1
|
Ameri A, Pourseyedi F, Davoodian P, Safa O, Hassanipour S, Fathalipour M. Efficacy and safety of deferoxamine in moderately ill COVID-19 patients: An open label, randomized controlled trial. Medicine (Baltimore) 2024; 103:e39142. [PMID: 39183421 PMCID: PMC11346869 DOI: 10.1097/md.0000000000039142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/17/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Deferoxamine is a potent iron chelator that could remove iron from the virus, and severe acute respiratory syndrome coronavirus 2 requires iron to replication. Also, deferoxamine has antioxidant and cytokine-modulating effects. Therefore, we evaluated the efficacy and safety of deferoxamine in patients with moderate coronavirus disease 2019 (COVID-19). METHODS In this randomized controlled trial, patients with moderate COVID-19 were randomly assigned in a 1:1 ratio to the deferoxamine group (received a solution of 500 mg deferoxamine divided into 4 doses a day through a nebulizer for 7 days) and the control group. The main outcomes were viral clearance, oxygen saturation (SPO2), body temperature, and respiratory rate (RR). Intensive care unit admission, hospital length of stay, and hospital mortality were also assessed. RESULTS A total of 62 patients, with 30 in the deferoxamine group and 32 in the control group, were randomly assigned. There was no statistically significant improvement in viral clearance after the intervention ended in the deferoxamine group (36.7%) compared to the control group (34.4%). The results showed there was no significant difference between the analyzed groups in terms of SPO2, body temperature, RR, and the number of patients with a worse prognosis (SPO2 < 96%, temperature ≥ 37.5 °C, or RR ≥ 16/min) at the end of the study. There were no significant differences seen between the groups in terms of intensive care unit admission, hospital length of stay, hospital mortality, and the occurrence of adverse medication events during the follow-up period. CONCLUSION Deferoxamine had no significant impact on improving moderately ill patients with COVID-19. However, it was well-tolerated in the patients, and this intervention demonstrated a safe profile of adverse events.
Collapse
Affiliation(s)
- Ali Ameri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farnaz Pourseyedi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parivash Davoodian
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Endocrinology and Metabolic Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
2
|
Małaczewska J, Wróbel M, Kaczorek-Łukowska E, Rękawek W. Enterovirus E infects bovine peripheral blood mononuclear cells. Implications for pathogenesis? J Vet Res 2023; 67:517-527. [PMID: 38130447 PMCID: PMC10730555 DOI: 10.2478/jvetres-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Enterovirus E (EV-E) is a common viral pathogen endemic in cattle worldwide. Little is known, however, about its potential interactions with bovine immune cells. Material and Methods The EV-E-permissiveness of bovine peripheral blood mononuclear cells (PBMCs) was evaluated. The infectious titres of extracellular virus were measured and the intracellular viral RNA levels were determined by reverse transcription quantitative PCR after cell inoculation. The effects of EV-E on cell viability and proliferative response were investigated with a methyl thiazolyl tetrazolium bromide reduction assay, the percentages of main lymphocyte subsets and oxidative burst activity of blood phagocytes were determined with flow cytometry, and pro-inflammatory cytokine secretion was measured with an ELISA. Results Enterovirus E productively infected bovine PBMCs. The highest infectious dose of EV-E decreased cell viability and T-cell proliferation. All of the tested doses of virus inhibited the proliferation of high responding to lipopolysaccharide B cells and stimulated the secretion of interleukin 1β, interleukin 6 and tumour necrosis factor α pro-inflammatory cytokines. Conclusion Interactions of EV-E with bovine immune cells may indicate potential evasion mechanisms of the virus. There is also a risk that an infection with this virus can predispose the organism to secondary infections, especially bacterial ones.
