1
|
Zhang X, Hong Y, Hu C, Zhai Y, Pan N, Ding L, Han W, Cui W. Chryxanthone A, an extracted substance from endophytic fungal Aspergillus versicolor, produces anti-oxidant neuroprotection possibly via the action on mTOR/CREB axis. Gene 2025; 944:149298. [PMID: 39884402 DOI: 10.1016/j.gene.2025.149298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Neurons are susceptible to oxidative stress due to the elevated reactive oxygen species (ROS) production and the limited antioxidant defense mechanisms. Therefore, it is possible to treat oxidative stress-related neurological disorders via the inhibition of oxidative stress. Chryxanthone A is an extracted substance derived from the endophytic fungal Aspergillus versicolor, with an atypical dihydropyran ring. However, it is unknown whether and how chryxanthone A could produce anti-oxidant protection. PURPOSES The activity and mechanisms underlying the anti-oxidant protection of chryxanthone A were explored in the study. STUDY DESIGN AND METHODS HT22 neuronal cells were used to evaluate the anti-oxidant protection of chryxanthone A. Comprehensive bioinformatic methods, including RNA-seq analysis, transcription factor prediction, CMap prediction and molecular docking analysis, were utilized to explore the molecular mechanisms how chryxanthone A prevented oxidative stress, which was confirmed by Western blotting analysis. RESULTS Chryxanthone A concentration-dependently prevented H2O2-induced cell death and increase in intracellular ROS in HT22 cells. Results from RNA-seq and bioinformatic analysis indicated that chryxanthone A might act on mTOR/CREB axis, possibly via binding to the Val2227 site within ATP binding pocket of mTOR. The action of chryxanthone A on H2O2-induced alteration of mTOR/CREB axis were further confirmed in HT22 cells. CONCLUSION These results suggested that chryxanthone A produced anti-oxidant protection via the action on mTOR/CREB axis, providing a support that chryxanthone A might be developed as a novel drug candidate for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Xinyu Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China; Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Zhejiang 315211, China; Department of Marine Pharmacy, Ningbo University, Zhejiang 315211, China
| | - Yirui Hong
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Chenwei Hu
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Yijie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Nanyi Pan
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Zhejiang 315211, China; Department of Marine Pharmacy, Ningbo University, Zhejiang 315211, China
| | - Wenbo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Health Science Center, Ningbo University, Ningbo 315211 Zhejiang, China.
| |
Collapse
|
2
|
Papikinou MA, Pavlidis K, Cholidis P, Kranas D, Adamantidi T, Anastasiadou C, Tsoupras A. Marine Fungi Bioactives with Anti-Inflammatory, Antithrombotic and Antioxidant Health-Promoting Properties Against Inflammation-Related Chronic Diseases. Mar Drugs 2024; 22:520. [PMID: 39590800 PMCID: PMC11595437 DOI: 10.3390/md22110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Fungi play a fundamental role in the marine environment, being promising producers of bioactive molecules in the pharmacological and industrial fields, which have demonstrated potential health benefits against cardiovascular and other chronic diseases. This review pertains to the analysis of the lipid compositions across various species of marine fungi and their constantly discovered substances, as well as their anti-inflammatory, antioxidant, and antithrombotic effects. The health-promoting aspects of these microorganisms will be explored, through the investigation of several mechanisms of action and interference of their bioactives in biochemical pathways. Despite exceptional results in this field, the potential of marine microorganisms remains largely unexplored due to the limited number of specialists in marine microbiology and mycology, a relatively recent science with significant contributions and potential in biodiversity and biotechnology.
Collapse
Affiliation(s)
- Maria-Aliki Papikinou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | - Konstantinos Pavlidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | - Paschalis Cholidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | - Dimitrios Kranas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece; (M.-A.P.); (K.P.); (P.C.); (D.K.); (T.A.)
| |
Collapse
|
3
|
Han Y, Kim DH, Pack SP. Marine-Derived Bioactive Ingredients in Functional Foods for Aging: Nutritional and Therapeutic Perspectives. Mar Drugs 2024; 22:496. [PMID: 39590776 PMCID: PMC11595256 DOI: 10.3390/md22110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Aging is closely linked to various health challenges, including cardiovascular disease, metabolic disorders, and neurodegenerative conditions. This study emphasizes the critical role of bioactive compounds derived from marine sources, such as antioxidants, omega-3 fatty acids, vitamins, minerals, and polysaccharides, in addressing oxidative stress, inflammation, and metabolic disorders closely related to aging. Incorporating these materials into functional foods not only provides essential nutrients but also delivers therapeutic effects, thereby promoting healthy aging and mitigating age-related diseases. The growth of the global anti-aging market, particularly in North America, Europe, and Asia, underscores the significance of this study. This review systematically analyzes the current research, identifying key bioactive compounds, their mechanisms of action, and their potential health benefits, thus highlighting the broad applicability of marine-derived bioactive compounds to enhancing healthy aging and improving the quality of life of aging populations.
Collapse
Affiliation(s)
- Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| |
Collapse
|
4
|
Marasinghe CK, Je JY. Blue Mussel-Derived Bioactive Peptides PIISVYWK (P1) and FSVVPSPK (P2): Promising Agents for Inhibiting Foam Cell Formation and Inflammation in Cardiovascular Diseases. Mar Drugs 2024; 22:466. [PMID: 39452874 PMCID: PMC11509633 DOI: 10.3390/md22100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Atherosclerosis is a key etiological event in the development of cardiovascular diseases (CVDs), strongly linked to the formation of foam cells. This study explored the effects of two blue mussel-derived bioactive peptides (BAPs), PIISVYWK (P1) and FSVVPSPK (P2), on inhibiting foam cell formation and mitigating inflammation in oxLDL-treated RAW264.7 macrophages. Both peptides significantly suppressed intracellular lipid accumulation and cholesterol levels while promoting cholesterol efflux by downregulating cluster of differentiation 36 (CD36) and class A1 scavenger receptors (SR-A1) and upregulating ATP binding cassette subfamily A member 1 (ABCA-1) and ATP binding cassette subfamily G member 1 (ABCG-1) expressions. The increased expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α) further validated their role in enhancing cholesterol efflux. Additionally, P1 and P2 inhibited foam cell formation in oxLDL-treated human aortic smooth muscle cells and exerted anti-inflammatory effects by reducing pro-inflammatory cytokines, nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), primarily through inhibiting NF-κB activation. Furthermore, P1 and P2 alleviated oxidative stress by activating the Nrf2/HO-1 pathway. Our findings demonstrate that P1 and P2 have significant potential in reducing foam cell formation and inflammation, both critical factors in atherosclerosis development. These peptides may serve as promising therapeutic agents for the prevention and treatment of CVDs associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Ha Y, Zhou Y, Ma M, Wang N, Wang P, Zhang Z. Antimicrobial metabolites from the marine-derived fungus Aspergillus sp. ZZ1861. PHYTOCHEMISTRY 2024; 224:114164. [PMID: 38797256 DOI: 10.1016/j.phytochem.2024.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Fungi from the genus Aspergillus are important resources for the discovery of bioactive agents. This investigation characterized the isolation, structural elucidation, and antimicrobial evaluation of 46 metabolites produced by the marine-derived fungus Aspergillus sp. ZZ1861 in rice solid and potato dextrose broth liquid media. The structures of these isolated compounds were determined based on their HRESIMS data, NMR spectral analyses, and data from ECD, NMR, and optical rotation calculations. Emericelactones F and G, 20R,25S-preshamixanthone, 20R,25R-preshamixanthone, phthalimidinic acid A, phthalimidinic acid B, aspergilol G, and 2-hydroxyemodic amide are eight previously undescribed compounds and (S)-2-(5-hydroxymethyl-2-formylpyrrol-1-yl) propionic acid lactone is reported from a natural resource for the first time. It is also the first report of the configurations of 25S-O-methylarugosin A, 25R-O-methylarugosin A, 5R-(+)-9-hydroxymicroperfuranone, and 5R-(+)-microperfuranone. Phthalimidinic acid A, phthalimidinic acid B, aspergilol G, and 2-hydroxyemodic amide have antifungal activity against Candida albicans with MIC values of 1.56, 3.12, 1.56, and 12.5 μg/mL, respectively, 20R,25S-preshamixanthone (MIC 25 μg/mL) shows antibacterial activity against Escherichia coli, and 20R,25R-preshamixanthone exhibits antimicrobial activity against all three tested pathogens of methicillin-resistant Staphylococcus aureus, E. coli, and C. albicans with MIC values of 50, 25, 25 μg/mL, respectively.
