Crassostrea gigas summer mortalities results from complex interactions between oysters, opportunistic pathogens and environmental factors. In a field survey conducted in 2014 in the Mediterranean Thau Lagoon (France), we evidenced that the development of the toxic dinoflagellate Alexandrium catenella, which produces paralytic shellfish toxins (PSTs), was concomitant with the accumulation of PSTs in oyster flesh and the occurrence of C. gigas mortalities. In order to investigate the possible role of toxic algae in this complex disease, we experimentally infected C. gigas oyster juveniles with Vibrio tasmaniensis strain LGP32, a strain associated with oyster summer mortalities, after oysters were exposed to Alexandrium catenella. Exposure of oysters to A. catenella significantly increased the susceptibility of oysters to V. tasmaniensis LGP32. On the contrary, exposure to the non-toxic dinoflagellate Alexandrium tamarense or to the haptophyte Tisochrysis lutea used as a foraging alga did not increase susceptibility to V. tasmaniensis LGP32. This study shows for the first time that A. catenella increases the susceptibility of Crassostrea gigas to pathogenic vibrios. Therefore, in addition to complex environmental factors explaining the mass mortalities of bivalve mollusks, feeding on neurotoxic dinoflagellates should now be considered as an environmental factor that potentially increases the severity of oyster mortality events.
Collapse
|
19
|
Gervais O, Renault T, Arzul I. Induction of apoptosis by UV in the flat oyster, Ostrea edulis. FISH & SHELLFISH IMMUNOLOGY 2015; 46:232-242. [PMID: 26057459 DOI: 10.1016/j.fsi.2015.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/20/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Apoptosis is a fundamental feature in the development of many organisms and tissue systems. It is also a mechanism of host defense against environmental stress factors or pathogens by contributing to the elimination of infected cells. Hemocytes play a key role in defense mechanisms in invertebrates and previous studies have shown that physical or chemical stress can increase apoptosis in hemocytes in mollusks. However this phenomenon has rarely been investigated in bivalves especially in the flat oyster Ostrea edulis. The apoptotic response of hemocytes from flat oysters, O. edulis, was investigated after exposure to UV and dexamethasone, two agents known to induce apoptosis in vertebrates. Flow cytometry and microscopy were combined to demonstrate that apoptosis occurs in flat oyster hemocytes. Investigated parameters like intracytoplasmic calcium activity, mitochondrial membrane potential and phosphatidyl-serine externalization were significantly modulated in cells exposed to UV whereas dexamethasone only induced an increase of DNA fragmentation. Morphological changes were also observed on UV-treated cells using fluorescence microscopy and transmission electron microscopy. Our results confirm the apoptotic effect of UV on hemocytes of O. edulis and suggest that apoptosis is an important mechanism developed by the flat oyster against stress factors.
Collapse
Affiliation(s)
- Ophélie Gervais
- Institut Français de Recherche pour l'Exploitation de la Mer (Ifremer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Tristan Renault
- Institut Français de Recherche pour l'Exploitation de la Mer (Ifremer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Isabelle Arzul
- Institut Français de Recherche pour l'Exploitation de la Mer (Ifremer), Unité Santé Génétique et Microbiologie des Mollusques (SG2M), Laboratoire Génétique et Pathologie des Mollusques Marins (LGPMM), Avenue de Mus de Loup, 17390 La Tremblade, France.
| |
Collapse
|
20
|
Faure D, Bonin P, Duran R. Environmental microbiology as a mosaic of explored ecosystems and issues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13577-13598. [PMID: 26310700 DOI: 10.1007/s11356-015-5164-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Microbes are phylogenetically (Archaea, Bacteria, Eukarya, and viruses) and functionally diverse. They colonize highly varied environments and rapidly respond to and evolve as a response to local and global environmental changes, including those induced by pollutants resulting from human activities. This review exemplifies the Microbial Ecology EC2CO consortium's efforts to explore the biology, ecology, diversity, and roles of microbes in aquatic and continental ecosystems.