Collapse
Affiliation(s)
| | | | | | - Wojciech Rękawek
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10–719Olsztyn, Poland
| |
Collapse
|
3
|
Sun T, Li D, Dai X, Meng C, Li Y, Cheng C, Ji W, Zhu P, Chen S, Yang H, Jin Y, Zhang W, Duan G. Local immune dysregulation and subsequent inflammatory response contribute to pulmonary edema caused by Enterovirus infection in mice. J Med Virol 2023; 95:e28454. [PMID: 36597906 DOI: 10.1002/jmv.28454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2022] [Revised: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Pulmonary edema that comes on suddenly is the leading cause of mortality in hand-foot-and-mouth disease (HFMD) patients; however, its pathogenesis is still largely unclear. A range of research suggest immunopathogenesis during the occurrence of pulmonary edema in severe HFMD patients. Herein, to investigate the potential mechanism of immune dysregulation in the development of pulmonary edema upon Enterovirus (EV) infection, we established mouse infection models for Enteroviruses (EVs) including Coxsackievirus (CV) A6, Enterovirus A71 (EVA71), and CVA2 exhibiting a high incidence of pulmonary edema. We found that EVs infection induced an immune system disorder by reducing the numbers of pulmonary and circulatory T cells, B cells, macrophages, and monocytes and increasing the numbers of lung neutrophils, myeloid-derived suppressor cells (MDSCs), and activated T cells. In addition, the concentrations of C-X-C motif chemokine ligand 1 (CXCL-1), tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and interleukin 6 were increased in EV-infected lungs. Moreover, we found that EVs replication in mice lungs lead to apoptosis of lung cells and degradation of tight junction proteins. In conclusion, EVs infection likely triggered a complexed immune defense mechanism and caused dysregulation of innate immune cells (MDSCs, neutrophils, monocytes, and macrophages) and adaptive cellular immunity (B cells, T cells). This dysregulation increased the release of cytokines and other inflammatory factors from activated immune-related cells and caused lung barrier damage and pulmonary edema.
Collapse
Affiliation(s)
- Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinchen Dai
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Caiyun Meng
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Yi Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Cheng Cheng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Pauly I, Kumar Singh A, Kumar A, Singh Y, Thareja S, Kamal MA, Verma A, Kumar P. Current Insights and Molecular Docking Studies of the Drugs under Clinical Trial as RdRp Inhibitors in COVID-19 Treatment. Curr Pharm Des 2023; 28:3677-3705. [PMID: 36345244 DOI: 10.2174/1381612829666221107123841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Study Background & Objective: After the influenza pandemic (1918), COVID-19 was declared a Vth pandemic by the WHO in 2020. SARS-CoV-2 is an RNA-enveloped single-stranded virus. Based on the structure and life cycle, Protease (3CLpro), RdRp, ACE2, IL-6, and TMPRSS2 are the major targets for drug development against COVID-19. Pre-existing several drugs (FDA-approved) are used to inhibit the above targets in different diseases. In coronavirus treatment, these drugs are also in different clinical trial stages. Remdesivir (RdRp inhibitor) is the only FDA-approved medicine for coronavirus treatment. In the present study, by using the drug repurposing strategy, 70 preexisting clinical or under clinical trial molecules were used in scrutiny for RdRp inhibitor potent molecules in coronavirus treatment being surveyed via docking studies. Molecular simulation studies further confirmed the binding mechanism and stability of the most potent compounds. MATERIAL AND METHODS Docking studies were performed using the Maestro 12.9 module of Schrodinger software over 70 molecules with RdRp as the target and remdesivir as the standard drug and further confirmed by simulation studies. RESULTS The docking studies showed that many HIV protease inhibitors demonstrated remarkable binding interactions with the target RdRp. Protease inhibitors such as lopinavir and ritonavir are effective. Along with these, AT-527, ledipasvir, bicalutamide, and cobicistat showed improved docking scores. RMSD and RMSF were further analyzed for potent ledipasvir and ritonavir by simulation studies and were identified as potential candidates for corona disease. CONCLUSION The drug repurposing approach provides a new avenue in COVID-19 treatment.
Collapse
Affiliation(s)
- Irine Pauly
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jaddah, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, Australia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| |
Collapse
|
5
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
6
|
Yang YJ, Liu JN, Pan XD. Synthesis and antiviral activity of lycorine derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1188-1196. [PMID: 33176482 DOI: 10.1080/10286020.2020.1844674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
There are no effective antiviral drugs to treat hand, foot, and mouth disease. In this study, a series of lycorine derivatives were synthesized and evaluated against enterovirus 71 and coxsackievirus A16 in vitro. Derivatives 7c-m with the phenoxyacyl group at the C-1 position showed higher efficacy and lower toxicity than lycorine. In addition, derivative 7e enhanced the survival rate to 40% in the mouse model of the lethal EV71 infection.