Collapse
Affiliation(s)
- Yura Ha
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, 316021, China
| | - Yufang Zhou
- Zhejiang Marine Development Research Institute, Zhoushan, 316000, China
| | - Mingzhu Ma
- Zhejiang Marine Development Research Institute, Zhoushan, 316000, China
| | - Nan Wang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, 316021, China; Hainan Institute of Zhejiang University, Sanya, 572025, China.
| | - Pengbin Wang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, 316021, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
6
|
Giuliani ME, Bigossi G, Lai G, Marcozzi S, Brunetti D, Malavolta M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar Drugs 2024; 22:210. [PMID: 38786601 PMCID: PMC11123485 DOI: 10.3390/md22050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ageing represents a main risk factor for several pathologies. Among them, cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM) are predominant in the elderly population and often require prolonged use of multiple drugs due to their chronic nature and the high proportion of co-morbidities. Hence, research is constantly looking for novel, effective molecules to treat CVD and T2DM with minimal side effects. Marine active compounds, holding a great diversity of chemical structures and biological properties, represent interesting therapeutic candidates to treat these age-related diseases. This review summarizes the current state of research on marine compounds for the treatment of CVD and T2DM, from pre-clinical studies to clinical investigations and approved drugs, highlighting the potential of marine compounds in the development of new therapies, together with the limitations in translating pre-clinical results into human application.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20126 Milano, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| |
Collapse
|
7
|
Luo M, Zhao F, Cheng H, Su M, Wang Y. Macrophage polarization: an important role in inflammatory diseases. Front Immunol 2024; 15:1352946. [PMID: 38660308 PMCID: PMC11039887 DOI: 10.3389/fimmu.2024.1352946] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Macrophages are crucial cells in the human body's innate immunity and are engaged in a variety of non-inflammatory reactions. Macrophages can develop into two kinds when stimulated by distinct internal environments: pro-inflammatory M1-like macrophages and anti-inflammatory M2-type macrophages. During inflammation, the two kinds of macrophages are activated alternatively, and maintaining a reasonably steady ratio is critical for maintaining homeostasis in vivo. M1 macrophages can induce inflammation, but M2 macrophages suppress it. The imbalance between the two kinds of macrophages will have a significant impact on the illness process. As a result, there are an increasing number of research being conducted on relieving or curing illnesses by altering the amount of macrophages. This review summarizes the role of macrophage polarization in various inflammatory diseases, including autoimmune diseases (RA, EAE, MS, AIH, IBD, CD), allergic diseases (allergic rhinitis, allergic dermatitis, allergic asthma), atherosclerosis, obesity and type 2 diabetes, metabolic homeostasis, and the compounds or drugs that have been discovered or applied to the treatment of these diseases by targeting macrophage polarization.
Collapse
Affiliation(s)
| | | | | | | | - Yuanmin Wang
- The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, Guizhou, China
| |
Collapse
|
8
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
9
|
Deng Y, Jiang S, Huang Y, Tan X, Huang Y, Chen L, Xu J, Xiong X, Zhou J, Xu Y. Metformin Contributes to the Therapeutic Effects of Acne Vulgaris by Modifying the Gut Microbiome. Dermatol Ther 2023. [DOI: 10.1155/2023/9336867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background. Considering the increasing side effects of the first-line treatment for acne vulgaris, metformin was developed to be an effective adjunct therapy, but its mechanism of action is poorly defined. Recent evidence shows that the gut microbiota is a site of metformin action. The aim of this study was to evaluate the effects and mechanism of action for metformin in the adjuvant treatment of acne vulgaris by regulating gut microbiota. Methods. First, untreated acne patients were randomly allocated into two treatment groups. Both groups were treated with isotretinoin, but only one was additionally treated with metformin, for three months. Sprague Dawley (SD) rats were used as acne models, and they were also separated into groups that received isotretinoin, metformin, a combination of isotretinoin and metformin, and the vehicle, respectively. Then, the fecal samples from drug-intervention rats were transferred to germ-free rats with acne. The severity of the disease was evaluated using the Global Acne Grading System (GAGS) scoring for patients, and the number of comedones and mononuclear cells in pathological sections was used for rats. The composition of the gut microbiota was detected using gene sequencing for 16S rDNA. Results. Metformin had strong effects on the composition and function of the gut microbiota, and this correlated with the reduction in the severity of acne in both humans and rats. The fecal transfer to pseudo-germ-free rats improved both the inflammatory phenotype and comedones of acne in recipients of metformin-altered microbiota. Conclusion. The results suggest that metformin improves the symptoms of acne vulgaris by modulating the gut microbiota.