Collapse
Affiliation(s)
- Denis Faure
- Institut de Biologie Intégrative de la Cellule, CNRS-CEA-Université Paris-Sud, Saclay Plant Sciences, 91198, Gif-sur-Yvette cedex, France,
| | | | | |
Collapse
|
21
|
Gerdol M, De Moro G, Manfrin C, Milandri A, Riccardi E, Beran A, Venier P, Pallavicini A. RNA sequencing and de novo assembly of the digestive gland transcriptome in Mytilus galloprovincialis fed with toxinogenic and non-toxic strains of Alexandrium minutum. BMC Res Notes 2014; 7:722. [PMID: 25314922 PMCID: PMC4203926 DOI: 10.1186/1756-0500-7-722] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background The Mediterranean mussel Mytilus galloprovincialis is marine bivalve with a relevant commercial importance as well as a key sentinel organism for the biomonitoring of environmental pollution. Here we report the RNA sequencing of the mussel digestive gland, performed with the aim: a) to produce a high quality de novo transcriptome assembly, thus improving the genetic and molecular knowledge of this organism b) to provide an initial assessment of the response to paralytic shellfish poisoning (PSP) on a molecular level, in order to identify possible molecular markers of toxin accumulation. Results The comprehensive de novo assembly and annotation of the transcriptome yielded a collection of 12,079 non-redundant consensus sequences with an average length of 958 bp, with a high percentage of full-length transcripts. The whole-transcriptome gene expression study indicated that the accumulation of paralytic toxins produced by the dinoflagellate Alexandrium minutum over a time span of 5 days scarcely affected gene expression, but the results need further validation with a greater number of biological samples and naturally contaminated specimens. Conclusion The digestive gland reference transcriptome we produced significantly improves the data collected from previous sequencing efforts and provides a basic resource for expanding functional genomics investigations in M. galloprovincialis. Although not conclusive, the results of the RNA-seq gene expression analysis support the classification of mussels as bivalves refractory to paralytic shellfish poisoning and point out that the identification molecular biomarkers of PSP in the digestive gland of this organism is problematic. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-722) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alberto Pallavicini
- Laboratory of Genetics, Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, Trieste 34126, Italy.
| |
Collapse
|
22
|
A feedback mechanism to control apoptosis occurs in the digestive gland of the oyster crassostrea gigas exposed to the paralytic shellfish toxins producer Alexandrium catenella. Mar Drugs 2014; 12:5035-54. [PMID: 25257788 PMCID: PMC4178494 DOI: 10.3390/md12095035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/01/2014] [Accepted: 09/11/2014] [Indexed: 11/23/2022] Open
Abstract
To better understand the effect of Paralytic Shellfish Toxins (PSTs) accumulation in the digestive gland of the Pacific oyster, Crassostrea gigas, we experimentally exposed individual oysters for 48 h to a PSTs producer, the dinoflagellate Alexandrium catenella. In comparison to the effect of the non-toxic Alexandrium tamarense, on the eight apoptotic related genes tested, Bax and BI.1 were significantly upregulated in oysters exposed 48 h to A. catenella. Among the five detoxification related genes tested, the expression of cytochrome P450 (CYP1A) was shown to be correlated with toxin concentration in the digestive gland of oysters exposed to the toxic dinoflagellate. Beside this, we observed a significant increase in ROS production, a decrease in caspase-3/7 activity and normal percentage of apoptotic cells in this tissue. Taken together, these results suggest a feedback mechanism, which may occur in the digestive gland where BI.1 could play a key role in preventing the induction of apoptosis by PSTs. Moreover, the expression of CYP1A, Bax and BI.1 were found to be significantly correlated to the occurrence of natural toxic events, suggesting that the expression of these genes together could be used as biomarker to assess the biological responses of oysters to stress caused by PSTs.