Collapse
Affiliation(s)
- Ya-Jun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiang-Ning Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xian-Dao Pan
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation Institute of Material Medical, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Vlahakos VD, Marathias KP, Arkadopoulos N, Vlahakos DV. Hyperferritinemia in patients with COVID-19: An opportunity for iron chelation? Artif Organs 2020; 45:163-167. [PMID: 32882061 DOI: 10.1111/aor.13812] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Studies from China on COVID-19 revealed that nonsurvivors had cytokine storm with high IL-6 and hyperferritinemia. Iron liberated from necrotic cells may catalyze free radical production and amplify lipid peroxidation causing membrane dysfunction and multiorgan failure. Consequently, iron chelators have been successfully utilized in various experimental and clinical models of cytokine storm and multiorgan damage, such as in ischemia-reperfusion injury, sepsis, and infections. Since viral replication may be influenced by iron accumulation, iron chelation has been proven beneficial in a variety of viral infections, such as HIV-1, hepatitis B virus, Mengovirus, Marburg hemorrhagic fever, Enterovirus 71, and West Nile virus. In this commentary, we elaborate on the idea of considering iron chelation as a therapeutic modality in patients with severe COVID-19 infection. For critically ill patients in the ICU, intravenous deferoxamine would provide sufficient and rapid iron chelation to ameliorate cytokine storm, whereas in less severe cases an oral chelator could prevent the development of excessive inflammatory response.
Collapse
Affiliation(s)
- Vassilios D Vlahakos
- Department of Pulmonary and Critical Care Services, Evangelismos Hospital, Athens, Greece
| | | | - Nikolaos Arkadopoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Demetrios V Vlahakos
- 2nd Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
8
|
Banchini F, Vallisa D, Maniscalco P, Capelli P. Iron overload and Hepcidin overexpression could play a key role in COVID infection, and may explain vulnerability in elderly, diabetics, and obese patients. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020013. [PMID: 32921750 PMCID: PMC7716981 DOI: 10.23750/abm.v91i3.9826] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The COVID epidemic hit like a tsunami worldwide. At the time of its arrival in Italy, available literary data were meager, and most of them concerned its epidemiology. World Health Organization proposed guidelines in march 2020, a strategy of treatment has been developed, and a significant number of subsequent articles have been published to understand, prevent, and cure COVID patients. METHODS From the observation of two patients, we performed a careful analysis of scientific literature to unearth the relation between COVID infection, clinical manifestations as pneumonia and thrombosis, and to find out why it frequently affects obese, diabetics, and elderly patients. RESULTS The analysis shows that hepcidin could represent one of such correlating factors. Hepcidin is most elevated in older age, in non-insulin diabetics patients and in obese people. It is the final target therapy of many medicaments frequently used. Viral disease, and in particular SARS-CoV19, could induce activation of the hepcidin pathway, which in turn is responsible for an increase in the iron load. Excess of iron can lead to cell death by ferroptosis and release into the bloodstream, such as free iron, which in turn has toxic and pro-coagulative effects. CONCLUSIONS Overexpression of hepcidin and iron overload might play a crucial role in COVID infection, becoming potential targets for treatment. Hepcidin could also be considered as a biomarker to measure the effectiveness of our treatments and the restoration of iron homeostasis the final intent. (www.actabiomedica.it).
Collapse
Affiliation(s)
- Filippo Banchini
- Department of General Surgery, Guglielmo da Saliceto Hospital, Piacenza, Italy.
| | - Daniele Vallisa
- Department of Hematology , Guglielmo da Saliceto Hospital, Piacenza, Italy.
| | - Pietro Maniscalco
- Orthopedics and Traumatology Department, Guglielmo da Saliceto Hospital, Piacenza, Italy.
| | - Patrizio Capelli
- Department of General Surgery, Guglielmo da Saliceto Hospital, Piacenza, Italy.
| |
Collapse
|
9
|
Dalamaga M, Karampela I, Mantzoros CS. Commentary: Could iron chelators prove to be useful as an adjunct to COVID-19 Treatment Regimens? Metabolism 2020; 108:154260. [PMID: 32418885 PMCID: PMC7207125 DOI: 10.1016/j.metabol.2020.154260] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/02/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
The pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to global health. Currently, no specific prophylactic and therapeutic treatment is available. No evidence from randomized clinical trials (RCTs) that a treatment may ameliorate the clinical outcome of patients with COVID-19 exists with the only exception of preliminary evidence from remdesivir trials. Here, we present evidence from the literature and a compelling hypothesis on the potential immunomodulatory, iron chelating and anti-oxidant effects of iron chelators in the treatment of COVID-19 and its complications. Interestingly, iron chelation has been shown in vitro to suppress endothelial inflammation in viral infection, which is the main pathophysiologic mechanism behind systemic organ involvement induced by SARS-CoV-2, by inhibiting IL-6 synthesis through decreasing NF-kB. Iron chelators exhibit iron chelating, antiviral and immunomodulatory effects in vitro and in vivo, particularly against RNA viruses. These agents could attenuate ARDS and help control SARS-CoV-2 via multiple mechanisms including: 1) inhibition of viral replication; 2) decrease of iron availability; 3) upregulation of B cells; 4) improvement of the neutralizing anti-viral antibody titer; 5) inhibition of endothelial inflammation and 6) prevention of pulmonary fibrosis and lung decline via reduction of pulmonary iron accumulation. Both retrospective analyses of data in electronic health records, as well as proof of concept studies in humans and large RCTs are needed to fully elucidate the efficacy and safety of iron chelating agents in the therapeutic armamentarium of COVID-19, probably as an adjunctive treatment.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias street, 11527 Athens, Greece.