Collapse
|
10
|
Akram W, Rihan M, Ahmed S, Arora S, Ahmad S, Vashishth R. Marine-Derived Compounds Applied in Cardiovascular Diseases: Submerged Medicinal Industry. Mar Drugs 2023; 21:md21030193. [PMID: 36976242 PMCID: PMC10052127 DOI: 10.3390/md21030193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently, the available therapeutic option has several side effects, including hypotension, bradycardia, arrhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural sources, including plants, microorganisms, and marine creatures, have gained a lot of interest. Marine sources serve as reservoirs for new bioactive metabolites with various pharmacological activities. The marine-derived compound such as omega-3 acid ethyl esters, xyloketal B, asperlin, and saringosterol showed promising results in several CVDs. The present review focuses on marine-derived compounds' cardioprotective potential for hypertension, ischemic heart disease, myocardial infarction, and atherosclerosis. In addition to therapeutic alternatives, the current use of marine-derived components, the future trajectory, and restrictions are also reviewed.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Swamita Arora
- Department of Pharmacology, R. V. Northland Institute of Pharmacy, Dadri 203207, India
| | - Sameer Ahmad
- Department of Food Technology Jamia Hamdard, New Delhi 110062, India
| | - Rahul Vashishth
- School of BioSciences and Technology-Food Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
11
|
Shen L, Chen W, Ding J, Shu G, Chen M, Zhao Z, Xia S, Ji J. The role of metabolic reprogramming of oxygen-induced macrophages in the dynamic changes of atherosclerotic plaques. FASEB J 2023; 37:e22791. [PMID: 36723768 DOI: 10.1096/fj.202201486r] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Atherosclerosis (As) is a chronic vascular inflammatory disease. Macrophages are the most important immune cells in atherosclerotic plaques, and the phenotype of plaque macrophages shifts dynamically to adapt to changes in the plaque microenvironment. The aerobic microenvironment of early atherosclerotic plaques promotes the transformation of M2/alternatively activated macrophages mainly through oxidative phosphorylation; the anoxic microenvironment of advanced atherosclerotic plaques mainly promotes the formation of M1/classically activated macrophages through anaerobic glycolysis; and the adventitia angiogenesis of aged atherosclerotic plaques leads to an increase in the proportion of M2/M1 macrophages. Therefore, this review deeply elucidates the dynamic change mechanism of plaque macrophages and the regulation of plaque oxygen content and immune metabolism to find new targets for the treatment of As.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Shuiwei Xia
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| |
Collapse
|
12
|
CHENG X, ZHAO C, JIN Z, HU J, ZHANG Z, ZHANG C. Natural products: potential therapeutic agents for atherosclerosis. Chin J Nat Med 2022; 20:830-845. [DOI: 10.1016/s1875-5364(22)60219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/24/2022]
|
13
|
He XN, Zeng ZZ, Wu P, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Feng L, Zhou XQ. Dietary Aflatoxin B1 attenuates immune function of immune organs in grass carp (Ctenopharyngodon idella) by modulating NF-κB and the TOR signaling pathway. Front Immunol 2022; 13:1027064. [PMID: 36330527 PMCID: PMC9623247 DOI: 10.3389/fimmu.2022.1027064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Aflatoxin B1 (AFB1) is kind of a common mycotoxin in food and feedstuff. Aquafeeds are susceptible to contamination of AFB1. In teleost fish, the spleen and head kidney are key immune organ. Moreover, the fish skin is a critical mucosal barrier system. However, there was little study on the effects of dietary AFB1 on the immune response of these immune organs in fish. This study aimed to explore the impacts of oral AFB1 on the immune competence and its mechanisms in the skin, spleen, and head kidney of grass carp. Our work indicated that dietary AFB1 reduced antibacterial compounds and immunoglobulins contents, and decreased the transcription levels of antimicrobial peptides in grass carp immune organs. In addition, dietary AFB1 increased the transcription levels of pro-inflammatory cytokines and reduced the transcription levels of anti-inflammatory cytokines in the grass carp immune organs, which might be regulated by NF-κB and TOR signaling, respectively. Meanwhile, we evaluated the content of AFB1 in the grass carp diet should not exceed 29.48 μg/kg diet according to the levels of acid phosphatase and lysozyme. In summary, dietary AFB1 impaired immune response in grass carp skin, spleen, and head kidney.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhen-Zhen Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Chengdu, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Chengdu, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Chengdu, China
- *Correspondence: Xiao-Qiu Zhou, ; Lin Feng,
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Chengdu, China
- *Correspondence: Xiao-Qiu Zhou, ; Lin Feng,
| |
Collapse
|
14
|
Wang K, Cao Q, Yang Q, Wei Q, Zhao J, Wang Y, Hou J, Song S. Study on the regulatory effect of leech peptide HE-D on macrophages in atherosclerosis by transcriptome sequencing. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115380. [PMID: 35589020 DOI: 10.1016/j.jep.2022.115380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of atherosclerotic cardiovascular disease is a serious threat to human health. Leeches are used in traditional Chinese medicine to treat cardiovascular diseases. HE-D is an active peptide extracted and isolated from leeches, which can inhibit the migration of RAW264.7 macrophages. AIM This study shows the effects of HE-D on macrophages in atherosclerosis and the mechanism of inhibition on the migration of macrophages based on transcriptome sequencing (RNA-Seq). MATERIALS AND METHODS The transwell method was used to detect the activity of HE-D in inhibiting the migration of macrophages. Macrophages were divided into control group, lipopolysaccharide group, and HE-D group. Samples were collected and RNA-Seq performed. The DEseq2 method detected significantly differentially expressed genes (DEGs), GO and KEGG Pathway databases were used to analyze the functions and pathway enrichment of DEGs. Finally, qRT-PCR and Western blotting were used to verify the genes screened by RNA-Seq analyses. RESULTS Cell experiments showed that HE-D can inhibit the migration of RAW264.7 macrophages induced by LPS. DEseq2 analyses showed that there were 363 DEGs after HE-D administration in the result of RNA-Seq. The GO function of DEGs was significantly enriched in cell migration and inflammation, and the DEGs related to cell migration were significantly enriched in the NF-κB signaling pathway. qRT-PCR and Western blot analyses, showed that when compared with the LPS group, the related genes IKKα, IKKγ, TRAF6, TLR4, and TRAF5 in the NF-κB pathway were significantly down-regulated in the HE-D group. In addition, it was found that the inflammatory factors iNOS and TNF-α were significantly down-regulated, and Arg-1 and IL-10 were up-regulated. CONCLUSION HE-D can inhibit the migration of macrophages by inhibiting IKKα and IKKγ in the NF-κB signaling pathway, and promote the transformation of macrophages from M1to M2 subtypes. Therefore, HE-D can potentially be used as a drug for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University, Weihai, 264209, China; Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, China.
| | - Qi Cao
- Marine College, Shandong University, Weihai, 264209, China.
| | - Qiong Yang
- Marine College, Shandong University, Weihai, 264209, China.
| | - Qiang Wei
- Marine College, Shandong University, Weihai, 264209, China.
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai, 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, 264209, China.
| | - Junfeng Hou
- Marine College, Shandong University, Weihai, 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, 264209, China; Shandong University Weihai Research Institute of Industrial Technology, Weihai, 264209, China.
| |
Collapse
|
15
|
Zhou Y, Wang S, Liang X, Heger Z, Xu M, Lu Q, Yu M, Adam V, Li N. Turning Hot into Cold: Immune Microenvironment Reshaping for Atherosclerosis Attenuation Based on pH-Responsive shSiglec-1 Delivery System. ACS NANO 2022; 16:10517-10533. [PMID: 35762565 DOI: 10.1021/acsnano.2c01778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Current atherosclerosis treatment is based on a combination of cholesterol-lowering medication and low-fat diets; however, the clinical effect is unsatisfactory. It has been shown that the level of immune cell infiltration and pro-inflammatory factors in the atherosclerotic immune microenvironment (AIM) play important roles in the development and progression of atherosclerosis. Therefore, we hypothesized that reshaping "hot AIM" into "cold AIM" could attenuate atherosclerosis. For this purpose, we designed a pH-responsive and charge-reversible nanosystem, referred to as Au-PEI/shSiglec-1/PEI-acetylsalicylic acid (ASPA NPs) to effectively deliver shSiglec-1, which blocked the interactions between macrophages with CD8+ T/NKT cells, thus inhibiting immune cell infiltration. Further, we demonstrated that acetylsalicylic acid (ASA), detached from the pH-responsive PEI-ASA polymer, and inhibited lipid accumulation in macrophage, thereby decreasing the lipid antigen presentation. Additionally, reduced macrophage-produced inflammatory factors by ASA and low CD8+ T/NKT cell infiltration levels synergistically inhibit Th17 cell differentiation, thus further dramatically attenuating inflammation in AIM by decreasing the IL-17A production. Eventually, ASPA NPs efficiently reshaped AIM by inhibiting immune cell infiltration, lipid antigen presentation, and pro-inflammation, which provided a feasible therapeutic strategy for atherosclerosis immunotherapy.