Collapse
|
23
|
Estrada N, Ascencio F, Shoshani L, Contreras RG. Apoptosis of hemocytes from lions-paw scallop Nodipecten subnodosus induced with paralyzing shellfish poison from Gymnodinium catenatum. Immunobiology 2014; 219:964-74. [PMID: 25097151 DOI: 10.1016/j.imbio.2014.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/05/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022]
Abstract
The toxic dinoflagellate Gymnodinium catenatum produces paralyzing shellfish poisons (PSPs) that are consumed and accumulated by bivalves. Previously, we recorded a decrease in hemocytes 24h after injection of PSPs (gonyautoxin 2/3 epimers, GTX2/3) in the adductor muscle in the lions-paw scallop Nodipecten subnodosus. In this work, qualitative and quantitative analyses, in in vivo and in vitro experiments, revealed that the lower count of hemocytes results from cells undergoing typical apoptosis when exposed to GTX 2/3 epimers. This includes visible morphological alterations of the cytoplasmic membrane, damage to the nuclear membrane, condensation of chromatin, DNA fragmentation, and release of DNA fragments into the cytoplasm. Induction of apoptosis was accompanied by phosphatidylserine exposure to the outer cell membrane and activation of cysteine-aspartic proteases, caspase 3 and caspase 8. Addition of an inhibitor of caspase to the medium suppressed activation in hemocytes exposed to the toxins, suggesting that cell death was induced by a caspase-dependent apoptotic pathway. The results are important for future investigation of the scallop's immune system and should provide new insights into apoptotic processes in immune cells of scallops exposed to PSPs.
Collapse
Affiliation(s)
- Norma Estrada
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Calle IPN #195, La Paz, B.C.S. 23096, Mexico.
| | - Felipe Ascencio
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Calle IPN #195, La Paz, B.C.S. 23096, Mexico
| | - Liora Shoshani
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. Instituto Politécnico Nacional #2508, Mexico City, D.F. 07300, Mexico
| | - Rubén G Contreras
- Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. Instituto Politécnico Nacional #2508, Mexico City, D.F. 07300, Mexico.
| |
Collapse
|
24
|
Jemaà M, Morin N, Cavelier P, Cau J, Strub JM, Delsert C. Adult somatic progenitor cells and hematopoiesis in oysters. ACTA ACUST UNITED AC 2014; 217:3067-77. [PMID: 24948634 DOI: 10.1242/jeb.106575] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Long-lived animals show a non-observable age-related decline in immune defense, which is provided by blood cells that derive from self-renewing stem cells. The oldest living animals are bivalves. Yet, the origin of hemocytes, the cells involved in innate immunity, is unknown in bivalves and current knowledge about mollusk adult somatic stem cells is scarce. Here we identify a population of adult somatic precursor cells and show their differentiation into hemocytes. Oyster gill contains an as yet unreported irregularly folded structure (IFS) with stem-like cells bathing into the hemolymph. BrdU labeling revealed that the stem-like cells in the gill epithelium and in the nearby hemolymph replicate DNA. Proliferation of this cell population was further evidenced by phosphorylated-histone H3 mitotic staining. Finally, these small cells, most abundant in the IFS epithelium, were found to be positive for the stemness marker Sox2. We provide evidence for hematopoiesis by showing that co-expression of Sox2 and Cu/Zn superoxide dismutase, a hemocyte-specific enzyme, does not occur in the gill epithelial cells but rather in the underlying tissues and vessels. We further confirm the hematopoietic features of these cells by the detection of Filamin, a protein specific for a sub-population of hemocytes, in large BrdU-labeled cells bathing into gill vessels. Altogether, our data show that progenitor cells differentiate into hemocytes in the gill, which suggests that hematopoiesis occurs in oyster gills.
Collapse
Affiliation(s)
- Mohamed Jemaà
- Universités Montpellier 2 et 1, Montpellier, 34095 France CRBM CNRS UMR 5237, Montpellier, 34293 France
| | - Nathalie Morin
- Universités Montpellier 2 et 1, Montpellier, 34095 France CRBM CNRS UMR 5237, Montpellier, 34293 France
| | - Patricia Cavelier
- Universités Montpellier 2 et 1, Montpellier, 34095 France IGMM CNRS UMR 5535, Montpellier, 34293 France
| | - Julien Cau
- Universités Montpellier 2 et 1, Montpellier, 34095 France IGH CNRS UPR 1142, Montpellier, 34396, France
| | - Jean Marc Strub
- Université de Strasbourg, Strasbourg, 67081 France IPHC CNRS UMR7178, Strasbourg, 67037 France
| | - Claude Delsert
- Universités Montpellier 2 et 1, Montpellier, 34095 France CRBM CNRS UMR 5237, Montpellier, 34293 France IFREMER, LGP, La Tremblade, 17390 France
| |
Collapse
|