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Chaidari, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Abobaker A. Can iron chelation as an adjunct treatment of COVID-19 improve the clinical outcome? Eur J Clin Pharmacol 2020; 76:1619-1620. [PMID: 32607779 PMCID: PMC7325475 DOI: 10.1007/s00228-020-02942-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Anis Abobaker
- Spire Fylde Coast Hospital, St Walburgas road, Blackpool, FY3 8BP, UK.
| |
Collapse
|
11
|
Characterization of lymphocyte subsets in peripheral blood cells of children with EV71 infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 53:705-714. [PMID: 30914258 DOI: 10.1016/j.jmii.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/20/2018] [Revised: 01/23/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Enterovirus 71 (EV71) is one of the major causative pathogens of hand, foot, and mouth disease (HFMD). Immune cells play a critical role in determining the outcomes of virus infection. We aimed to characterize the lymphocyte subsets and transcriptional levels of T lymphocytes-associated transcription factors in peripheral blood cells of children with EV71 infection. METHODS Peripheral blood samples from 32 children with EV71 infection and 32 control subjects were included in this study. The frequencies of T-, B-lymphocytes, and their subsets were determined by flow cytometry. The expression of transcription factors, including T-bet, Gata3, ROR γ t, Foxp3, TCF-1, and BCL-6 in the whole blood cells were evaluated by real-time reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS The frequencies of T cells, helper T cells (Th), cytotoxic T cells (Tc), IFN-γ+ Th1, IFN-γ+ Tc1, and regulatory T (Treg) cells were significantly decreased (P < 0.01) in children with EV71 infection. As for IL-4+ Th2, IL-4+ Tc2, IL-17+ Th17, IL-17+ Tc17, follicular helper T cells (Tfh), CD3+CD8+IL-21+ T cells, CD19+ B cells, and CD19+IL-10+ B10 cells, their frequencies were significantly increased in the EV71 group (P < 0.01). The EV71 group had lower mRNA expressions of T-bet, Gata3, and Foxp3 than the control group (P < 0.05), whereas the expressions of ROR γ t, TCF-1, and BCL-6 showed no significant difference between two groups. CONCLUSIONS EV71 infection in children caused a decreased frequency of total Th, Tc and Treg cells, and increased percentages of B cell, Th2 and Th17 cells in blood.
Collapse
|
12
|
Wang L, Wang J, Wang L, Ma S, Liu Y. Anti-Enterovirus 71 Agents of Natural Products. Molecules 2015; 20:16320-33. [PMID: 26370955 PMCID: PMC6331931 DOI: 10.3390/molecules200916320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 12/25/2022] Open
Abstract
This review, with 42 references, presents the fascinating area of anti-enterovirus 71 natural products over the last three decades for the first time. It covers literature published from 2005–2015 and refers to compounds isolated from biogenic sources. In total, 58 naturally-occurring anti-EV71 compounds are recorded.
Collapse
Affiliation(s)
- Liyan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China,.
| | - Junfeng Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Lishu Wang
- Jilin Provincial Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Shurong Ma
- Endoscopy Center, China-Japan Union Hospital, Jilin University, Changchun 130021, China.
| | - Yonghong Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China.
| |
Collapse
|
13
|
Yang Y, Guan F, Bai L, Zhang L, Liu J, Pan X, Zhang L. Quinolizidine alkaloids reduced mortality in EV71-infected mice by compensating for the levels of T cells. Bioorg Med Chem Lett 2015; 25:3526-8. [DOI: 10.1016/j.bmcl.2015.06.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2015] [Accepted: 06/25/2015] [Indexed: 11/28/2022]
|
14
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|