Collapse
Affiliation(s)
- Yue Zhou
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-61200 Brno, Czech Republic
| | - Min Xu
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiang Lu
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Meng Yu
- School of Pharmaceutical Science Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-61200 Brno, Czech Republic
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Ngo MT, Van Nguyen M, Han JW, Kim B, Kim YK, Park MS, Kim H, Choi GJ. Biocontrol Potential of Aspergillus Species Producing Antimicrobial Metabolites. Front Microbiol 2021; 12:804333. [PMID: 35003037 PMCID: PMC8733401 DOI: 10.3389/fmicb.2021.804333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Microbial metabolites have been recognized as an important source for the discovery of new antifungal agents because of their diverse chemical structures with novel modes of action. In the course of our screening for new antifungal agents from microbes, we found that culture filtrates of two fungal species Aspergillus candidus SFC20200425-M11 and Aspergillus montenegroi SFC20200425-M27 have the potentials to reduce the development of fungal plant diseases such as tomato late blight and wheat leaf rust. From these two Aspergillus spp., we isolated a total of seven active compounds, including two new compounds (4 and 6), and identified their chemical structures based on the NMR spectral analyses: sphaeropsidin A (1), (R)-formosusin A (2), (R)-variotin (3), candidusin (4), asperlin (5), montenegrol (6), and protulactone A (7). Based on the results of the in vitro bioassays of 11 plant pathogenic fungi and bacteria, sphaeropsidin A (1), (R)-formosusin A (2), (R)-variotin (3), and asperlin (5) exhibited a wide range of antimicrobial activity. Furthermore, when plants were treated with sphaeropsidin A (1) and (R)-formosusin A (2) at a concentration of 500 μg/ml, sphaeropsidin A (1) exhibited an efficacy disease control value of 96 and 90% compared to non-treated control against tomato late blight and wheat leaf rust, and (R)-formosusin A (2) strongly reduced the development of tomato gray mold by 82%. Asperlin (5) at a concentration of 500 μg/ml effectively controlled the development of tomato late blight and wheat leaf rust with a disease control value of 95%. Given that culture filtrates and active compounds derived from two Aspergillus spp. exhibited disease control efficacies, our results suggest that the Aspergillus-produced antifungal compounds could be useful for the development of new natural fungicides.
Collapse
Affiliation(s)
- Men Thi Ngo
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Minh Van Nguyen
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Jae Woo Han
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Bomin Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Yun Kyung Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Myung Soo Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
17
|
Zhang K, Qin X, Qiu J, Sun T, Qu K, Din AU, Yan W, Li T, Chen Y, Gu W, Rao X, Wang G. Desulfovibrio desulfuricans aggravates atherosclerosis by enhancing intestinal permeability and endothelial TLR4/NF-κB pathway in Apoe mice. Genes Dis 2021; 10:239-253. [PMID: 37013030 PMCID: PMC10066333 DOI: 10.1016/j.gendis.2021.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022] Open
Abstract
It is increasingly aware that gut microbiota is closely associated with atherosclerosis. However, which and how specific gut bacteria regulate the progression of atherosclerosis is still poorly understood. In this study, modified linear discriminant analysis was performed in comparing the gut microbiota structures of atherosclerotic and non-atherosclerotic mice, and Desulfovibrio desulfuricans (D. desulfuricans) was found to be associated with atherosclerosis. D. desulfuricans-treated Apoe -/- mice showed significantly aggravated atherosclerosis. The proatherogenic effect of D. desulfuricans was attributed to its ability to increase intestinal permeability and subsequent raise in the transit of lipopolysaccharide (LPS) from the intestine to the bloodstream. Excessive LPS in the blood can elicit local and systemic inflammation and activate Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling of endothelial cells. TAK-242, a specific inhibitor of TLR4, can ameliorate the development of D. desulfuricans-induced atherosclerosis by blocking the LPS-induced activation of TLR4/NF-κB signaling.
Collapse
|
18
|
Liang B, Cai XY, Gu N. Marine Natural Products and Coronary Artery Disease. Front Cardiovasc Med 2021; 8:739932. [PMID: 34621803 PMCID: PMC8490644 DOI: 10.3389/fcvm.2021.739932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease is the major cause of mortality worldwide, especially in low- and middle-income earners. To not only reduce angina symptoms and exercise-induced ischemia but also prevent cardiovascular events, pharmacological intervention strategies, including antiplatelet drugs, anticoagulant drugs, statins, and other lipid-lowering drugs, and renin-angiotensin-aldosterone system blockers, are conducted. However, the existing drugs for coronary artery disease are incomprehensive and have some adverse reactions. Thus, it is necessary to look for new drug research and development. Marine natural products have been considered a valuable source for drug discovery because of their chemical diversity and biological activities. The experiments and investigations indicated that several marine natural products, such as organic small molecules, polysaccharides, proteins, and bioactive peptides, and lipids were effective for treating coronary artery disease. Here, we particularly discussed the functions and mechanisms of active substances in coronary artery disease, including antiplatelet, anticoagulant, lipid-lowering, anti-inflammatory, and antioxidant activities.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yi Cai
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
19
|
Pellissier L, Koval A, Marcourt L, Ferreira Queiroz E, Lecoultre N, Leoni S, Quiros-Guerrero LM, Barthélémy M, Duivelshof BL, Guillarme D, Tardy S, Eparvier V, Perron K, Chave J, Stien D, Gindro K, Katanaev V, Wolfender JL. Isolation and Identification of Isocoumarin Derivatives With Specific Inhibitory Activity Against Wnt Pathway and Metabolome Characterization of Lasiodiplodia venezuelensis. Front Chem 2021; 9:664489. [PMID: 34458231 PMCID: PMC8397479 DOI: 10.3389/fchem.2021.664489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancers are dependent on Wnt pathway overactivation mostly through dysregulation of pathway component protein expression, which necessitates the search for therapeutically relevant compounds targeting them. Highly diverse microorganisms as endophytes represent an underexplored field in the therapeutic natural products research. In the present work, the objective was to explore the chemical diversity and presence of selective Wnt inhibitors within a unique collection of fungi isolated as foliar endophytes from the long-lived tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted with ethyl acetate, and screened for their effects on the Wnt pathway and cell proliferation. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation based on its selective activity. Application of geometric transfer from analytical HPLC conditions to semi-preparative scale and use of dry load sample introduction enabled the isolation of 15 pure compounds in a single step. Among the molecules identified, five are original natural products described for the first time, and six are new to this species. An active fraction obtained by semi-preparative HPLC was re-purified by UHPLC-PDA using a 1.7 µm phenyl column. 75 injections of 8 µg were necessary to obtain sufficient amounts of each compound for structure elucidation and bioassays. Using this original approach, in addition to the two major compounds, a third minor compound identified as (R)-(-)-5-hydroxymellein (18) was obtained, which was found to be responsible for the significant Wnt inhibition activity recorded. Further studies of this compound and its structural analogs showed that only 18 acts in a highly specific manner, with no acute cytotoxicity. This compound is notably selective for upstream components of the Wnt pathway and is able to inhibit the proliferation of three triple negative breast cancer cell lines. In addition to the discovery of Wnt inhibitors of interest, this study contributes to better characterize the biosynthetic potential of L. venezuelensis.
Collapse
Affiliation(s)
- Léonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Nicole Lecoultre
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Luis-Manuel Quiros-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Morgane Barthélémy
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Bastiaan L Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Sébastien Tardy
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Véronique Eparvier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Karl Perron
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Jérôme Chave
- CNRS, Biological Diversity and Evolution (UMR 5174), Toulouse, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Vladimir Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| |
Collapse
|
20
|
Yan N, Wang L, Li Y, Wang T, Yang L, Yan R, Wang H, Jia S. Metformin intervention ameliorates AS in ApoE-/- mice through restoring gut dysbiosis and anti-inflammation. PLoS One 2021; 16:e0254321. [PMID: 34264978 PMCID: PMC8282009 DOI: 10.1371/journal.pone.0254321] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis (AS) is closely associated with chronic low-grade inflammation and gut dysbiosis. Metformin (MET) presents pleiotropic benefits in the control of chronic metabolic diseases, but the impacts of MET intervention on gut microbiota and inflammation in AS remain largely unclear. In this study, ApoE-/- mice with a high-fat diet (HFD) were adopted to assess the MET treatment. After 12 weeks of MET intervention (100mg·kg-1·d-1), relevant indications were investigated. As indicated by the pathological measurements, the atherosclerotic lesion was alleviated with MET intervention. Moreover, parameters in AS including body weights (BWs), low-density lipoprotein (LDL), triglyceride (TG), total cholesterol (TC) and malondialdehyde (MDA) were elevated; whereas high-density lipoprotein (HDL) and total superoxide dismutase (T-SOD) levels were decreased, which could be reversed by MET intervention. Elevated pro-inflammatory interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and lipopolysaccaride (LPS) in AS were decreased after MET administration. However, anti-inflammatory IL-10 showed no significant difference between AS group and AS+MET group. Consistently, accumulated macrophages in the aorta of AS were conversely lowered with MET treatment. The results of 16S rRNA sequencing and analysis displayed that the overall community of gut microbiota in AS was notably changed with MET treatment mainly through decreasing Firmicutes, Proteobacteria, Romboutsia, Firmicutes/Bacteroidetes, as well as increasing Akkermansia, Bacteroidetes, Bifidobacterium. Additionally, we found that microbiota-derived short-chain fatty acids (SCFAs) including acetic acid, propionic acid, butyric acid and valeric acid in AS were decreased, which were significantly up-regulated with MET intervention. Consistent with the attenuation of MET on gut dysbiosis, decreased intestinal tight junction protein zonula occludens-1 (ZO)-1 in AS was restored after MET supplementation. Correlation analysis showed close relationships among gut bacteria, microbial metabolites SCFAs and inflammation. Collectively, MET intervention ameliorates AS in ApoE-/- mice through restoring gut dysbiosis and anti-inflammation, thus can potentially serve as an inexpensive and effective intervention for the control of the atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Ning Yan
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lijuan Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Department of Cardiovascular Diseases, The Second Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Yiwei Li
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Libo Yang
- Clinical Medical College, Ningxia Medical University, Yinchuan, China
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ru Yan
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shaobin Jia
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
21
|
Chin DD, Poon C, Wang J, Joo J, Ong V, Jiang Z, Cheng K, Plotkin A, Magee GA, Chung EJ. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials 2021; 273:120810. [PMID: 33892346 PMCID: PMC8152375 DOI: 10.1016/j.biomaterials.2021.120810] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/14/2022]
Abstract
In atherosclerosis, resident vascular smooth muscle cells (VSMCs) in the blood vessels become highly plastic and undergo phenotypic switching from the quiescent, contractile phenotype to the migratory and proliferative, synthetic phenotype. Additionally, recent VSMC lineage-tracing mouse models of atherosclerosis have found that VSMCs transdifferentiate into macrophage-like and osteochondrogenic cells and make up to 70% of cells found in atherosclerotic plaques. Given VSMC phenotypic switching is regulated by microRNA-145 (miR-145), we hypothesized that nanoparticle-mediated delivery of miR-145 to VSMCs has the potential to mitigate atherosclerosis development by inhibiting plaque-propagating cell types derived from VSMCs. To test our hypothesis, we synthesized miR-145 micelles targeting the C-C chemokine receptor-2 (CCR2), which is highly expressed on synthetic VSMCs. When miR-145 micelles were incubated with human aortic VSMCs in vitro, >90% miR-145 micelles escaped the lysosomal pathway in 4 hours and released the miR cargo under cytosolic levels of glutathione, an endogenous reducing agent. As such, miR-145 micelles rescued atheroprotective contractile markers, myocardin, α-SMA, and calponin, in synthetic VSMCs in vitro. In early-stage atherosclerotic ApoE-/- mice, one dose of miR-145 micelles prevented lesion growth by 49% and sustained an increased level of miR-145 expression after 2 weeks post-treatment. Additionally, miR-145 micelles inhibited 35% and 43% plaque growth compared to free miR-145 and PBS, respectively, in mid-stage atherosclerotic ApoE-/- mice. Collectively, we present a novel therapeutic strategy and cell target for atherosclerosis, and present miR-145 micelles as a viable nanotherapeutic that can intervene atherosclerosis progression at both early and later stages of disease.
Collapse
Affiliation(s)
- Deborah D Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Johan Joo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Victor Ong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Zhangjingyi Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Kayley Cheng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Anastasia Plotkin
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
| | - Gregory A Magee
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States; Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States.
| |
Collapse
|
22
|
Lu X, Yang B, Yang H, Wang L, Li H, Chen S, Lu X, Gu D. MicroRNA-320b Modulates Cholesterol Efflux and Atherosclerosis. J Atheroscler Thromb 2021; 29:200-220. [PMID: 33536383 PMCID: PMC8803562 DOI: 10.5551/jat.57125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim:
ATP-binding cassette (ABC) transporters and endonuclease-exonuclease-phosphatase family domain containing 1 (EEPD1) are reported to regulate cellular cholesterol efflux in macrophages. Bioinformatics analysis has revealed that ABCG1 and EEPD1 might be potential targets of microRNA (miR)-320b. This study aimed to elucidate the roles of miR-320b in cholesterol efflux from macrophages and the pathogenesis of atherosclerosis.
Methods:
Microarray was conducted to profile microRNA (miRNA) expression, and quantitative real-time PCR (qPCR) was used to validate the differentially expressed miRNAs in peripheral blood mononuclear cells of coronary artery disease (CAD) patients and healthy controls. Luciferase assay was conducted to evaluate the activity of reporter construct containing the 3´-untranslated region (3´-UTR) of target genes. Besides, NBD-cholesterol efflux induced by high-density lipoprotein (HDL) and lipid-free apolipoprotein A1 (apoA1) was detected using fluorescence intensity, respectively.
Apoe−/−
mice were injected with adeno-associated virus (AAV)2-miR-320b or control via tail vein, thereafter fed with 14 week atherogenic diet to study the roles of miR-320b
in vivo
.
Results:
MiR-320b was highly expressed in CAD patients compared with that in the healthy controls in both the microarray analysis and qPCR analysis.
In vitro
study showed that miR-320b decreased HDL- and apoA1-mediated cholesterol efflux from macrophages partly by directly targeting
ABCG1
and
EEPD1
genes and partly via suppressing the LXRα-ABCA1/G1 pathway. Consistently,
in vivo
administration of AAV2-miR-320b into
Apoe−/−
mice attenuated cholesterol efflux from peritoneal macrophages, which showed reduced expression of ABCA1/G1 and EEPD1, and increased lipid LDL-C level, with a down-regulation of hepatic LDLR and ABCA1. AAV2-miR-320b treatment also increased atherosclerotic plaque size and lesional macrophage content and enhanced pro-inflammatory cytokines levels through the elevated phosphorylation level of nuclear factor-κB p65 in macrophages.
Conclusion:
We identify miR-320b as a novel modulator of macrophage cholesterol efflux and that it might be a promising therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xiaomei Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Bin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Huijun Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Laiyuan Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Hongfan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shufeng Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
23
|
Duraisamy P, Ravi S, Krishnan M, Livya CM, Manikandan B, Arunagirinathan K, Ramar M. Dynamic Role of Macrophage Sub Types for Development of Atherosclerosis and Potential Use of Herbal Immunomodulators as Imminent Therapeutic Strategy. Cardiovasc Hematol Agents Med Chem 2020; 20:2-12. [PMID: 33334298 DOI: 10.2174/1871525718666201217163207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis, a major contributor to cardiovascular disease is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes recruitment of monocytes to the inflammatory sites and subside pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 has to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of proinflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage has atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.
Collapse
Affiliation(s)
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025. India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025. India
| | - Catherene M Livya
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025. India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai - 600 015. India
| | | | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025. India
| |
Collapse
|
24
|
Shen CY, Lin JJ, Jiang JG, Wang TX, Zhu W. Potential roles of dietary flavonoids from Citrus aurantium L. var. amara Engl. in atherosclerosis development. Food Funct 2020; 11:561-571. [PMID: 31850465 DOI: 10.1039/c9fo02336d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dietary consumption of flavonoids correlated positively with lower risk of cardiovascular disease. However, the precise roles of flavonoids from the blossoms of Citrus aurantium Linn variant amara Engl (CAVA) in atherosclerosis (AS) are still poorly understood. This study aimed to find novel flavonoid-type skeletons with protection against AS. Total flavonoids (CAVAF), homoeriodictyol (HE) and hesperetin-7-O-β-d-glucopyranoside (HG) were isolated from the blossoms of Citrus aurantium Linn variant amara Engl. by chromatography. Their suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses and ox-LDL-induced foam cell formation were systematically and comparatively investigated using macrophage RAW264.7 cells. HE was more powerful than HG in inhibiting LPS-induced production of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and gene expression in RAW264.7 cells. HE and HG showed different responses to extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), P38, P65, IκBα, IκKα/β phosphorylation, and nuclear factor-kappa B (NF-κB) nuclear translocation. HE and HG also differentially decreased oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation by regulating peroxisome proliferator-activated receptor-gamma (PPARγ), phospholipid ATP-binding cassette transporter A1 (ABCA1), phospholipid ATP-binding cassette transporter G1 (ABCG1), scavenger receptor class B type I (SRB1), scavenger receptor class A type I (SRA1) and cluster of differentiation 36 (CD36) expression at gene and protein levels in RAW264.7 cells. HG showed weaker potential than HE in preventing AS development. Their chemical differences might partially explain the discrepancy in their bioactivity. In conclusion, HE and HG might be developed into novel therapeutic agents against inflammation and AS-associated diseases.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | | | | | | | | |
Collapse
|
25
|
Cao Q, Zhao J, Xing M, Xiao H, Zhang Q, Liang H, Ji A, Song S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar Drugs 2020; 18:md18090440. [PMID: 32854344 PMCID: PMC7551282 DOI: 10.3390/md18090440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic disease characterized by lipid accumulation and chronic inflammation of the arterial wall, which is the pathological basis for coronary heart disease, cerebrovascular disease and thromboembolic disease. Currently, there is a lack of low-cost therapeutic agents that effectively slow the progression of atherosclerosis. Therefore, the development of new drugs is urgently needed. The research and development of marine-derived drugs have gained increasing interest from researchers across the world. Many marine organisms provide a rich material basis for the development of atherosclerotic drugs. This review focuses on the latest technological advances in the structures and mechanisms of action of marine-derived anti-atherosclerotic substances and the challenges of the application of these substances including marine polysaccharides, proteins and peptides, polyunsaturated fatty acids and small molecule compounds. Here, we describe the theoretical basis of marine biological resources in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: (A.J.); (S.S.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- Correspondence: (A.J.); (S.S.)
| |
Collapse
|
26
|
Shen CY, Wang TX, Jiang JG, Huang CL, Zhu W. Bergaptol from blossoms of Citrus aurantium L. var. amara Engl inhibits LPS-induced inflammatory responses and ox-LDL-induced lipid deposition. Food Funct 2020; 11:4915-4926. [PMID: 32432251 DOI: 10.1039/c9fo00255c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aberrant activation of inflammation and excess accumulation of lipids play pivotal roles in atherosclerosis (AS) progression. Constituents from Citrus aurantium Linn variant amara Engl (CAVA) were effectively investigated for their various bioactivities, especially anti-inflammation. Bergaptol (BER) is particularly abundant in Citrus products. Accumulating studies have confirmed its predominant anti-cancer and antioxidant functions, whereas few studies focused on its antiatherogenic functions. In the current study, BER was isolated from CAVA for the first time. Macrophages were stimulated with lipopolysaccharides (LPSs) or oxidized low-density lipoproteins (ox-LDL) to mimic inflammatory responses and AS development. BER treatment significantly inhibited LPS-induced production of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and gene expression of inducible nitric oxide synthase (iNOS), IL-6, TNF-α, interleukin-1 beta (IL-1β) and cyclooxygenase-2 (COX-2). BER also potently blocked LPS-induced mitogen-activated protein kinase (MAPK) phosphorylation and nuclear factor-kappa B (NF-κB) activation, as evidenced by the inhibitory effects on c-Jun N-terminal kinase (JNK), P38, P65, IκBα and IκKα/β phosphorylation, and NF-κB nuclear translocation. Furthermore, BER treatment markedly mitigated ox-LDL-induced foam cell formation by inhibiting scavenger receptor class A type I (SRA1) and cluster of differentiation 36 (CD36)-dependent cholesterol uptake. In conclusion, BER might be a novel therapeutic agent for AS prevention through inhibiting inflammatory responses and cholesterol uptake.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Tian-Xing Wang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Chun-Ling Huang
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Wei Zhu
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
27
|
Zhou L, Long J, Sun Y, Chen W, Qiu R, Yuan D. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE -/- mice and inhibits the activation of CD4 + T cells. Nutr Metab (Lond) 2020; 17:41. [PMID: 32508962 PMCID: PMC7251691 DOI: 10.1186/s12986-020-00461-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Atherosclerosis (AS), which characterized with the accumulation of lipids on the vessel wall, is the pathological basis of many cardiovascular diseases (CVD) and seriously threatens human health. Resveratrol (RES) has been reported to be benefit for AS treatment. This research aimed to observe the effects of RES on AS induced by high-fat diet (HFD) and LPS in ApoE-/- mice and investigate the underlying mechanism. Methods ApoE-/- mice were fed with HFD companied with LPS to induce AS and RES was administrated for 20 weeks. Splenic CD4+ T cells were cultured and treated with anti-CD3/CD28 together with LPS, and RES was added. Serum lipids and the atherosclerotic areas of aortas were detected. The activation of CD4+ T cells were investigated both in vivo and in vitro and the expression of DNA methyltransferases (Dnmt) in CD4+ T cells were measured. Results In vivo, administration of RES prevented HFD and LPS induced dysfunction of serum lipids including TC (total cholesterol), TG (triglyceride), LDL-C (low density lipoprotein cholesterol) and HDL-C (high density lipoprotein cholesterol), ameliorated the thickened coronary artery wall and decreased the areas of atherosclerotic lesion on aortas. Besides, RES decreased the number of CD4+ T cells in peripheral blood, decreased the expression of CD25 and CD44, but not affected the expression of L-selectin (CD62L). In vitro, RES decreased the expression of Ki67, CD25 and CD44 in CD4+ T cells. Moreover, RES increased the secretion of IL-2, IL-10 and TGF-β1, decreased IL-6. In addition, RES decreased both the mRNA and protein level of Dnmt1 and Dnmt3b in CD4+ T cells. Conclusion These results indicated that RES ameliorated AS induced by HFD companied with LPS in ApoE-/- mice, inhibited the proliferation and activation of CD4+ T cells and regulated the expression of Dnmt1 and Dnmt3b.
Collapse
Affiliation(s)
- Liyu Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Jun Long
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Yuting Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Weikai Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Runze Qiu
- Department of Clinical Pharmacology Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 People's Republic of China
| | - Dongping Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| |
Collapse
|
28
|
Li CL, Zhou WJ, Ji G, Zhang L. Natural products that target macrophages in treating non-alcoholic steatohepatitis. World J Gastroenterol 2020; 26:2155-2165. [PMID: 32476782 PMCID: PMC7235205 DOI: 10.3748/wjg.v26.i18.2155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive subtype of non-alcoholic fatty liver disease and potentiates risks for both hepatic and metabolic diseases. Although the pathophysiology of NASH is not completely understood, recent studies have revealed that macrophage activation is a major contributing factor for the disease progression. Macrophages integrate the immune response and metabolic process and have become promising targets for NASH therapy. Natural products are potential candidates for NASH treatment and have multifactorial underlying mechanisms. Macrophage involvement in the development of steatosis and inflammation in NASH has been widely investigated. In this review, we assess the evidence for natural products or their active ingredients in the modulation of macrophage activation, recruitment, and polarization, as well as the metabolic status of macrophages. Our work may highlight the possible natural products that target macrophages as potential treatment options for NASH.
Collapse
Affiliation(s)
- Chun-Lin Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen-Jun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
29
|
Wang D, Hiebl V, Xu T, Ladurner A, Atanasov AG, Heiss EH, Dirsch VM. Impact of natural products on the cholesterol transporter ABCA1. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112444. [PMID: 31805338 DOI: 10.1016/j.jep.2019.112444] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In different countries and areas of the world, traditional medicine has been and is still used for the treatment of various disorders, including chest pain or liver complaints, of which we now know that they can be linked with altered lipid and cholesterol homeostasis. As ATP-binding cassette transporter A1 (ABCA1) plays an essential role in cholesterol metabolism, its modulation may be one of the molecular mechanisms responsible for the experienced benefit of traditional recipes. Intense research activity has been dedicated to the identification of natural products from traditional medicine that regulate ABCA1 expression. AIMS OF THE REVIEW This review surveys natural products, originating from ethnopharmacologically used plants, fungi or marine sources, which influence ABCA1 expression, providing a reference for future study. MATERIALS AND METHODS Information on regulation of ABCA1 expression by natural compounds from traditional medicine was extracted from ancient and modern books, materia medica, and electronic databases (PubMed, Google Scholar, Science Direct, and ResearchGate). RESULTS More than 60 natural compounds from traditional medicine, especially traditional Chinese medicine (TCM), are reported to regulate ABCA1 expression in different in vitro and in vivo models (such as cholesterol efflux and atherosclerotic animal models). These active compounds belong to the classes of polyketides, terpenoids, phenylpropanoids, tannins, alkaloids, steroids, amino acids and others. Several compounds appear very promising in vivo, which need to be further investigated in animal models of diseases related to ABCA1 or in clinical studies. CONCLUSION Natural products from traditional medicine constitute a large promising pool for compounds that regulate ABCA1 expression, and thus may prevent/treat diseases related to cholesterol metabolism, like atherosclerosis or Alzheimer's disease. In many cases, the molecular mechanisms of these natural products remain to be investigated.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Verena Hiebl
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, 05-552, Jastrzębiec, Poland; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchevstr., 1113, Sofia, Bulgaria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
30
|
Yang S, Yuan HQ, Hao YM, Ren Z, Qu SL, Liu LS, Wei DH, Tang ZH, Zhang JF, Jiang ZS. Macrophage polarization in atherosclerosis. Clin Chim Acta 2019; 501:142-146. [PMID: 31730809 DOI: 10.1016/j.cca.2019.10.034] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory response that increases the risk of cardiovascular diseases. An in-depth study of the pathogenesis of atherosclerosis is critical for the treatment of atherosclerotic cardiovascular disease. The development of atherosclerosis involves many cells, such as endothelial cells, vascular smooth muscle cells, macrophages, and others. The considerable effects of macrophages in atherosclerosis are inextricably linked to macrophage polarization and the resulting phenotype. Moreover, the significant impact of macrophages on atherosclerosis depend not only on the function of the different macrophage phenotypes but also on the relative ratio of different phenotypes in the plaque. Research on atherosclerosis therapy indicates that the reduced plaque size and enhanced stability are partly due to modulating macrophage polarization. Therefore, regulating macrophage polarization and changing the proportion of macrophage phenotypes in plaques is a new therapeutic approach for atherosclerosis. This review provides a new perspective for atherosclerosis therapy by summarizing the relationship between macrophage polarization and atherosclerosis, as well as treatment targeting macrophage polarization.
Collapse
Affiliation(s)
- Sai Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Ji-Feng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Rd, NCRC Bldg26-357S, Ann Arbor, MI 48109, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, University of South China, Hengyang City, Hunan Province, 421001, PR China.
| |
Collapse
|
31
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
32
|
Lu J, Chen X, Xu X, Liu J, Zhang Z, Wang M, Li X, Chen H, Zhao D, Wang J, Zhao D, Cong D, Li X, Sun L. Active polypeptides from Hirudo inhibit endothelial cell inflammation and macrophage foam cell formation by regulating the LOX-1/LXR-α/ABCA1 pathway. Biomed Pharmacother 2019; 115:108840. [DOI: 10.1016/j.biopha.2019.108840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/28/2019] [Accepted: 03/31/2019] [Indexed: 12/31/2022] Open
|
33
|
Romsdahl J, Wang CCC. Recent advances in the genome mining of Aspergillus secondary metabolites (covering 2012-2018). MEDCHEMCOMM 2019; 10:840-866. [PMID: 31303983 PMCID: PMC6590338 DOI: 10.1039/c9md00054b] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/11/2019] [Indexed: 02/01/2023]
Abstract
Secondary metabolites (SMs) produced by filamentous fungi possess diverse bioactivities that make them excellent drug candidates. Whole genome sequencing has revealed that fungi have the capacity to produce a far greater number of SMs than have been isolated, since many of the genes involved in SM biosynthesis are either silent or expressed at very low levels in standard laboratory conditions. There has been significant effort to activate SM biosynthetic genes and link them to their downstream products, as the SMs produced by these "cryptic" pathways offer a promising source for new drug discovery. Further, an understanding of the genes involved in SM biosynthesis facilitates product yield optimization of first-generation molecules and genetic engineering of second-generation analogs. This review covers advances made in genome mining SMs produced by Aspergillus nidulans, Aspergillus fumigatus, Aspergillus niger, and Aspergillus terreus in the past six years (2012-2018). Genetic identification and molecular characterization of SM biosynthetic gene clusters, along with proposed biosynthetic pathways, will be discussed in depth.
Collapse
Affiliation(s)
- Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Avenue , Los Angeles , CA 90089 , USA . ; Tel: (323) 442 1670
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Avenue , Los Angeles , CA 90089 , USA . ; Tel: (323) 442 1670
- Department of Chemistry , Dornsife College of Letters, Arts, and Sciences , University of Southern California , 3551 Trousdale Pkwy , Los Angeles , CA 90089 , USA
| |
Collapse
|
34
|
Shibata MA, Harada-Shiba M, Shibata E, Tosa H, Matoba Y, Hamaoka H, Iinuma M, Kondo Y. Crude α-Mangostin Suppresses the Development of Atherosclerotic Lesions in Apoe-Deficient Mice by a Possible M2 Macrophage-Mediated Mechanism. Int J Mol Sci 2019; 20:ijms20071722. [PMID: 30959963 PMCID: PMC6480575 DOI: 10.3390/ijms20071722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle choices play a significant role in the etiology of atherosclerosis. Male Apoe−/− mice that develop spontaneous atherosclerotic lesions were fed 0%, 0.3%, and 0.4% mangosteen extracts, composed largely of α-mangostin (MG), for 17 weeks. Body weight gains were significantly decreased in both MG-treated groups compared to the control, but the general condition remained good throughout the study. The levels of total cholesterol (decreased very-low-density lipoprotein in lipoprotein profile) and triglycerides decreased significantly in the MG-treated mice in conjunction with decreased hepatic HMG-CoA synthase and Fatty acid transporter. Additionally, increased serum lipoprotein lipase activity and histopathology further showed a significant reduction in atherosclerotic lesions at both levels of MG exposure. Real-time PCR analysis for macrophage indicators showed a significant elevation in the levels of Cd163, an M2 macrophage marker, in the lesions of mice receiving 0.4% MG. However, the levels of Nos2, associated with M1 macrophages, showed no change. In addition, quantitative immunohistochemical analysis of macrophage subtypes showed a tendency for increased M2 populations (CD68+/CD163+) in the lesions of mice given 0.4% MG. In further analysis of the cytokine-polarizing macrophage subtypes, the levels of Interleukin13 (Il13), associated with M2 polarization, were significantly elevated in lesions exposed to 0.4% MG. Thus, MG could suppress the development of atherosclerosis in Apoe−/− mice, possibly through an M2 macrophage-mediated mechanism.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | - Eiko Shibata
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | - Yoshinobu Matoba
- Ecoresource Institute Co., Ltd., Minokamo, Gifu 505-0042, Japan.
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | | | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
35
|
Wu C, Zhou Y, Qi G, Liu D, Cao X, Yu J, Zhang R, Lin W, Guo P. Asperlin Stimulates Energy Expenditure and Modulates Gut Microbiota in HFD-Fed Mice. Mar Drugs 2019; 17:38. [PMID: 30634484 PMCID: PMC6356881 DOI: 10.3390/md17010038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
Asperlin is a marine-derived, natural product with antifungal, anti-inflammatory and anti-atherosclerotic activities. In the present study, we showed that asperlin effectively prevented the development of obesity in high-fat diet (HFD)-fed mice. Oral administration of asperlin for 12 weeks significantly suppressed HFD-induced body weight gain and fat deposition without inhibiting food intake. Hyperlipidemia and liver steatosis were also substantially ameliorated. A respiratory metabolism monitor showed that asperlin efficiently increased energy expenditure and enhanced thermogenic gene expression in adipose tissue. Accordingly, asperlin-treated mice showed higher body temperature and were more tolerant of cold stress. Meanwhile, asperlin also increased the diversity and shifted the structure of gut microbiota. Oral administration of asperlin markedly increased the relative abundance of Bacteroidetes, leading to a higher Bacteroidetes-to-Fimicutes ratio. The HFD-induced abnormalities at both phylum and genus levels were all remarkably recovered by asperlin. These results demonstrated that asperlin is effective in preventing HFD-induced obesity and modulating gut microbiota. Its anti-obesity properties may be attributed to its effect on promoting energy expenditure.
Collapse
Affiliation(s)
- Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yue Zhou
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Guihong Qi
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Xiaoxue Cao
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Rong Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Peng Guo
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
36
|
Grau MF, Entwistle R, Chiang YM, Ahuja M, Oakley CE, Akashi T, Wang CCC, Todd RB, Oakley BR. Hybrid Transcription Factor Engineering Activates the Silent Secondary Metabolite Gene Cluster for (+)-Asperlin in Aspergillus nidulans. ACS Chem Biol 2018; 13:3193-3205. [PMID: 30339758 DOI: 10.1021/acschembio.8b00679] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fungi are a major source of valuable bioactive secondary metabolites (SMs). These compounds are synthesized by enzymes encoded by genes that are clustered in the genome. The vast majority of SM biosynthetic gene clusters are not expressed under normal growth conditions, and their products are unknown. Developing methods for activation of these silent gene clusters offers the potential for discovering many valuable new fungal SMs. While a number of useful approaches have been developed, they each have limitations, and additional tools are needed. One approach, upregulation of SM gene cluster-specific transcription factors that are associated with many SM gene clusters, has worked extremely well in some cases, but it has failed more often than it has succeeded. Taking advantage of transcription factor domain modularity, we developed a new approach. We fused the DNA-binding domain of a transcription factor associated with a silent SM gene cluster with the activation domain of a robust SM transcription factor, AfoA. Expression of this hybrid transcription factor activated transcription of the genes in the target cluster and production of the antibiotic (+)-asperlin. Deletion of cluster genes confirmed that the cluster is responsible for (+)-asperlin production, and we designate it the aln cluster. Separately, coinduction of expression of two aln cluster genes revealed the pathway intermediate (2 Z,4 Z,6 E)-octa-2,4,6-trienoic acid, a compound with photoprotectant properties. Our findings demonstrate the potential of our novel synthetic hybrid transcription factor strategy to discover the products of other silent fungal SM gene clusters.
Collapse
Affiliation(s)
- Michelle F. Grau
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Tomohiro Akashi
- Division of OMICS Analysis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Richard B. Todd
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, Kansas 66506, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
37
|
Zhang XF, Yang Y, Yang XY, Tong Q. MiR-188-3p upregulation results in the inhibition of macrophage proinflammatory activities and atherosclerosis in ApoE-deficient mice. Thromb Res 2018; 171:55-61. [PMID: 30253270 DOI: 10.1016/j.thromres.2018.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atherosclerosis occurs as a result of a chronic inflammatory response in the arterial wall associated with an increased uptake of low-density lipoprotein by macrophages and the subsequent transformation of this lipoprotein into foam cells. It has been found that miR-188-3p can suppress autophagy and myocardial infarction. Therefore, we conducted the present study with determining the suppressive role played by miR-188-3p in atherosclerosis. METHODS The atherosclerosis model was established using ApoE knockout mice. The healthy C57BL/6J wide-type mice were used as control, while miR-188-3p mimics or inhibitors were applied for the elevation or the depletion of the miR-188-3p expression in mice. The macrophage content was observed in atherosclerotic plaque. Once the miR-188-3p expression was determined, the effects of the over-expression of miR-188-3p on the lipid accumulation and macrophage inflammatory response were accessed. The plasma levels of pro-inflammatory factors and serum RANTES level, as well as OLR1, iNOS, ABCA1 and KLF2 expression were determined in order to evaluate the potential anti-inflammatory and antioxidative activities of miR-188-3p. RESULTS ApoE knockout mice with atherosclerosis presented with increased lipid accumulation and macrophage content. MiR-188-3p was found to reduce intravascular lipid accumulation in atherosclerotic mice. In addition to the alleviation of macrophage inflammatory response, the upregulation of miR-188-3p also leads to the suppression of oxidation with reduced macrophage accumulation, plasma expression of pro-inflammatory factors and serum RANTES level, OLR1 and iNOS, while it increases ABCA1 and KLF2. CONCLUSIONS In conclusion, the findings from our study found a new potential therapy for atherosclerosis by investigating the inhibitory effects of miR-188-3p on macrophage inflammatory response and oxidation.
Collapse
Affiliation(s)
- Xian-Feng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Yang
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xin-Yu Yang
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Qian Tong
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|